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We consider the origins of the gluon chain model. The model serves as a realization of the dynamics of

the chromoelectric flux between static quark-antiquark sources. The derivation is based on the large-NC

limit of the Coulomb gauge Hamiltonian in the presence of a background field introduced to model

magnetic charge condensation inducing electric confinement.
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I. INTRODUCTION

The gluon chain model of Greensite and Thorn [1–4]
identifies the chromoelectric flux tube that exists between
static quark charges with a string of quasiparticles,
constituent gluons. Through lattice simulations and phe-
nomenological analyses it is well established that the
instantaneous, Coulomb potential between static charges
is confining [5–8]. Even though it does not correspond to a
physical observable, the static potential does provide
physical insight into the possible origins of the confinement
mechanism as illustrated by the Gribov-Zwanziger model
[9,10] and other, e.g., variational models [11–15]. Lattice
simulations indicate that the corresponding string tension is
larger (by a factor of 2 to 3) as compared to the string
tension extracted from large, time-dependentWilson loops.
This is consistent with expectations of variational analysis.
At fixed quark-antiquark separation the Coulomb potential
corresponds to the energy of a quark-antiquark pair in a
vacuum state that is unmodified by the presence of the pair
while the energy extracted from the Wilson loop corre-
sponds to the energy of the exact QCD eigenstate in which
the quark-antiquark (Q �Q) pair polarizes the vacuum [16].
The gluon chain model is a particular realization of the
latter, i.e., the exact pair state. Confinement originates from
the condensation of chromomagnetic charges [17–20].
Formation of the gluon chain should therefore also provide
insights into the interplay between constituent gluons and
magnetic domains in the vacuum.

In the Hamiltonian formulation the true Q �Q state is
generated by the evolution operator lim�!1 expð��HÞ
from the unperturbed vacuum. This is because in a physical
gauge the Hamiltonian H contains all gluon interactions
which also couple to the classical, external quark-antiquark
color source. In this paper we investigate if/how the gluon
chain emerges from the evolution operator. We follow a
canonical formulation of QCD in the Coulomb gauge since
it contains only physical degrees of freedom and these
can be directly related to quasiparticles. The gluon field
is decomposed into normal modes representing particle
excitations, and a physical state is represented as a

superposition of multigluon states. Furthermore the normal
mode expansion is performed with respect to a nonvanish-
ing classical background. Such a background is introduced
to (phenomenologically) parametrize topologically discon-
nected sectors of the vacuum. In terms of the path integral
representation these sectors correspond to large field con-
figurations, i.e., field domains that cannot be smoothly
connected to the null field configuration [21].
The paper is organized as follows. In the next section we

review the structure of the Hamiltonian, introduce the
particle basis, and discuss the role of the individual inter-
action terms in formation of the chain. In Sec. III we
propose a simplified computational scheme for studying
formation of the chain state and discuss numerical results.
A summary and outlook are given in Sec. IV.

II. QCD HAMILTONIAN AND GLUONS

In the Coulomb gauge [22] the gluon field is described
by the vector potential AaðxÞ that, for each color compo-
nent a ¼ 1 . . .N2

C � 1, satisfies the transversality condi-

tion, r �Aa ¼ 0. In the Schrödinger representation the
conjugate momenta, which are proportional to the electric
field, are given by �aðxÞ ¼ �i�=�AaðxÞ. The temporal
component of the gluon field is eliminated using Gauss’s
law. This leads to an instantaneous interaction between
color charges. The total color charge density has two
components, �ðx; aÞ ¼ �gðx; aÞ þ �qðx; aÞ, correspond-

ing to gluons and quarks, respectively. In the following
we ignore dynamical quarks, and the only quark charge we
consider is that of a static quark-antiquark pair placed
along the z axis a distance R apart. The corresponding
density is therefore given by

�qðx; aÞ ¼ Qy
i ðxÞTa

ijQjðxÞ � �Qy
i ðxÞTa

ji
�QjðxÞ: (1)

Here Qy
i ðxÞðQiðxÞÞ represents an operator that creates

(annihilates) a quark at x in a state with color i ¼
1 . . .NC, and Ta are the SUðNCÞ color matrices in the
fundamental representation. We suppress the (irrelevant)

spin indices. Similarly �Qy
i ðxÞ and �QiðxÞ are the creation
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and annihilation operators for antiquarks. A state with
a static Q �Q pair is created by the operator

Qy
i ðẑR=2Þ �Qy

j ð�ẑR=2Þ. The gluon charge density is given

by

�gðx; aÞ ¼ fabcA
bðxÞ ��cðxÞ; (2)

and the Hamiltonian takes the form

H ¼ HK þHB þHC; (3)

where the kinetic plus magnetic terms are given by

HK þHB ¼ 1

2

Z
dxðJ�1½A��J�1½A��þB2Þ; (4)

and

HC ¼ 1

2

Z
dxdyJ�1½A��ðx; aÞJ ½A�Kabðx; y; ½A�Þ�ðy; aÞ

(5)

represents the instantaneous Coulomb interaction between
color charges. Here J ½A� ¼ ð�D � rÞ is the Faddeev-
Popov determinant, D ¼ Dab ¼ r�ab þ gfacbA

c is the
covariant derivative, andB ¼ Ba ¼ r�Aa þ gfabcA

b�
Ac=2 is the magnetic field. The non-Abelian Coulomb
kernel is formally given by

