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In this work, we determine the short-distance coefficients for � inclusive decay into a charm pair

through relative order v4 within the framework of nonrelativistic QCD (NRQCD) factorization formula.

The short-distance coefficient of the order-v4 color-singlet NRQCD matrix element is obtained through

matching the decay rate of b �bð3S½1�1 Þ ! c �cgg in full QCD to that in NRQCD. The double and single IR

divergences appearing in the decay rate are exactly canceled through the next-to-next-to-leading-order

renormalization of the operator Oð3S½8�1 Þ and the next-to-leading-order renormalization of the operators

Oð3P½8�
J Þ. To investigate the convergence of the relativistic expansion arising from the color-singlet

contributions, we study the ratios of the order-v2 and -v4 color-singlet short-distance coefficients to the

leading-order one. Our results indicate that though the order-v4 color-singlet short-distance coefficient is

quite large, the relativistic expansion for the color-singlet contributions in the process � ! c �cþ X

converges well due to a small value of v. In addition, we extrapolate the value of the mass ratio of the

charm quark to the bottom quark, and find the relativistic corrections rise quickly with increase of the

mass ratio.
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I. INTRODUCTION

The nonrelativistic QCD (NRQCD) factorization for-
mula [1] provides a systematical approach to express
the quarkonium inclusive decay rate (cross section) as the
sum of the product of short-distance coefficients and the
NRQCD matrix elements. The short-distance coefficients
can be expanded as a perturbation series in coupling con-
stant �s at the scale of the heavy quark mass m. The long-
distance matrix elements can be expressed in a definite way
with the typical relative velocity v of the heavy quark in the
quarkonium.

The relativistic corrections to the quarkonium decay and
production have been widely studied. In some processes,
the next-to-leading-order (NLO) relativistic corrections
are sizable, some of which even surpass the leading-order
(LO) contributions. For the quarkonium production, typi-
cal examples are the double charmonia J=c þ �c produc-
tion at the B factories [2,3] and the double �c production
through �b decay [4]. For the quarkonium annihilate decay,
it happens in the J=c inclusive decay and J=c ð�Þ inclusive
decay into a lepton pair or charm pair [5–7]. It may arouse
worries about the relativistic expansion in the NRQCD
approach. In Refs. [8,9], the authors resummed a collection
of relativistic corrections to the process eþe� ! J=c þ �c

and found the relativistic expansion converges well.
Similarly, the authors of Ref. [4] studied the process
�b ! �cðmSÞ�cðnSÞ and found the relativistic expansion
converges very well, though the order-v2 corrections are
both negative and large. In Ref. [10], the authors considered
the order-v4 corrections to J=c inclusive decay and found
the contribution from the color-singlet matrix element in

this order is not as large as the LO and NLO contributions.
The order-v6 corrections to this process were even calcu-
lated in Ref. [11], where the convergence is furthermore
confirmed.
It has been shown that the order-v2 corrections to the

process � ! c �cþ X are extremely huge [6]. The ratio of
the short-distance coefficient of the order-v2 matrix element
to that of the LO one approaches�12. It seriously spoils the
relativistic expansion. So it urges us to calculate the order-v4

corrections and investigate the convergence of the relativis-
tic expansion for this process. Moreover, since the momenta
of some gluons can be simultaneously soft, there exist
complicated IR divergences in the calculations. It is techni-
cally challenging to cancel the IR divergences and obtain
the IR-independent short-distance coefficients through the
color-octet mechanism,1 and it also provides an example to
examine the NRQCD factorization formula.
The remainder of this paper is organized as follows. In

Sec. II, we describe the NRQCD factorization formula for
the � inclusive decay into a charm pair. In Sec. III, we list
our definitions and present the techniques used to compute
the decay rates. We elaborate on the calculations on deter-
mining the short-distance coefficients at relative order v4

in Sec. IV. The QCD corrections to the color-octet opera-
tors are also calculated in this section. Section V is devoted
to discussion and summary.

1When we were doing this work, a work about order-v4

corrections to gluon fragmentation appeared at arXiv [12]. In
that work, the authors applied similar techniques to cancel IR
divergences.
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II. NRQCD FACTORIZATION FORMULA FOR � ! c �cþX

According to the NRQCD factorization formula, through relative order v4, the differential decay rate for � inclusive
decay into a charm pair can be expressed as [1]

d�½� ! c �cþ X� ¼ dF1ð3S½1�1 Þ
m2

hOð3S½1�1 Þi� þ dF2ð3S½1�1 Þ
m4

hP ð3S½1�1 Þi� þ dFð1S½8�0 Þ
m2

hOð1S½8�0 Þi� þ dF3ð3S½1�1 Þ
m6

hQ1ð3S½1�1 Þi�

þ dF4ð3S½1�1 Þ
m6

hQ2ð3S½1�1 Þi� þ dFð3S½8�1 Þ
m2

hOð3S½8�1 Þi� þ X
J¼0;1;2

dFð3P½8�
J Þ

m4
hOð3P½8�

J Þi�; (1)

wherem indicates the mass of the bottom quark b;Oð2Sþ1L½c�
J Þ indicates the NRQCD operator with the spectroscopic state

2Sþ1L½c�
J with the spin S, orbital angular momentum L, total angular momentum J, and color quantum number c; and

hOð2Sþ1L½c�
J ÞiH � hHjOð2Sþ1L½c�

J ÞjHi indicates the NRQCD matrix element averaged over the spin states of H. The color
quantum numbers c ¼ 1 and 8 in the NRQCD operators denote the color singlet and the color octet, respectively. The
NRQCD operators in the factorization formula (1) are defined by2

Oð3S½1�1 Þ ¼ c y�� � �y�c ; (2a)

P ð3S½1�1 Þ ¼ 1

2

�
c y�� � �y

�
� i

2
D
$
�
2
�c þ c y

�
� i

2
D
$
�
2
�� � �y�c

�
; (2b)

Oð3S½8�1 Þ ¼ c y�Ta� � �y�Tac ; (2c)

Oð1S½8�0 Þ ¼ c yTa� � �yTac ; (2d)

Oð3P½8�
0 Þ ¼ 1

d� 1
c y

�
� i

2
D
$ � �

�
Ta� � �y

�
� i

2
D
$ � �

�
Tac ; (2e)

