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The bulk and shear viscosities (� and �) have been studied for quark-gluon plasma produced in

relativistic heavy ion collisions within semiclassical transport theory, in a recently proposed quasiparticle

model of (2þ 1)-flavor lattice QCD equation of state. These transport parameters have been found to be

highly sensitive to the interactions present in hot QCD. Contributions to the transport coefficients

from both the gluonic sector and the matter sector have been investigated. The matter sector is found

to be significantly dominating over the gluonic sector in the cases of both � and � . The temperature

dependences of the quantities �=S and �=� indicate a sharply rising trend for the � , closer to the QCD

transition temperature. Both � and � are shown to be equally significant for the temperatures that are

accessible in the relativistic heavy ion collision experiments and hence play a crucial role in investigating

the properties of the quark-gluon plasma.
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I. INTRODUCTION

The study of transport coefficients for hot QCD matter
is an area of intense research since the discovery of a
fluidlike picture of quark-gluon plasma (QGP) in the rela-
tivistic heavy ion collider (RHIC) at Brookhaven National
Laboratory BNL [1]. The discovery of the QGP is attrib-
uted to the fact that at extreme energy density and tem-
perature, ordinary nuclear matter goes through a transition
to the QGP phase as predicted by the finite temperature
quantum chromodynamics (QCD) (this transition is shown
to be a crossover [2] at the vanishing baryon density).

To describe a fluid, shear and bulk viscosities (� and � ,
respectively) are very important physical quantities that
characterize dissipative processes during hydrodynamic
evolution. The former describes the entropy production
due to the transformation of the shape of the hydrodynamic
system at a constant volume, and the latter describes the
entropy production at the constant rate of change of the
volume of the system (hot fireball at the RHIC). Moreover,
�=S, and �=S serve as the inputs while studying the
hydrodynamic evolution of the fluid [3,4]. One can also
couple hydrodynamics with the Boltzmann descriptions at
the later stages after the collisions of heavy ions at the
RHIC by maintaining the continuity of the entire stress-
energy tensor and currents. The process could be translated
in terms of the viscous modifications to the thermal distri-
bution functions of particles. This leads to a smooth tran-
sition from the hydrodynamic regime where the mean free
paths are short to a region where hydrodynamics is inap-
plicable and Boltzmann treatments seem to be justified [5].
Therefore, this opens a way to study the impact of transport
coefficients of the QGP in various processes at the RHIC

and the ongoing heavy ion experiments at the Large
Hadron Collider (LHC), CERN (e.g., dilepton production,
quarkonia physics, etc.). Regarding viscous corrections to
the dilepton production rate at the RHIC, we refer the
reader to Ref. [6]. The determinations of � and � have to
be done separately from amicroscopic theory—either from
a transport equation [7] with appropriate force, collision,
and source terms or equivalently from the field theoretic
approach by employing the Green-Kubo formulas [8] (long
wavelength behavior of the correlations among various
components of the stress-energy tensor).
The QGP is strongly interacting at the RHIC [1], as

inferred from the flow measurements, and strong jet
quenching has been observed there. This observation is
found to be consistent with the lattice simulations of the
hot QCD equation of state (EOS) [9,10], which predicts a
strongly interacting behavior even at temperatures that are
of the order of a few Tc (the QCD transition temperature).
The flow measurements suggest a very tiny value for the
ratio of � to the entropy density, S (�=S), for the QGP and
the near-perfect fluid picture [11–14] (except near the QCD
transition temperature, where �=S is equally significant as
�=S [15–18]).
Preliminary studies at the LHC [19–21] reconfirm the

above-mentioned observations regarding the QGP. In
heavy-ion collisions at the LHC, in addition to the elliptic
flow obtained at the RHIC, there are other interesting flow
patterns, viz., the dipolar and the triangular flow, which are
sensitive to the initial collision geometry [22]. There have
been recent interesting studies to understand them at LHC
[19,23]. A more precise measurement of various flows and
jet quenching at LHC is awaited. On the other hand, � has
achieved considerable attention in the context of the
QGP after the interesting reports on its rising value close
to the QCD transition temperature [15]. Subsequently, the*vinod.chandra@fi.infn.it
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possible impact of the large bulk viscosity of the QGP at
the RHIC have been studied by several authors. Song and
Heinz [24] have studied the interplay of shear and bulk
viscosities in the context of collective flow in heavy ion
collisions. Their study revealed that one cannot simply
ignore the bulk viscosity while modeling the QGP. In this
context, there are other interesting studies in the literature
[25–31]. The role of bulk viscosity in the freeze-out phe-
nomenon has been offered in Refs. [21,32]. Effects of bulk
viscosity in the hadronic phase, and in the hadron emission,
have been studied in Ref. [33]. Interestingly, in the recent
investigations, these transport coefficients are found to be
very sensitive to the interactions [13,14] and the nature of
the phase transition in QCD [34]. Another crucial aspect of
� is its influence on the domain of applicability of hydro-
dynamics at the RHIC, viz., the phenomenon cavitation.
This phenomenon has been addressed in detail in the
context of the diverging value of � near the QCD transition
temperature in Refs. [35,36]. Thus, the determinations of �
and � for the QGP have multifaceted dimensions and
significant impact on the variety of physical phenomena
at the RHIC and the LHC. Subsequently, the cavitation in a
particular string theory model (N ¼ 2� SU(N) theory
which is nonconformal and mass deformation of N ¼ 4,
SU(4) Yang-Mills) has been investigated by Klimek et al.
in Ref. [37]. They have observed the absence of cavitation
before phase transition is reached by investigating the flow
equations in a (1þ 1)-dimensional boost-invariant setup,
which is in contrast to the finding of Rajgopal and
Tripuraneni [35] for hot QCD. They further argued that
such a behavior is mainly due to the smaller value of � , a
sharp rise in the relaxation time for such theories near the
transition point, and perhaps the quantum corrections to �
and � [38]. These studies might play a crucial role in
understanding the behavior of strongly coupled QGP in
the RHIC and the LHC.

The determinations of � and � have been performed
adopting the viewpoint based on the inference drawn from
the experimental results and the lattice QCD (the best
known nonperturbative technique to address the QGP).
Lattice QCD has indeed been very successful in studying
the QGP thermodynamics. However, the computation of
the transport coefficients in lattice QCD is a very nontrivial
exercise, due to several uncertainties and inadequacy in
their determination. Despite that, there are a few first
results computed from lattice QCD for bulk and shear
viscosities [39–42] that have observed a small value of
�=S and large �=S at the RHIC. A very recent interesting
analysis [43] suggests that it is possible to compare the
direct lattice results with the experiments at the RHIC.
From such a comparison, the QCD transition temperature
came out to be around 175 MeV. More refined lattice
studies on � and � are awaited in the near future.

