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We investigate the model dependence of meson resonance properties extracted from the Dalitz-plot

analysis of the three-pions photo-production reactions on the nucleon. Within a unitary model developed

in our earlier work, we generate Dalitz-plot distributions as data to perform an isobar model fit that is

similar to most of the previous analyses of three-pion production reactions. It is found that the resonance

positions from the two models agree well when both fit the data accurately, except for the resonance poles

near branch points. The residues of the resonant amplitudes extracted from the two models and by the

usual Breit-Wigner procedure agree well only for the isolated resonances with narrow widths. For

overlapping resonances, most of the extracted residues could be drastically different. Our results suggest

that even with high precision data, the resonance extraction should be based on models within which the

amplitude parametrization is constrained by a three-body unitarity condition.

DOI: 10.1103/PhysRevD.86.114012 PACS numbers: 13.25.�k, 14.40.Rt, 11.80.Jy

I. INTRODUCTION

Meson properties are important information for under-
standing the confinement mechanism of QCD. Thus, the
investigation of meson spectroscopy has long been an
important subject in hadron physics. In recent years,
more emphasis has been placed on the study of mesons
with quantum numbers beyond the classification of the
conventional constituent quark model. Such mesons, called
exotic mesons, are expected to have explicit gluonic and/or
four-quark components in their structure [1]. Therefore,
the search for exotic mesons has been an important goal in
the experiments on �N ! M�N ! ���N at BNL [2]
and CERN [3], and �N ! M�N ! ���N at JLab [4],
where the intermediate excited mesonsM� could be exotic.
However, the existence of exotic mesons, such as�1ð1600Þ
(JPC ¼ 1�þ) has not been conclusive so far. The forth-
coming experiments to be performed at JLab after the
12 GeV upgrade [5] are aimed at providing high precision
data for making progress in this direction. In addition to
searching for exotic mesons, the new data can also be
useful for investigating some mesons that could have ex-
otic structure [6] and can be revealed in their characteristic
decay patterns, as discussed in Ref. [6] with the 3P0 model.

We are here interested in the excited mesons that decay
into three light mesons (���, ��K, etc.). Since these
excited mesons are unstable and couple with multimeson
continuum to form resonances, the meson spectroscopy
can be determined only by analyzing the resonances
extracted from the meson production reaction data.
Conventionally, these data were analyzed by using the
so-called isobar model (IM) in which two of the three

mesons form a light flavor excited meson R (f0, �, K
�,

etc.) and the third meson is treated as a spectator of the
propagation and the decay of R into two light mesons. This
approach obviously violates the three-body unitarity and
neglects the coupled-channels effects since the outgoing R
can have multiple scattering with the third meson, as
illustrated in Fig. 1.
Recently we developed a unitary coupled-channels

model [7]. In this work, we use our model to analyze the
�p ! M�n ! �þ�þ��n reaction, and study the impor-
tance of three-body unitarity and coupled-channels effects
in extracting the excited meson properties. We consider the
reaction where the intermediateM� can be several and can
overlap. We will show that while the IM can fit the same
Dalitz plot data generated from our unitary model (UM),
the extracted resonance parameters are rather different.
Our finding indicates the limitation of the IM in establish-
ing the meson spectroscopy.
This paper is organized as follows. In Sec. II, we present

formulas based on our model for identifying the meson
resonances in the amplitudes of the �p ! M�n !
�þ�þ��n reaction and give the expression for calculating
the corresponding Dalitz plots of the cross sections. Our
procedure and numerical results are presented in Sec. III,
followed by a summary in Sec. IV.

II. FORMULATION

In this paper, we denote pions by a, b, c and the light
excited mesons (such as f0, �) by R. As illustrated in the
left-hand side of Fig. 2, we assume that the �N ! abcN0
reaction proceeds via the photo-production of resonantM�
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states which decay into cR states. Under the three-body
unitarity condition, the propagating cR states experience
the multiple scattering due to the Z-diagrammechanism, as
illustrated in Fig. 1. The final three-pion states are then
generated via the R ! �� decay mechanism. In the vector
meson dominance (VDM) model, one of the production
mechanisms can be calculated from a �� ! M� and the
well known �NN vertex, as illustrated in the right-hand
side of Fig. 2. For simplicity, we will calculate the cross
section of the �N ! abcN0 reaction using this VDM
mechanism and the �� ! M� vertex that reproduces par-
tial width predicted by the 3P0 model of Ref. [6].

Accordingly, all M� ! �R couplings included in our cal-
culations are also fixed in the same manner. Obviously, this
is a simplification, but it is sufficient for our present
purposes in investigating the importance of three-body
unitarity in extracting M� from the three-pion distribution
data. For analyzing the data from CLAS, we need to
develop models of other mechanisms. This nontrivial
task is beyond the scope of this investigation.