Oð3P½8�
1 Þ ¼ c y

�
� i

2
D
$½i;�j�

�
Ta� � �y

�
� i

2
D
$½i;�j�

�
Tac ; (2f)

Oð3P½8�
2 Þ ¼ c y

�
� i

2
D
$ði;�jÞ

�
Ta� � �y

�
� i

2
D
$ði;�jÞ

�
Tac ; (2g)

Q1ð3S½1�1 Þ ¼ c y
�
� i

2
D
$
�
2
�� � �y

�
� i

2
D
$
�
2
�c ; (2h)

Q2ð3S½1�1 Þ ¼ 1

2

�
c y�� � �y

�
� i

2
D
$
�
4
�c þ c y

�
� i

2
D
$
�
4
�� � �y�c

�
; (2i)

where c is the Pauli spinor field that annihilates a bottom
quark, � is the Pauli spinor field that creates a bottom
antiquark, respectively, �i denotes the Pauli matrix, D

$

indicates the gauge-covariant derivative, and d ¼ 4� 2�
represents the space-time dimensions. In (2), A½i;Bj� and
Aði;BjÞ indicate the antisymmetric tensor and the symmetric
traceless tensor, respectively, which are defined via [12]

A½i;Bj� � 1

2
ðAiBj � AjBiÞ; (3a)

Aði;BjÞ � 1

2
ðAiBj þ AjBiÞ � 1

d� 1
�ijAkBk: (3b)

In (1), we omit the term associated with the matrix element
of the operator

1

2
½c y�� � �yðD$ � gEþ gE �D$Þ�c

� c yðD$ � gEþ gE �D$Þ�� � �y�c �; (4)

which is shown to be dependent and be a linear combina-
tion of the matrix elements of the operators (2h) and (2i)
accurate up to relative order v4 [10].
In order to get the decay rate, both the NRQCD

matrix elements and the short-distance coefficients
in (1) should be determined. The NRQCD matrix ele-
ments have been studied through many nonperturbative
approaches, such as lattice QCD [15], the nonrelativ-
istic quark model [16], and fitting the experimental
data [17,18].
On the other hand, based on the factorization, the short-

distance coefficients can be perturbatively determined
through matching the decay rates of the relevant processes
at parton level in full QCD to these in NRQCD. At the

leading order in �s, the coefficients dFð1S½8�0 Þ, dFð3S½8�1 Þ,
2The dimensional regularization in quarkonium calculations

including definitions of operators was first given in Refs. [13,14].
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and dFð3P½8�
J Þ can be determined through the processes

b �bð1S½8�0 Þ ! c �cg, b �bð3S½8�1 Þ ! c �c, and b �bð3P½8�
J Þ ! c �cg,

respectively. The color-singlet short-distance coefficients

can be determined through the process b �bð3S½1�1 Þ ! c �cgg.

Among these short-distance coefficients, Fð3S½8�1 Þ has

been calculated up to the next-to-leading order in �s

in Ref. [19]; F1ð3S½1�1 Þ and F2ð3S½1�1 Þ are obtained in

Refs. [20–23] and Refs. [6,7], respectively.
As mentioned in Ref. [10], since there exists the relation

hQ2ð3S½1�1 Þi� ¼ hQ1ð3S½1�1 Þi�ð1 þ Oðv2ÞÞ, to order v4,
we can only determine the sum of the short-distance
coefficients:3

dFð3S½1�1 Þ � dF3ð3S½1�1 Þ þ dF4ð3S½1�1 Þ: (5)

As we will see, in order to get the IR-independent coeffi-

cient dFð3S½1�1 Þ, we are required to calculate dFð3S½8�1 Þ and
dFð3P½8�

J Þ, and make use of the color-octet mechanism to
cancel the IR divergences appearing in the decay rate of the

process b �bð3S½1�1 Þ ! c �cgg.

III. KINEMATIC DEFINITIONS AND
PHASE-SPACE DECOMPOSITIONS

A. Kinematic definitions

We assign mc to the mass of charm quark, and assign p1

and p2 to the momenta of the incoming bottom quark b and
antiquark �b. The momenta satisfy the on-shell relations:
p2
1 ¼ p2

2 ¼ m2. p1 and p2 can be expressed as linear
combinations of their total momentum P and half their
relative momentum p:

p1 ¼ P=2þ p; p2 ¼ P=2� p: (6)

We assign l1, l2 to the momenta of the final charm pair.
Therefore the momentum of the virtual gluon yields to
Q ¼ l1 þ l2. In addition, we take k1 to the momentum of
the gluon in the process b �b ! c �cg, and take k1, k2 to the
momenta of the two gluons in the process b �b ! c �cgg.

To facilitate the evaluation, we introduce a set of dimen-
sionless variables,

x1 ¼ 2k1 � P
P2

; x2 ¼ 2k2 � P
P2

;

z ¼ Q2

P2
; r ¼ 4m2

c

M2
;

(7)

where M denotes the mass of the bottomonium. At the
leading order in v, there is M ¼ 2m. All the Lorentz
invariant kinematic quantities can be expressed in terms
of these new variables.

B. Phase-space decompositions

In this subsection, we present the techniques for phase-
space calculations of the relevant processes. We decom-
pose each phase-space integral into two parts, which is
proved to significantly simplify the calculations in the
following section.

1. b �bð3S½1�
1 Þ ! c �cgg

The process b �bð3S½1�1 Þ ! c �cgg involves a four-body

phase-space integral, which can be expressed as

Z
d�4 ¼

Z dd�1k1
ð2�Þd�12k01

dd�1k2
ð2�Þd�12k02

dd�1l1
ð2�Þd�12l01

� dd�1l2
ð2�Þd�12l02

ð2�Þd�dðP� k1 � k2 � l1 � l2Þ:
(8)

Like the treatment in Ref. [6], we decompose the space-
space integral intoZ

d�4 ¼
Z dz

2�

Z
d�3�1

Z
d�2�1; (9)

where
R
d�3�1 and

R
d�2�1 are defined via

Z
d�3�1 ¼

Z dd�1Q

ð2�Þd�12Q0

dd�1k1
ð2�Þd�12k01

dd�1k2
ð2�Þd�12k02

� ð2�Þd�dðP� k1 � k2 �QÞ; (10a)Z
d�2�1 ¼ P2

Z dd�1l1
ð2�Þd�12l01

dd�1l2
ð2�Þd�12l02

� ð2�Þd�dðQ� l1 � l2Þ: (10b)

On the other hand, we can also separate the squared
amplitude of the process into two parts: the charm part and
the bottom part, i.e.,X

pol;col

jMð3S½1�1 Þj2 ¼ LðabÞ	
HðabÞ
	
 ð3S½1�1 Þ; (11)

where polarizations and colors of the initial and final states
are summed, a, b denote the color indices, and the charm

part LðabÞ	
 is given by

LðabÞ	
 ¼ �ab

2

g2s
Q4

Tr½ð6 l1 þmcÞ�	ð6 l2 �mcÞ�
�; (12)

and the bottom partHðabÞ
	
 ð3S½1�1 Þ accounts for the remainder.