The work presented in this paper is an attempt (i) to
achieve the temperature dependence of� and � (The gluonic

as well as the matter sector contributions to these transport
parameters have been obtained by combing a transport
equation with a recently proposed quasiparticle model
[44–46] of (2þ 1)-flavor lattice QCD EOS. A noteworthy
point is that the matter sector has largely been ignored
in the literature in this context.) and (ii) to understand the
small�=S and large �=S for the QGP for the temperatures
closer to Tc. More precisely, inputs have been taken from
the computations of � and � in the quasiparticle models
[13,14,18,47,48] and combined with a transport theory
determination of them in the presence of chromo-Weibel
instabilities [12,49,50]. The present work is an extension
of our recent work on � [13,14] and � [18] for the gluonic
sector to the (2þ 1)-flavor QCD.
The paper is organized as follows. In Sec. II, we present

the formalism to compute the � and � . The quasiparticle
model and transport equation have also been discussed in
brief in the same section. In Sec. III, we have presented
the results on the temperature dependence of � and � in
(2þ 1)-flavor lattice QCD and relevant physics. In Sec. IV,
we have presented conclusions and future prospects for the
present work.

II. DETERMINATION OF
TRANSPORT COEFFICIENTS

There may be a variety of physical phenomena that lead
to the viscous effects in the QGP (or in general any
interacting system) [5]. Among them, our particular focus
is on the viscous effects that get contributions from the the
classical chromofields.
The idea adopted here is based on the mechanism earlier

proposed in Refs. [12,50,51] to explain the small viscosity
of a weakly coupled but expanding QGP. The mechanism
in the context of the QGP is solely based on the particle
transport processes in the turbulent plasmas [52] that are
characterized by strongly excited random field modes in
certain regimes of instability. They coherently scatter the
charged particles and thus reduce the rate of momentum
transport. This eventually leads to the suppression of the
transport coefficients in plasmas. This phenomenon has
been studied in both electromagnetic plasmas [53] and
non-Abelian plasmas (QCD plasma) by Asakawa et al.
[12,50] and further employed for the realistic QGP EOS
in Refs. [13,14].
The condition for the spontaneous formation of turbulent

fields can be achieved in electromagnetic plasmas with an
anisotropic momentum distribution [54] of charged parti-
cles and in the QGP with an anisotropic distribution of
thermal partons [55]. In the context of pure SU(3) gauge
theory, this mechanism turns out to be successful in
explaining the small shear viscosity of the QGP and the
larger bulk viscosity for the temperatures accessible at the
RHIC and the LHC [14,18]. Here, an extension has been
made to the case of realistic EOS for the QGP by incorpo-
rating the effects from the matter sector (quark-antiquarks).
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It will be seen later that the analysis leads to an interest-
ing observation regarding the relative contribution of the
gluonic and the matter sectors to the transport parameters.
Before that, we present a brief description of the quasipar-
ticle understanding of (2þ 1)-flavor lattice QCD that fur-
nishes an appropriate modeling of the equilibrium state.

A. The quasiparticle description of hot QCD

The quasiparticle description of the hot QCD medium
effects is not a new concept. There have been several
attempts so far to understand the hot QCD medium effects
in terms of noninteracting/weakly interacting quasipartons,
viz., effective thermal mass models [56,57], effective
mass models with temperature-dependent bag parameters
to cure the problem of thermodynamic inconsistency [57],
effective quasiparticles with gluon condensate [58],
Polyakov loop models [59] (the Polyakov loop acts as
effective fugacity), and the quasipartons with effective
fugacities [44–46]. The last one that will be employed
here, shown to be fundamentally distinct from all other
mentioned models, is in the spirit of Landau’s theory of
Fermi liquids. Moreover, the model has been highly suc-
cessful in interpreting the lattice QCD thermodynamics
and bulk and transport properties of hot QCD matter and
the QGP in relativistic heavy ion collisions.

In our quasiparticle description for (2þ 1)-flavor lattice
QCD [46], we start with the ansatz that the lattice
QCD EOS can be interpreted in terms of noninteracting
quasipartons having effective fugacities that encode all the
interaction effects. We denote them as the gluon-effective
fugacity zg and the quark-antiquark fugacity zq. In this

approach, the hot QCD medium is divided in to two
sectors, viz., the effective gluonic sector and the matter
sector (light quark sector and strange quark sector). The
former refers to the contribution of gluonic action to the
pressure which also involves contributions from the inter-
nal fermion lines. On the other hand, the latter involve
interactions among quarks and antiquarks, as well as their
interactions with gluons. The ansatz can be translated into
the form of the equilibrium distribution functions feq �
ffg; fq; fsg (This notation will be useful later while writing
the transport equation in both the sectors in compact
notations.) as follows,

fg ¼ zg expð��pÞ
ð1� zg expð��pÞÞ ; fq ¼

zq expð��pÞ
ð1þ zq expð��pÞÞ ;

fs ¼
zq expð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p Þ
ð1þ zq expð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ÞÞ
;

(1)

where m denotes the mass of the strange quark, which we
choose to be 0.1 GeV. The parameter � ¼ T�1 denotes the
inverse of the temperature. Here, we are working in the
units where the Boltzmann constant KB ¼ 1, c ¼ 1, and
h=2� ¼ 1. The notation p is nothing but p � j ~pj.

We use the notation �g ¼ 2ðN2
c � 1Þ for gluonic degrees

of freedom, �q ¼ 2� 2� Nc � 2 for light quarks and

�s ¼ 2� 2� Nc � 1 for the strange quark for SUðNcÞ.
Here, we are dealing with SU(3), so Nc ¼ 3. Since
the model is valid in the deconfined phase of QCD
(beyond Tc), the mass contributions of the light quarks
can be neglected as compared to the temperature.
Therefore, in our model, we only consider the mass for
the strange quarks.
The effective fugacity is not merely a temperature-

dependent parameter that encodes the hot QCD medium
effects. It is very interesting and physically significant. The
physical significance is reflected in the modified dispersion
relation in both the gluonic and the matter sectors. In this
description, the effective fugacities modify the single qua-
siparton energy as follows,

!g ¼ pþ T2@T lnðzgÞ !q ¼ pþ T2@T lnðzqÞ
!s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ T2@T lnðzqÞ:

(2)

These dispersion relations can be explicated as follows.
The single quasiparton energy not only depends upon its
momentum but also gets contributions from the collective
excitations of the quasipartons. The second term is like
the gap in the energy spectrum due to the presence of
quasiparticle excitations. This makes the model more in
the spirit of the Landau theory of Fermi liquids. For a
detailed discussion on the interpretation and physical sig-
nificance of zg and zq, we refer the reader to our recent

work [46]. Henceforth, we shall use ‘‘gluonic sector’’ in
place of ‘‘effective gluonic sector’’ for the sake of ease. We
shall now proceed to the determination of � and � in the
presence of chromo-Weibel instabilities.

