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On account of the new neutrino oscillation data signaling a nonzero value for the smallest mixing angle

(�z), we present an explicit realization of the underlying Uð1Þ symmetry characterizing the maximal

atmospheric mixing angle (�y ¼ �
4 ) pattern with two degenerate masses but now with generic values of �z.

We study the effects of the form invariance with respect to Uð1Þ, and/or Z3, Z2 subgroups, on the Yukawa

couplings and the mass terms. Later on, we specify �z to its experimental best fit value (� 8o), and

impose the symmetry in an entire model which includes charged leptons, and many Higgs doublets or

standard model singlet heavy scalars, to show that it can make room for the charged lepton mass

hierarchies. In addition, we show for the non-tribimaximal value of �z � 0 within a type-I seesaw

mechanism enhanced with flavor symmetry that neutrino mass hierarchies can be generated. Furthermore,

lepton/baryogenesis can be interpreted via a type-II seesaw mechanism within a setup meeting the flavor

Uð1Þ symmetry.
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I. INTRODUCTION

The lepton sector has quite a different pattern from that
of the quarks mainly in two respects. First, the mixing
among gauge eigenstates in leptons to form mass eigen-
states is more pronounced than in the quark sector, although
the mass spectrum of the charged leptons exhibits a similar
hierarchy to the quarks’ spectrum [1]. Second, the neutrino
masses are quite small when compared with all other mass
scales, and this invokes some ways to understand this
smallness, most popular of which is the seesaw mechanism
within grand unification [2]. As to the neutrino mass hier-
archies, they are not yet determined experimentally, and
many models based on flavor symmetry considerations
were constructed in order to account for the experimental
data on neutrino masses andmixing (Ref. [3] and references
therein).

The ‘‘symmetric’’ neutrino mass matrixM� is diagonal-
ized by a single unitary mixing matrix U�

L as follows:

M� ¼ U�
LM

diag
� ðU�

LÞT; M
diag
� ¼ diagðm1; m2; m3Þ: (1)

There are many possible parametrizations of the neutrino
mixing matrix U�

L, and we opt for the one in which the
Dirac phase � does not appear in the effective mass term of
the neutrinoless double decay [4]. In this adopted parame-
trization, the mixing matrix U�

L is parametrized by three

rotation angles ð�x; �y; �zÞ and, in addition to �, two

Majorana phases ð�;�Þ as follows:
U�

L ¼ R23ð�yÞ � Rzð�Þ � R12ð�xÞ � P;
P ¼ diagðei�; ei�; 1Þ;

Rzð�Þ ¼
cz 0 sz

0 e�i� 0

�sz 0 cz

0
BB@

1
CCA;

(2)

with sx � sin�x, cy � cos�y, tz � tan�z (for later use), and

so on. As to R12 andR23, they are rotations around the z and
x axes respectively, while mi’s are the masses of the
neutrino mass states, leading to a mixing matrix of the form

U�
L¼

cxcz sxcz sz

�cxsysz�sxcye
�i� �sxsyszþcxcye

�i� sycz

�cxcyszþsxsye
�i� �sxcysz�cxsye

�i� cycz

0
BB@

1
CCA

�diagðei�;ei�;1Þ: (3)

There is a simple relation, discussed in Refs. [5,6], between
this adopted parametrization and the standard one used,
say, in the recent data analysis of Fogli et al. [7].
In a similar way to the uncharged neutrinos case, the

generally nonsymmetric charged lepton mass matrix
linking the left handed (LH) leptons to their right handed
(RH) counterparts can be diagonalized by a bi-unitary
transformation:

Ml ¼ Ul
L � diagðme;m�;m�Þ � ðUl

RÞy: (4)
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We work in the flavor basis where the charged leptons
mixing matrix is equal to the identity matrix Ul

L ¼ 1,
whence the flavor mixing matrix V � ðUl

LÞyU�
L ¼ U�

L,
which can be constrained by observational data, comes
wholly from the neutrino sector in the flavor basis.

The authors of Ref. [8] noticed that the experimental
data excluding the phases lead approximately to a specific
pattern dubbed tribimaximal (TB):

U�
L ’ VTB �

ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
3

p
0

�1=
ffiffiffi
6

p
1=

ffiffiffi
3

p
1=

ffiffiffi
2

p

1=
ffiffiffi
6

p �1=
ffiffiffi
3

p þ1=
ffiffiffi
2

p

0
BB@

1
CCA; (5)

coming down to �x ¼ arcsinð 1ffiffi
3

p Þ, �y ¼ �
4 , and �z ¼ 0. It has

been shown in Ref. [9] that the TB pattern is equivalent to a
certain form for theM� in the flavor basis called ‘‘tripartite’’:

M
diag
� ¼ ðVTBÞTMTB

� VTB , MTB
� ¼ MA þ MB þ MC;

(6)

where

MA ¼ A

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA; MB ¼ B

�1 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

MC ¼ C

1 1 �1

1 1 �1

�1 �1 1

0
BB@

1
CCA; (7)

with neutrino eigenmasses related to the tripartite coeffi-
cients via

m1¼A�B; m2¼A�Bþ3C; m3¼AþB;

A¼ðm1þm3Þ=2; B¼ðm3�m1Þ=2; C¼ðm2�m1Þ=3:
(8)

Furthermore, a symmetry (Z3 � Z2) for the ‘‘bipartite’’ form
(MA þMB) corresponding to a degenerate mass spectrum
was given:

STB3 ¼
�1=2 � ffiffiffiffiffiffiffiffi

3=8
p ffiffiffiffiffiffiffiffi

3=8
p

ffiffiffiffiffiffiffiffi
3=8

p
1=4 3=4

� ffiffiffiffiffiffiffiffi
3=8

p
3=4 1=4

0
BBB@

1
CCCA: ðSTB3 Þ3 ¼ 1;

STB2 ¼
�1 0 0

0 0 1

0 1 0

0
BB@

1
CCA: ðSTB2 Þ2 ¼ 1:

(9)

The degenerate mass case corresponds to an (O2 � Zz
2)

symmetry, where the Oð2Þ group corresponds to the eigen-
space of the degenerate mass eigenvalue, whereas the Zz

2

concerns the third mass value representing a reflection [Iz ¼
diagð1; 1;�1Þ] across its axis (z), hence the superscript z.
In Ref. [10], we presented a specific realization of the

‘‘continuous’’ Uð1Þ symmetry characterizing the degenerate
mass bipartite form (MA þMB) and studied its phenomeno-
logical consequences, be it in the corresponding current
and conserved charges or in the possibility to implement
it in setups allowing for lepton mass hierarchies and
baryogenesis.
Our method to find symmetry realizations characterizing

the neutrino mass matrix in the flavor space consists in
searching all the unitary matrices S satisfying what was
called in Ref. [11] the form invariance formula:

STM�S ¼ M�: (10)

The term MC in the tripartite form breaks the Uð1Þ
part ofOð2Þ ¼ Uð1Þ � Zy

2,
1 as we shall see, into Z0

2 ¼ fI ¼
diagð1; 1; 1Þ;�Iz ¼ diagð�1;�1; 1Þg, and we are left with
a Z0

2 � Zy
2 � Zz

2 discrete symmetry characterizing the most
general nondegenerate symmetric neutrino mass matrix.
Moreover, since the expression (STM�S) is the same for a
matrix (S) and its opposite (� S), we deduce that Z0

2 is
implied by Zz

2 and the group Zy
2 � Zz

2 uniquely character-
izes the tripartite form. In addition, as Iz � Iy ¼ �Ix
(where Ii is the reflection across the i axis) we find that
the characterizing group Zy

2 � Zz
2 is equivalent, as far as

Eq. (10) is concerned, to the discrete group (Z3
2) corre-

sponding to the three reflections ðIx; Iy; IzÞ across the axes
in the diagonal basis. In Ref. [12], we found specific
realizations of this Z3

2 symmetry in any basis defined by

the mixing matrix V.
Although the TB pattern proved successful phenomeno-

logically [13], it was important to restudy these symmetries
in light of the recent neutrino data departing from the TB
pattern, in particular, for the �z angle whose vanishing TB
value is no longer acceptable [7,14–17]. We would desig-
nate the non-tribimaximal pattern with [�y ¼ �

4 , �x ¼
arcsinð 1ffiffi

3
p Þ, �z � 0] the NTB pattern, assigning a subscript

zero mark (NTB0) for the case �z ¼ arcsinð 1ffiffiffiffi
50

p Þ � 8o

which approximates well the best fit for �z. This rather
large value 8o renders it implausible that the TB mixing
pattern can be considered as a leading order approximation
to be improved by perturbation towards the NTB0 pattern.
Thus the need arises to construct models that can accom-
modate large �z from the outset.
In Ref. [6], we found the Z3

2-symmetry realizations
corresponding to the NTB pattern for generic �z and
studied the phenomenological consequences for the
NTB0 one. Since the degenerate mass spectrum case can
be considered as a first step approximation perturbed by
the MC part proportional to the neutrino mass splitting
(m2 �m1), it is of value to restudy this degenerate case,

1The Z2 factor in the decomposition Oð2Þ ¼ Uð1Þ � Z2 cor-
responds to the group consisting of the identity matrix and the
reflection across one of the lines in the plane, say the y axis,
hence the notation Zy

2.
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but corresponding to the NTB pattern, which is just the
objective of this paper. We note that the �x angle is irrele-
vant in the degenerate case (m1 ¼ m2), since the corre-
sponding rotation matrix R12ð�xÞ commutes with the
degenerate mass matrix, so we call any quantity corre-
sponding to the NTB pattern in the degenerate mass case
by the distinctive acronym DNTB specified by (�y ¼ �

4 ,

�z � 0, m1 ¼ m2), whereas the special degenerate non-
tribimaximal pattern DNTB0 is specified by [�y ¼ �

4 , �z ¼
arcsinð 1ffiffiffiffi

50
p Þ, m1 ¼ m2].