A. Cross section

With the momentum variables specified in Fig. 2, the
cross section of �N ! ���N can be written as

d�¼ 1

vrel

1

2E�

1

2EN

ð2mNÞ2

�B
4

X
sN;sN0 ;��

jM�N!���N0 j2ð2�Þ4�ð4Þðpi�pfÞ

� d3pN0

ð2�Þ32EN0

d3pa

ð2�Þ32Ea

d3pb

ð2�Þ32Eb

d3pc

ð2�Þ32Ec

; (1)

where vrel is the relative velocity of the initial particles. We

used and will use a notation Ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ ~p2
x

p
to denote the

free energy for a particle x with the mass mx and the
momentum ~px. We denote the Bose factor for the final
three pions by B, and B ¼ 1=2 for �þ�þ�� final states.
We have taken the average of the initial nucleon and
photon polarizations ( 14

P
sN;��

) and the summation over

the final nucleon spin (
P

sN0 ).

We perform the calculations in the center of mass (CM)
frame of the total system. The orientation of the three final
pions are specified by the Euler angles �Euler ¼ ð�;�; �Þ
in the three-meson CM frame [see Eq. (10) and Fig. 1 of
Ref. [8] for the definition of the Euler angles]. With some
manipulation of the four-body phase-space factor [8,9],
Eq. (1) leads to

d�

dtdWd�Eulerdm
2
abdm

2
bc

¼ Bm2
N

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� �pNÞ2

q 1

ð4�Þ7
1

Etotp
cm
N W

X
sN;sN0 ;��

jM�N!���N0 j2;

(2)

where d�Euler ¼ d�d cos�d�, Etot is the total energy, p
cm
N

is the initial nucleon momentum, t ¼ ðpN � pN0 Þ2, W ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpa þ pb þ pcÞ2
p

, and m2
ij ¼ ðpi þ pjÞ2. For a given set

of ðt;W;�EulerÞ, we then can calculate the Dalitz-
plot distributions of the three outgoing pions as functions
of two-particle invariant masses mab and mbc by using
Eq. (2).

B. Matrix element

With the normalization h ~kj ~k0i ¼ �ð ~k� ~k0Þ for the plane-
wave state, the invariant amplitudeM�N!���N0 in Eq. (2)

is related to the scattering amplitude TabcN0;�N by

FIG. 2 (color online). A graphical representation of the �N ! abcN0 reaction. The momentum for each particle is shown to explain
the notation used in this work. The white square indicates the dressed vertex more explicitly shown in Figs. 3 and 4.

FIG. 1 (color online). M�-decay amplitude.
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M �N!abcN0 ¼ � 1

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32E�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32EN

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32Ea

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32Eb

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32Ec

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32EN0

q
TabcN0;�N: (3)

With the VDM process illustrated in the right-hand side of
Fig. 2, the scattering amplitude in Eq. (3) can be written
within our model as

TabcN0;�N ¼ X
�

X
i�j�

X
Sz
M�

Xcyclic
ða0b0c0Þ

Fða0b0Þc0;M�
i�
ðWÞ

� ½GM� ðWÞ�i�j�TM�
j�
N0;�NðWÞ; (4)

where TM�N0;�N is the M� photo-production amplitude,

FðabÞc;M� ðWÞ is the M� ! abc decay amplitude, and

GM� ðWÞ is the propagator of the M� resonant state. The
index � labels a set of quantum numbers (spin, isospin,
parity) ofM�, and i�, j� runs over allM�’s belonging to the
set of quantum numbers �. The summation over the M�

spin orientation is denoted by
P

Sz
M� . The symbol

Pcyclic
ða0b0c0Þ

means taking summation over the cyclic permutation,
ða0b0c0Þ ¼ ðabcÞ; ðcabÞ; ðbcaÞ. As illustrated in Fig. 3,
the M� decay amplitude in Eq. (4) consists of two terms:

FðabÞc;M� ðEÞ ¼ FDIR
ðabÞc;M� ðEÞ þ FFSI

ðabÞc;M� ðEÞ: (5)

The direct decay amplitude [Fig. 3(a)] is defined by

FDIR
ðabÞc;M� ðEÞ¼

X
R

X
c0R0

habjfab;RGcR;c0R0 ðEÞ�c0R0;M� jM�i; (6)

where fab;R is the R ! ab vertex interaction, and

�c0R0;M� jM�i describes the M� ! c0R0 decay. The summa-

tion in Eq. (6) runs over the particle species and its
momentum, spin, and isospin components. The second
term of Eq. (5) [Fig. 3(b)] includes the final state interac-
tion (FSI), as required by the three-body unitarity condi-
tion. It has the following expression:

FFSI
ðabÞc;M� ðEÞ ¼

X
R

X
c0R0

X
c000R000;c00R00

habjfab;RGcR;c0R0 ðEÞ

� T0
c0R0;c000R000 ðEÞGc000R000;c00R00 ðEÞ�c00R00;M� jM�i;

(7)

where T0
c0R0;cRðEÞ is the cR ! c0R0 scattering amplitudes.