Kðx; y; ½A�Þ ¼ ðD � rÞ�1ð�g2r2ÞðD � rÞ�1: (6)

The above describes the Hamiltonian in the Schrödinger
representation. The particle basis representation is
obtained via a canonical transformation from A, � to a
set of operators �yðk; �; aÞ, �ðk; �; aÞ representing crea-
tion and annihilation of gluons with three-momentum
kðk ¼ jkj; ½dk� ¼ dk=ð2�Þ3Þ, helicity �, and color a:

AaðxÞ¼
Z
½dk� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2!ðkÞp
"X
�¼�

eðk;�Þ�ðk;�;aÞeik�xþH:c

#
;

�aðxÞ¼1

i

Z
½dk�

ffiffiffiffiffiffiffiffiffiffi
!ðkÞ
2

s "X
�¼�

eðk;�Þ�ðk;�;aÞeik�x�H:c

#
:

(7)

Particle operators satisfy ladder algebra and generate
a Fock space labeled by the number of gluons, ni, occupy-
ing a state of a given momentum, helicity, and color,
i ¼ ðk; �; aÞ:

jn1;n2; . . .ni . . .i¼ ð�y
1 Þn1ð�y

2 Þn2 . . .ð�y
i Þni . . .j0i: (8)

The state with no gluons, j0i � j0; 0; . . .i is annihilated by
all annihilation operators �i.

A. The vacuum state

In the absence of quark sources, after normal ordering
the gluon operators, the Hamiltonian

H ¼ h0jHj0i þ :H: (9)

contains an infinite number of terms that connect states
with any numbers of gluons [11]. The ground state, j�i,
can therefore be formally written as

j�i ¼
�X

n1

X
n2

� � �
�
�n1;n2;���jn1; n2; . . .i: (10)

The nonuniqueness associated with the definition of a
gluon state, and thus the Hamiltonian in Eq. (9), arises
from the arbitrariness in the choice of the function !ðkÞ in
Eq. (7). For example the choice !ðkÞ ¼ k corresponds to a
basis of noninteracting particles which diagonalizes the
free Hamiltonian (i.e., for g ¼ 0). Other proposals, based
on the variational principle, have been analyzed in
Refs. [11–15]. These studies considered an optimal choice
for the basis of states obtained with !ðkÞ that approaches
the free particle limit for large k and is large and possibly
divergent in the infrared (IR), i.e., for k ! 0. This is
because an IR enhanced !ðkÞ suppresses contributions to
vacuum expectation values (vev) from fields near the
Gribov horizon [23] and removes the Landau pole from
the Coulomb kernel [cf. Eq. (6)]. With such an optimal
choice the vacuum in Eq. (10) is approximated by the state
with a vanishing number of gluons,1 i.e., j�i ¼ j0i, and
the ground state energy is therefore given by the first term
in Eq. (9).

B. The variational Q �Q state

We next consider a state containing the Q �Q pair.
A variational state, jRi, which does not take into account
the backreaction of quarks on the vacuum can be defined as
(in the volume V )

jRi ¼ 1

V
ffiffiffiffiffiffiffi
NC

p Qy
i

�
R

2
ẑ

�
�Qy
i

�
�R

2
ẑ

�
j0i; (11)

and it is normalized, hRjRi ¼ 1. Even if j0i was the exact
ground state, this state would only be an approximation to
the exact QCD eigenstate containing the Q �Q pair. This
is because with �q � 0 the term in HC proportional to

�q � �g does not conserve the gluon number. The expec-

tation value of the Hamiltonian in the variational Q �Q state
defines the Coulomb potential, VcðRÞ, which is propor-
tional to the expectation value of the Coulomb kernel in
the variational vacuum,

VcðRÞ�ab ¼ �h0jKabðRÞj0i: (12)

Here KabðRÞ is given by Eq. (6) evaluated at the positions
of the quark and the antiquark. The vacuum expectation
value may be computed by expanding the covariant

1More accurate approximations, which take into account
residual correlations among the ‘‘optimal gluons,’’ can be con-
structed using the standard many-body techniques of cluster
expansion [24,25].
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derivatives in powers of A [cf. Eq. (5)] and noticing that in
the variational vacuum,

h0jAaðxÞAbð0Þj0i¼�ab

Z dk

ð2�Þ3
�TðkÞ
2!ðkÞe

ik�x; (13)

where �TðkÞ ¼
P

�¼�eiðk; �Þe�j ðk; �Þ ¼ �ij � kikj=k
2.

The behavior of VcðRÞ at large R is correlated with the
IR behavior of !ðkÞ. While early variational studies indi-
cated that with a proper choice of!ðkÞ it would be possible
to obtain a confining potential, more detailed analyses
showed that all solutions are massive; i.e., when trans-
formed to momentum space VcðkÞ is always finite in the
limit k ! 0, also known as nonconfining [15]. We now
believe this is consistent with lattice results. As shown in
Ref. [5] the large-R strength of the Coulomb potential
originates from magnetic charges in the vacuum. These
are absent in the variational model calculation of Eq. (12)
that is driven by fields in the neighborhood of the A ¼ 0
configuration. Magnetic charges are topologically discon-
nected from the first Gribov region where the expansion
applies. Thus it is likely that the string tension, �c, of the
variational model VcðrÞ � �cr should at most only be a
fraction of the Coulomb string tension and, more likely, Vc

of the variational model ought not to be confining. In the
following we further explore these scenarios.