The plan of the paper is as follows. In Sec. II A, which is
devoted to the analysis of the Uð1Þ symmetry, we find an
explicit realization of the Uð1Þ symmetry, henceforth
called the S symmetry, leading to the DNTB pattern, and
we deduce the modified bipartite form characterizing it.
Also in this subsection, we find the form of the Yukawa
couplings dictated by the S symmetry. In Sec. II B, we infer
the corresponding constraints on the forms of the mass
matrix and the Yukawa couplings imposed by the Z3 and
Z2 subgroups of Uð1Þ, and justify the phenomenological
equivalence between the continuous Uð1Þ S symmetry and
the Z3 discrete symmetry. In Sec. II C, we state all the
preceding subsections’ results but corresponding now to
the ‘‘observed’’ DNTB0 pattern, whose S symmetry would
be named S0 symmetry. We use the latter results in Sec. III
within models containing charged leptons to show the
possibility of generating the observed charged lepton
mass hierarchies. Section III A involves many Higgs

doublets, while many standard model (SM) singlet heavy
scalars are involved in Sec. III B keeping, only one SM-
Higgs doublet. We also study the current associated with
the continuous S symmetry in Sec. III C. In Sec. IV,
we study the lepton S symmetry in setups involving seesaw
mechanisms. Section IVA gives a type-I seesaw mecha-
nism, showing how to accommodate all kinds of neutrino
mass hierarchies but with no lepton/baryogenesis. We need
a type-II seesaw mechanism enriched with flavor symme-
try in order to account for baryogenesis, as we show
in Sec. IVB. We end with a summary and conclusions
in Sec. V.

II. ANALYSIS OF THE UNDERLYING
SYMMETRY OF THE DNTB PATTERN

If we just restrict the atmospheric angle to its maximal
value (�y ¼ �

4 ), leaving �x and �z general, we get the

mixing matrix (ignoring phases)

Vxz ¼
czcx czsx sz

� 1ffiffi
2

p ðszcx þ sxÞ � 1ffiffi
2

p ðszsx � cxÞ 1ffiffi
2

p cz

� 1ffiffi
2

p ðszcx � sxÞ � 1ffiffi
2

p ðszsx þ cxÞ 1ffiffi
2

p cz

0
BBB@

1
CCCA:

(11)

Then the neutrino mass matrix in Eq. (1) can be cast in a
general tripartite form:

M� ¼
A� Bþ C

ffiffi
2

p
czsz

1�3s2z
Bþ ðszc2x�1

2s2xc
2
z Þczffiffi

2
p

sxcxszð1�3s2z ÞC
ffiffi
2

p
czsz

1�3s2z
Bþ szc2xþ1

2s2xð1�5s2z Þffiffi
2

p
sxcxszð1�3s2z Þ C

� Aþ C c2z
1�3s2z

Bþ c2zc2x�szsxcxc
2
z

sxcxszð1�3s2z Þ C

� � A� C

0
BBBB@

1
CCCCA; (12)

where the missed entries from this point on are determined
from the matrix being symmetric. The coefficients of this
general tripartite form are given in terms of �x, �z and the
neutrino masses as follows:

A ¼ 1

2
c2z

�
1

2
� c2x

�
ðm1 �m2Þ

þ 1

2

�
1� 1

2
c2z

�
ðm1 þm2Þ þ 1

2
c2zm3;

B ¼ 1

2

�
�3c2z

�
� 1

2
þ c2x

�
þ 2szsxcx

�
ðm1 �m2Þ

þ 1

2

�
1� 3

2
c2z

�
ðm1 þm2Þ þ

�
3

2
c2z � 1

�
m3;

C ¼ sxcxszðm1 �m2Þ: (13)

We restrict our study henceforth to the degenerate non-
tribimaximal pattern DNTB specified by (�y ¼ �

4 , m1 ¼
m2). We see directly from Eq. (13) that the �x dependence
is dropped, as well as the perturbation part involvingC, and

we are left with a modified symmetric generic bipartite
form:

MDNTB
� ¼

A� B
ffiffi
2

p
szcz

1�3s2z
B

ffiffi
2

p
szcz

1�3s2z
B

� A c2z
1�3s2z

B

� � A

0
BBBB@

1
CCCCA; (14)

where the neutrino eigenmasses and the coefficients of this
generic bipartite form are related by

m1 ¼ m2 ¼ A� c2z
1� 3s2z

B;

A ¼
�
1� 1

2
c2z

�
m1 þ 1

2
c2zm3;

m3 ¼ Aþ 1þ s2z
1� 3s2z

B;

B ¼
�
1� 3

2
c2z

�
m1 þ

�
3

2
c2z � 1

�
m3:

(15)
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The mass spectrum of this generic bipartite form of the
neutrino mass matrix can account for all types of neutrino
mass hierarchies as follows (assuming small �z):

(i) Normal hierarchy:

A ’ B ) m1 ¼ m2 � m3; (16)

(ii) Inverted hierarchy:

A ’ �B ) m3 � m1 ¼ m2; (17)

(iii) Degenerate case:

A � B ) m1 ¼ m2 ’ m3: (18)

Some ‘‘mass relations,’’ characterizing the nontriplicity
in the degenerate case, can be deduced here as

MDNTB
� ð1;2Þ¼MDNTB

� ð1;3Þ;
MDNTB

� ð1;2Þ¼ ffiffiffi
2

p
tzM

DNTB
� ð2;3Þ;

MDNTB
� ð1;1Þ¼MDNTB

� ð2;2Þ�1�3s2zffiffiffi
2

p
szcz

MDNTB
� ð1;2Þ;

MDNTB
� ð1;1Þ¼MDNTB

� ð2;2Þ�1�3s2z
c2z

MDNTB
� ð2;3Þ;

(19)

which for vanishing �z reduce, as expected, to the simpler
ones characterizing the triplicity in the degenerate case,
namely,

MDTB
� ð1; 2Þ ¼ MDTB

� ð1; 3Þ ¼ 0;

MDTB
� ð2; 2Þ �MDTB

� ð2; 3Þ ¼ MDTB
� ð1; 1Þ:

(20)

Before carrying out the analysis, it is important at this
stage to quantify the C term [Eq. (13)] breaking the Oð2Þ
symmetry. ThisC breaking term is proportional to the mass
splitting (m2 �m1 	 0), whereas the other terms conserv-
ing theOð2Þ symmetry are proportional to (m1 þm2). This
helps in estimating the relative size of the breaking term. In
this way, a small value of the ratio

r ¼ m2 �m1

m2 þm1

(21)

would indicate that the Oð2Þ symmetry is satisfied to a
good approximation.