B. Chromo-Weibel instability and the
anomalous transport

The determinations of � and � have been done in a
multistep way. First, we need an appropriate modeling of
distribution functions for the equilibrium state. Second, we
need to set up an appropriate transport equation to deter-
mine the form of the perturbations to the distribution
functions. These two steps eventually determine these
transport coefficients. For the former step, we employ the
quasiparticle model for the (2þ 1)-flavor lattice QCD
EOS discussed earlier.
Both � and � have two contributions, the same as in the

case of the shear viscosity in Ref. [12], the first is the
Vlasov term which captures the long-range component of
the interactions and the second is the collision term, which
models the short-range component of the interaction. Here,
we shall concentrate only on the former case. The deter-
minations of shear and bulk viscosities from an appropriate
collision term will be a matter of future investigations.
Importantly, the analysis adopted here is based on the
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weak coupling limit in QCD; therefore, the results are
shown beyond 1:2Tc, assuming the validity of weak
coupling results for the QGP there. Note that the interplay
for anomalous and collisional components of � has been
discussed in Refs. [12–14], and in the case of � for the pure
gauge theory, a discussion has been presented regarding
the interplay of the collisional [60–62] and anomalous
components in Ref. [18]. It seems that at the conceptual
level, all the observations in Ref. [18] regarding the inter-
play will remain valid here. Since we do not have results
for the matter sector, we shall not offer a quantitative
discussion on such an interplay here. There have been
computations of transport parameters in the case of pure
gauge theory based on the effective mass models within the
relaxation time approximation [63]. The approach adopted
and the physical setup are entirely distinct in the present
case. It is to be noted that the gluonic component in all
the quantities is denoted by sub/superscript g, for the
light- quark components by q, and for the strange-quark
components by s.

C. Determination of � and �

Let us first briefly outline the standard procedure of
determining transport coefficients in transport theory
[7,12]. The bulk and shear viscosities, � and �, of the
QGP in terms of equilibrium parton distribution functions
are obtained by comparing the kinetic theory definition of
the stress tensor with the fluid dynamic definition of the
viscous stress tensor.

In kinetic theory, the stress tensor is defined as

T�� ¼ XZ d3 ~p

ð2�Þ3!p�p�fð ~p; ~rÞ; (3)

where the sum is over all species (in the present case,
gluons, light quarks, and strange quarks) including the
internal degrees of freedom which is implicit in Eq. (3).
The quantities ! � f!g;!q;!sg combined denote the

quasiparticle dispersions, and fð ~p; ~rÞ is the combined no-
tation for the quasiparticle distribution functions.

This form of T�� does not capture the medium modifi-
cations encoded in the nontrivial dispersion relations, !,
and hence does not implement the thermodynamic consis-
tency condition correctly. This is very crucial in its own
merit and also needed to relate to the hydrodynamic defi-
nition of T��. In the present case, to obtain the correct
expression of the energy density, one needs to modify the
4-momenta of the quasiparticles, which is not allowed in
the model in view of the particular mathematical structure
of the equilibrium distribution functions in Eq. (1). To cure
the problem, the definition of T�� needs to be modified
such that u�u�T

�� ¼ � (true energy density). This can be

achieved by the revised definition of T�� in the case of our
quasiparticle model with effective fugacities,

T�� ¼ X�Z d3 ~p

ð2�Þ3!p�p�fð ~p; ~rÞ

þ
Z d3 ~p

ð2�Þ3Ep!
ð!� EpÞp�p�f0ð ~p; ~rÞ

þ
Z d3 ~p

ð2�Þ3 ð!� EpÞu�u�f0ð ~p; ~rÞ
�
; (4)

where Ep denote the dispersions without medium modifi-

cations, Ep ¼ p for gluons and light quarks and Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
for the s-quarks, and antiquarks, respectively.

Therefore, one can clearly realize the presence of the

factors, T2 d lnðzgÞ
dT and T2 d lnðzqÞ

dT in the expression for T��.

The second term in the right-hand side of Eq. (4) ensures
the correct expression for the pressure, and the third term
ensures the correct expression for the energy density, and
hence the definition of T�� incorporates the thermody-
namic consistency condition correctly. This issue is real-
ized in a similar way in the effective mass quasiparticle
models in Ref. [64], and accordingly the modified defini-
tion of T�� is employed which contains the temperature
derivative of the effective mass.
On the other hand, in hydrodynamics the expression for

the viscous stress tensor up to first order in the gradient
expansion is given by

T�� ¼ ð�þ PÞu�u� � Pg�� ����� þ ���; (5)

where u� is the fluid 4-velocity, g�� is the metric tensor,
��� ¼ g�� � u�u� is the orthogonal projector, � is
the bulk part of the stress tensor, and��� is the shear stress.
Here, � is the energy density andP is the pressure of the fluid.
In the first-order (Navier-Stokes) approximation, the

viscous (dissipative) parts of the stress-energy tensor in
Eq. (5) can be obtained in the local rest frame of the fluid
(LRF) as

�ij ¼ �2�ðruÞij
ðruÞij ¼

@iuj þ @jui
2

� 1

3
�ij@iu

j;

� ¼ ��r � ~u � @ku
k;

(6)

where ðruÞik is the traceless, symmetrized velocity gra-
dient, r � ~u is the divergence of the fluid velocity field,
and � and � refer to the ð�g; �q; �sÞ and ð�g; �q; �sÞ (later
we shall write them explicitly). In the LRF,
[u� ¼ ð1; 0; 0; 0Þ], f0 � ffg; fq; fsg.
Next, to determine � an �, one writes the parton distri-

bution functions as

fð ~p; ~rÞ ¼ 1

z�1
g=q expð�u�p� þ f1ð ~p; ~rÞÞ � 1

: (7)