It is straightforward to show that the expectation value of
the Hamiltonian in the variational Q �Q state is given in
terms of Vc by

hRjHjRi � h0jHj0i ¼ CFVcðRÞ � CFVcð0Þ; (14)

where the last term arises from self-energies of the two
static quarks [CF ¼ ðN2

C � 1Þ=2NC is the SUðNCÞ color

Casimir in the fundamental representation]. As already
mentioned above, the Coulomb term, HC, involves cou-
pling between quark and gluon charges. It seems reason-
able to expect that this interaction might be responsible for
generating the gluon chain. In the particle basis the gluon
charge density is given by

�gðx; aÞ ¼
X
i

�1
i ðx; aÞ�y

i �i þ
X
ij

ð�2
ijðx; aÞ�y

i �
y
j þ H:c:Þ:

(15)

The first term is diagonal in the particle basis and because
j0i contains no gluons it vanishes when applied to the Q �Q
state defined by Eq. (11). The second term, however,
changes the number of gluons by two and thus could be
generating the chain. We will return to this possibility
below. There are other, more complicated interactions
involving the quark charge and gluon operators that change
the number of gluons. They originate from the A depen-
dence of the Coulomb kernel. In the particle basis, the
Coulomb kernel can be written as

KabðRÞ ¼ �VcðRÞ þ :KabðRÞ:; (16)

where the normal-ordered part is schematically given by

:KðRÞ: ¼ X
fng;fmg

Kn1;n2;���;m1;m2���ð�y
1 Þn1ð�y

2 Þn2 . . .�m1

1 �m2

2 . . . :

(17)

Here Kfng;fmg are the matrix elements of the full kernel

evaluated between states containing fng and fmg gluons,
respectively. Thus, when multiplied by �q the normal-

ordered Coulomb kernel mixes the variational Q �Q state
with states containing an arbitrary number of gluons. As
shown in Ref. [26], however, in the large-R limit the matrix
elements Kfng;fmg for fmg, fng � 0 are expected to be

smaller than those for fmg ¼ fng ¼ 0. Therefore we expect
that at large R the dominant interaction between quark
sources and dynamical gluons originates from the off-
diagonal gluon charge density [cf. Eq. (15)] coupled to
the quark charge via Vc, and is therefore given by

�
Z

dxdy�a
qðxÞVcðjx� yjÞX

ij

ð�2
ijðy; aÞ�y

i �
y
j þ H:cÞ;

(18)

and shown in Fig. 1. In Eq. (18) the gluon charge density
creates (annihilates) two constituent gluons in a color
antisymmetric state. Thus the combined spin and spatial
wave function of the gluon pair also has to be antisym-
metric. However, since �g is a scalar under rotations, the

matrix element, �2
ij is symmetric in spin and relative

momentum. Thus the above candidate operator for the
gluon chain actually vanishes identically.
The variational basis based on the mode expansion in

Eq. (7) seems incompatible with the gluon chain picture.
There is further evidence that a model in which the vacuum
is described solely in terms of fluctuations around the
A ¼ 0 configuration, as implied by Eq. (7), is inadequate.
If Vc is confining then the expectation value of H in a
single-gluon state is infinite [27] at all temperatures, and
the model fails to predict the deconfinement phase transi-
tion [28]. It is well established that confinement is related
to the presence of magnetic domains in the vacuum, and
these are absent in the variational vacuum state. One would
expect that the magnetic termB2 plays an important role in

FIG. 1. Interaction between quark charge (upper line) and the
off-diagonal gluon charge �2

ij which creates two gluons. The

dashed line represents the Coulomb potential given by the vev of
the fully dressed Coulomb kernel.
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confinement since even the classical Yang-Mills field equa-
tions have monopole solutions [29].

In the presence of QCD instantons (also known as
monopoles) quantization has to be performed in each
topological sector. In our phenomenological approach we
approximate this by generalizing the mode expansion of
Eq. (7) to describe field fluctuations, Af, with respect to a

classical background field, AB.

AaðxÞ ! Aa
fðxÞ þAa

BðxÞ: (19)

This classical field mocks the nontrivial topological vac-
uum and will be specified later. Thus Eq. (7) now applies to
Af � A�AB and�f ¼ �. Since Eq. (19) is a canonical

transformation the Hamiltonian can be obtained by sub-
stitution. Thus in the background field, at large R, the
dominant contribution to the Coulomb interaction between
quark and gluon charges becomes

HC ! Hqq þHD
qg þHD

gg þHD
gb þHM

gb: (20)

Here Hqq is the interaction between quark charges medi-

ated by the Coulomb potential,

Hqq ¼ �
Z

dxdy�qðx; aÞVcðjx� yjÞ�qðy; aÞ; (21)

HD
qg is the quark-gluon charge density interaction diagonal

with respect to the gluon number,

HD
qg¼�

Z
dxdy�qðx;aÞVcðjx�yjÞ�D

g ðy;aÞ (22)

with �D
g ¼ P

i�
1
i ðx; aÞ�y

i �i, and HD
gg is the normal-

ordered, diagonal interaction between gluon charge
densities,

HD
gg ¼ �:

Z
dxdy�D

g ðx; aÞVcðjx� yjÞ�D
g ðy; aÞ:: (23)

Finally the two terms proportional toAB,H
D
gb andH

M
gb, are

given by

HD
gb þHM

gb ¼ �
Z

dxdy�B
g ðx; aÞVcðjx� yjÞ�B

g ðy; aÞ;
(24)

with

�B
g ðx; aÞ ¼ fabcA

b
BðxÞ�cðxÞ (25)

and describe the interaction of physical gluons with the
background field and the gluon pair creation in the pres-
ence of the background, respectively. Physical states
should be color neutral; thus creation or annihilation of a
single gluon can be neglected. In the presence of the
background, the expectation value of the charge operator

Qa
B ¼ fabc

Z
dxAb

BðxÞ�cðxÞ (26)

in physical states vanishes. However, in a simple classical
model for the distribution of background fields, as
described in the Appendix, quantum charge fluctuations
do not vanish; i.e., QaQa � 0 even for color singlet states.
We thus modify the right-hand side of Eq. (24) in such a
way that these fluctuations do not contribute to the energy,
yielding

HD
gb þHM

gb ¼ �
Z

dxdy�B
g ðx; aÞVcðjx� yjÞ�B

g ðy; aÞ
þ Vcð0ÞQa

BQ
a
B: (27)

After normal ordering, the term in Eq. (24) proportional to
�y� defines HB

gb, and the term proportional to �y�y þ
H:c: gives HM

gb. The difference between the gluon density-

density interaction and the normal-ordered Hamiltonian of
Eq. (23) is proportional to either �y� or ��þ H:c. These,
together with the kinetic and magnetic terms, combine to
[11] (i) renormalize ! via a gap equation which eliminates
terms proportional to ��þ H:c:, and (ii) modify the
single-gluon energy. Thus the final Hamiltonian can be
expressed in the form

H!HgþHC

¼X
i

Ei�
y
i �iþHqqþHD

qgþHD
ggþHD

gbþHM
gb; (28)

where Ei ¼ EðkÞ is the single-gluon energy in the presence
of the background field. The action of these operators on
gluon chain states is shown in Figs. 2–5.

FIG. 2. Illustration of the matrix element of the one-body
operator Hamiltonian, Ei�

i�i, in the gluon chain state with
N ¼ 1.

FIG. 3. Part of the leading contribution at large NC from Hqq

which corresponds to quark or antiquark self-energy, shown here
for the N ¼ 1 gluon chain state.
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C. The basis for the gluon chain

We define the chain in a large-NC limit by a model in
which the gluon chain state is a superposition of multi-
gluon states,

jQ �Q;Ri ¼ X
N

aNjNi (29)

with each state in the sum describing a product of N single
gluons ordered in color and space along a straight line
between the quark-antiquark sources,

jNi ¼ ZN

V
ffiffiffiffiffiffiffi
NC

p
Z R=2

�R=2
dxN

Z xN

�R=2
dxN�1 . . .

Z x2

�R=2
dx1

�Qy
i

�
R

2
ẑ

�
½GyðxNÞ . . .Gyðx1Þ�ij �Qy

j

�
�R

2
ẑ

�
j0i:

(30)

In the large-R limit the longitudinal, i.e., along the Q �Q
axis, and perpendicular motions of gluons factorize. The
spatial distribution of gluons in the plane perpendicular to
the Q �Q axis is given by a single-particle wave function,
c ðk; �Þ ¼ e�iðk; �Þc iðk?Þ, which defines the gluon
operators, G, in the chain [x ¼ ð0?; xÞ]

Gy
ijðxÞ ¼

X
�

Z
½dk��yðk; �; aÞTa

ijc ðk; �Þe�ik�ẑx: (31)

The normalization constant ZN is obtained from hNjNi ¼
Z2
NðCFIRÞN=�ðN þ 1Þ ¼ 1 where I is the normalization

integral for the spatial wave function, c [½dk?� �
d2k?=ð2�Þ2],

I ¼ hc jc i ¼
Z
½dk?�c iðk?Þ�ij

T ðk?Þc jðk?Þ: (32)

In the large-NC limit, computation of the leading contri-
butions to the matrix elements of the effective Hamiltonian
of Eq. (28) in the basis of the gluon chain states, Eq. (30), is
straightforward. The details and numerical results are
presented in the following section.

III. FORMATION OF THE GLUON CHAIN AT
LARGE-Q �Q SEPARATION

As discussed in Sec. II B one could consider two models
for VcðRÞ. In what we refer to as model I VcðrÞ will be
linearly confining and of the form

VI
cðrÞ ¼ �crþ Vcð0Þ; (33)

and in model II Vc is asymptotically flat,

lim
r!1V

II
c ðrÞ ¼ Vcð1Þ<1: (34)

We concentrate on the interactions induced by the effec-
tive Hamiltonian in the limit of large quark-antiquark
separation.

A. Matrix elements of the effective Hamiltonian
in the chain basis space

The one-body term, Hg, in Eq. (28) acts independently

on individual gluons in the chain created by the operators
Gy [cf. Eq. (31)]. Using

½GðxÞ; GyðyÞ�ij ¼ CFhc jc i�ðx� yÞ ¼ CFI�ðx� yÞ;
(35)

we find

hNjHgjNi ¼ Z2
NðCFhc jc iÞN�1

�XN
i¼1

Z R=2

�R=2
dxN . . .