It is worth noting here that, in many theoretically
well-justified and experimentally acceptable patterns
for the neutrino mass matrix, numerical outcomes lead to
m2

m1
< 1:05, implying r < 1� m1

m2
< 5% [5]. In a model-

independent way, we write down in Table I the latest global
fit carried out in Ref. [7] for the mixing angles and the solar
(�m2) and atmospheric (j�m2j) mass-squared differences
defined by

�m2�m2
2�m2

1; j�m2j�
��������m2

3�
1

2
ðm2

1þm2
2Þ
��������; (22)

and also for the parameter (R�) characterizing the hierarchy
between these two quantities:

R� � �m2

j�m2j : (23)

We can estimate the ratio (r ¼ �m2

ðm1þm2Þ2 ) in all three

types of neutrino mass hierarchies as follows. In the normal
hierarchy (m1 
 m2 � m3), we note that the experimental
data excluding two vanishing neutrino masses forbid, in the
case of a degenerate mass spectrum, a zero value for m1

corresponding to (r ¼ 1). However, even when approach-
ing this ‘‘extreme’’ case ofm1 � 0, the part proportional to
m3 in the neutrino mass matrix [Eqs. (12) and (13)], which
does not affect the Oð2Þ symmetry, would be preponderant
compared to the Oð2Þ-conserving term proportional to
(m2 þm1) and the Oð2Þ-breaking term proportional to
(m2 �m1), as we have here

ðm2 þm1Þ=m3 � ðm2 �m1Þ=m3 �m2=m3

�Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2=�m2

q
Þ �Oð ffiffiffiffiffiffi

R�

p Þ � 18%: (24)

For a ‘‘large’’ nonvanishing value of m1, the ratio r can
take quite small values, and as an estimate we evaluate r

when m2
1 � �m2, leading to m2

2 � 2�m2, hence r�
1=ð1þ ffiffiffi

2
p Þ2 < 18%. The larger m1, the smaller r, so for

example, when ðm1 þm2Þ2 is of orderOðj�m2jÞ, then r ¼
OðR�Þ ¼ Oð3%Þ. In the inverted hierarchy case (m3 �
m1 
 m2), one can estimate (m3) by a very tiny value, so

we get (m1 �m2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffij�m2jp

), and r� R�=4� 0:8%.
Finally, in the degeneracy spectrum case (m1 �m2 �
m3 �m0), we should have (m0 	

ffiffiffiffiffiffiffiffiffiffiffiffiffij�m2jp
), and so r <

0:8%. Thus, we can say that both experimental and nu-
merical results corroborate the degenerate mass case as a
good starting approximation for the nondegenerate spec-
trum case.

TABLE I. The latest global-fit results of the three neutrino
mixing angles ð�x; �y; �zÞ and the two neutrino mass-squared

differences �m2 and �m2 as defined in Eq. (22). Here, it is
assumed that cos� ¼ �1 and that new reactor fluxes have been
used [7].

Parameter Bestfit 2� range

�m2ð10�5 eV2Þ 7.58 [7.16, 7.99]

j�m2jð10�3 eV2Þ 2.35 [2.17, 2.57]

�x 33.58� ½31:95�; 36:09��
�y 40.40� ½36:87�; 50:77��
�z 8.33� ½6:29�; 11:68��
R� 0.0323 ½0:0279; 0:0368�

E. I. LASHIN, N. CHAMOUN, AND S. NASRI PHYSICAL REVIEW D 86, 113013 (2012)

113013-4



A. Uð1Þ symmetry in the DNTB pattern

In order to find the symmetries imposing the form of
Eq. (14), we see that any unitary matrix U satisfying the
form invariance in the ‘‘diagonalized’’ basis,

UT �MD;diag
� �U ¼ MD;diag

� � diagðm1; m1; m3Þ; (25)

corresponds to a unitary matrix

SDNTB ¼ ðVxzÞ �U � ðVxzÞT; (26)

satisfying the form invariance [Eq. (10)] in the degenerate
mass spectrum case:

ðSDNTBÞT �MDNTB
� � SDNTB ¼ MDNTB

� ; (27)

where

M
D;diag
� ¼ ðVxzÞT �MDNTB

� � Vxz: (28)

It is clear now that the unitary matrices U satisfying
Eq. (25) represent a group Oð2Þ � Z2, where Z2 ¼ fI; Izg,
while the orthogonal group Oð2Þ is a direct product of
rotations (SOð2Þ ffi Uð1Þ) in the degenerate eigenspace
and another Z2 representing a reflection in this space. If,
for continuity purposes, we restrict ourselves to the con-
nected component of the unity, then we have

Uð�Þ ¼ R12ð�Þ �
c� s� 0

�s� c� 0

0 0 1

0
BB@

1
CCA: (29)

We thus deduce the ‘‘continuous’’ S symmetry in the flavor
basis by applying Eq. (26):

SDNTB� ¼
c�c

2
z þ s2z � czffiffi

2
p ½�s� þ szðc� � 1Þ� � czffiffi

2
p ½s� þ szðc� � 1Þ�

� czffiffi
2

p ½s� þ szðc� � 1Þ� c� � 1
2 c

2
zðc� � 1Þ s�sz � 1

2 c
2
zðc� � 1Þ

� czffiffi
2

p ½�s� þ szðc� � 1Þ� �s�sz � 1
2 c

2
zðc� � 1Þ c� � 1

2 c
2
zðc� � 1Þ

0
BBBB@

1
CCCCA: (30)

We note that the �x dependence in Eq. (26) disappears since the two rotations around the third axis R12ð�xÞ and R12ð�Þ
commute. One can check now that this S symmetry is equivalent to the DNTBmodified generic bipartite form in that for all
angles �z we have the following:

fðM ¼ MTÞ ^ ½8 �; ðSDNTB� ÞT �M � SDNTB� ¼ M�g ,

2
6666649 A; B; C: M ¼

A� B
ffiffi
2

p
szcz

1�3s2z
B

ffiffi
2

p
szcz

1�3s2z
B

� A c2z
1�3s2z

B

� � A

0
BBBB@

1
CCCCA

3
777775; (31)

If we drop the symmetric matrix condition in Eq. (31), then we get for all angles �z the following equivalence (which will
prove useful when studying the general form of the Yukawa couplings in the adopted Lagrangian with specific field
transformations under S symmetry):

½8 �; ðSDNTB� ÞT � f �SDNTB� ¼ f� ,

2
66666664
9 A;B;C: f¼

A�Bþ ffiffiffi
2

p
tzC C

ffiffi
2

p
s2z

1�3s2z
B� 1þs2z

1�3s2z
Cffiffi

2
p

s2z
1�3s2z

B� 1þs2z
1�3s2z

C A B

C 1þs2z
1�3s2z

B�
ffiffi
2

p
s2z

1�3s2z
C A

0
BBBBBB@

1
CCCCCCA

3
77777775
: (32)

Note that the equivalence Eq. (31) can be deduced from that of Eq. (32) by the following substitution:

B ! c2z
1� 3s2z

B; C !
ffiffiffi
2

p
szcz

1� 3s2z
B: (33)

Also, it is useful to have the following equivalence corresponding to a ‘‘left-congruous’’ form invariance:

½8 �; ðSDNTB� ÞT � f ¼ f� ,

2
66649 A; B; C: f ¼

ffiffiffi
2

p
tzA

ffiffiffi
2

p
tzB

ffiffiffi
2

p
tzC

A B C

A B C

0
BB@

1
CCA
3
7775: (34)

One last note in this subsection is that we have neglected the Majorana phases in our discussion so far. However,
diagonalizing the modified generic bipartite form for the neutrino mass matrix in the DNTB pattern, we have
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A� B
ffiffi
2

p
szcz

1�3s2z
B

ffiffi
2

p
szcz

1�3s2z
B

� A c2z
1�3s2z

B

� � A

0
BBBB@

1
CCCCA ¼ Vx

0 � P � diag
���������A� c2z

1� 3s2z
B

��������;
��������A� c2z

1� 3s2z
B

��������;
��������Aþ 1þ s2z

1� 3s2z
B

��������
�
� PT � ðVx

0 ÞT;

(35)

where P, a diagonal phase matrix, is given by

P ¼ diagðei	; ei	; ei
Þ; 2	 ¼ arg

�
A� c2z

1� 3s2z
B

�
; 2
 ¼ arg

�
Aþ 1þ s2z

1� 3s2z
B

�
: (36)

We can absorb the 
 phase by an ‘‘unphysical’’ global phase shift of the neutrino fields (�i ! e�i
�i) in the neutrino mass
term (MDNTB0

ij �i�j), so when we compare with Eqs. (1)–(3) we find

� ¼ �; � ¼ 0; �y ¼ �=4: (37)

Conversely, starting from the following general expressions of the elements of the degenerate mass matrix [resulting from
Eqs. (1)–(3) with m1 ¼ m2],

M�11 ¼ m1c
2
zðc2xe2i� þ s2xe

2i�Þ þm3s
2
z ;

M�12 ¼ m1½�czszsyðc2xe2i� þ s2xe
2i�Þ þ czcxsxcyðeið2���Þ � eið2���ÞÞ� þm3czszsy;

M�13 ¼ m1½�czszðc2xsye2i� þ s2xcye
2i�Þ þ czcxsxsyðeið2���Þ � eið2���ÞÞ� þm3czszcy;

M�22 ¼ m1½s2zs2yðc2xe2i� þ s2xe
2i�Þ þ c2yðs2xe2ið���Þ þ c2xe

2ið���ÞÞ þ 2cycxsxszsyðeið2���Þ � eið2���ÞÞ� þm3c
2
zs

2
y;

M�33 ¼ m1½s2zc2yðc2xe2i� þ s2xe
2i�Þ þ s2yðs2xe2ið���Þ þ c2xe

2ið���ÞÞ þ 2cycxsxszsyð�eið2���Þ þ eið2���ÞÞ� þm3c
2
zc

2
y;

M�23 ¼ m1½cysys2zðc2xe2i� þ s2xe
2i�Þ þ szcxsxc2yðeið2���Þ � eið2���ÞÞ � cysyðs2xeið2���Þ þ c2xe

ið2���ÞÞ� þm3sycyc
2
z ;

(38)

and requiring them to correspond to the modified generic bipartite form [Eq. (14)], so that the �x dependence in the mass
matrix elements drops out, we get � ¼ � and �y ¼ �=4. Moreover, the last mass relation in Eq. (19) for the DNTB
bipartite form leads to � ¼ 0 since M�11 in Eq. (38)is � independent, whereas M�22

and M�23
depend on �. We conclude

then that for the S symmetry to be satisfied by the degenerate neutrino mass matrix, we need to have � ¼ � and � ¼ 0.