Assuming that f1ð ~p; ~rÞ is a small perturbation to the
equilibrium distribution, we expand fð ~p; ~rÞ and keeping
only the linear order term in f1, one obtains
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fð ~p; ~rÞ ¼ f0ðpÞ þ �fð ~p; ~rÞ
¼ f0ðpÞð1þ f1ð ~p; ~rÞð1� f0ðpÞÞ; (8)

where f0 � ffg; fq; fsg and similarly f1 � ffg1 ; fq1 ; fs1g in
the LRF, and p � j ~pj throughout the computations. The
plus sign in the bracket is for gluons, and the minus sign is
for fermions (q and s). Next, we shall consider these
quantities explicitly in the gluonic and the matter sectors.
As discussed in Refs. [12,14], � and � are determined by
taking the following form of the perturbation f1,

fg1 ð ~p; ~rÞ ¼ � 1

!gT
2
pipjð�1gðpÞðruÞij þ�2gð ~pÞðr � ~uÞ�ijÞ

fq1 ð ~p; ~rÞ ¼ � 1

!qT
2
pipjð�1qðpÞðruÞij þ�2qð ~pÞðr � ~uÞ�ijÞ

fs1ð ~p; ~rÞ ¼ � 1

!sT
2
pipjð�1sðpÞðruÞij þ�2sð ~pÞðr � ~uÞ�ijÞ:

(9)

Here, dimensionless functions �1g;1q;1sðpÞ, �2g;2q;2sð ~pÞ
measure the deviation from the equilibrium configuration.
�1ðpÞ, �2ð ~pÞ lead to � and � , respectively. Note that
�1g;1q;1sðpÞ is an isotropic function of the momentum in

contrast to �2g;2q;2sð ~pÞ, which is an anisotropic in momen-

tum ~p. This is specifically associated with the structure of
the Vlasov operator in the present case. In this case, we
seek a solution of the effective transport equation for the
bulk viscosity that satisfies the Landau-Lifshitz (LL) con-
dition, u��T

�� ¼ 0, to ensure that we have followed the

description of Chakraborty and Kapusta [47], which has
been discussed in Sec. II E.

Since � and� are Lorentz scalars; theymay be evaluated
conveniently in the LRF (in the LRF f0 � feq).

Considering the a boost invariant longitudinal flow,
r � ~u ¼ 1

	 and, ðruÞij ¼ 1
3	 diagð�1;�1; 2Þ in the LRF.

In this case, the perturbations, f1ðpÞ take the form

fg1 ð ~pÞ ¼ ��1gðpÞ
!gT

2	

�
p2
z � p2

3

�
� �2gð ~pÞ

!gT
2	

p2

fq1 ð ~pÞ ¼ ��1qðpÞ
!qT

2	

�
p2
z � p2

3

�
� �2qð ~pÞ

!qT
2	

p2;

fs1ð ~pÞ ¼ ��1sðpÞ
!sT

2	

�
p2
z � p2

3

�
� �2sð ~pÞ

!sT
2	

p2;

(10)

where 	 is the proper time (	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
). The shear

viscosities are obtained in terms of entirely unknown
functions �1g;1q;1sðpÞ as

�g ¼ �g

15T2

Z d3 ~p

8�3

p4

!2
g

�1gðpÞfgð1þ fgÞ

�q ¼ �q

15T2

Z d3 ~p

8�3

p4

!2
q

�1qðpÞfqð1� fqÞ

�s ¼ �s

15T2

Z d3 ~p

8�3

p4

!2
s

�1sðpÞfsð1� fsÞ:

(11)

The bulk viscosities are obtained in terms of the
unknown functions �2g;2q;2sð ~pÞ,

�g ¼
�g

3T2

Z d3 ~p

8�3

p2

!2
g

ðp2 � 3c2s!
2
gÞ�2gð ~pÞfgð1þ fgÞ

�q ¼
�q

3T2

Z d3 ~p

8�3

p2

!2
q

ðp2 � 3c2s!
2
qÞ�2qð ~pÞfqð1� fqÞ

�s ¼ �s

3T2

Z d3 ~p

8�3

p2

!2
s

ðp2 � 3c2s!
2
sÞ�2sð ~pÞfsð1� fsÞ:

(12)

Notice that while obtaining the expression for the bulk
viscosity, we have exploited the LL condition for the
stress-energy tensor. The factor ð�3c2s!

2Þ in the right-
hand side of Eq. (12) is coming only because of that. The
appearance of this factor is not so straightforward. To
obtain it, one has to look for a particular solution of the
transport equation for � so that the viscous stress tensor
satisfies the LL condition. Such a solution is obtained by
invoking the conservation laws and thermodynamic rela-
tions in quite a general way in Ref. [47] and is valid in the
present case at the level of formalism (see Sec. II E). The
modifications will appear only in terms on new equilibrium
distribution functions, and the modified dispersion rela-
tions, !. There is no such issue with the � since physically
it is associated with the response with the change in the
shape of the system at constant volume; on the other hand, �
is linked with the volume expansion at a fixed shape.
Here, c2s is the speed of sound square extracted from
the lattice data on (2þ 1)-flavor lattice QCD. The
determination of �1g;1q;1sðpÞ and �g;q;s can easily be done

following Refs. [13,14], and �2g;2q;2sð ~pÞ and �g;q;s; follow-

ing Ref. [18].

D. Determination of the perturbative �1 and �2

To obtain an analytic expression for the perturbations,
�1;2, in our analysis, one needs to first set up the transport

equation in the presence of turbulent color fields. This has
been done in Refs. [12–14] in the recent past. Here, we
only quote the linearized transport equation, with Vlasov-
Dupree diffusive term, which arises after considering the
ensemble average over turbulent color fields in the light
cone frame. The transport equation thus obtained reads

v� @

@x�
feqðpÞ þ VAf1feqðpÞð1� feqðpÞÞ ¼ 0; (13)
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where (feq � fg, fq, fs), and v� � ð1; ~vpÞ, where ~vp ¼
@ ~p! is the quasiparticle velocity. It is easy to realize that

the quasiparticle model does not change the group velocity
of the quasipartons. Note that Eq. (13) is written in the
absence of the collision term and assuming the weak
coupling approximation.