As illustrated in Fig. 4, T0
c0R0;cRðEÞ is defined by the follow-

ing coupled-channels scattering equation:

T0
c0R0;cRðEÞ ¼ Zc0R0;cRðEÞ þ

X
c000R000;c00R00

Zc0R0;c000R000 ðEÞ

�Gc000R000;c00R00 ðEÞT0
c00R00;cRðEÞ; (8)

where Zc0R0;cR is the one-particle-exchange Z-diagram in-

teraction that is also determined by the R ! ab vertex
interaction fab;R

Zc0R0;cRðEÞ ¼
X
c00
fR0;cc00

1

E� Ec � Ec0 � Ec00 þ i	
fc0c00;R;

(9)

where c00 is the exchanged meson.
The Green function in Eqs. (6)–(8) is defined by

½G�1ðEÞ�c0R0;cR¼�c0;c½ðE�Ec�ERÞ�R0;R��R0;RðE�EcÞ�;
(10)

where the self-energy of light excited meson R is deter-
mined by the R ! ab vertex interaction

�R0;RðwÞ¼
X

ab¼��;K �K

�
R0
��������fR0;ab

Bab

w�Ea�Ebþ i	
fab;R

��������R

�
:

(11)

Here Bab is a factor associated with the Bose symmetry of
mesons:Bab ¼ 1=2 if a and b are the identical particles or
otherwise Bab ¼ 1.
The M� propagator in Eq. (4) is defined by

½G�1
M� ðEÞ�ij ¼ ðE�M0

M�
i
Þ�ij � ½�M� ðEÞ�ij; (12)

where M0
M�

i
is a bare mass, and the self-energy is given by

½�M� ðEÞ�ij ¼
X

cR;c0R0
hM�

i j�M�
i ;cR

GcR;c0R0 ðEÞj ��c0R0;M�
j
i: (13)

The self-energy ½�M� ðEÞ�ij is nonvanishing only when M�
i

andM�
j have the same spin, isospin, and parity. In Eq. (13),

j ��cR;M� i is the dressedM� ! cR vertex function defined by

FIG. 3 (color online). A graphical representation of the dressed M� ! cR vertex.
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j ��cR;M� i ¼ X
c0R0

�
�cR;c0R0 þ X

c00R00
T0
cR;c00R00Gc00R00;c0R0 ðEÞ

�

� �c0R0;M� jM�i: (14)

Note that the M� ! abc amplitude FðabÞc;M� defined

by Eqs. (5)–(7) is identical to the matrix elementP
Rc0R0 habjfab;RGcR;c0R0 j ��c0R0;M� i.
To proceed, we need to define R ! ab and M� ! cR

vertex functions. The R ! ab vertex functions fab;R as well

as bare masses mR have been determined within our model
[7] by fitting the�� scattering amplitudes up to 2 GeV with
R ¼ f0, �, f2. We include �� and K �K channels in our
model of �� scattering. While the ��� three-body states
appear in Z-diagram interactions in Eq. (9), �K �K states
appear only in the Green function defined by Eq. (10).

We thus will only consider cR ¼ �f0, ��, �f2 chan-
nels. For the bare M� ! cR interaction �cR;M� ð ~pcÞ, we use
a partial wave expansion,

�cR;M� ð ~pcÞ ¼
X
l

htctzctRtzRjTM�Tz
M� ihllz; sRszRjSM�SzM� i

� Y�
l;lzð�p̂cÞ�ðcRÞl;M� ðpcÞ; (15)

where the first (second) parenthesis is isospin (angular
momentum) Clebsch-Gordan coefficient, sx (tx) is the spin
(isospin) of a particle x and szx (t

z
x) is its z-component, and l

is the orbital angular momentum of the relative cR motion.
The vertex function �ðcRÞl;M� ðpÞ is given with the following

parametrization for each partial wave:

�ðcRÞl;M� ðpÞ ¼ 1

ð2�Þ3=2 CðcRÞl;M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

4ERðpÞE�ðpÞ
s

�
� �2

ðcRÞl;M�

p2 þ�2
ðcRÞl;M�

�
2þðl=2Þ� p

m�

�
l
: (16)

The parameters CðcRÞl;M� and �ðcRÞl;M� are chosen to repro-

duce the partial decay widths of M� ! �R predicted by the
3P0 model ofRef. [6] andwill be explained in the next section.

To calculate the �N ! ���N0 amplitude defined
by Eq. (4), we also need to calculate the VDM photo-
production amplitude TM�N0;�N illustrated in the right-hand

side of Fig. 2. We use the following interaction Lagrangian
to describe the emission of the pion from the nucleon:

L �NN ¼ � f�NN

m�

�c N�
�5 ~� � c N@

 ~�; (17)

where f2�NNðq2 ¼ 0Þ=4� ¼ 0:08 and f�NNðq2Þ=f�NNð0Þ¼
1=ð1�q2=�2

�NNÞ2. We use ��NN ¼ 700 MeV which is
close to most of the values from the �N scattering model
[10]. The photon-� contact interaction within the VDM
model is defined by the following Lagrangian:

L �� ¼ em2
�

g�
�3

A


; (18)

with g2�=ð4�Þ ¼ 2:2.

With the Lagrangians (17) and (18), the �N ! M�N0
production amplitude in �N CM frame is of the following
form:

TM�N0;�Nð ~pM� ~pN0 ; ~p�; ~pNÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2E�ENð ~pNÞENð ~pN0 Þ
s

�X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E�i

ðqÞE�ðqÞ
q

�M�;��i
ð ~qÞ

�
�
e

g�

�
1

q2�m2
�

if�NNðq2Þ
m�

�h�xi �u ~pN0 6q�5u ~pN
; (19)

where q ¼ pN � pN0 , u ~p is the nucleon spinor. The

summation is taken over the first and second bare � states.
The isospin matrix element between the nucleon states

is denoted by h�xi ¼ 1ð ffiffiffi
2

p Þ for N ¼ N0 ¼ p (N ¼ p,
N0 ¼ n). The M� ! �i� vertex function �M�;��i

ð ~qÞ has

been defined by Eqs. (15) and (16).