B. The Z2 and Z3 subgroups in the DNTB pattern

As we explained earlier in the Introduction, the symmetry Z2 � Z3 mentioned in Ref. [9] to characterize the degenerate
mass spectrum case is a special case of the Uð1Þ S symmetry we stated in the previous subsection. The Z3 symmetry
corresponding to the DNTB pattern can be found by putting � ¼ � 2�

3 in Eq. (30):

SDNTB3 � SDNTB�¼�2�=3 ¼
� 3

2 c
2
z þ 1 �

ffiffi
2

p
4 czð

ffiffiffi
3

p � 3szÞ
ffiffi
2

p
4 czð

ffiffiffi
3

p þ 3szÞffiffi
2

p
4 czð

ffiffiffi
3

p þ 3szÞ � 1
2 þ 3

4 c
2
z �

ffiffi
3

p
2 sz þ 3

4 c
2
z

�
ffiffi
2

p
4 czð

ffiffiffi
3

p � 3szÞ
ffiffi
3

p
2 sz þ 3

4 c
2
z � 1

2 þ 3
4 c

2
z

0
BBBB@

1
CCCCA: (39)

As for the Z2 symmetry corresponding to the DNTB pattern,2 it can be obtained by substituting � by �:

SDNTB2 � SDNTB�¼� ¼
�c2z

1ffiffi
2

p s2z
1ffiffi
2

p s2z

1ffiffi
2

p s2z �s2z c2z

1ffiffi
2

p s2z c2z �s2z

0
BBBB@

1
CCCCA: (40)

2We denoted, in the Introduction, this Z2 subgroup of Uð1Þ by Z0
2. However, we shall drop the 0 mark, as it is clear from the context

which Z2 is meant.
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One can find similar equivalences to Eqs. (31), (32), and (34) corresponding to these subgroups. For the Z2 subgroup we
find for all angles �z the following:

½ðSDNTB2 ÞT � f � SDNTB2 ¼ f� ,
h
9 a1; a2; c1; c2; c3:

fð1; 1Þ ¼ a1; fð1; 2Þ ¼ a2; fð1; 3Þ ¼ �a2 þ 2t2zc1 þ
ffiffiffi
2

p
tzðc3 þ c2 � a1Þ;

fð2; 1Þ ¼ � 1� 3s2z
c2z

c1 þ
ffiffiffi
2

p
tzðc3 þ c2 � a1Þ; fð2; 2Þ ¼ c3 þ

ffiffiffi
2

p
tzðc1 � a2Þ;

fð2; 3Þ ¼ 1� 3s2z
c2z

ðc2 þ
ffiffiffi
2

p
tzc1Þ þ

ffiffiffi
2

p
tz½a2 þ

ffiffiffi
2

p
tzða1 � c3Þ�;

fð3; 1Þ ¼ c1; fð3; 2Þ ¼ c2; fð3; 3Þ ¼ c3
i
: (41)

In order to impose a symmetric matrix condition, which would be useful for a neutrino mass matrix, it suffices to make
the following substitution,

c2 ! a1 � c3 þ 1ffiffiffi
2

p
tz
a2 þ 1� 3s2zffiffiffi

2
p

czsz
c1; (42)

leaving us with four free parameters that can be cast in the following form for all angles �z:

½ðM ¼ MTÞ ^ ðSDNTB2 ÞT �M � SDNTB2 ¼ M� ,
�
9 A; B; C;D:

Mð1; 1Þ ¼ A� Bþ C;Mð2; 2Þ ¼ Aþ C;Mð2; 3Þ ¼ Mð3; 2Þ ¼ D;

Mð1; 2Þ ¼ Mð2; 1Þ ¼ �4
ffiffiffi
2

p
s2zs

3
zB� ffiffiffi

2
p

c3zð10c2z þ
ffiffiffi
2

p
sz � 8ÞCþ 4

ffiffiffi
2

p
czð1� 3s2zÞD

4szð1� 3s2zÞ2
;

Mð1; 3Þ ¼ Mð3; 1Þ ¼ 2
ffiffiffi
2

p
s2zczBþ czð5

ffiffiffi
2

p
c2z þ sz � 4

ffiffiffi
2

p ÞC
2szð1� 3s2zÞ

;

Mð3; 3Þ ¼ A� s22z
2ð1� 3s2zÞ2

B� 2szc2z � 14
ffiffiffi
2

p
c2z þ 11

ffiffiffi
2

p
c4z þ 4

ffiffiffi
2

p
ffiffiffi
2

p ð1� 3s2zÞ2
Cþ 2s2z

1� 3s2z
D

�
: (43)

We note that if

D ¼ c2z
1� 3s2z

Bþ�s2zcz þ 2
ffiffiffi
2

p
c2z �

ffiffiffi
2

p
szð1� 3s2zÞ

C; (44)

then we get exactly the modified generic tripartite form
with three free parameters characterizing the NTB Z3

2

symmetry obtained in Ref. [6]. This means that if a
symmetric matrix satisfies the form invariance with re-
spect to Z3

2 symmetry, then it satisfies it for the Z2

symmetry realized by SDNTB2 . This is clear due to the
fact that SDNTB2 is, up to a sign, just a factor of Z3

2

symmetry, as can be seen trivially in the diagonalized
basis. Moreover, if we put, in addition, C ¼ 0 we get
exactly the modified generic bipartite form with two free
parameters [Eq. (14)] characterized by the S symmetry.

This is also evident since the latter bipartite form corre-
sponds to a degenerate mass spectrum where m1 ¼ m2,
which is a special case of the general mass spectrum for
the modified tripartite form. As for the equivalence in
Eq. (34), corresponding to the symmetry acting only from
the left, we get exactly the same form in both the Z2

symmetry and the Uð1Þ S symmetry.
We may think that we need to impose Z3 � Z2 in order

to characterize the modified generic bipartite form
[Eq. (14)] in line with what was stated in Ref. [9].
However, in accordance with our findings in Ref. [10],
we checked that imposing the Z3 symmetry in the degener-
ate mass spectrum case, which is represented by SDNTB3 ,

leads precisely to the same equivalences in Eqs. (31), (32),
and (34), so we can write, for all angles �z, the following:

½ðM ¼ MTÞ ^ ð8 �; ðSDNTB� ÞT �M � SDNTB� ¼ MÞ� , ½ðM ¼ MTÞ ^ ð8 �; ðSDNTB3 ÞT �M � SDNTB3 ¼ MÞ�
½8 �; ðSDNTB� ÞT � f � SDNTB� ¼ f� , ½ðSDNTB3 ÞT � f � SDNTB3 ¼ f�

½8 �; ðSDNTB� ÞT � f ¼ f� , ½ðSDNTB3 ÞT � f ¼ f� , ½ðSDNTB2 ÞT � f ¼ f�:
(45)
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Thus, the Z3 symmetry and the Uð1Þ S symmetry are
phenomenologically equivalent regarding the form invari-
ance, and the question arises as to what lies behind this
fact. For this, we examine again what symmetries would
characterize the form invariance formula [Eq. (10)], in
the diagonal basis, restricting it to the 2-dim subspace
corresponding to the mass eigenvalues m1 and m2. Any
‘‘special’’ unitary matrix in two dimensions is represented
by a rotation, so we have

RTð�Þ � diagðm1; m2ÞRð�Þ ¼ diagðm1; m2Þ: Rð�Þ

¼ c� s�

�s� c�

 !
¼ c�Iþ is��2;

(46)

where the identity matrix I and the Pauli matrix �2 are
given by

I ¼ diagð1; 1Þ; �2 ¼
0 �i

i 0

 !
: (47)

This leads to

c2�diagðm1; m2Þ þ i

2
s2�½diagðm1; m2Þ; �2�

þ s2��2diagðm1; m2Þ�2 ¼ diagðm1; m2Þ: (48)

We see directly here that for any fixed given angle � � �,
the relation in Eq. (48) cannot be met unless we have a
degenerate mass spectrum (m1 ¼ m2), so Zn-symmetry,
corresponding to � ¼ 2�

n , leads, as long as n � 2, to a
degenerate spectrum and thus to the Uð1Þ-symmetry, and
vice versa, whence the mentioned equivalence. It is clear
also now, that the residual symmetry after the breaking of
Uð1Þ due to mass splitting m1 � m2 is the subgroup Z2

corresponding to � ¼ �, the only value satisfying Eq. (48)
for a non-degenerate mass spectrum. This equivalence
between Zn and Uð1Þ regarding the form invariance should
be contrasted with the case of regular n-polygons which are

not Uð1Þ-invariant under the whole set of rotations around
their centers by arbitrary angles, although they are
Zn-symmetric, in that they stay unchanged when the rota-
tion angle is a multiple of 2�

n .