The mathematical structure of the Vlasov-Dupree
operator is as follows,

VA ¼ g2C2

2ðN2
c � 1Þ!2

hE2 þ B2i	mL2; (14)

whereC2 is the quadratic Casimir invariant for partons. For
gluons, C2 ¼ Nc, and for quarks, C2 ¼ ðN2

c � 1Þ=2Nc.
Here, ! � f!g;!q;!sg denotes the quasiparton disper-

sions, and g2 is the QCD coupling constant at finite
temperature. The quantities Ea and Ba denote the chromo-
field strengths, where a is the SU(3) color index, and
hE2 þ B2i � hEa � Ea þ Ba � Bai. The bracket h� � �i
denotes the ensemble average over the color field configu-
rations which are turbulent (grow in time with a time scale
	m) as described in Ref. [12]. The anomalous transport
coefficients in this approach are obtained by invoking the
argument that soft color fields are turbulent. Their action
on quasipartons can be described by considering the en-
semble average over the color fields that leads to an effec-
tive force term in the linearized transport equation. The
parameter 	m is the time scale associated with instability in
the field, and the operator L2 is

L2 ¼ �ð ~p� @ ~pÞ2 þ ð ~p� @ ~pÞj2z � �ðLpÞ2 þ ðLp
zÞ2:
(15)

Since L2 contains angular momentum operator Lp, it
therefore gives a nonvanishing contribution while operat-
ing on an anisotropic function of ~p. It will always lead to
the vanishing contribution while operating on an isotropic
function of ~p. Following [14], the expression for the
�1gðpÞ is obtained as

�1gðpÞ ¼
2ðN2

c � 1Þ!2
gT

3Cgg
2hE2 þ B2i	m

: (16)

On the other hand, expressions for �1q;1s are obtained as

�1qðpÞ ¼
2ðN2

c � 1Þ!2
qT

3Cfg
2hE2 þ B2i	m

�1sðpÞ ¼ 2ðN2
c � 1Þ!2

sT

3Cfg
2hE2 þ B2i	m

:
(17)

Now, we write the transport equation containing only
those terms that contribute to bulk viscosity � as

�
p2

3!2
� c2s

�
!

T
ðr � ~uÞfeqð1� feqÞ

¼ g2C2

3ðN2
c � 1Þ!2

hE2 þ B2i	mL2f1ð ~p; ~rÞfeqð1� feqÞ:

(18)

Following [18], we can obtain the mathematical forms of
the corresponding perturbations, �2. We shall write down
the expressions in the gluonic sector and matter sector
separately to avoid any confusion. The expression for
�2gðpÞ is obtained as

�2gð ~pÞ ¼
4ðN2

c � 1ÞT!2
g

Ncg
2hE2 þ B2i	mp2

�
p2

3
� c2s!

2
g

�
ln

�
pTffiffiffi
6

p
T

�
:

(19)

On the other hand, the expressions for �2q;2s are

obtained as

�2qð ~pÞ ¼
4ðN2

c � 1ÞT!2
q

C2g
2hE2 þ B2i	mp2

�
p2

3
� c2s!

2
q

�
ln

�
pTffiffiffi
6

p
T

�

�2sð ~pÞ ¼ 4ðN2
c � 1ÞT!2

s

C2g
2hE2 þ B2i	mp2

�
p2

3
� c2s!

2
s

�
ln

�
pTffiffiffi
6

p
T

�
:

(20)

Next, we relate the denominator of Eqs. (17), (19), and
(20), to the parton energy loss parameter q̂ � q̂g, q̂q, via

the relation [51],

q̂ ¼ 2g2C2

3ðN2
c � 1Þ hE

2 þ B2i	m: (21)

The relation of q̂ with the transport parameters in the
present analysis is attributed to the fact that radiative
energy loss (q̂ being a measure) depends on the rate of
momentum exchange between the fast parton and the
QCD medium. More precisely, q̂ is assumed as a rate of
growth of the transverse momentum fluctuations of a fast
parton to an ensemble of turbulent color fields, expressed
as in Eq. (21).
Now the gluonic contributions to � and � in terms of q̂

can be rewritten as follows:

�g ¼ T6

q̂

64ðN2
c � 1Þ

3�2
PolyLog½6; zg�;

�g ¼ 4ðN2
c � 1Þ

3T�2q̂

ZZ
pTdpTdpz

�
p2

3
� c2s!

2
g

�
2

� ln

�
pT

p0

�
� fgð1þ fgÞ: (22)

On the other hand, quark-antiquark viscosities in the matter
sector are obtained as
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�q ¼
64N2

c�q

3�2q̂ðN2
c � 1Þ f�PolyLog½6;�zq�g

�s ¼ 64N2
c�s

3�2q̂ðN2
c � 1Þ

�
�PolyLog½6;�zq�

þ ~m2

2
PolyLog½5;�zq�

�

�q;s ¼
Nc�q;s

3CfT�
2q̂

ZZ
pTdpTdpz

�
p2

3
� c2s!

2
q;s

�
2

� ln

�
pT

p0

�
� fq;sð1� fq;sÞ: (23)

Here ~m � m=T (mass of the strange quark scaled with
temperature), and the PolyLog functions that appear in
the expressions for �g;q;s are defined in terms of the series

representation as

Ploylog½n; x� ¼ X1
k¼1

xk

kn
; (24)

where n is a positive integer, and the convergence of the
series is ensured by the fact that x 	 1. Moreover,
PolyLog½n; 1� � �ðnÞ and also PolyLog½n;�1� 
 ��ðnÞ.

Clearly from Eqs. (22) and (23), the various components
of � and � have strong dependence on the hot QCD EOS
through the parameters zg;q and their first-order derivatives

with respect to temperature, the speed of sound c2s and q̂
(speed-of-sound dependence is only there in �). Therefore,
before discussing the results for a particular lattice EOS
utilized in this analysis, it is instructive to discuss the
dependence of lattice EOS on � and � in view of the
uncertainties in the height and width of the interaction
measure (trace anomaly) computed in lattice QCD at finite
temperature by different collaborations. The temperature
dependence of zg and zq is mainly dependent on the

temperature dependence of the interaction measure. The
former is directly related to the contributions coming from
the gluonic action and later depends on the interaction
measure in the (2þ 1)-flavor QCD subtracting gluonic
contribution. Therefore, they both carry effects of lattice
artifacts and uncertainties from the beginning of their
determination. The same is true for c2s , since it has strong
dependence on the behavior of the interaction measure as a
function of temperature. In fact, c2s is related to the tem-
perature derivative of the trace anomaly scaled with the
energy density [65]. Therefore, it would be appropriate to
compare the predictions on � and � based on the lattice
data from various groups on the hot QCD EOS. However,
this is beyond the scope of the present work, since we need
lattice data from various lattice groups not only for the full
(2þ 1)-flavor QCD but also for the contributions from the
gluonic action to the EOS within the same lattice computa-
tional setup, which is not an easy task. Moreover, it is not
possible to use the pure SU(3) EOS since it shows at the
first-order transition, in contrast to crossover shown by

(2þ 1)-flavor QCD at vanishing baryon density. Leaving
aside the above comparison for the future, we only con-
centrate here on a particular set of lattice data [66]. A
similar analysis with the more recent lattice data on the
QGP EOS may possibly induce quantitative modifications
to � and � through the temperature dependence of zg and

c2s . We strongly believe that the interesting physical obser-
vations regarding � and � will remain intact. The present
analysis led us to strongly believe that there will a be a
strong impact of temperature dependence of the interaction
measure specifically on � and the ratio �=� for the tem-
peratures closer to Tc.
Next, the components of � employing the ideal EOS

for quarks and gluons [equivalently, the ideal form of
their thermal distribution functions, which are nothing
but the equilibrium distribution functions obtained by put-
ting zg;q � 1 in Eq. (1)] can straightforwardly be obtained

from Eqs. (22) and (23) by substituting zg � 1 and zq � 1.