According to the current conservation, we have

Z
d�2�1L

ðabÞ	
 ¼ �ab

2

�
�g	
 þQ	Q


Q2

�
� L; (13)

where the Lorentz invariance L is explicitly calculated

L ¼ �s

3z

�
2þ r

z

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

z

r
: (14)

3In Refs. [24–26], the authors may provide a potential

approach to distinguish dF3ð3S½1�1 Þ and dF4ð3S½1�1 Þ in (5); never-

theless, it is enough for us to determine dFð3S½1�1 Þ in this work.
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As we will see, since L is a common factor in the whole
calculations, we get (14) in four dimensions. As a conse-
quence, the decay rate yields

�ð3S½1�1 Þ ¼ 1

2

Z dz

2�
L
Z

d�3�1

�ab

2
~HðabÞ
	
 ð3S½1�1 Þ

�
�
�g	
 þQ	Q


Q2

�
; (15)

where a symmetry factor 1
2 is included to account for the

indistinguishability of the two gluons. The second term in
the parentheses of (15) does not contribute, due to the
current conservation.

It is customary to reduce
R
d�3�1 into the integration

over two dimensionless variables:

Z
d�3�1¼ P2

128�3

f2�e
2��E

�ð2�2�Þ
Z
dx1dx2fðx1þx2�1þzÞ

�½ð1�x1Þð1�x2Þ�z�g��; (16)

where f� � ð4�	2

M2 e��EÞ�. Here 	 in f� represents the

dimensional-regularization scale, and �E denotes the
Euler constant. The boundaries of z, x1, and x2 are readily
inferred:

1� x1 � z � x2 � 1� x1 � z

1� x1
;

0 � x1 � 1� z;

r � z � 1:

(17)

It is convenient to make a further change of variables:

x1 ¼ ð1� zÞx; x2 ¼ ð1� zÞð1� xÞ½1� ð1� zÞxy�
1� ð1� zÞx :

(18)

This change of variables is particularly useful in extracting
the relativistic corrections. Through this transformation,
the boundaries of the new variables are simplified to

0 � x � 1; 0 � y � 1: (19)

Finally, the decay rate reduces to

�ð3S½1�1 Þ ¼ f2�e
2��E

�ð2� 2�Þ
Z

dzdxdy

�
1� ð1� zÞx

yð1� yÞx2ð1� xÞ2
�
�

� ð1� zÞ�4�L�Hð3S½1�1 Þ; (20)

where

Hð3S½1�1 Þ � 1

2

P2ð1� zÞ3
ð4�Þ4

xð1� xÞ
1� ð1� zÞx

�ab

2

�ð�g	
Þ ~HðabÞ
	
 ð3S½1�1 Þ: (21)

2. b �bð3P½8�
J Þ ! c �cg

Analogously, we separate the phase-space integral of
this process into

Z
d�3�2 ¼

Z dz

2�

Z
d�2�1

Z
d�2�2; (22)

where
R
d�2�1 is given in (10b) and

R
d�2�2 indicatesZ

d�2�2 ¼
Z dd�1Q

ð2�Þd�12Q0

dd�1k1
ð2�Þd�12k01

� ð2�Þd�dðP� k1 �QÞ: (23)R
d�2�2 can be straightforwardly integrated out as

Z
d�2�2 ¼ ð1� zÞ1�2�

8�

�ð1� �Þ
�ð2� 2�Þ�ð1þ �Þ f�: (24)

Similarly, we separate the squared amplitude into the

charm part and the bottom part Hab
	
ð3P½8�

J Þ, and obtain

the decay rate

� ¼ �ð1� �Þf�e��E

�ð2� 2�Þ
Z

dzð1� zÞ�2�L�Hð3P½8�
J Þ; (25)

where

Hð3P½8�
J Þ � �ab

2

ð1� zÞð�g	
ÞHab
	
ð3P½8�

J Þ
16�2

: (26)

3. b �bð3S½8�
1 Þ ! c �c

The phase-space integral of this process is quite simple.
Therefore we directly present the decay rate

�ð3S½8�1 Þ ¼
Z

dz�ð1� zÞHð3S½8�1 Þ � L; (27)

where Hð3S½8�1 Þ is defined via

Hð3S½8�1 Þ � �ab

2

ð�g	
ÞHab
	
ð3S½8�1 Þ

P2
: (28)

IV. DETERMINING THE SHORT-DISTANCE
COEFFICIENTS

In this section, we determine the differential short-
distance coefficients of � include decay into a charm

pair at relative order v4. dFð3S½8�1 Þ, dFð3P½8�
J Þ, and

dFð3S½1�1 Þ can be determined through calculating the decay

rates of the perturbative processes b �bð3S½8�1 Þ ! c �c,

b �bð3P½8�
J Þ ! c �cg, and b �bð3S½1�1 Þ ! c �cgg, respectively.

A. S-wave color octet

We first determine the differential short-distance coeffi-

cient dFð3S½8�1 Þ through matching the decay rate of

b �bð3S½8�1 Þ ! c �c in full QCD to that in NRQCD. We also

carry out the computations for the renormalization of the

operator Oð3S½8�1 Þ, which will produce mixing with the

operator Oð3P½8�
J Þ at the next-to-leading order in �s and

with the operator Oð3S½1�1 Þ at the next-to-next-to-leading
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order in �s. Moreover we consider the renormalization of

the operators Oð3P½8�
J Þ, which will induce mixing with the

operator Oð3S½1�1 Þ. The renormalized operators will be uti-

lized to cancel the IR divergences through the color-octet
mechanism when we determine the differential short-

distance coefficients dFð3P½8�
J Þ and dFð3S½1�1 Þ.