C. The DNTB0 pattern

In order to make definite conclusions and precise pre-
dictions for the phenomenological analyses in the follow-
ing sections, we specify the results in this subsection to the
experimentally best-fit degenerate mass spectrum case of
the NTB pattern, the DNTB0 pattern characterized by

�z¼ arcsin

�
1ffiffiffiffiffiffi
50

p
�
; �xundetermined; m1¼m2: (49)

The mixing matrix becomes

Vx
0 ¼ 1

10

7
ffiffiffi
2

p
cx 7

ffiffiffi
2

p
sx

ffiffiffi
2

p

�ðcx þ 5
ffiffiffi
2

p
sxÞ �ðsx � 5

ffiffiffi
2

p
cxÞ 7

�ðcx � 5
ffiffiffi
2

p
sxÞ �ðsx þ 5

ffiffiffi
2

p
cxÞ 7

0
BB@

1
CCA:

(50)

The modified special bipartite form is

MDNTB0
� ¼

A� B 7
ffiffi
2

p
47 B 7

ffiffi
2

p
47 B

7
ffiffi
2

p
47 B A 49

47B

7
ffiffi
2

p
47 B 49

47B A

0
BBBB@

1
CCCCA; (51)

and the eigenmasses can be determined in terms of the
bipartite form coefficients as

m1 ¼ m2 ¼ A� 49

47
B; A ¼ 51

100
m1 þ 49

100
m3;

m3 ¼ Aþ 51

47
B; B ¼ � 47

100
m1 þ 47

100
m3:

(52)

The Uð1Þ S0 symmetry which characterizes this modified
special bipartite form is given by

SDNTB0

� ¼
1
50 ð1þ 49c�Þ 7

ffiffi
2

p
100 ð1� c�Þ þ 7

10 s�
7
ffiffi
2

p
100 ð1� c�Þ � 7

10 s�

7
ffiffi
2

p
100 ð1� c�Þ � 7

10 s�
1
100 ð49þ 51c�Þ 49

100 ð1� c�Þ þ
ffiffi
2

p
10 s�

7
ffiffi
2

p
100 ð1� c�Þ þ 7

10 s�
49
100 ð1� c�Þ �

ffiffi
2

p
10 s�

1
100 ð49þ 51c�Þ

0
BBBB@

1
CCCCA: (53)

The corresponding Z3 and Z2 symmetries are given by

SDNTB0

3 � SDNTB0

�¼�2�=3 ¼
� 47

100
21
ffiffi
2

p
200 � 7

ffiffi
3

p
20

21
ffiffi
2

p
200 þ 7

ffiffi
3

p
20

21
ffiffi
2

p
200 þ 7

ffiffi
3

p
20

47
200

147
200 �

ffiffi
6

p
20

21
ffiffi
2

p
200 � 7

ffiffi
3

p
20

147
200 þ

ffiffi
6

p
20

47
200

0
BBBB@

1
CCCCA; (54)

SDNTB0

2 � SDNTB0

�¼� ¼ 1

50

�48 7
ffiffiffi
2

p
7

ffiffiffi
2

p

7
ffiffiffi
2

p �1 49

7
ffiffiffi
2

p
49 �1

0
BB@

1
CCA: (55)
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Note that, as expected, the �x dependence should not appear either in the bipartite form or in the characterizing symmetry.
We have the corresponding equivalences

fðM ¼ MTÞ ^ ½8 �; ðSDNTB0

� ÞT �M � SDNTB0

� ¼ M�g , fðM ¼ MTÞ ^ ½ðSDNTB0

3 ÞT �M � SDNTB0

3 ¼ M�g

,

2
6666649 A; B: M ¼

A� B 7
ffiffi
2

p
47 B 7

ffiffi
2

p
47 B

7
ffiffi
2

p
47 B A 49

47B

7
ffiffi
2

p
47 B 49

47B A

0
BBBB@

1
CCCCA

3
777775 (56)

and

½8 �; ðSDNTB0

� ÞT � f � SDNTB0

� ¼ f� , ½ðSDNTB0

3 ÞT � f � SDNTB0

3 ¼ f�

,

2
66666664
9 A; B; C: f ¼

A� Bþ
ffiffi
2

p
7 C C 14

ffiffi
2

p
47 B� 51

47C

14
ffiffi
2

p
47 B� 51

47C A B

C 51
47B� 14

ffiffi
2

p
47 C A

0
BBBB@

1
CCCCA

3
77777775

(57)

and

½8 �; ðSDNTB0

� ÞT � f ¼ f� , ½ðSDNTB0

3 ÞT � f ¼ f� ,

2
66649 A; B; C: f ¼

ffiffi
2

p
A

7

ffiffi
2

p
B

7

ffiffi
2

p
C

7

A B C

A B C

0
BB@

1
CCA
3
7775: (58)

One can also find the corresponding equivalences for the
Z2 symmetry for this special DNTB0 pattern, and deduce
that the resulting symmetric form contains the Z3

2 modified
special tripartite form attained in Ref. [6] [Eq. (12) with
�x ¼ arcsinð1= ffiffiffi

3
p Þ, �z ¼ arcsinð1= ffiffiffiffiffiffi

50
p Þ], which in turn

includes the modified special bipartite form.

III. S0 SYMMETRY IN THE WHOLE
LEPTON SECTOR

We impose now the S0 symmetry in a setup involving
also the charged leptons, since their LH components
couple to the neutrinos, and any symmetry imposed on
the latter should be met by the LH charged leptons as well.

A. Model with many Higgs doublets

We follow here the model presented in Ref. [9] and
assume one heavy Higgs triplet ð�þþ; �þ; �0Þ and three
scalar doublets ð�0

i ; �
�
i Þ playing the role of the SM Higgs

doublet.

LY ¼ hij½�0�i�j � �þð�ilj þ li�jÞ=
ffiffiffi
2

p þ �þþlilj�
þ fkijðli�0

j � �i�
�
j Þlck þ H:c:; (59)

where under the S0 symmetry the fields are transformed as

ð�; lÞi ! ðS�Þijð�; lÞj; lck ! lck; (60)

ð�0; ��Þi ! ðS�Þijð�0; ��Þj;
ð�þþ; �þ; �0Þ ! ð�þþ; �þ; �0Þ:

(61)

Invariance of the Lagrangian means we have

ST�hS� ¼ h; (62)

ST�f
kS� ¼ fk: (63)

This Lagrangian has a global symmetry Uð1ÞL
N

S0,
where Uð1ÞL is the total lepton number symmetry,
where we assign a zero lepton number to the doublets �i

and a two-lepton number for the heavy triplet �. We now
add a soft symmetry breaking ‘‘�’’-term,

�LY ¼ �ij

2
�T

i �
yi�2�j þ H:c:; (64)

where the symmetric matrix �ij is not proportional to

either the identity or the form dictated by S�, so both the
Uð1ÞL symmetry and the S0 symmetry are broken explic-
itly. This term is introduced to avoid a Goldstone boson
(GB) associated with the spontaneous breaking of total
lepton number (called a Majoron) [18]. This will have
the effect of inducing a mass to the would-be GB of the
order of the mass of the Higgs triplet, hence avoiding an
invisible decay of the Z gauge boson. In addition, this
tadpole term will generate, upon minimization of the po-
tential with respect to the neutral component of the triplet
scalar �0, a vacuum expectation value (vev) given by
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h�0i ¼ ��ijvivj

M2
�

; (65)

which can be small in the electron volt range, in
line with a naturally tiny neutrino mass, for �ij �M�

ðthe triplet massÞ � 1012 GeV [19,20].3 Furthermore, the
tree level correction to the electroweak (EW) � parameter
is �ðh�0i=vEWÞ2 � ðm�=vEWÞ2 which is negligible.