Z xiþ1

�R=2
dxiCFhc jEjc i

�
Z xi

�R=2
dxi�1 . . .

Z x2

�R=2
dx1

¼ N
hc jEjc i
hc jc i � N

NC

2
½e� Vcð0Þ�; (36)

where

hc jEjc i ¼
Z
½dk?�Eðjk?jÞc iðk?Þ�ij

T ðk?Þc jðk?Þ;
(37)

FIG. 5. Diagonal HD
gb and off-diagonal HM

gb interactions
between quasigluons and the background field (shown as blobs),
for N ¼ 3 gluon chain states.

FIG. 4. Quark-gluon, HD
qg, and gluon-gluon interaction, HD

gg,
matrix elements, for N ¼ 1 and N ¼ 2 chain states, respectively.
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and to define e we subtracted from the single-gluon energy
in Eq. (37) a constant proportional to the potential at the
origin. In color singlet states the total energy of the system
should be invariant under a constant shift [30,31], which
we now demonstrate. The single-gluon energy, EðkÞ, con-
tains self-energies. In the variational approximation the
component of the self-energy due to the Coulomb interac-
tion is given by [11]

�CðkÞ ¼ �Nc

2

Z
½dq� ~Vcðk� qÞ 1þ k̂ � q̂

2

!ðkÞ
!ðqÞ ; (38)

where ~Vc is the Fourier transform of the Coulomb poten-
tial. For a linearly rising, confining potential, e.g., model I,
the lowmomentum singularity of ~VðkÞ is not integrable and
the resulting infinite self-energy can be interpreted as a
manifestation of confinement of color charges. A finite
self-energy is obtained by subtracting the IR singularity
which leads to

�CðkÞ ¼ �0
CðkÞ �

Nc

2
Vcð0Þ (39)

with �0
CðkÞ finite and given by

�0
CðkÞ �

Nc

2

Z
½dq� ~Vcðk� qÞ

�
1þ k̂ � q̂

2

!ðkÞ
!ðqÞ � 1

�
(40)

that follows from

Vcð0Þ ¼
Z
½dq� ~VcðqÞ: (41)

Even though for a confining potential the Fourier transform
is defined modulo a constant, it is expected that when all,
self- and mutual, interactions between color charges are
accounted for the dependence on Vcð0Þ disappears from
color singlet matrix elements. This will also be the case for
the matrix elements of the effective Hamiltonian in the
chain basis considered here. In anticipation of this result,
in Eq. (36) we defined an IR finite single-particle energy
eðkÞ by separating the Coulomb self-energy equal to
�NcVcð0Þ=2. Thus, in the last line of Eq. (36), e is finite,
and the IR singularity of the confining Coulomb potential
is explicit in the term proportional to Vcð0Þ. In the case of
model II with nonconfining interactions, self-energies are
IR finite but we can perform the subtractions nevertheless.

In the absence of chained gluons, N ¼ 0, the interaction
between quark densities produces the Coulomb potential
between quark charges [cf. Eq. (14)]. With N gluons
separating the quark from the antiquark, the direct inter-
action between quark charges is nonplanar (cf. Fig. 6) and
suppressed by a power of NC compared to a successive
Coulomb interaction between the quark and the nearest
gluon or the interaction between any two nearest-neighbor
gluons in the chain. To leading order in NC the Hqq con-

tribution thus reduces to the quark self-energies,

hNjHqqjNi ¼ �CFVcð0Þ ! �NC

2
Vcð0Þ: (42)

The quark-gluon interaction, to leading order in NC, cou-
ples the quark (or the antiquark) to the nearest gluon in
the chain. For example, for the antiquark-gluon interaction
we find

hNjHD
qgjNi!Z2

NðCFhc jc iÞN�1
Z R=2

�R=2
dxN . . .

Z x2

�R=2
dx1

�CFhg �QjHqgðx1Þjg �Qi

¼ N

RN

Z R=2

�R=2
dx1

�
x1þR

2

�
N�1 hg �QjHqgðx1Þjg �Qi

hc jc i ;

(43)

where

hg �QjHqgðx1Þjg �Qi
¼ NC

2

Z
d2x?½dk?�½dq?�eiðk?�q?Þ�x?

� 1

2

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!ðjk?jÞ
!ðjq?jÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ðjq?jÞ
!ðjk?jÞ

s 3
5

� Vc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx?j2 þ

��������R2 � x1

��������2
s !

c iðk?Þ

� ½�Tðk?Þ�Tðq?Þ�ijc jðq?Þ: (44)

In the limit R ! 1 where x1=R ¼ Oð1Þ this reduces to

hg �QjHqgðx1Þjg �Qi ¼ NC

2
Vc

���������R2 � x1

��������
�
hc jc i: (45)

Taking into account both quark and antiquark contribu-
tions, for the HD

qg matrix element we obtain

hNjHD
qgjNi ¼ NNC

Z 1=2

�1=2
dz

�
zþ 1

2

�
N�1

Vc

�
R

�
z� 1

2

��
:

(46)

For the linearly rising potential of model I Eq. (46) yields

hNjHD
qgjNiI ¼ NC

�cR

N þ 1
þ NCVcð0Þ; (47)

while in the case of model II we find

hNjHD
qgjNiII ¼ NCVcð1Þ: (48)

FIG. 6. A nonplanar diagram, which we do not take into
account, representing direct Coulomb interaction between the
quark and the antiquark in the presence of 2 gluons.
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The interaction between two nearby gluons in the chain given by HD
gg is also straightforward to compute, and passing

directly to the R ! 1 limit we find

hNjHD
ggjNi ¼ Z2

NðCFhc jc iÞN�2
XN�1

i

Z R=2

�R=2
dxN . . .