1. dFð3S½8�
1 Þ

The corresponding factorization formula for

b �bð3S½8�1 Þ ! c �c is expressed as

d�ð3S½8�1 Þ
dz

¼ dFð3S½8�1 Þ
m2dz

hOð3S½8�1 Þi
b �bð3S½8�

1
Þ: (29)

Through calculations, we obtain the expression of

Hð3S½8�1 Þ defined in (28) as

Hð3S½8�1 Þ ¼ ��s

2m2
: (30)

Inserting (30) into (27), we immediately deduce the
differential decay rate in full QCD. By making use of

hOð3S½8�1 Þi
b �bð3S½8�

1
Þ ¼ 1, where the quark pair state is non-

relativistically normalized, we readily get

dFð3S½8�1 Þ
dz

¼ �ð1� zÞ��s

2
� L: (31)

2. 3S½8�
1 ! 3P½8�

J

In this subsection, we consider the NLO QCD correc-

tions to the operator Oð3S½8�1 Þ. There are four diagrams
illustrated in Fig. 1.4 The vertex in the middle signifies

the operator Oð3S½8�1 Þ. Since the diagrams involve UV

divergences, the operator needs to be renormalized. In

this work, we uniformly use the MS scheme to carry out
renormalization. We express the renormalized operator as

Oð3S½8�1 ÞMS ¼ Oð3S½8�1 Þ þ �1Oþ �2OþOð�3
sÞ; (32)

where we truncate the expansion up to order �2
s , which is

enough for current work. �1O and �2O are the correspond-
ing NLO and the next-to-next-to-leading-order (NNLO)
counterterms, respectively. For convenience, we can
expand an operator O in terms of �s:

O ¼ Oð0Þ þOð1Þ þOð2Þ þ � � � ; (33)

where the superscript ‘‘(n)’’ represents order-�n
s

contribution.
In the following calculations, we will also utilize the

color decompositions [27]

TaTb � TaTb ¼ N2
c � 1

4N2
c

1 � 1� 1

Nc

Ta � Ta; (34a)

TaTb � TbTa ¼ N2
c � 1

4N2
c

1 � 1þ N2
c � 2

2Nc

Ta � Ta: (34b)

With the NRQCD Feynman rules [31], the color-octet
contribution from Fig. 1(a) reads

Ia¼ðigsÞ2
4m2

�1

Nc

Ta�Ta
Z ddk

ð2�Þd
i

p0�k0�ð ~p� ~kÞ2
2m þ i�

� i

p00�k0�ð ~p0� ~kÞ2
2m þ i�

4iðp �p0 �p �kp0 �k=k2Þ
k2þ i�

¼� g2s
2m2

Ta�Ta

Nc

p �p0d�2

d�1

Z dd�1k

ð2�Þd�1

1

jkj3

¼� �s

3�m2

Ta�Ta

Nc

� ~f�
�UV

�
~f�
�IR

�
p �p0; (35)

where ~f� � ð4�e��EÞ�. Since the coefficient is propor-
tional to 1

�UV
� 1

�IR
, the factor d coming from the loop

integral in (35) is replaced with 4 in the MS scheme.

Moreover, we add the factor ~f� which is always associated

with the MS scheme.
It is not hard to find that Figs. 1(b)–1(d) give the same

contributions as Fig. 1(a) up to a color factor. Summing all
the contributions and employing (32), we get

Oð3S½8�1 ÞMS ¼ Oð3S½8�1 Þð0Þ � 5�s

9�m2

~f�
�IR

X
J

Oð3P½8�
J Þ

þOð�2
sÞ; (36a)

�1O ¼ � 5�s

9�m2

~f�
�UV

X
J

Oð3P½8�
J Þ: (36b)

3. 3P½8�
J ! 3S½1�

1

In a similar way, we get

Oð3P½8�
J Þð1Þ ¼ 8�s

27�m2

p4NJ

ðd� 1Þ3
� ~f�
�UV

�
~f�
�IR

�
Oð3S½1�1 Þ

þOð�2
sÞ; (37)

and

FIG. 1 (color online). The Feynman graphs for the NLO QCD

corrections to the operator Oð3S½8�1 Þ. We suppress the graphs

which do not give rise to operator mixing.

4Here we consider only the diagrams which are relevant to our
current work. Other diagrams will take effect when one consid-
ers the NLO QCD corrections to the short-distance coefficients.
Similar calculations can also be found in Refs. [27–30].
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Oð3P½8�
J ÞMS ¼ Oð3P½8�

J Þð0Þ � 8�s

27�m2

p4NJ

ðd� 1Þ3
~f�
�IR

Oð3S½1�1 Þ
þOð�2

sÞ; (38)

where NJ ¼ 1, ðd�1Þðd�2Þ
2 , and ðd�2Þðdþ1Þ

2 for J ¼ 0, 1, 2. In

(37) and (38), we explicitly keep the factor d stemming

from the S-wave extraction, i.e., pipj ! p2

d�1�
ij. The same

treatment will be implemented in the following section.

4. 3S½8�
1 ! 3S½1�

1

We proceed to deal with the NNLO QCD corrections to

the operator Oð3S½8�1 Þ. The relevant Feynman graphs are

illustrated in Fig. 2. There are in total eighteen Feynman

graphs which do contribution. We are able to project out
the color-singlet contribution by employing the color
decompositions

TaTbTc � TaTbTc ¼ �2

27
1 � 1þ others; (39a)

TaTbTc � TbTaTc ¼ 7

27
1 � 1þ others; (39b)

where we merely keep the color-singlet part. Through
simple analysis, we find the color factors are 7

27 1 � 1

for the diagrams Figs. 2(a), 2(e)–2(g), 2(i), 2(k), 2(m), 2(p),
and 2(q) and� 2

27 1 � 1 for the diagramsFigs. 2(b)–2(d), 2(h),

2(j), 2(l), 2(n), 2(o), and 2(r).
With the Feynman rules, the amplitude of Fig. 2(a) reads