Moreover, this �-term in the scalar sector will not
destabilize the structure of the neutrino mass matrix, since
the latter is dictated by how the leptonic fields transform
under S�. However, there will be Yukawa-like interactions
between the neutrinos and the pseudo-GB, and between the
charged leptons and the electrically charged components of
the triplet field. But since all these scalar fields (including
the pseudo-GB) are much heavier than the TeV scale, they
do not have observable effects on the fermion sector of the
model. Said differently, the components of the triplet field
will practically decouple from the low energy spectrum,
and one is left only with the SM degrees of freedom plus
effective higher dimensional operators suppressed by the
mass square of the triplet (and a correction to the Higgs
self-coupling) of the form

�
LL��

M2
�

;

which after the EW symmetry breaking gives
m� ��v2=M2

� � v.

The equivalences [Eqs. (56) and (57)] for the symmetric
matrix hij and the not-necessarily symmetric Yukawa cou-

plings fkij lead to the forms

h ¼
A� B 7

ffiffi
2

p
47 B 7

ffiffi
2

p
47 B

7
ffiffi
2

p
47 B A 49

47B

7
ffiffi
2

p
47 B 49

47B A

0
BBBB@

1
CCCCA;

fk ¼
ak � bk þ

ffiffi
2

p
7 ck ck

14
ffiffi
2

p
47 bk � 51

47ck

14
ffiffi
2

p
47 bk � 51

47ck ak bk

ck
51
47bk � 14

ffiffi
2

p
47 ck ak

0
BBBB@

1
CCCCA:

(66)

The neutrino mass matrix, when �0 gets a vev, is

ðM�Þij ¼ h�0ihij; (67)

which expresses the translation of the S0 symmetry from
the symmetric Yukawa couplings hij to the neutrino mass

matrix M�ij
. As to the charged leptons, the Yukawa term

(fkijlil
c
k�

0
j ) leads, when the SM-like Higgs fields take vevs

(vj ¼ h�0
j i), to the mass matrix

ðMlÞik ¼ fkijvj: (68)

The Yukawa couplings can be arranged so as to bring, after
suitably rotating the charged RH singlet lepton lc, the
charged lepton mass matrix into its form in the flavor basis.
For example, if v1;2 � v3 we have

Ml ¼ v3

A0
1 A0

2 A0
3

B0
1 B0

2 B0
3

C0
1 C0

2 C0
3

0
BB@

1
CCA; (69)

where

A0
i ¼

14
ffiffiffi
2

p
47

bi � 51

47
ci; B0

i ¼ bi; C0
i ¼ ai: (70)

In Ref. [6], a charged lepton matrix of precisely the same
form was shown to represent the lepton mass matrix in the
flavor basis with the right charged lepton mass hierarchies,
assuming just the ratios of the magnitudes of the vectors
comparable to the lepton mass ratios.

B. Model with many heavy SM singlets

The model with many Higgs doublets induces dangerous
flavor changing neutral currents [21]. For this, we might
think of keeping just one SM-Higgs doublet � but at the
expense of adding three heavy SM-singlet scalars �i trans-
forming nontrivially under the S0 symmetry. Again, we
assume the SM Higgs and the charged RH leptons lcj to be

singlets under the S0 symmetry, whereas the lepton LH
doublets transform component-wise faithfully:

Li ! SDNTB0

ij Lj; (71)

with i, j ¼ 1, 2, 3. Then, the invariance of the SM term,

L 1 ¼ Yij
�Li�lcj ; (72)

under S0 symmetry leads via Eq. (58) to the form

Yij �

ffiffi
2

p
7 A

ffiffi
2

p
7 B

ffiffi
2

p
7 C

A B C

A B C

0
BB@

1
CCA: (73)

We see here that this term leads, when �0 gets a vev, to a
charged lepton squared mass matrix proportional to

Y � Yy � ðjAj2 þ jBj2 þ jCj2Þ
7

2
7 1 1

1 7 7

1 7 7

0
BB@

1
CCA;

with two zero eigenvalues, so we cannot produce the
charged lepton mass spectrum with this term. Moreover,

YYy has eigenvectors proportional to ð1;�
ffiffi
2

p
7 ; 0Þ,

ð0;�1; 1Þ, ð
ffiffi
2

p
7 ; 1; 1Þ, which means that YYy is not

3We could, in principle, choose M� � TeV, which makes the
triplet field accessible to colliders, but that would require choos-
ing the coupling hij unnaturally small (� 10�10) unless one
chooses �� eV.
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diagonalized trivially, and so we are not in the flavor
basis, which would destroy the predictions of the DNTB0

pattern. We note here that, had we really taken the original
full symmetry of the model [F ¼ Uð1Þ � Z2 � Z2 ¼
hUð1Þ; Z3

2i], then the equation F � Y ¼ Y could not be

met for all elements in F unless Y ¼ 0.
The additional heavy SM-singlet scalar fields �i help in

resolving these inconveniences. We assume that they trans-
form under S0 symmetry as

�i ! SDNTB0

ij �j (74)

and that they are coupled to the lepton LH doublets through
a nonrenormalizable dimension-5 operator

L2 ¼ fikr
�

�Li��kl
c
r; (75)

where � is a heavy mass scale. Invariance of L2 under S0
symmetry leads to

ðSDNTB0ÞTfrSDNTB0 ¼ fr; (76)

where fr, for fixed r, is the matrix whose ði; jÞ entry is fijr.
The equivalence [Eq. (57)] leads to

fr¼
Ar�Brþ

ffiffi
2

p
7 Cr Cr

14
ffiffi
2

p
47 Br� 51

47Cr

14
ffiffi
2

p
47 Br� 51

47Cr Ar Br

Cr
51
47Br� 14

ffiffi
2

p
47 Cr Ar

0
BBBB@

1
CCCCA:

(77)

When �k and�
� take the vevs �k and v, respectively, then

we get the charged lepton mass matrix:

ðMlÞir ¼ vfikr
�

�k: (78)

One can again arrange the vevs and the Yukawa couplings
such that Ml, after suitably rotating the flavor- and
SM-singlets lcj , is the charged lepton mass matrix in the

flavor basis. For example, if �1, �2 � �3 we get

Ml ¼ v�3

�

A0
1 A0

2 A0
3

B0
1 B0

2 B0
3

C0
1 C0

2 C0
3

0
BB@

1
CCA; (79)

where

A0
i¼

�
14

ffiffiffi
2

p
47

Bi�51

47
Ci

�
; B0

i¼Bi; C0
i¼Ai: (80)

The same diagonalization procedure mentioned in the last
subsection can be applied here to show that Ml can be
seen, to a good approximation, as the charged lepton mass
matrix with the correct mass hierarchies in the flavor basis.

C. The conserved current associated with S symmetry

One can determine the conserved current and charge
corresponding to the continuous Uð1Þ symmetry. In order

to stress the generality of the treatment, we shall discuss
the S symmetry with generic values of �z. Let us, for
illustration purposes, consider the neutrino part where the
relevant term for computing the current is the kinetic
energy (the sum is understood over the flavor index k):

K� ¼ i ��k
�@��k: (81)

The current associated with the S symmetry [Eq. (30)] is
given by

J
�
� � �i

@K�

@ð@��jÞTjk�k ¼ Tjk ��j
��k; (82)

where Tij is the generator of the S symmetry:

T ¼ i

0 czffiffi
2

p �czffiffi
2

p
�czffiffi
2

p 0 sz
czffiffi
2

p �sz 0

0
BBB@

1
CCCA; (83)

satisfying

SDNTB�� � I� i��T: (84)

Moreover, since SDNTB� is a three-dimensional represen-

tation of the commutative Uð1Þ group whose irreducible
representations (irreps) are one dimensioanl, one must
be able to reduce SDNTB� to three one-dimensional irreps

obtained by diagonalizing SDNTB� as follows:

SDNTB� ¼ L

1 0 0

0 e�i� 0

0 0 ei�

0
BB@

1
CCALy; (85)

L¼

sz
�czðiþszÞffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þs2z Þ

p �czð�iþszÞffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þs2z Þ

p
czffiffi
2

p �c2zþ2isz

2
ffiffiffiffiffiffiffiffiffiffiffi
ð1þs2z Þ

p �c2z�2isz

2
ffiffiffiffiffiffiffiffiffiffiffi
ð1þs2z Þ

p

czffiffi
2

p
ffiffiffiffiffiffiffiffi
1þs2z

p
2

ffiffiffiffiffiffiffiffi
1þs2z

p
2

0
BBBBBBB@

1
CCCCCCCA
¼ V0 V� Vþ
� �

: (86)

The ‘‘neutrino’’ eigenvectors ðV0; V�; VþÞ, with expres-
sions in terms of the flavor or ‘‘gauge’’ states given by
the columns of L, are the neutrino fields with definite
SDNTB� charges equaling respectively to ð0;�1;þ1Þ.
Inverting now, to express the neutrino gauge states �i in
terms of ðV0; V�; VþÞ, and substituting into Eq. (82) we get