Z xiþ2

�R=2
dxiþ1

Z xiþ1

�R=2
dxiCF

�
NC

2

�
2
Vcðxiþ1 � xiÞhc jc i2

�
Z xi

�R=2
dxi�1 � � �

Z x2

�R=2
dx1

¼ N!

CF

Z 1=2

�1=2
dz
Z z

�1=2
dw

�
NC

2

�
2
VcðRðz� wÞÞ ð1þ w� zÞN�2

ðN � 2Þ! : (49)

For the linear potential of Eq. (33), to leading order in NC

this yields

hNjHD
ggjNiI ¼ NC

2

N � 1

N þ 1
�CRþ NC

2
ðN � 1ÞVcð0Þ (50)

and for the asymptotically constant potential

hNjHD
ggjNiII ¼ NC

2
ðN � 1ÞVcð1Þ: (51)

Since all terms in the effective Hamiltonian (including the
self-energies) are Oðg2Þ, and limNC!1NCg

2 ¼ Oð1Þ, at
large NC all matrix elements are finite when expressed in
terms of �e ¼ NCe=3, ��c ¼ NC�c=3 for model I and
�Vcð1Þ ¼ NCVcð1Þ=3, �Vcð0Þ � NCVcð0Þ=3 for model II,
respectively.

Adding all diagonal contributions of the effective
Hamiltonian matrix that are independent of the background
field, we thus find

hNjHjNiI ¼ 3

2
N �eþ 3

2
��CR (52)

and

hNjHjNiII ¼ 3

2
N �eþ 3

2
ðN þ 1Þð �Vcð1Þ � �Vcð0ÞÞ

� 3

2
Nmg þ c (53)

for model I and model II, respectively. For N ¼ 0 this
agrees with Eq. (14), while, for N 	 1, eigenstates of
Eq. (52) or (53) represent a tower of chain states with
energies proportional to the number of gluons in the chain.
Clearly the lowest energy state of the diagonal part of
the Hamiltonian is the variational Q �Q state, with N ¼ 0
gluons. The genuine chain contribution to the lowest
energy state must therefore originate from the terms in
the Hamiltonian which couple the constituent gluons to
the background field. The interaction of physical gluons
with the background is given by

hNjHD
gbjNi¼Z2

NðCFhc jc iÞN XN�1

i¼1

Z R=2

�R=2
dxN . . .

Z xiþ2

�R=2
dxiþ1

�
Z xiþ1

�R=2
dyi

Z yi

�R=2
dxiFBðjyi�xijÞ

�
Z xi

�R=2
dxi�1 . . .

Z x2

�R=2
dx1; (54)

where

FBðjy� xjÞ ¼ NC

2
�ðjy� zjÞðVcðjy� zjÞ � Vcð0ÞÞ; (55)

and

�¼
Z
dx?dy?½dk?�½dq?�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ðk?Þ!ðq?Þ

q
e�iq?x?þik?y?

�½c ðq?Þ�TðqÞ�iGij
c ðx?�y?;y�zÞ½c ðk?Þ�TðkÞ�j

hc jc i :

(56)

The correlation function Gc is given by the density of the
vacuum fields

Gijðx? � y?; x� yÞ ¼ hAia
c ðx?; xÞAja

c ðy?; yÞi
N2

C � 1
: (57)

Here the expectation value is taken with respect to the
distribution of sources of the background field. These
might effectively describe monopole-antimonopole pairs
in three dimensions (3D), vortex surfaces in 4D, merons,
etc. A simple model is considered in the Appendix. Since it
is these background fields that are responsible for confine-
ment in the first place, i.e., generation of the Coulomb
potential VcðRÞ, we assume that the density of the under-
lying magnetic sources is approximately uniform over the
quark-antiquark separation. So for jx� yj & R we expect
that in general

Gijðx? � y?; x� yÞ �Gijðx? � y?Þ; (58)

and therefore � in Eq. (55) reduces to a constant of
Oð�QCDÞ; i.e., it is independent of the longitudinal distri-

bution of gluons along the chain.
For model I evaluation of the integrals in Eq. (56) then

yields
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hNjHD
gbjNiI ¼ NCN!

N � 1

�ðN þ 3Þ��CR
2

¼ 3
N � 1

ðN þ 1ÞðN þ 2Þ� ��CR
2; (59)

while for model II we find

hNjHD
gbjNiII ¼ 3�R

N � 1

N þ 1
ð �Vcð1Þ � �Vcð0ÞÞ: (60)

Finally we consider the components of the interaction
between physical gluons and the background that changes
the gluon number. From Eq. (24) we find (for N 	 2)

hN � 2jHM
gbjNi

¼ hNjHM
ggjN � 2i

¼ ZNZN�2ðCFhc jc iÞN�1
XN�1

i¼1

Z R=2

�R=2
dxN . . .