C. Isobar model

We can obtain a model similar to the commonly used
IM from the above formula by neglecting the �R final
state interactions, FFSI

ðabÞc;M� in Eq. (5), which are due to the

Z-diagram mechanism, as illustrated in Figs. 3(b) and 4.
Furthermore, the M� propagator GM� ðWÞ in Eq. (4) is
replaced by a Breit-Wigner (BW) form, following the
common practice in previous isobar model analyses.
Explicitly, we consider the following expression of the IM:

TIM
abcN0;�N ¼ X

�

X
j�

X
Sz
M�

Xcyclic
ða0b0c0Þ

FDIR
ða0b0Þc0;M�

j�

ðWÞ

� ½GBW
M� ðWÞ�j�j�TM�

j�
N0;�NðWÞ; (20)

with

FIG. 4. A graphical representation of the cR scattering equation.
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½GBW
M� ðWÞ�jj ¼ � Mj

BW

ðMj
BWÞ2 �W2 � iMj

BW�
j
BW

�	
q

qjBW



2ðLjþ1Þ

�
ðqjBWÞ2þð�j

BWÞ2
q2þð�j

BWÞ2
�
2
� ; (21)

where q is the on-shell momentum satisfying the equation

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ q2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

RBW
þ q2

q
; (22)

and mRBW
¼ 770 MeV; q ¼ qjBW when W ¼ Mj

BW. The
BW mass, width, and cutoff are denoted by Mj

BW, �
j
BW,

and �j
BW, respectively. The integer L

j is the lowest allowed
orbital angular momentum between the pion and a vector
boson for a given M�

j at rest. It is noted that the BW M�
propagator in Eq. (21) is diagonal with respect to the index j,
while the M� propagator for the UM given in Eq. (12) can
have an off-diagonal component, connecting different M�’s
belonging to the same quantum number. Furthermore,
whereas the BW M� propagator in Eq. (21) is purely phe-
nomenological, the M� propagator for the UM needs to be
given by Eq. (12) as a consequence of three-body unitarity.
The IM defined by Eqs. (20) and (21) will be used to extract
the resonance parameters from fitting the ‘‘data’’ generated
from our UM defined in Sec. IIB.

III. RESULTS

Our objective in this paper is to investigate the importance
of the three-body unitarity in determining the excited meson
M� properties from fitting the Dalitz-plot distribution data of
3� states for the �p ! M�n ! �þ�þ��n reaction. We
do not make an attempt to analyze the CLAS data [4] for this
reaction here. Thus, it is sufficient to consider the VDM
production mechanism illustrated in Fig. 2. Then we can set
up a model by fixing the parameters associated with M�
states using partial widths predicted by the 3P0 model of

Ref. [6]. This will be explained in Sec. IIIA.
Once the M� parameters are fixed, we can perform the

calculations using the formula presented in previous sec-
tions, since all parameters needed to calculate the �R !
�R0 amplitudes [Eq. (8)] and �R propagator [Eq. (10)]
have been determined in our previous work [7]. The Dalitz
plots for the �þ�þ�� are calculated using Eq. (2) and are
presented in Sec. III B. In Sec. III C, we describe how the
generated Dalitz plots are used as the data to determine the
parameters of the IM described in Sec. II C.

In Sec. IIID, we examine the differences between the
resonance parameters extracted with our UM and those from
the fitted IM. Their differences will indicate the importance
of the three-body unitarity in determining the excited meson
M� properties from fitting the Dalitz-plot distribution data of
the 3� states for the �p ! �þ�þ��n reaction.

A. Determination of the M� parameters

In our UM, we consider the �R partial waves that
are found to be necessary to fit the CLAS data for

1:0<W < 1:36 GeV [4]. We thus have one or two bare
M� states for four partial waves: JPC ¼ 1þþ [a1ð1230Þ,
a1ð1700Þ], 2þþ [a2ð1320Þ, a2ð1700Þ], 2�þ [�2ð1670Þ,
�2ð1800Þ], 1�þ [�1ð1600Þ]. We assume that our bare M�
states can be identified with excited meson states of the
q �q excitation type listed in Ref. [6] and that their bare
M� ! �R couplings are fixed so that the partial decay
widths predicted by the 3P0 model [6] are reproduced;

we use the formula given in Appendix I of Ref. [11] to
calculate the partial widths. We also assume that the
daughter �R states have the lowest allowed orbital angular
momenta. The bare massesM0

M� are also identified with the

excited meson masses listed in Ref. [6]. The only exception
is the �1ð1600Þ that is speculated to be a hybrid state. In
this investigation we use the mass and partial widths for
�1ð1600Þ given in Ref. [12]. For simplicity, we set all
M� ! �R cutoffs to �ð�RÞl;M� ¼ 1 GeV. With the above

specifications, the parameters for our UM are fixed.