J
�
� ¼ ð0 �V0

�V0 � 1 �V��V� þ 1 �Vþ�VþÞ; (87)

which expresses explicitly the conserved current in terms
of the S-charge eigenstates. This current corresponds to a
global nongauged continuous symmetry, similar to the
Uð1Þ baryon number conservation in the SM.
Using now Vxz [Eq. (11)] to go from the neutrino gauge

states �g ¼ ð�e����ÞT to neutrino ’’mass’’ states �m ¼
ð�m

1 �
m
2 �

m
3 ÞT, we express the definite SDNTB� -charge neutrino

fields in terms of the mass eigenstates:

V � ðV0V�VþÞT ¼ LT � �g ¼ LT � ðVxzÞ � �m; (88)
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which gives

V0¼�m
3 ; V�¼að�m

1 � i�m
2 Þ;

V�¼að�m
1 þ i�m

2 Þ; where a¼� iþszffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þs2zÞ

q eix:

(89)

Although the expressions involve �x, as expected, this
phase has no ‘‘physical’’ content in the degenerate mass
spectrum case. This is because the particular combination
of mass eigenstates in Eq. (89) never mixes under free time
evolution provided �m

1 and �m
2 have degenerate mass,

which is the case when the S symmetry is exact. The
same conclusion still holds if one thinks of the underlying
symmetry, in the degenerate two-mass case, as Z3 � Z2,
due to the compatibility of both SDNTB� and Z3 � Z2 in that

they all commute and have common eigenstates. In fact, as
we have seen earlier, even in the nondegenerate spectrum
case, the mass eigenstates ð�m

1 ; �
m
2 ; �

m
3 Þ are the eigenvectors

of the residual Z2 symmetry, to which we can attribute
‘‘conserved’’ charges equal, respectively, to ð�1;�1; 1Þ.

IV. DNTB0 NEUTRINO MASS MATRIX
IN SEESAW SCENARIOS

We saw in Eqs. (16)–(18) that the modified bipartite
form can explain all sorts of neutrino mass hierarchies.
In the next subsection, we shall be more specific on the

origin of the coefficients of the bipartite form through
invoking type-I seesaw scenarios.

A. Type-I seesaw scenario in the DNTB pattern

The effective light LH neutrino mass matrix is generated
through the seesaw formula

M� ¼ �MD
� �M�1

R � ðMD
� ÞT; (90)

whereMR is the heavyMajorana RH neutrino mass matrix,
whereas the Dirac neutrino mass matrix comes from the
Yukawa term

gij �Li
~��Rj; (91)

with ~� ¼ i�2�
. Again, for generality, we will treat, in

this subsection, the S symmetry corresponding to the
DNTB pattern with generic values of �z since the results
are not specific to any particular value of it. We assume the
RH neutrinos transforming under S symmetry to be

�Rj ! Sj�R: (92)

Then, the invariance of the Lagrangian under S symmetry
leads to

ST � g � S ¼ g: (93)

The equivalence in Eq. (31) leads, when ~� takes a vev v, to
the following Dirac mass matrix:

MD
� ¼ v

AD � BD þ ffiffiffi
2

p
tzCD CD

ffiffi
2

p
s2z

1�3s2z
BD � 1þs2z

1�3s2z
CDffiffi

2
p

s2z
1�3s2z

BD � 1þs2z
1�3s2z

CD AD BD

CD
1þs2z
1�3s2z

BD �
ffiffi
2

p
s2z

1�3s2z
CD AD

0
BBBBBB@

1
CCCCCCA: (94)

The invariance under S symmetry of the term 1
2�

T
iRCðMRÞij�jR (C is the charge conjugation matrix) would impose the

modified generic bipartite form for the symmetric Majorana RH neutrino mass matrix [Eq. (31)]:

MR ¼ �R

AR � BR

ffiffi
2

p
szcz

1�3s2z
BR

ffiffi
2

p
szcz

1�3s2z
BRffiffi

2
p

szcz
1�3s2z

BR AR
c2z

1�3s2z
BRffiffi

2
p

szcz
1�3s2z

BR
c2z

1�3s2z
BR AR

0
BBBBBB@

1
CCCCCCA; (95)

where �R is a high scale characterizing the seesaw mechanism.
Applying the seesaw formula [Eq. (90)] we get the same form characterizing the DNTB pattern:

M� ¼ �v2

�

A� � B�

ffiffi
2

p
szcz

1�3s2z
B�

ffiffi
2

p
szcz

1�3s2z
B�ffiffi

2
p

szcz
1�3s2z

B� A�
c2z

1�3s2z
B�ffiffi

2
p

szcz
1�3s2z

B�
c2z

1�3s2z
B� A�

0
BBBBBB@

1
CCCCCCA; (96)

where the bipartite form coefficients A�, B� are given in terms of those characterizing the Dirac and Majorana mass
matrices as follows.
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A� ¼ A�1
AR þ A�2

BR

ð1� 3s2zÞ½ð1� 3s2zÞAR � c2zBR�½ð1� 3s2zÞAR þ ð1þ s2zÞBR�
;

A�1
¼ ð1� 3s2zÞ3A2

D þ ð1� 3s2zÞð1þ s2zÞ2C2
D � 2

ffiffiffi
2

p
s2zð1þ s2zÞð1� 3s2zÞBDCD þ ð1þ s2zÞ2ð1� 3s2zÞB2

D;

A�2
¼ 2s2zð1� 3s2zÞ2A2

D þ ffiffiffi
2

p
s2zð1þ s2zÞð1� 3s2zÞADCD � 2c2zð1þ s2zÞð1� 3s2zÞADBD

þ c2zð1þ s2zÞ2C2
D � ffiffiffi

2
p

s2zð1þ s2zÞ2BDCD þ 2s2zð1þ s2zÞ2B2
D; (97)

B� ¼ B�1
AR þ B�2

BR

�c2z½ð1� 3s2zÞAR � c2zBR�½ð1� 3s2zÞAR þ ð1þ s2zÞBR�
;

B�1
¼ ffiffiffi

2
p

s2zð1� 3s2zÞ2ADCD � 2c2zð1� 3s2zÞ2ADBD þ ð1þ s2zÞð1� 3s2zÞ2C2
D � ffiffiffi

2
p

s2zð1� 3s2zÞBDCD;

B�2
¼ c2zð1� 3s2zÞ2A2

D þ c2zð1þ s2zÞ2C2
D � 4

ffiffiffi
2

p
szc

3
zð1þ s2zÞBDCD � c2zð1þ s2zÞB2

D:

(98)

All types of neutrino mass hierarchies can be accom-
modated according to relations in Eqs. (16)–(18), which in
turn impose constraints on Dirac and RH Majorana neu-
trino mass matrices as follows.

(i) Normal hierarchy: with

AD ’ BD; CD � BDðADÞ; AR ’ BR: (99)

We get, for most values of �z in the experimentally
acceptable range (½6:29�; 11:68��), the following:

A� ’ A2
D

AR

’ B� ) A� ’ B�: (100)

(ii) Inverted hierarchy: with

AD ’ �BD; CD � BDðADÞ; AR ’ �BR:

(101)

We get, for most acceptable values of �z, the
following:

A� ’ A2
D

AR

’ �B� ) A� ’ �B�: (102)

(iii) Degenerate case: with

AD � BD � CD; AR � BR: (103)

We get, for most acceptable values of �z, the
following:

A� ’ A2
D

AR

;

B� ’ 2
BDAD

AR

� A2
D

BR

A2
R

) A� � B�:

(104)

The RH neutrino mass term violates lepton number
by two units and could lead to lepton asymmetry. The
produced asymmetry due to the out-of-equilibrium
decay of the lightest RH neutrino to SM particles is
given by [22]

� ’ 3

16�v2

1

ð ~My
D
~MDÞ11

X
j¼2;3

Imf½ð ~My
D
~MDÞ1j�2g MR1

MRj

;

(105)

where MRi, i ¼ 1 . . . 3 are the masses for RH neutrinos,
and ~MD is the Dirac neutrino mass matrix in the basis
where the Majorana RH neutrino mass matrix MR is
diagonal. Since the RH neutrino mass matrix
[Eq. (96)] has a DNTB modified generic bipartite
form, then it is diagonalized by Vxz [Eq. (11)]. Thus,
under �R ! ðVxzÞ�R we have MD ! MDðVxzÞ. We
still have freedom in multiplying the diagonalizing
unitary matrix Vxz by diagonal phases F ¼
diagðei	1 ; ei	2 ; ei	3Þ adjusted normally such that the
phases of the spectrum of MR disappear. Namely, these
phases vanish if we choose

ð	1; 	2; 	3Þ ¼ 1

2
arg

�
AR � c2z

1� 3s2z
BR; AR

� c2z
1� 3s2z

BR; AR þ 1þ s2z
1� 3s2z

BR

�
: (106)