To denote these components, the superscript Id (stands for
the ideal EOS) is used. We thus obtain

�Id
g ¼ T6

q̂

64ðN2
c � 1Þ

3�2
�ð6Þ;

�Id
q ¼ T6

q̂

64N2
c�q

3�2ðN2
c � 1Þ �

31

32
�ð6Þg;

�Id
s ¼ T6

q̂

64N2
c�s

3�2ðN2
c � 1Þ

�
31

32
�ð6Þ þ ~m2

2
� 15

16
�ð5Þ

�
:

(25)

Here, the following relations have been utilized:
PolyLog½5;�1� ¼ 15

16 �ð5Þ and PolyLog½6; 1� � �ð6Þ �
� 32

31 PolyLog½6;�1�. To appreciate the above expressions

more, we can redo the whole analysis with zg;q � 1 and

unmodified dispersion relations !g;q ¼ p and !s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
; we shall end up with the ideal components of

� displayed in Eq. (25). The expressions in Eq. (25) will be
utilized in the next section while investigating the role of
interactions.

E. Landau-Lifshitz condition and the bulk viscosity

Here, we shall briefly describe the LL condition to
obtain the form of the expression for � given in Eq. (12).
We shall argue below that the solution thus obtained fol-
lows the LL condition adopting a recent analysis of
Charkobarty and Kapusta [47]. Inputs have also been taken
from the recent work of Dusling and Schäfer [67] andDusling
and Teaney [64] regarding the viscous hydrodynamics.
Recall that the LL matching condition is a way to

specify uniquely � and u� in terms of the components of
T��. In the LL convention,

� ¼ u�u�T�� �u� ¼ u�T��: (26)

The other six independent components of T�� are obtained
by a nonequilibrium viscous stress ��� ¼ ��� � ����
that satisfies u��

�� ¼ 0. It is sufficient that this condition
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is satisfied in the LRF. This can be translated into the fact
that the energy shift due to the nonequilibrium terms
vanishes. Denoting this energy shift by ��, we obtain the
following condition,

�� ¼ 0 ¼ X
a

Z d3 ~p

8�3
!�f; (27)

where a sums over g, q, and s. As stated earlier, ! and �f
are the combined notations for the nonequilibrium part of
the distribution function for these three sectors. Here, we
have considered the medium modified dispersion for the
single-particle energy to implement the interaction cor-
rectly. This is also the same spirit as in the case of the
effective mass quasiparticle models described in Ref. [67].
Such effects are encoded in the form of �f through �1 and
�2 in the present case. This condition can straightfor-
wardly be satisfied in the case of shear viscosity due to
the specific form of���. The nontrivialities are there in the
bulk viscosity sector, which we discuss below.

Next, using Eqs. (18)–(20), we can write Eq. (27) in the
presence of the bulk viscosity as

�� ¼ X
a

Z d3 ~p

8�3
!2

�
p2

3
� c2s!

2

�
~�2feqð1� feqÞ: (28)

From the expression for �2 in Eqs. (19) and (20), one can

easily read off ~�2 as

~�2 ¼ 4ðN2
c � 1Þ!

T	C2g
2hE2 þ B2i	m

ln

�
pTffiffiffi
6

p
T

�
: (29)

Here, C2 denotes the respective quadratic Casimir invari-
ants of SUðNcÞ.

The energy shift in Eq. (28) will vanish if!2 ~�2 happens
to be independent of ! and ~p [67], which is based on the
definition of the speed of sound (c2s ¼ @P

@� at constant S). In
this case, Eq. (28) will read

X
a

Z d3 ~p

8�3
ðp2 � 3c2s!

2Þfeqð1� feqÞ ¼ 0: (30)

The above condition cannot be achieved with the ! de-

pendence of ~�2 in the present case. It will be useful while
obtaining the expression for � , invoking the LL condition
below. In the case of collisional processes only, the quan-

tity ~�2 is closely related to the relaxation time which is
obtained in terms of the inverse of the transport cross
section [67]. Clearly, our particular solution for � obtained
by solving the effective transport equation does not satisfy
the LL condition.

Next, we discuss how one gets a physically relevant
solution based on this particular solution for � that satisfies
the LL condition. To that end, we closely follow a recent
analysis of Chakraborty and Kapusta [47]. Let us now
define a quantity Aað!Þ for the computational convenience
here as

Aað!Þ ¼ !

3
ðp2 � 3c2s!

2Þ~�2: (31)

Recall that ! � f!g;!q;!sg and feq � f fg; fq; fsg.
In this notation, bulk viscosity � will have the following

expression (in terms of the particular solution),

� ¼ 1

3

X
a

Z d3 ~p

8�3!
p2feqð1� feqÞAað!Þ: (32)

Now following [47], we can consider a shift in Aað!Þ as
Aað!Þ ! A0

að!Þ ¼ Aað!Þ � b! in the absence of con-
served charges and chemical potentials. This generates
another set of solutions with coefficient b being arbitrary.
This leads to the following expression for � ,

� ¼ 1

3

X
a

Z d3 ~p

8�3!
p2feqð1� feqÞðAað!Þ � b!Þ: (33)

Now to fix b, we demand that the new solution must
satisfy the LL condition. This translates into the LL con-
dition for the new solution using Eq. (30) as

X
a

Z d3 ~p

8�3
!ðAað!Þ � b!Þfeqð1� feqÞ ¼ 0: (34)

Now, recast Eq. (34) as

X
a

Z d3 ~p

8�3
3bc2s!

2feqð1� feqÞ

¼ X
a

Z d3 ~p

8�3
3c2s!Aað!Þfeqð1� feqÞ: (35)

Using the condition given in Eq. (30), we obtain,

X
a

Z d3 ~p

8�3!
b!p2feqð1� feqÞ

¼ X
a

Z d3 ~p

8�3
3c2s!Aað!Þfeqð1� feqÞ: (36)

Substituting Eq. (36) into Eq. (34), we obtain the bulk
viscosity � ,

� ¼ 1

3

X
a

Z d3 ~p

8�3!
feqð1� feqÞAað!Þðp2 � 3c2s!

2Þ: (37)

Now, writing � in the component forms in Eq. (37), we
eventually reached the desired expressions for � which are
quoted in Eq. (12). Let us now proceed to investigate the
temperature dependence of � and � .