B. Calculations of Dalitz plots

We use Eq. (2) to generate the Dalitz-plot distributions
of �þ�þ�� for the �p ! �þ�þ��n reaction at the
photon energy E� ¼ 5 GeV and the momentum transfer

t ¼ �0:4 GeV2. This is the kinematics considered in the
CLAS analysis [4].
We next need to specify the Euler angles [�Euler in

Eq. (2)] that define the orientation of the three pions in
their center of mass system. Experimentally, it would be
preferred to choose an orientation where the three pions
have less chance to interact with the final nucleon. Thus,
we choose the Euler angle � such that the three-pion plane
is perpendicular to the direction of the final nucleon.
Because the cross section does not depend on �, we set
� ¼ 0. The remaining Euler angle � gives the rotation of
the three pions around their CM on the plane specified by�
and �. We calculate Dalitz plots by varying � in the range
0 � � � 2�.
To see the contributions of the considered resonances to

the generated data, we show in Fig. 5 the cross sections
calculated from Eq. (2) by integrating over m2

ab, m
2
bc, and

�. We see a broad bump atW � 0:95 GeV due to a1ð1230Þ,
a highest peak at W � 1:25 GeV due to a2ð1320Þ. The
second highest peak at W � 1:65 GeV is due to a1ð1700Þ
and a2ð1700Þ. The gap at W � 1:7 GeV is due to an
interference between �2ð1670Þ and �2ð1800Þ. The exotic
�1ð1600Þ is clearly visible as a small spike at W �
1:6 GeV. Clearly it is a highly nontrivial task to fit the
generated Dalitz-plot distribution data, in particular, in the
region 1:6 GeV � W � 1:8 GeV where the contributions
from several resonances overlap strongly.
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C. Fit

With the kinematics described above, the Dalitz-plot
distribution of the three pions are generated with Eq. (2)
by varying the variables W, � (one of the Euler angles),
m2

ab, and m2
bc. We calculate the cross sections at kinemati-

cal points that are uniformly distributed in the space
spanned by these kinematical variables. The calculated
cross sections at these points are regarded as the ‘‘data’’
in determining the parameters of the IM defined in Sec. II C.

As examples, we show in the left sides of Figs. 6 and 7 the
generated Dalitz-plot distributions in them2

���þ-m2
�þ�þplane

at W ¼ 1 GeV and W ¼ 1:76 GeV, respectively. The
Dalitz-plot distributions largely depend on � both in shape
and magnitude. Thus, in these figures, we choose �where the
Dalitz plot has the highest peak at the value of W.
In the right-hand sides of Figs. 6 and 7, the solid curves

(unitary model) are the distribution at a fixed m2
�þ�� of the

x-axis of the Dalitz plot on the left. The dotted curves
(without Z) are obtained by turning off the Z-diagram
mechanism in our unitary calculations. Clearly, the effect
of the Z-diagram mechanism, which is the necessary con-
sequence of three-body unitarity condition, is important,
especially in Fig. 6 where a1ð1230Þ dominates.
For fitting the data with �2 minimization, we need to

assign an error to each data point. We use the same error for
all data points belonging to the sameW. For a givenW, we
use 5% of the highest value in the Dalitz plot distributions
as the error.
We adjust the BW parameters MBW, �BW, and �BW in

Eq. (21) and allM� ! �R coupling constantsCð�RÞL;M� and

cutoffs �ð�RÞL;M� to fit the Dalitz plots generated with our

UM. First we tried fitting with realM� ! �R couplings, but
no satisfactory fit is obtained. Thus, we allow M� ! �R
couplings to be complex, as is usually done in the IM
analysis. To get high precision fits, we find that the IM
needs to include more partial waves in the M� ! �R tran-
sition. This can be seen in Table I in comparing the parame-
ters of the starting UM and IM. The comparisons of the
parameters for the other M� states are similar and therefore
need not be given here. (Note that the parameters of the UM
are from selecting only a few partial waves which have
information from the 3P0 model. So Table I should not be

used in comparing the merits of each model. Namely, if we
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FIG. 5 (color online). W-dependence of integrated Dalitz-plot
distribution of the three pions for the �p ! M�n ! �þ�þ��n
reaction, obtained from Eq. (2) by integrating over the kinemati-
cal variables m2

ab, m2
bc, and �. The other variables are

t ¼ �0:4 GeV2, � ¼ 0, and � is fixed as explained in the text.
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start from the data generated from the IM with a few partial
waves, then the UM fits will also need more partial waves.)

We find that even with many more partial waves in the fit,
as seen in Table I, the IM still cannot fit data well. The high
precision fits are obtained only when we add at eachW a flat
and noninterfering background to the Dalitz-plot distribu-
tions calculated from the IM. The background contribution
could in principle depend on kinematics and interfere with
the resonance contributions. However, we follow the com-
mon practice of previous IM analyses, e.g., Refs. [2–4], to
introduce the background contribution. In Fig. 8, we show

the background contribution to the integrated Dalitz-plot
distribution [m2

�þ�� ,m2
�þ�þ , and� are integrated over from

Eq. (2)] which can be compared to Fig. 5. The background
contribution is highly W dependent. The largest contribu-
tion relative to the full Dalitz-plot distribution (the back-
ground plus the IM) is at W ¼ 1140 MeV by 37%. Below
the a2ð1320Þ [a2ð1700Þ] peak, the contribution is 22%
[29%]. In some regions, on the other hand, the background
contribution is almost zero, as can be seen in the figure.
A good quality of fit has been obtained with the IM. The

IM gives Dalitz-plot distributions that are not distinguishable
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TABLE I. Bare masses M0
M� ðMeVÞ as well as couplings Cð�RLI

i Þl ;M� (dimensionless) and
cutoffs �ð�RLI

i Þl ;M� of Eq. (16) for the M� ¼ �2ð1670Þ, �2ð1800Þ, and �1ð1600Þ from the UM

and those from the IM are compared. RLI
i denotes the ith bare R state with the spin L and the

isospin I. l denotes the orbital angular momentum between RLI
i and �. See Table I of Ref. [7] for

the properties of RLI
i . For the IM, the BW mass (MBW), width (�BW), and the cutoff (�BW) are

also listed.