Thus, we have ~MD ¼ MD � ðVxzÞ � F, so we can write

~My
D � ~MD ¼ FT � ðVxzÞT � MDy � MD � ðVxzÞ � F:

(107)

The required entries of ~My
D � ~MD for calculating the

asymmetry are

Uð1Þ SYMMETRY OF THE NONTRIBIMAXIMAL . . . PHYSICAL REVIEW D 86, 113013 (2012)

113013-13



ð ~MDy
�

~MD
� Þ11 ¼ jADj2 þ 1

4� 12c2z þ 9c4z
½ð4s2z þ c4zÞjBDj2 þ ð2c2zð1þ s2zÞÞjCDj2 �

ffiffiffi
2

p
szczðc2z þ 2ÞðCDB


D þ C

DBDÞ

þ ð2c2z � 3c4zÞðADB

D þ A

DBDÞ þ
ffiffiffi
2

p
szczð3c2z � 2ÞðADC


D þ A

DCDÞ�;
ð ~MDy

�
~MD
� Þ12 ¼ 1

1� 3s2z
½2szðB

DAD � BDA

DÞ þ

ffiffiffi
2

p
czðC

DBD � CDB

DÞ þ

ffiffiffi
2

p
czðA

DCD � ADC

DÞ�;

ð ~MDy
�

~MD
� Þ13 ¼ 0; (108)

which leads to a vanishing lepton asymmetry since the
entries (1, 1) and (1, 2) are, respectively, real and pure
imaginary, whereas the entry (1, 3) assumes the value zero.
Thus, we are tempted to look for other phenomenologically
motivated venues producing enough lepton asymmetry in
the context of the type-II seesaw mechanism.

B. Type-II seesaw scenario in the DNTB0 pattern

The type-II seesaw scenario can solely accommodate
enough lepton/baryogenesis for the observed baryon/pho-
ton density in the Universe. For this, we need to do some
numerical estimations; that is why we use the special value
�z � 8o of the DNTB0 pattern in this section. As in
Ref. [6], we introduce two SM triplet fields �A, A ¼ 1, 2
which are singlet under the S symmetry. The Lagrangian
part relevant for the neutrino mass matrix is

L ¼ �A
	
L

T
	C�Ai�2L
 þLðH;�AÞ þ H:c:; (109)

where A ¼ 1, 2 and

LðH;�AÞ ¼ �2
HH

yH þ �H

2
ðHyHÞ2 þMA Trð�y

A�AÞ

þ ��A

2
½Trð�y

A�AÞ�2 þ �H�A
ðHyHÞTrð�y

A�AÞ
þ�AH

T�y
Ai�2H þ H:c:; (110)

where H and �A are written as

H ¼ �þ

�0

 !
; �A ¼

�þffiffi
2

p �0

�þþ � �þffiffi
2

p

0
@

1
A

A

: (111)

The neutrino mass matrix due to the exchange of the two
triplets, �1 and �2, is

ðM�Þ	
 ’ v2

�
�1
	


�1

M2
�1

þ �2
	


�2

M2
�2

�
; (112)

where M�i
is the mass of the neutral component �0

i of the

triplet �i, i ¼ 1, 2.
Some remarks are in order here. First, the two matrices

�A, and thus also the neutrino mass matrix in Eq. (112),
have the modified special bipartite form because of the
Lagrangian invariance under the S0 symmetry:

�a¼
Aa�Ba

7
ffiffi
2

p
47 Ba

7
ffiffi
2

p
47 Ba

7
ffiffi
2

p
47 B

a Aa 49
47B

7
ffiffi
2

p
47 B

a 49
47B

a Aa

0
BBBB@

1
CCCCA; a¼1;2: (113)

Hence, all kinds of neutrino mass hierarchies can be
generated. Second, the same remarks mentioned in
Sec. III A about the �A-term apply here concerning the
generation of small neutrino mass and the integrating out
of the heavy triplet and the pseudo-GB. Third, the flavor
changing neutral current due to the triplet is highly sup-
pressed because of the large value of its mass scale.
We follow now the same steps carried out in

Refs. [6,10,12], discussing how to generate baryon asym-
metry from leptogenesis using the sphaleron interaction
[23]. We note in passing that the would-be GB, which is the
imaginary part of the neutral component of the triplet,
would contribute to the leptogenesis as any component of
this field. The reason behind this is that at temperatures
much larger than the EW scale, the vev of the triplet is
equal to zero since it is triggered by the spontaneous
breaking of the SM gauge symmetry (which at these tem-
peratures is unbroken). That is, the SUð2Þ �Uð1Þ gauge
symmetry (unbroken at T �M� � vEW) dictates that all
three triplet components (charged, doubly charged, and
neutral) contribute on equal footing, and are thus taken
into account when computing the decay of � into LL and
the CP conjugate process. The choice of having more than
one Higgs triplet is essential to generate the lepton asym-
metry [24]. In this case, the CP asymmetry in the decay of
the lightest Higgs triplet (which we choose to be �1) is
generated at one loop level due to the interference between
the tree and the one loop self-energy diagrams, and it is
given by

�CP � � 1

8�2

Im½�1�

2 Trð�1�2yÞ�
M2

2

M1

�1

: (114)

�1 is the decay rate of the lightest Higgs triplet, and it is
given by

�1 ¼ M1

8�

�
Trð�1�1yÞ þ �2

1

M2
1

�
: (115)

We can compute the relevant traces in the DNTB0

pattern to find
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Trð�1�2yÞ ¼ 2

�
A1 � 49

47
B1

��
A
2 �

49

47
B
2

�

þ
�
A1 þ 51

47
B1

��
A
2 þ

51

47
B
2

�
(116)

Trð�1�1yÞ ¼ 2

��������A1 � 49

47
B1

��������
2þ

��������A1 þ 51

47
B1

��������
2

: (117)

If we now denote the phases of Aa � 49
47Ba, Aa þ

51
47Ba, �a by 	a, 
a, �a (a ¼ 1, 2), respectively, then

by rewriting the Aa and Ba coefficients of the �a’s in

the Yukawa term (�a
	
L

T
	C�ai�2L
) in a function of

the combinations (Aa � 49
47Ba) and (Aa þ 51

47Ba), we

find, say, the first combinations (Aa � 49
47Ba) multiplied

always with the field �a. This means that shifting the

latter fields by a phase (� 	a) would put the phases

	a equal to zero. For �a � M�a
� 1013 GeV,

a ¼ 1, 2 (which give a neutrino mass in the sub-eV

range) we get

�CP � � 1

�

2jA1 � 49
47B1jjA2 � 49

47B2j sinð�1 ��2Þ þ jA1 þ 51
47B1jjA2 þ 51

47B2j sinð�1 ��2 þ 
1 � 
2Þ
1þ 2jA1 � 49

47B1j2 þ jA1 þ 51
47B1j2

: (118)

The baryon to photon density is approximately given by

�B � nB
s

¼ 1

3
�L ’ 1

3

1

g
��CP; (119)

where g � 100 is the number of relativistic degrees of free-
dom at the time when the Higgs triplet decouples from the
thermal bath and � is the efficiency factor which takes into
account the fraction of out-of-equilibrium decays and the
washout effect. In the case of a strong washout, the efficiency
factor can be approximated by (H is the Hubble parameter)

� ’ H

�1

ðT ¼ M1Þ: (120)

With the above numerical values and with an efficiency factor
of order 10�4, we get, for 
1 ¼ 
2, a baryon asymmetry:

�B � 10�7 Trð�1�2yÞ
Trð�1�1yÞ þ 1

sinð�2 ��1Þ: (121)

Thus, one can bring about the correct baryon-to-photon ratio
of�B ’ 10�10 by choosing �’s of order 0.1 and not too small
relative phase between �1 and �2.

V. SUMMARYAND CONCLUSION

We have derived an explicit realization of the Uð1Þ
symmetry underlying the non-tribimaximal pattern of
the neutrino mass matrix in the degenerate mass spectrum
case. We deduced a bipartite form which uniquely

characterizes this pattern. The departure from the tribi-
maximal pattern is suggested by recent oscillation data,
whereas the degenerate mass spectrum case is a good
approximation motivated by experimental data and nu-
merical studies. One can consider it as a first step to be
perturbed by a term proportional to the mass splitting
(m2 �m1), leading to a modified tripartite model without
degeneracy. We have implemented this symmetry in a
setup including charged leptons supplemented either
with many Higgs doublets or with many SM-singlet
scalars. In both cases, one could accommodate the
observed charged lepton mass hierarchies. Similarly, the
Uð1Þ symmetry can generate all sorts of neutrino mass
hierarchies. We showed this explicitly in type-I seesaw
scenarios, where we found that no lepton/baryon asym-
metry can be generated. However, in type-II seesaw
mechanisms, one can account for the photon/baryon den-
sity observed in the Universe.
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