III. TEMPERATURE DEPENDENCE OF �AND �

The determinations of � and � in the gluonic and matter
sector are incomplete unless we fix the temperature depen-
dence of q̂ in both the sectors. The determination of q̂ has
been presented in the various phenomenological studies
[68], either based on the eikonal approximation or the
higher twist approximation, at a particular value of the
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temperature. Here, we choose the q̂ for gluons as
4:5 GeV2=fm and 2:0 GeV2=fm for quarks at T ¼
0:4 GeV [69] (this temperature, we denote as T0) since q̂
appears in the denominator in the expressions for � and � .
Therefore, any set of values higher then those mentioned
above will further decrease the values of � and � . At T ¼
T0, we can see that q̂g ¼ 2:25q̂q. At this juncture, we do

not know these parameters at all temperatures, so we
assume this relation holds for all temperatures. This as-
sumption is based on the definition of q̂ in the leading order
in hot QCD [70], where it is the same for both gluons and
quarks except that of the quadratic Casimir factor. We shall
utilize the relation q̂g ¼ 2:25q̂q, while studying the tem-

perature dependence of various quantities in the next
subsections. The exact temperature dependence of q̂,
employing the quasiparticle description of hot QCD, is
not known to us at the moment. This will be a matter for
future investigation.

A. Relative contributions

In this section, discussions are mainly on (i) relative
contributions of various components of � with their ideal
counter parts and (ii) gluonic versus matter sectors for �
and � , respectively.

Note that the shear and bulk viscosities in the (2þ 1)
flavor can be obtained by summing of all the individual
contributions of the quasipartons as

� ¼ �g þ �q þ �s � ¼ �g þ �q þ �s: (38)

The additivity of various components here is attributed
to the fact that all of them belong to the same process,
viz., the anomalous transport. Viscosity contributions from
distinct processes (e.g., anomalous and collisional) are
inverse additive due to the fact that various rates [12,18]
are additive.

Let us define the relative quantities of interest. First, we
shall define the ratios of various components of � to that
for the ideal system of quarks and gluons [denoted as �Id

and displayed in Eq. (25)], which are defined as follows,

Rgi �
�g

�Id
g

; Rqi;si �
�q;s

�Id
q;s

Ri �
ð�g þ �q þ �sÞ
ð�Id

g þ �Id
q þ �Id

s Þ :
(39)

Similarly, to compare the relative contributions among
various components of �, we define the following ratios,

Rgq � �g

�q

; Rgs �
�g

�s

; Rsq � �s

�q

: (40)

On the other hand, to compare the relative contributions
among the various components of � , the following quanti-
ties have been defined,

Rgq � �g
�q

; Rgs � �g
�s

; Rsq � �s
�q

: (41)

The quantities defined in Eqs. (39)–(41) have been
shown as functions of T=Tc in Figs. 1–4. The ratios Rgi

and Ri are shown as a function of temperature in Fig. 1.
The parameter q̂ is assumed to be the same in the interact-
ing and ideal sector. We have considered temperature
dependence beyond 1:2Tc. Both Rgi and Ri show that

interactions significantly modify the shear viscosity in
the gluonic sector and the (2þ 1)-flavor QCD at lower
temperatures. Both of them lie within the range f0:40; 0:97g
for the temperature fT=Tc ¼ 1:2; 6:0g. Rqi and Rsi are

shown in Fig. 2 as a function of temperature. Both of
them sit on top of each other. This is not surprising since
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FIG. 1 (color online). � relative to that obtained using the ideal
EOS for QGP, in the gluonic sector, and the (2þ 1) flavor is
plotted as a function of T=Tc. The solid curve denotes the
gluonic sector and dashed line denotes the (2þ 1) flavor. Both
Rgi and Ri approach the ideal limit asymptotically.
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FIG. 2 (color online). � relative to that obtained using the ideal
EOS for the QGP, in the matter sector. The Rqi is � relative to

�Id in the light-quark sector, and similarly Rsi is for the strange-
quark sector. Both the curves sit on top of each other since the
mass effects from the strange-quark sector do not play a signifi-
cant role here.
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the mass effects coming from the strange-quark sector
contribute negligibly in the temperature range considered
here. The light-quark sector and strange quarks differ from
each other by a factor of 2 coming from the degrees of
freedom. From Fig. 2, it is evident that the hot QCD
interactions significantly modify the shear viscosity in
the matter sector the same as in the gluonic sector as
compared to the ideal counter parts. All of them approach
asymptotically the ideal limit which is nothing but unity.
These observations suggest that � could be thought of as a
good diagnostic tool to distinguish various equations of
state at the RHIC and the LHC.

Next, we investigate the gluonic shear and bulk viscos-
ities relative to that of the matter sector. The relevant

quantities in this context of � are Rgq, Rgs, and Rsq, given

in Eq. (40). These are shown as a function of temperature
in Fig. 3. On the other hand, for � , Rqg, Rqs, and Rsq are
shown as a function of temperature in Fig. 4. It can be
observed from Figs. 3 and 4 that the matter sector contri-
butions significantly dominate over the gluonic contribu-
tions as far as the � and � are concerned. This could
perhaps be understood by the following facts, viz., the
higher transport rates in the gluonic sector as compared
to the quark sector as encoded in q̂ and the interactions
entering through the effective fugacities zg and zq.

Quantitatively, �g is 
0:125�q, and 0:250�s at T ¼
1:20Tc, and increases quite slowly as a function of T=Tc

reaching around 0:135�q around 6Tc (see Fig. 3). The �s

almost stays 0:5�q for the considered range of temperature

(contribution from the strange-quark mass is almost negli-
gible). From Fig. 4, it can be observed that Rgq and Rgs

have the same qualitative behavior as a function of
temperature. The quantitative difference is because of a
factor 
2, since �s 
 0:5�q. Again the mass effects in the

strange-quark-sector play an almost negligible role. The
ratio Rgq initially increases and attains a peak around
T=Tc 
 1:37 and then decreases sharply until T=Tc ¼ 1:6
and slightly increases beyond 1.6, tending toward satura-
tion at higher temperatures. Quantitatively, �g � 0:27�q
around 1:2Tc, and 0:13�q at around 3:0Tc. These observa-

tions are very crucial in deciding the temperature depen-
dence of � and � , and the ratios �=S, �=S, and �=�. Most
of the recent studies devoted to the � and � draw infer-
ences for the QGP, which are purely based on the study of
the pure SU(3) sector of QCD only. The matter sector
has largely been ignored. In light of the above observa-
tions, it is not desirable to exclude the matter sector
since the dominant contributions are from there. Finally,
we can obtain the exact value of the ratios �=S and
�=S by employing the values of q̂ quoted earlier (q̂ ¼
4:5 GeV2=fm for gluons and 2:0 GeV2=fm for quarks at
T ¼ 400 MeV). The ratio �=S thus obtained as 0.570 and
�=S came out to be 0.057 at T ¼ 400 MeV. As discussed
earlier, to obtain the exact temperature dependence of �
and � , one must fix the temperature dependence of q̂
within the quasiparticle model employed here. This will
be taken up separately in the near future. The quantity
which can be determined unambiguously is the ratio �=�
which is very crucial in deciding when the hot QCD
becomes conformal. In other words, up to what tempera-
ture value are the effects coming from � important while
studying the QGP? We shall now proceed to discuss these
issues next.