�2ð1670Þ �2ð1800Þ �1ð1600Þ
UM IM UM IM UM IM

M0
M� ðMBWÞ 1670. 1815. 1800. 1727. 1600. 1599.

ð�BWÞ � � � 565. � � � 69. � � � 8.

ð�BWÞ � � � 1005. � � � 1144. � � � 651.

Cð�R00
1
Þ2 ;M� � � � 0:18þ 0:05i 0.13 �0:08þ 0:02i � � � � � �

�ð�R00
1
Þ2;M� � � � 1999. 1000. 1039. � � � � � �

Cð�R00
2
Þ2 ;M� � � � 0:02þ 0:04i � � � �0:07þ 0:15i � � � � � �

�ð�R00
2
Þ2;M� � � � 1991. � � � 649. � � � � � �

Cð�R11
1
Þ1 ;M� 3.94 4:98þ 0:60i 4.84 �1:08þ 0:04i 1.01 1:17� 0:60i

�ð�R11
1
Þ;M� 1000. 1289. 1000. 1719. 1000 1116.

Cð�R11
2
Þ1 ;M� � � � �2:29� 6:66i � � � 2:64þ 0:30i � � � 0:07þ 0:16i

Cð�R11
2
Þ3 ;M� � � � �0:02� 0:02i � � � �0:01þ 0:00i � � � � � �

�ð�R11
2
Þ;M� � � � 884. � � � 1007. � � � 525.

Cð�R20
1
Þ0 ;M� 8.39 15:09þ 1:29i 9.29 �3:66� 0:55i � � � � � �

Cð�R20
1
Þ2 ;M� � � � 0:11þ 0:02i � � � 0:00þ 0:00i � � � � � �

�ð�R20
1
Þ;M� 1000. 817. 1000. 1077. � � � � � �
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from the left-hand side of Figs. 6 and 7 of the UM. The
good fits can be seen from comparing the solid (unitary
model) and dashed (isobar fit) curves in the right-hand
sides of the same figures.

D. M� Parameters

We apply the analytic continuation method developed in
Ref. [13] to extract the resonance pole positions from
searching for the solutions of det½G�1

M� ðEÞ� ¼ 0 of

Eq. (12) for our UM and ½GBW
M� ðEÞ��1 ¼ 0 of Eq. (21) for

the IM. The extracted polesMR for the UM andMIM
R for IM

are compared in Table II. For the UM, we also list their
bare masses M0

M� . For a1, we see that two bare states

evolve into three resonance poles. The situation is similar
to P11 nucleon resonances reported in Ref. [14]. In the last
column, we also list the BW positions ðMBW;��BW=2Þ.

The results shown in Table II are similar to what we have
observed in other analyses: if the data are fitted equally
well, the extracted resonance positions are rather insensi-
tive to the parametrization of the amplitudes as long as the
singularities of the scattering amplitudes like branch points
are far from the resonance pole. Here, we find a significant
difference between UM and IM in two poles associated
with second a1 (second row in Table II). The pole position
of a1 at 1443� i342 MeV of the UM is close to the branch
points at 1387� 101i MeV for the �-f2ð1270Þ channel
and 1487� 167i MeV for the �-f0ð1370Þ channel. Thus,
the resonance shapes of the amplitude at real W are dis-
torted by those singularities at the complex energies. On
the other hand, the BW model has only a single complex
energy surface and no branch cut. We have observed [14]
the similar situation in the study of Roper resonance
N�ð1440Þ.

For a2, we see from Fig. 5 that two resonances for these
partial waves are well separated. Furthermore, a2ð1320Þ is
a very pronounced and isolated resonance, like the
�ð1232Þ resonance. Thus, it is not surprising to see that

the resonance positions for a2ð1320Þ from two models are
almost identical and the BW value is also very close to the
pole position.
For�2, we assign the wide resonance as�2ð1670Þ and the

narrow one as �2ð1800Þ in Table II. In UM, the mass of the
wide resonance (1786� 228i MeV) is higher than that of
the narrow one (1722� 26i MeV), while the order of two
resonances is reversed in IM. Though IM reproduces well the
data of Dalitz plots, the resonance positions for overlapping
resonances are sensitive to the reaction dynamics.
We next compare the residues of the partial-wave ampli-

tudes of the �� ! R� transition evaluated at the reso-
nance positions. To proceed, we first note that the total
amplitude of �N ! ���N0 defined by Eqs. (4)–(7) can be
cast into the following form:

TabcN0�N; ¼
Xcyclic

ða0b0c0Þ

X
R0
ha0b0c0N0jfa0b0;R0

� X
c00R00

Gc0R0;c00R00T0
c00R00N0;�NðWÞj�Ni; (23)

with

T0
c0R0N0;�NðWÞ
¼ X

�

X
j�k�

X
Sz
M�

��c0R0;M�
j�
½GM� ðWÞ�j�k�TM�

k�
N0;�NðWÞ: (24)

By using Eq. (19) for TM�N0;�NðWÞ and performing the

partial-wave expansion, the following partial wave amplitude
T�
ð��ÞLi!ðRLI

i �ÞLf
ðWÞ can be separated from T0

c0R0N0;�NðWÞ:

T�
ð��ÞLi!ðRLI

i �ÞLf
ðWÞ

¼X
j�k�

��ðRLI
i �ÞLf ;M�

j�
ðW;pRLI

i
Þ½GM� ðWÞ�j�k�

�
0
@ e

g�

X
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�0 ðp�0 Þ
E�ðp�0 Þ

vuut �M�
k�
;ð�0�ÞLi ðp�0 Þ

1
A; (25)

where Li (Lf) is the orbital angular momentum of ��

(RLI
i �). The symbol pRLI

i
(p�0) denotes the on-shell
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FIG. 8 (color online). The contribution from the constant
background cross sections to the integrated Dalitz plot obtained
from Eq. (2) by integrating over m2

�þ�� , m2
�þ�þ , and �.

TABLE II. Pole positions MUM
R from the UM and MIM

R from

the IM are compared. MIMðBWÞ
R are the BW masses and widths

ðMBW;��BW=2Þ from the IM. All are in units of MeV.

M� M0
M� MUM

R MIM
R MIMðBWÞ

R

a1 1230 (913, �69) (940, �64) (1111, �600)
� � � (1443, �342) (1201, �212) (1391, �389)
1700 (1658, �53) (1672, �59) (1676, �59)

a2 1320 (1263, �21) (1262, �22) (1267, �24)
1700 (1652, �38) (1657, �48) (1668, �52)

�2 1670 (1786, �228) (1701, �220) (1815, �283)
1800 (1722, �26) (1724, �34) (1726, �34)

�1 1600 (1599, �4) (1599, �4) (1599, �4)
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momentum of RLI
i (�0) that satisfies W ¼ MR ¼

ERLI
i
ðpRLI

i
Þ þ E�ðpRLI

i
Þ where the bare mass of RLI

i in our

model is used to calculate the energy ERLI
i
ðpRLI

i
Þ.

The residue at each pole positionMR is then defined by a
contour integration along a closed path (CMR

) around the

pole position MR. We further multiply it by phase-space
factors to define

B�;MRðð��ÞLi
! ðRLI

i �ÞLf
Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���ðMRÞ�RLI

i �ðMRÞ
q

�
I
CMR

d �WT�
ð��ÞLi!ðRLI

i �ÞLf
ð �WÞ; (26)

where the phase space factors are

�R�ðWÞ ¼ �
pRERðpRÞE�ðpRÞ

W
;

���ðWÞ ¼ �
p2
�E�ðp�Þ
W

:

(27)

For the IM, we can cast Eq. (20) into the same form of
Eqs. (23)–(25). It is straightforward to see that the resulting
�� ! �R amplitude is

T�ðIMÞ
ð��ÞLi!ðRLI

i �ÞLf
ðWÞ¼X

j�

�ðRLI
i �ÞLf ;M�

j�
ðpRLI

i
Þ½GBW

M� ðWÞ�j�j�

�
0
@ e

g�

X
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�0 ðp�0 Þ
E�ðp�0 Þ

vuut �M�
j�
;ð�0�ÞLi ðp�0 Þ

1
A;

(28)

where GBW
M� ðWÞ is given in Eq. (21). Its residue can be

measured by using Eq. (26) with the replacement

T�
ð��ÞLi!ðRLI

i �ÞLf
ðWÞ ! T�ðIMÞ

ð��ÞLi!ðRLI
i �ÞLf

ðWÞ.
Following the usual procedure, the residue of the BW

parametrization at W ¼ MBW is then obtained from
Eq. (28) by replacing GBW

M� ðWÞ with 1=2. Multiplying the

same phase factors, we then define for the BW:

B
�;Mj�

BW

IMðBWÞðð��ÞLi
! ðRLI

i �ÞLf
Þ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���ðMj�

BWÞ�RLI
i �ðMj�

BWÞ
q

�ðRLI
i �ÞLf ;M�

j�
ðpRLI

i
Þ
0
@ e

g�

X
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�0 ðp�0 Þ
E�ðp�0 Þ

vuut �M�
j�
;ð�0�ÞLi ðp�0 Þ

1
A;
(29)

where the on-shell momenta are for the BW mass (MBW)
taken as the total energy.