I2a ¼ ðigsÞ4
16m4

Z ddk

ð2�Þd
Z ddl

ð2�Þd
i

p0 � k0 � ð ~p� ~kÞ2
2m þ i�

i

p00 � k0 � ð ~p0� ~kÞ2
2m þ i�

i

p0 � k0 � l0 � ð ~p� ~k� ~lÞ2
2m þ i�

� i

p00 � k0 � l0 � ð ~p0� ~k� ~lÞ2
2m þ i�

4iðp � p0 � p � kp0 � k=k2Þ
k2 þ i�

4i½ðp� kÞ � ðp0 � kÞ � ðp� kÞ � lðp0 � kÞ � l=l2�
l2 þ i�

¼ g4s
4m4

ðd� 2Þ2
ðd� 1Þ2

Z dd�1k

ð2�Þd�1

Z dd�1l

ð2�Þd�1

ðp � p0Þ2
jkj3jljðjkj þ jljÞ2 ; (40)

where the color factor is suppressed.
Analogous to (40), we are able to get all others:

I2b ¼ g4s
4m4

ðd� 2Þ2
ðd� 1Þ2

Z dd�1k

ð2�Þd�1

Z dd�1l

ð2�Þd�1

ðp � p0Þ2
jkj2jlj2ðjkj þ jljÞ2 ;

I2c ¼ g4s
4m4

ðd� 2Þ2
ðd� 1Þ2

Z dd�1k

ð2�Þd�1

Z dd�1l

ð2�Þd�1

ðp � p0Þ2
jkj3jlj2ðjkj þ jljÞ ;

If ¼ g4s
4m4

ðd� 2Þ2
ðd� 1Þ2

Z dd�1k

ð2�Þd�1

Z dd�1l

ð2�Þd�1

ðp � p0Þ2
jkj3jlj3 ;

Ih ¼ Ij ¼ Im ¼ Ia; Ii ¼ Ik ¼ In ¼ Ib;

Id ¼ Ie ¼ Ig ¼ Io ¼ Ip ¼ Iq ¼ Ir ¼ Ic; Il ¼ If:

(41)

Including the color factors, and summing over all these
contributions, we get

I ¼ 5

54

2g4s
m4

ðd� 2Þ2
ðd� 1Þ2 1 � 1

Z dd�1k

ð2�Þd�1

Z dd�1l

ð2�Þd�1

ðp � p0Þ2
jkj3jlj3

¼ 20�2
s

243�2ðd� 1Þ
p4

m4

� ~f�
�UV

�
~f�
�IR

�
2
1 � 1; (42)

where we use p02 ¼ p2.
In addition, we also need to calculate the NLO QCD

corrections to the counterterm �1O. Employing (37), we
readily obtain

�1Oð1Þ ¼ � 5�s

9�m2

~f�
�UV

X
J

Oð3P½8�
J Þð1Þ

¼ � 40�2
s

243�2ðd� 1Þ
p4

m4

~f�
�UV

� ~f�
�UV

�
~f�
�IR

�
Oð3S½1�1 Þ:

(43)

Combining (42) and (43), we get

Oð3S½8�1 Þð2Þ ¼ 20�2
s

243�2

p4

ðd� 1Þm4

�
�

~f2�
�2UV

þ
~f2�
�2IR

�
Oð3S½1�1 Þ

þ �2O; (44)

where the UV divergence can be canceled through the
counterterm. Finally, we present the renormalized operator
and the corresponding counterterm

WEN-LONG SANG, HAI-TING CHEN, AND YU-QI CHEN PHYSICAL REVIEW D 86, 114004 (2012)

114004-6



Oð3S½8�1 ÞMS ¼ Oð3S½8�1 Þð0Þ � 5�s

9�m2

~f�
�IR

X
J

Oð3P½8�
J Þ

þ 20�2
s

243�2

p4

ðd� 1Þm4

~f2�
�2IR

Oð3S½1�1 Þ; (45a)

�2O ¼ 20�2
s

243�2

p4

ðd� 1Þm4

~f2�
�2UV

Oð3S½1�1 Þ: (45b)

B. P-wave color octet

In this subsection, we determine the short-distance coef-

ficients dFð3P½8�
J Þ through calculating the decay rates of the

perturbative processes b �bð3P½8�
J Þ ! c �cg. The factorization

formulas for these processes are expressed as

d�ð3P½8�
J Þ ¼ dFð3P½8�

J Þ
m4

hOð3P½8�
J Þi

b �bð3P½8�
J Þ

þ dFð3S½8�1 Þ
m2

hOð3S½8�1 Þi
b �bð3P½8�

J Þ: (46)

We can utilize (25) to calculate the decay rates in full

QCD. First, we need to obtain Hð3P½8�
J Þ defined in (26). To

understand the IR structure and show the IR cancellation,

here we separate Hð3P½8�
J Þ into two parts: Hð3P½8�

J Þ ¼
Hdð3P½8�

J Þ þHsð3P½8�
J Þ. Hdð3P½8�

J Þ include the terms propor-
tional to 1=ð1� zÞ, which contribute the whole IR diver-
gences to the decay rates from the region with the real

gluon being soft.Hsð3P½8�
J Þ take in charge of the remainder,

which is absent of any singularity. Correspondingly, we use

the subscripts d, s in both d�ð3P½8�
J Þ and dFð3P½8�

J Þ to
denote the contributions from the two parts. The advantage
of this classification will be recognized when we determine

the short-distance coefficient dFð3S½1�1 Þ.

1. Hdð3P½8�
J Þ

We directly present the expressions of Hdð3P½8�
J Þ,

Hdð3P½8�
J Þ ¼ 5�2

sð1� �Þp2

3m4ð1� zÞð3� 2�Þ ; (47)

which are the same for J ¼ 0, 1, 2.
It is useful to make the following expansion:

1

ð1� zÞ1þ2� ¼ �ð1� rÞ�2�

2�
�ð1� zÞ þ

�
1

1� z

�
þ

� 2�

�
lnð1� zÞ
1� z

�
þ
þOð�2Þ; (48)

where the plus functions are defined viaZ 1

r
dzðaÞþfðzÞ �

Z 1

r
dza½fðzÞ � fð1Þ�: (49)

Inserting (47) into (25) and employing (48), we are able to

get the differential decay rates d�dð3P½8�
J Þ, which embrace

IR divergences. Incorporating the factorization formulas
(46) and the expressions (31) and (36a), we find the IR
divergences appearing on the left-hand side of (46) are
exactly canceled by the renormalized S-wave color-octet

FIG. 2 (color online). The Feynman graphs for the NNLO QCD corrections to the operator Oð3S½8�1 Þ. We suppress the graphs which

do not give rise to operator mixing with Oð3S½1�1 Þ.