�
Z xiþ1

�R=2
dxiFBðxiþ1 � xiÞ . . .

Z x2

�R=2
dx1 (61)

which gives

hN � 2jHM
gbjNiI ¼ hNjHM

ggjN � 2iI

¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp

2NðN þ 1Þ � ��cR
2 (62)

and

hN � 2jHM
gbjNiII ¼ hNjHM

ggjN � 2iII

¼ 3

2
�R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

s
ð �Vcð1Þ � �Vcð0ÞÞ (63)

for the two models, respectively. Collecting all the terms,
Eqs. (52), (59), and (62) for model I and Eqs. (53), (60),
and (63) for model II, we find the following expression for
the matrix elements of the Hamiltonian in the gluon chain
basis for large N:

hN0jHjNiI ¼ 3

2
N �e�N0N þ 3

2
R ��C

�
1þ r

R

N
�

�
�N0N

þ 3

2
� ��C

R

N
R�N0;N�2 þ 3

2
� ��C

R

N0 R�N0�2;N;

(64)

hN0jHjNiII¼3

2
N �mg�N0Nþ3

2
r�Rð �Vcð1Þ� �Vcð0ÞÞ�N0N

þ3

2
�Rð �Vcð1Þ� �Vcð0ÞÞð�N0;N�2þ�N0�2;NÞ:

(65)

Here r is the ratio of the diagonal to off-diagonal matrix
elements in the limit of large R. The specific value r ¼ 2
follows from the fact that in the two models both terms
originate from the same interaction cf. Eq. (27). Below,

while presenting the numerical result, we also discuss the
dependence of the lowest eigenvalues on this ratio.

B. Numerical results

Before analyzing the spectra of the effective chain
model Hamiltonians we consider the large-R limit of the
matrix

hN0jHjNi ¼ Rð�N0;N�2 þ �N0�2;NÞ: (66)

It is straightforward to show that the ground state energy of
H for large-R approaches �2R. For the Hamiltonian of
model I this implies that if the kinetic term (proportional to
N �e) was ignored, the lowest eigenvalue of HI for large R
would behave as

3

2
� ��C

�
1þ r

R

hNi
�
� 2

3

2
� ��C

R

hNi

¼ 3

2
� ��CRþ 3

2
� ��Cðr� 2Þ R

2

hNi : (67)

The special role of the value r ¼ 2 is now transparent. At
r ¼ 2 the quadratic term vanishes and the lowest chain
state energy grows linearly with R. If r 
 2 the lowest
eigenvalue is dominated by the diagonal term. In this case
the expectation value of N,

hNi ¼
P

N Njc 0ðNÞj2P
N jc 0ðNÞj2 ; (68)

where c 0 is the wave function of the lowest energy chain
state, can be determined by minimizing the diagonal part
with respect to N. This gives

hNi ¼
ffiffiffiffiffiffi
2�

�e

s
R (69)

and the ground state energy approaches

EI
0 ¼ 3R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� ��C �e

p þ 3

2
R ��C: (70)

Thus for r > 2 the energy of the chain is higher than the
energy of the bare state, j0i. If r < 2 the off-diagonal term
dominates and the ground state energy becomes negative
and proportional to �R2 while the average number of
gluons in the chain hNi ¼ Oð1Þ. However, when the kinetic
term is included in the critical case r ¼ 2 the lowest energy
of the chain state no longer increases linearly with R. After
numerical diagonalization we find

hNiI / ðR GeVÞ0:623�0:004;
EI
0

GeV
/ ðR GeVÞ0:787�0:006

(71)

for a reasonable set of parameters �e ¼ 600 MeV, � ¼
1 GeV, and ��C ¼ 0:1 GeV2. We also find weak depen-
dence of the exponents on these parameters. That is, for the
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chain model I, we find that the lowest energy chain state
has higher energy than the bare state. In the critical case the
energy increases less rapidly than the length of the chain,
R, and is proportional to R2 for r > 2. The average number
of gluons grows weakly with R. The results are summa-
rized in Figs. 7 and 8.

In the case of model II for r > 2, one easily finds

EII
0 ¼

3

2
ðr�1Þ�R½ ~Vcð1Þ� ~Vcð0Þ�; hNiII/R1=3; (72)

while for r < 2 with the off-diagonal term dominating,

EII
0 ¼ � 3

2
ðr� 1Þ�R½ ~Vcð1Þ � ~Vcð0Þ�: (73)

Finally for the critical choice r ¼ 2 numerical digitaliza-
tion yields

hNiII / ðR GeVÞ0:338�0:005;
EII
0

GeV
/ ðR GeVÞ0:379�0:005

(74)

for the set of parameters, mg ¼ 600 MeV, ��C ¼
0:1 GeV2, and � ¼ 1 GeV, V̂cð1Þ � V̂cð0Þ ¼ 1 GeV,
with the results shown in Figs. 8 and 9.
In model II as R increases at some point the energy of the

ground state chain increases less than the Coulomb poten-
tial. The chain state, however, has energy which is higher
than that of the bare state, with the latter approaching a
constant at large R. Thus in both models interactions
among the chain increase the energy of the Q �Q pair as
compared to the state with no gluons.