We have determined the residues forM�’s of UM and IM
using Eq. (26), and also the conventional BW residues for

IM using Eq. (29). In Table III we present only results
which are useful in revealing the essential differences
between these three residues. Because the overall phase
is arbitrary, we choose the overall phase for IM such that

TABLE III. The pole positions MR and the weighted-residues Bð�� ! �RLI
i Þ defined in

Eq. (26) from UM and IM fits are compared. RLI
i denotes the ith bare R state with the spin L

and the isospin I. For MR, they are listed as ðReðMRÞ; ImðMRÞÞ ½MeV�. The column under
IM (BW) is from IM but using the usual BW procedure with their masses listed as
MR ¼ ðMBW;��BW=2Þ. For the weighted residues, we list (jBj ½MeV�, 
 ½deg�) of the
expression Bð�� ! �RÞ ¼ jBjei
. The overall phase for IM is chosen such that the phase of
Bð�� ! R11

1 �Þ for the most prominent a2ð1320Þ is the same as UM.

M� ðLi; LfÞ UM IM (pole) IM (BW)

2nd-a1ð1230Þ MR (1443, �342) (1201, �212) (1391, �389)
Bð�� ! �R11

1 Þ (0, 0) 64.1, �67. 28.4, �171. 33.6, �150.
Bð�� ! �R11

1 Þ (0, 2) 8.1, 34. 0.0, 180. 0.0, 180.

a2ð1320Þ MR (1263, �21) (1262, �22) (1267, �24)
Bð�� ! �R11

1 Þ (2, 2) 6.2, 171. 6.2, 171. 6.7, 171.

a2ð1700Þ MR (1652, �38) (1657, �48) (1668, �52)
Bð�� ! �R11

1 Þ (2, 2) 9.4, 147. 6.5, 139. 7.1, 140.

�2ð1670Þ MR (1785, �229) (1701, �220) (1815, �283)
Bð�� ! �R00

1 Þ (1, 2) 2.0, �123. 4.5, 129. 5.4, 176.

Bð�� ! �R11
1 Þ (1, 1) 31.8, �134. 37.6, 167. 38.6, 168.

Bð�� ! �R11
1 Þ (1, 3) 1.9, �101. 0.6, 153. 0.7, 176.

�2ð1800Þ MR (1722, �26) (1724, �34) (1726, �34)
Bð�� ! �R00

1 Þ (1, 2) 0.6, 73. 0.6, �26. 0.6, �35.
Bð�� ! �R11

1 Þ (1, 1) 4.5, 4. 4.3, �7. 4.3, �21.
Bð�� ! �R11

1 Þ (1, 3) 0.2, 14. 0.0, 180. 0.0, 180.
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the phase of Bð�� ! R11
1 �Þ for the most prominent

a2ð1320Þ is the same for all three cases in this table.
Guided by the results of theW dependence of cross sections
shown in Fig. 5 and the pole positions shown in Table II, we
focus on three different situations: (a) the resonances are
broad, such as the second a1ð1230Þ; (b) resonances in the
same partial wave are narrow and isolated, such as a2ð1320Þ
and a2ð1700Þ; (c) resonances in the same partial wave
overlap, such as �2ð1670Þ and �2ð1800Þ.

We see that for the broad resonance 2nd-a1ð1230Þ, the
extracted residues are drastically different between UM
and IM. This is of course partly due to the difficulties in
getting the same pole position for the reason discussed in
this subsection. For the a2ð1320Þ that gives the very pro-
nounced peak in Fig. 5, both the resonance positions and
residues agree almost perfectly between UM and IM. This
is not surprising since it is similar to the situation of the
well known �ð1232Þ resonance in the �N scattering. For
the a2ð1700Þ, there is some difference in resonance posi-
tions and residues. Since the residues from UM and IM are
from loop integration around the pole position as given in
Eq. (26), their differences originate from the differences
in their amplitudes near the pole position. This is illustrated
in Fig. 9 for this resonance. We see that the amplitudes
from UM and IM are rather different near their pole posi-
tions and hence lead to the differences in residues which are
calculated from loop integration of the amplitude around
the pole position. This indicates that the resonance proper-
ties extracted from data are not independent of the analysis
method, and thus it is essential to have a parametrization of
the amplitude with theoretical constraint. Finally, for
�2ð1670Þ and �2ð1800Þ, it is not surprising to see that the
phases of their residues from UM and IM are very different,
since two resonances are overlapping.

IV. SUMMARY

We applied the unitary coupled-channels model devel-
oped in Ref. [7] to investigate the issues concerning the

extraction of meson resonances from the three-pions
photo-production reaction on the nucleon. Our aim here
is to examine the importance of the three-body unitarity,
which is not accounted for rigorously in the commonly
used IM analyses for the resonance extraction. This has
been done by comparing the resonance parameters
extracted with our UM and an IM both of which reproduce
the same Dalitz plots over relevant kinematical region. We
also compare the resonance parameters with the usual BW
parameters of the same IM.
We found that the good IM fits to the Dalitz plots

generated from the UM can be achieved only when the
M� ! �R coupling is allowed to become complex and a
flat background is added at each W. The resonance posi-
tions from the two models agree well, except for the
resonance poles whose tails are partly blocked by branch
cuts on the Riemann surface from reaching at the physical
real W axis and for the overlapping resonances. The resi-
dues of the resonant amplitudes extracted from the two
models and those from the usual BW procedure agree well
only for the isolated resonances with narrow widths. Most
of the extracted residues for overlapping resonances could
be drastically different. Our results suggest that even with
high precision data, the resonance extraction should be
based on models within which the amplitude parametriza-
tion is constrained by a three-body unitarity condition.
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