ORDER-v4 RELATIVISTIC CORRECTIONS TO . . . PHYSICAL REVIEW D 86, 114004 (2012)

114004-7



matrix element on the right-hand side. It renders the short-

distance coefficients dFð3P½8�
J Þ free of any singularity:

dFdð3P½8�
J Þ

dz
¼�5�2

sLf�
18

��
1

�IR

�
1�

~f�
f�

�
þ 5

3
� 2 lnð1� rÞ

þ
�
2ln2ð1� rÞ � 10

3
lnð1� rÞ ��2

4
þ 28

9

�
�

�

��ð1� zÞ �
�

1

1� z

�
þ

�
2þ 10�

3

�

þ 4�

�
lnð1� zÞ
1� z

�
þ

�
: (50)

In (50), we keep the terms linearly dependent on �, which
will induce finite contributions to the short-distance coef-

ficient dFð3S½1�1 Þ.

2. Hsð3P½8�
J Þ

We present the expressions of Hsð3P½8�
J Þ as

Hsð3P½8�
0 Þ ¼ 5�2

sð5� zÞð1� �Þp2

12m4ð3� 2�Þ ; (51a)

Hsð3P½8�
1 Þ ¼ � 5�2

s½2þ z� 2ð1þ zÞ��p2

6m4ð3� 2�Þ ; (51b)

Hsð3P½8�
2 Þ ¼ � 5�2

s½4þ z� ð1þ zÞ��p2

6m4ð15� 16�þ 4�2Þ : (51c)

The corresponding differential decay rates can be achieved
by multiplying a constant factor:

dFsð3P½8�
0 Þ

dz
¼ 5ð5� zÞ�2

sLf�
36

�
1� 2� lnð1� zÞ þ 5�

3

�
; (52a)

dFsð3P½8�
1 Þ

dz
¼ � 5�2

sLf�
18

�
zþ 2� 2�ðzþ 2Þ lnð1� zÞ þ 2ðzþ 5Þ

3
�

�
; (52b)

dFsð3P½8�
2 Þ

dz
¼ ��2

sLf�
18

�
zþ 4� 2�ðzþ 4Þ lnð1� zÞ þ 1

15
ð31zþ 169Þ�

�
: (52c)

C. S-wave color singlet

In this section, we determine the short-distance coeffi-

cient dFð3S½1�1 Þ through calculating the decay rate of the

process b �bð3S½1�1 Þ ! c �cgg. The corresponding factoriza-

tion formula is expressed as

d�ð3S½1�1 Þ ¼ dF1ð3S½1�1 Þ
m2

hOð3S½1�1 ÞiH þdF2ð3S½1�1 Þ
m4

hP ð3S½1�1 ÞiH

þdF3ð3S½1�1 Þ
m6

hQ1ð3S½1�1 ÞiH þdF4ð3S½1�1 Þ
m6

�hQ2ð3S½1�1 ÞiH þdFð3S½8�1 Þ
m2

hOð3S½8�1 ÞiH

þX
J

dFð3P½8�
J Þ

m4
hOð3P½8�

J ÞiH; (53)

where the subscript ‘‘H’’ in the matrix elements repre-

sents b �bð3S½1�1 Þ. As mentioned in Sec. II, the two matrix

elements in the second line of (53) are equal at relative
order v4. Therefore, we will determine the combined

short-distance coefficient dFð3S½1�1 Þ defined in (5) in this

subsection.
There are six diagrams for this process. The formula

for the decay rate is given in (20). First, we need to

calculate Hð3S½1�1 Þ, which is defined in (21). To separate

the relativistic corrections,5 we expand Hð3S½1�1 Þ in powers

of p2:

Hð3S½1�1 Þ ¼ Hð0Þð3S½1�1 Þ þHð2Þð3S½1�1 Þ p
2

m2

þHð4Þð3S½1�1 Þ p
4

m4
þOðp6Þ; (54)

where the first two orders have been considered in Ref. [6].

Our remaining task is to calculate Hð4Þð3S½1�1 Þ and the

corresponding decay rate. At order v4, the decay rate
involves IR divergences. Analogous to the treatment in

the previous subsection, we separate Hð4Þð3S½1�1 Þ into three

parts: Hð4Þð3S½1�1 Þ ¼ Hð4Þ
d ð3S½1�1 Þ þHð4Þ

s ð3S½1�1 Þ þHð4Þ
r ð3S½1�1 Þ.

Hð4Þ
d ð3S½1�1 Þ proportional to 1=ð1� zÞ contributes the whole

IR divergences to the decay rate in the region where the
two real gluons are simultaneously soft. In the following,
we will demonstrate that the IR divergences can be thor-
oughly canceled by the renormalized S-wave color-octet
matrix element (45a) with the short-distance coefficient
(31), together with the renormalized P-wave matrix ele-

ments (38) with the short-distance coefficients dFdð3P½8�
J Þ

given in (50). Hð4Þ
s ð3S½1�1 Þ contributes the whole IR

5Since in the region z ! r the decay rate will develop a
logarithmic dependence on r, i.e., lnr, which is sensitive to the
value of r, we will not expand the r appearing in L. For further
explanations, we refer the reader to Ref. [6].
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divergence to the decay rate in the region where only one of
the real gluons is soft; as a result, it should be proportional
to either 1=x or 1=ð1� xÞ. We will show that the IR
divergence can be thoroughly canceled by the renormal-
ized P-wave matrix elements (38) with short-distance

coefficients dFsð3P½8�
J Þ given in (52). Hð4Þ

r ð3S½1�1 Þ takes in

charge of the remainder and therefore corresponds to a
finite contribution to the decay rate. Similarly, we use the

subscripts d, s, r in both d�ð3S½1�1 Þ and dFð3S½1�1 Þ to denote

the contributions from the three parts.