IV. SUMMARYAND OUTLOOK

We investigated microscopic origins of the gluon chain
model. By analyzing the physical gauge interactions
among constituent gluons, we found a scenario for gener-
ating a chain. In this scenario a state with a number of
gluons in the chain that is increasing with the increasing
separation between the Q �Q source, emerges from interac-
tions of dynamical gluons with the background field. The
background field is necessary in a phenomenological
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R [GeV
−1

]
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15

20

<
N

>

model−I
model−II

FIG. 8. Expectation value of the number of gluons in the chain
as a function of Q �Q separation, R. A power law fit gives hNiI ¼
0:985ðR GeVÞ0:623 and hNiII ¼ 0:984ðR GeVÞ0:787 for model I
(solid line) and model II (dashed line), respectively.
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FIG. 7. Ground state energy (solid line) of the chain
Hamiltonian in model I. A power law fit yields EI

0 ¼
0:984ðR GeVÞ0:787 GeV. The dashed line gives the energy of
the bare state using for the string tension ��C ¼ 0:1 GeV2.
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FIG. 9. Ground state energy (solid line) of the chain
Hamiltonian in model II. A power law fit yields EI

0 ¼
1:867ðR GeVÞ0:379 GeV. The dashed line gives the energy of
the bare state using for the string tension ��C ¼ 0:1 GeV2.
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model of confinement if the latter is to originate from
condensation of chromomagnetic charges. These interac-
tions introduce off-diagonal elements into the effective
Hamiltonian, which is one of the main differences between
this and the chain model where the pair production is
absent. We have shown that the resulting ground state
energy is convex [32] but the two models considered are
still too simplistic to generate the linearly rising potential.
While this deficiency can potentially be improved by con-
sidering more sophisticated models for the background
field we found it difficult to reproduce the Zwanziger
conjecture of ‘‘no confinement without Coulomb confine-
ment’’ [16]. The result of Ref. [16] states that the expec-
tation value of the Coulomb kernel in the QCD vacuum
state is confining (if the exact Q �Q potential is confining)
with a string tension which is not less than that of the exact
potential. Our results in the model considered (cf. Fig. 7)
indicate the opposite. We find the energy of the chain state,
which is supposed to represent the exact Q �Q state, to be
higher than that of the bare one, defined as the expectation
value of the Coulomb kernel in a state with no backward
reaction from the sources on the vacuum.

We find it interesting that such a reasonable and simple
model does not comply with the exact expectations from
QCD. There clearly must exist other nondiagonal inter-
actions which are important. It was proposed that triple-
gluon interactions could play an important role [33]. Such
interactions may originate from the magnetic, B2 term,
but since it does not depend explicitly on the separation
between sources it most likely is not significant at large
separations. Other three-gluon interactions could origi-
nate from the Coulomb kernel, if the background field in
the true (chain) state is polarized. This would lead to
a nonvanishing three-gluon coupling mediated by the
Coulomb interaction and thus R-dependent. Finally it is
possible that a resolution of this problem requires renor-
malization for the single-gluon energies in the presence
of the chain so that effectively �e decreases with the
number of gluons. We leave these questions for future
investigations.
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APPENDIX: BACKGROUND FIELD MODEL

The correlation function G defined in Eq. (57) is
computed using a classical distribution of sources of the
background field. For example if these are monopole-
antimonopole pairs the density �Nðci �ciÞ depends on the

locations of the N pairs. The expectation value of a func-
tion of Ac is computed from

hAa
cðxÞAa

cðyÞi ¼ Z½AcAc�
Z½1� ; (A1)

where

Z½O½Ac�� ¼
X1
N

Z
dna

Z
�
N

i
dcid�ci�ðci �ciÞO½Ac�; (A2)

and the background field is given by

A a
cðxÞ ¼ na

XN
i¼1

½Amðx? � c?;iÞ �Amðx? � �c?;iÞ�;

(A3)

whereAm is the Abelian monopole field, and na represents
the (common) orientation of monopoles in the SUðNCÞ
algebra. For a uniform distribution of monopole-
antimonopole pairs along the Q �Q axis (ẑ axis) with the
density given by

�ðci; �ciÞ ¼ �N

ðV?RÞNN!
�
N

i¼1
	

�
R

2
� jciẑj

�
	

�
R

2
� j�ciẑj

�
;

(A4)

the background field is approximately constant along the
Q �Q axis. In Eq. (A4) � is the density of monopoles which
is equal to the density of antimonopoles

� ¼ �?ðN2
C � 1Þ
R

: (A5)

For the correlation function Gðx?; xÞ we then obtain

Gðx?; xÞ ¼ Gðx?Þ
¼ �?

�Z
dc?Amðx? � c?ÞAmðc?Þ

� 1

V?

Z
dc?dc0?Amðc?ÞAmðc0?Þ

�
: (A6)

The last term originates from the charge neutrality of the
monopole-antimonopole distribution. If the core of the
monopole field is smoothed out over a distance scale
a ¼ Oð��1

QCDÞ, then

Gðx?Þ � �? log
j R2 � jx?jj

a
; (A7)

where the logR dependence comes from cutting off the
long-range integral over the transverse plane. This is the
standard expression for the correlation function of a pair of
2D vortices separated by a distance R. The 2D reduction
originates from the assumption the monopoles are uni-
formly distributed, Eq. (A5), along the direction of the
Q �Q separation.
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