B. The ratio �=�

The behavior of the ratio �=� as a function of tempera-
ture is shown in Fig. 5, and the temperature dependence of

the ratios �
S � �q̂

T3S and �
S � �q̂

T3S is shown in Fig. 6.
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FIG. 3 (color online). Shear viscosity in the effective gluonic
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relative to �s, and the thick dashed line shows the behavior of �s
relative to �q, as a function of T=Tc.

VINOD CHANDRA PHYSICAL REVIEW D 86, 114008 (2012)

114008-10



Most importantly, from Fig. 5, there are clear indications
that � in the gluonic sector and the (2þ 1)-flavor QCD
diverge as we approach closer to Tc (the results are not
shown around Tc, since such a quasiparticle picture may
not be valid there). The quantity �=� shows a sharp
decrease until one reaches up to 1:4Tc in the gluonic sector
and 1:6Tc in the (2þ 1)-flavor QCD sector. Beyond that,
the decrease becomes slow and the ratio slowly approaches
zero. Such a behavior of �=� as a function of temperature
could mainly be described in the formal expressions in
Eqs. (22) and (23) and decided not only by the temperature
dependence of c2s but also by the energy-dispersion
relations, !g;q;s, and the temperature dependence of the

effective fugacities, zg;q. It is evident that there is no way to

obtain a ðc2s � 1
3Þ2 factor out from the expression while

performing the integration. However, such a scaling could
be realized whenever p � T2@Tðlnðzg;qÞÞ and !g;q;s hap-

pen to be independent of zg and zq, and the thermal

distribution of quasipartons show near-ideal behavior. It
may perhaps be realized at a very high temperature which
is not relevant to the study of QGP in the RHIC and the
LHC. Therefore, �=� obtained here does not follow either
a quadratic scaling or a linear scaling with the conformal
measure ðc2s � 1

3Þ. The same conclusions were obtained in

the case of the pure gauge theory recently [18]. Note that
for the scalar field theories, �=� ¼ 15ðc2s � 1

3Þ2 (quadratic
scaling) [71], and it has been found to be true for a photon
gas coupled with the matter [72]. The quadratic scaling is
also valid in the case of perturbative QCD with a propor-
tionality factor different from 15 [73]. Furthermore, in the
case of near-conformal theories with gravity duals, �=�
shows linear dependence on ðc2s � 1

3Þ [74].
Finally, in Fig. 6, �

S and �
S are plotted as a function of

T=Tc (here the quantity S is related to the entropy density

(S) as S ¼ Sq̂
T3 . For the entropy density, we utilize the

quasiparticle results which are shown to be consistent
with the predictions of lattice QCD, and in all the plots,
c2s has been obtained from the quasiparticle model employ-
ing the method quoted in Ref. [65]. Interestingly, these are
of the same order at T ¼ 1:2Tc. Below that temperature,
the latter dominates over the former and vice versa for
T  1:2Tc. The former increases, in contrast to the latter,
as a function of T=Tc. There is a sharp increase shown by
the latter until one reaches 1:4Tc, and beyond that the
decrease is slower and one is quite close to the conformal
limit of QCD. The important inference that could be drawn
from here is that while studying the QGP, one needs to
incorporate the effects of both shear and bulk viscosities
until approximately 1:5Tc. This confirms our viewpoint
that both � and � have a significant impact on the proper-
ties of the QGP at the RHIC and the LHC.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In conclusion, the shear and bulk viscosities of the hot
QCD are estimated by combining a semiclassical transport
equation with a quasiparticle realization of the (2þ 1)-
flavor lattice QCD. The effective gluonic sector contributes
an order of magnitude lower as compared to the matter
sector while determining the transport coefficients of the
hot QCD and the QGP. This could perhaps be understood
in terms of transport cross sections of gluons and quark-
antiquarks. Since transport coefficients are inversely pro-
portional to the cross sections. The bulk viscosity of the
(2þ 1)-flavor QCD is found to be equally significant as the
shear viscosity while modeling the QGP. Indications are
seen regarding a blow-up in the bulk viscosity as we go
closer to Tc.
The temperature dependence of the ratio �=� suggests

that the QGP becomes almost conformal around 1:4–1:5Tc.
The ratio sharply decreases from T ¼ 1:1–1:4Tc, and be-
yond that it slowly approaches zero. Therefore, in this
regime we can ignore the effects of � while studying the
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hydrodynamic evolution and properties of the QGP. We
further found that � and � are of same order around T ¼
1:2Tc. For temperatures lower than that, � is dominant, and
for higher temperatures, � is dominant. Importantly, both
� and � came out to be highly sensitive to the presence of
interactions. This can be visualized from the modulation of
�, as compared to its ideal counter part, and large and
rising value of � for the temperatures that are closer to Tc

(due to the large interaction measure there). The above
conclusions are based on the fact that the ratio q̂g=q̂q is

temperature independent, which is approximately true with
the definition of q̂ considered in the present analysis (lead-
ing order in perturbative QCD). A generalization of the
definition of the q̂ in view of the quasiparticle picture may
induce both qualitative and quantitative modifications to
the ratio �=� and will be investigated in the near future.

It would be a matter of immediate future investigation to
utilize the more recent lattice data and compare the pre-
dictions for the data from the HOTQCD collaboration [9]
and the Budapest-Marseille-Wuppertal Collaboration [10].
This would indeed be helpful in understating the impact of
lattice artifacts and uncertainties on the transport proper-
ties of the QGP.

The investigations on the other contributions to the shear
and bulk viscosities (collisional, etc.), and their interplay
with the corresponding anomalous transport coefficients
will be a matter of future investigations. It will be interest-
ing to include the effects of nonvanishing baryon density

on the transport coefficients of the QGP. Moreover, one
could include the anomalous transport coefficients in the
Boltzmann-transport theory approach and study the impact
on the response functions and quarkonia physics along
the lines of Refs. [75,76], as well as dilepton production
at the RHIC and the LHC. These ideas will be studied in
the near future.
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