1. Hð4Þ
d ð3S½1�

1 Þ
In this subsection, we calculate the decay rate and short-

distance coefficient related to Hð4Þ
d ð3S½1�1 Þ. First, we present

the expression

Hð4Þ
d ð3S½1�1 Þ ¼ 40�3

s

243m2�xð1� xÞð1� zÞ ½3ð2y
2 � 2yþ 1Þ

þ ð8y2 � 8yþ 1Þ�� 8yð1� yÞ�2�: (55)

This term is proportional to 1=ð1� zÞ. In addition, we
notice it also contains the factor 1=xð1� xÞ. Therefore,
we expect it will contribute a double IR pole to the decay
rate at the endpoints of z and x.

Employing the expansion

1

ð1� zÞ1þ4� ¼ �ð1� rÞ�4�

4�
�ð1� zÞ þ

�
1

1� z

�
þ

� 4�

�
lnð1� zÞ
1� z

�
þ
þOð�2Þ; (56)

and integrating out the variables x, y, we are able to obtain
the differential decay rate

d�dð3S½1�1 Þ
dz

¼ 20�3
sLf

2
�p

4

243�m6

��
1

�2
þ 4� 4 lnð1� rÞ

�

þ 8ln2ð1� rÞ � 16 lnð1� rÞ � 7�2

6
þ 35

3

�

� �ð1� zÞ �
�

1

1� z

�
þ

�
4

�
þ 2 lnzþ 16

�

þ 16

�
lnð1� zÞ
1� z

�
þ

�
: (57)

Inserting (57) into the factorization formula (53), we see
the IR divergences on the left-hand side are exactly can-
celed by the S-wave color-octet contribution, together with
the renormalized P-wave color-octet matrix elements with

the short-distance coefficients dFdð3P½8�
J Þ on the right-hand

side. Straightforwardly, we get

dFdð3S½1�1 Þ
dz

¼ 10�3
sL

729�

��
ln2

	2

M2
þ 10� 12lnð1� rÞ

3
ln
	2

M2

þ 4ln2ð1� rÞ� 20

3
lnð1� rÞþ 25

9
� 2�2

3

�

��ð1� zÞ�
�

1

1� z

�
þ

�
4ln

	2

M2
þ 2lnzþ 20

3

�

þ 8

�
lnð1� zÞ
1� z

�
þ

�
; (58)

where 	 indicates the factorization scale.

2. Hð4Þ
s ð3S½1�

1 Þ
The expression of Hð4Þ

s ð3S½1�1 Þ reads

Hð4Þ
s ð3S½1�1 Þ¼ 20�3

s

243�m2

��8y2þ8y�z�3

x
þ2ðz�5Þðy2�yÞþz�1

x
�� 1

ð1�yþyzÞ4

� 1

1�x
½12ð1�zÞ3y6þ12ðz�5Þðz�1Þ2y5�6ðz3�11z2þ31z�21Þy4

�24ðz2�5zþ6Þy3þðz4þz3þ9z2�27zþ96Þy2þ2ðz3�2z2�3z�18Þy
þz2þ3zþ6þ�ð16ð1�zÞ3y6þ16ðz�5Þðz�1Þ2y5�2ðz�1Þðz2�34zþ81Þy4

�8ðz2�14zþ21Þy3�ðz4�z3�9z2�3z�92Þy2�2ð3z2þ7zþ12Þy�z2þzþ2Þ�
�
: (59)

This term is proportional to either 1=x or 1=ð1� xÞ; therefore, it contributes single poles to the decay rate at the endpoints
of x, i.e., x ! 0 and x ! 1. After integrating out the variables x, y, we have

d�sð3S½1�1 Þ
dz

¼ 20�3
sLf

2
�p

4

729�m6

�
3zþ 5

�
þ 1

3ð1� zÞ4 ½21z
5 � 43z4 � 101z3 þ 291z2 � 248zþ 80

þ 3ð3z5 � 4z4 þ 4z3 þ 12z2 � 9zþ 6Þ lnz� � 4ð3zþ 5Þ lnð1� zÞ
�
: (60)

It is not hard to find that the IR divergence in (60) is exactly canceled by the renormalized P-wave color-octet matrix

elements with the short-distance coefficients dFsð3P½8�
J Þ, as we expected. We present the final result
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dFsð3S½1�1 Þ
dz

¼ 10�3
sL

2187�

�
ð3zþ 5Þ ln	

2

M2
þ 1

3ð1� zÞ4 ½6z
5 � 16z4 � 59z3 þ 153z2 � 131zþ 47

þ 3ð3z5 � 4z4 þ 4z3 þ 12z2 � 9zþ 6Þ lnz� � 2ð3zþ 5Þ lnð1� zÞ
�
: (61)

3. Hð4Þ
r ð3S½1�

1 Þ
Finally, we deal with Hð4Þ

r ð3S½1�1 Þ, which will produce a finite contribution to the decay rate. Since the expression of

Hð4Þ
r ð3S½1�1 Þ is both tedious and cumbersome, here we merely present the differential short-distance coefficient as

dFrð3S½1�1 Þ
dz

¼ �3
sL

262440�ð1� zÞ4
8<
:15tan�1

0
@ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z

z

s 1
A�6ð86z5 � 279z4 � 2548z3 þ 6718z2 � 5694zþ 1609Þ

� tan�1

0
@ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z

z

s 1
Aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1� zÞp ð13908� 38215zþ 33375z2 � 7296z3 � 476z4Þ
�

� 6ð299z5 þ 22640z4 � 27848z3 þ 16208z2 � 2015zþ 700Þ

� lnz� ð1� zÞð68916z4 � 256073z3 þ 696819z2 � 669618zþ 229580Þ
9=
;: (62)

D. Summarizing the differential short-distance coefficients

We summarize the differential short-distance coefficients calculated in the above:

dFð3S½8�1 Þ
dz

¼ ��sL

2
�ð1� zÞ; (63a)

dFð3P½8�
J Þ

dz
¼ �5�2

sL

18

��
ln
	2

M2
þ 5

3
� 2 lnð1� rÞ

�
�ð1� zÞ � 2

�
1

1� z

�
þ
þ AJ

�
; (63b)

dFð3S½1�1 Þ
dz

¼ dFdð3S½1�1 Þ
dz

þ dFsð3S½1�1 Þ
dz

þ dFrð3S½1�1 Þ
dz

; (63c)

where AJ are � 5�z
2 , 2þ z, and 4þz

5 for J ¼ 0, 1, 2,
respectively.

V. DISCUSSION AND SUMMARY

A. Discussion

Applying the formulas (63) for the differential short-
distance coefficients obtained in the last section, we now
provide the following discussion.

1. dFð3S½1�
1 Þ=dz in the limit of z ! 0

We first discuss the short-distance coefficient

dFð3S½1�1 Þ=dz in the limit of z ! 0. It is not hard to derive

1

L

dFð3S½1�1 Þ
dz

��������z!0
¼ � 35�3

s

2187�
lnz� 70�3

s

2187�
ln
	2

M2

þ 1609��3
s

11664
� 3913�3

s

4374�
: (64)

In (64), we notice that the limitation bears the logarithmic
divergence lnz. It is no surprise, owing to the fact we

actually do not regularize the singularity when z
approaches 0. Moreover, we find that the coefficient of
lnz equals exactly the corresponding coefficient of IR

divergence in the decay rate of the process b �bð3S½1�1 Þ !
3g up to a factor 1

2� � 1
2 , as is our expectation [the constant

factor originates from (15).]. On the other hand, when
either of the two real gluons becomes soft, there exists
IR divergence which is regularized in dimensional regu-
larization and canceled by the renormalized P-wave color-

octet matrix elements. The term proportional to ln	
2

M2 is

related to the divergence. We are delighted that the coef-

ficient of ln	
2

M2 is exactly double that of lnz.

2. Color-singlet differential
short-distance coefficients

In (63), the two types of plus functions ð 1
1�zÞþ and

ðlnð1�zÞ
1�z Þþ diverge as z ! 1. Since these singularities arise

when the momenta of the real gluons in the final states go
to 0, the distributions are actually unreliable in this region.
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Nevertheless, the singularities in the distributions are
smeared when one integrates out z and so the integrated
short-distance coefficients are well behaved. In order to
investigate the dependence of the relativistic corrections
on the virtuality of the intermediate gluon, it is intriguing

and enlightening to study two ratios: t1ðzÞ�dF2ð3S½1�1 Þ=
dF1ð3S½1�1 Þ and t2ðzÞ�dFð3S½1�1 Þ=dF1ð3S½1�1 Þ, where

dF1ð3S½1�1 Þ and dF2ð3S½1�1 Þ are defined in (1) and have

been obtained in (53) of Ref. [6]. To see it clearly, we
plot Fig. 3 to illustrate the two ratios. In the figure, we
observe that t1ðzÞ which reflects the NLO relativistic cor-
rections is negative and its magnitude rises quickly with
increase of the virtuality of the immediate gluon. However
t2ðzÞ which reflects the order-v4 relativistic corrections
is positive in small values of z and turns to negative in
large values. The magnitude of t2ðzÞ is sizable in most
values of z.

3. Integrated color-singlet
short-distance coefficients

Finally, we integrate out the variable z and investigate
the integrated short-distance coefficients. In Table. I, we
list the ratios of the order-v2 and the order-v4 color-singlet
short-distance coefficients to the LO one for the processes
of �ðnSÞ inclusive decay into a charm pair. We learn from

the table that the ratio Fð3S½1�1 Þ=F1ð3S½1�1 Þ is both positive

and sizable; nevertheless, the relativistic expansion
converges well due to a small value of v (e.g., v2 � 0:1).
The situation is quite similar to the case for the process
J=c ! ggg [10]. To further study the relation between the
relativistic corrections and r, we extrapolate the value of r

and investigate the ratios: g1ðrÞ�F2ð3S½1�1 ÞðrÞ=F1ð3S½1�1 ÞðrÞ
and g2ðrÞ � Fð3S½1�1 ÞðrÞ=F1ð3S½1�1 ÞðrÞ. We illustrate the two

functions in Fig. 4. From the figure, we find the NNLO
relativistic corrections become more and more important
with r increase.

B. Summary

In this work, we determine the short-distance coeffi-
cients within the framework of the NRQCD factorization
formula for � inclusive decay into a charm pair through
relative order v4. The order-v4 color-singlet differential

short-distance coefficient dFð3S½1�1 Þ is obtained through

matching the decay rate of b �bð3S½1�1 Þ ! c �cgg in full QCD
to that in NRQCD. The double and single IR divergences
appearing in the decay rate are exactly canceled through

the NNLO renormalization of the operatorOð3S½8�1 Þ and the
NLO renormalization of the operators Oð3P½8�

J Þ. To inves-
tigate the magnitude of the relativistic corrections and the
convergence of the relativistic expansion, we show both the
ratios of the differential short-distance coefficients tiðzÞ
and the ratios of the short-distance coefficients giðrÞ. Our

TABLE I. Ratios of the short-distance coefficients for � ! c �cgg. The charm mass is selected
to that of the D meson [6,22]. The masses of the D meson and bottomonia are taken from
Ref. [32].

r F2ð3S½1�1 Þ=F1ð3S½1�1 Þ Fð3S½1�1 Þ=F1ð3S½1�1 Þ
�ð1SÞ 1:56� 10�1 �12:4 19:4þ 0:6ln2ð	2

M2Þ þ 0:9 lnð	2

M2Þ
�ð2SÞ 1:39� 10�1 �11:7 18:5þ 0:5ln2ð	2

M2Þ þ 0:6 lnð	2

M2Þ
�ð3SÞ 1:30� 10�1 �11:4 18:0þ 0:5ln2ð	2

M2Þ þ 0:4 lnð	2

M2Þ
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FIG. 3 (color online). Ratios of the differential short-distance
coefficients. The blue dashed line represents the distribution
t1ðzÞ, while the red dash-dotted line represents the distribution
t2ðzÞ. We specify the factorization scale 	 ¼ M in t2ðzÞ.
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FIG. 4 (color online). Ratios of the short-distance coefficients
as functions of r. The blue dashed line represents the distribution
g1ðrÞ, while the red dash-dotted line represents the distribution
g2ðrÞ. We specify the factorization scale 	 ¼ M in g2ðrÞ.
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results indicate that though Fð3S½1�1 Þ is quite large, the

relativistic expansion from the color-singlet contributions
in the process � ! c �cþ X converges well due to a small

value of v. In addition, we extrapolate giðrÞ to a large range
of r, and find the relativistic corrections rise quickly with
increase of r.
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