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From a picture of the Xð3872Þ where the resonance is a bound state of �DD� � c:c:, we evaluate

the decay width into the J=c� channel, which is sensitive to the internal structure of this state.

For this purpose we evaluate the loops through which the Xð3872Þ decays into its components, and

the J=c and the photon are radiated from these components. We use the local hidden gauge

approach extrapolated to SUð4Þ with a particular SUð4Þ breaking. The radiative decay involves

anomalous couplings, and we obtain acceptable values which are compared to experiments and

results of other calculations. Simultaneously, we evaluate the decay rate for the Xð3872Þ into

J=c! and J=c�, and the results obtained for the ratio of these decay widths are compatible with

the experiment. We also show that considering only the �D0D�0 � c:c: component in the radiative

decay reduces the partial decay width in more than three orders of magnitude, in large discrepancy

with experiment.
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I. INTRODUCTION

The first observation of the Xð3872Þ decay into J=c�
was reported by the BELLE Collaboration in Ref. [1].
Later on, this decay mode was confirmed by the BABAR
Collaboration in Ref. [2] and more recently again in
BELLE in Ref. [3]. Theoretically, this decay mode had
already received some early attention and was studied in
Refs. [4–7], assuming either a charmonium state or a
molecular state. A thorough discussion of the different
models used and the results can be seen in Ref. [8], which
has also been updated recently in Ref. [9]. A recent work
assuming the Xð3872Þ to be a charmonium state is pre-
sented in Ref. [10] and assuming it to be a tetraquark in
Ref. [11]. In Ref. [12] it is assumed to be a mixture of a
charmonium and a molecular component, and using QCD
sum rules, a good rate is obtained for the J=c� decay
mode versus the J=c�þ�� one, which is evaluated in
Ref. [13]. In Ref. [8] the authors consider, like in the
work of Braaten and Kusunoki [5], the Xð3872Þ resonance
to be a molecule of D0 �D�0 � c:c:, as in Ref. [14], and in
addition, they include the possibility of a c �c admixture. In
Ref. [8] an effective Lagrangian is postulated to provide
the coupling of the Xð3872Þ to the D0 �D�0 components,
with an unknown wave function. The effective coupling
needed in the loops for radiative decay of the Xð3872Þ is
obtained using the Weinberg compositeness condition
[15,16], reformulated in Ref. [17] as g2 ¼ �ð @@s GÞ�1,

where G is the loop function of the D0 and �D�0 propa-
gators. The procedure has been shown to provide a
fair description of the molecular states in other works
[18–20]. The results of Dong et al. [8] are tied to
unknowns on the regularization of the loop functions,
the �M parameter used in Ref. [8], the coupling to the
c �c component, and the binding. The results obtained for

the Xð3872Þ decay into the J=c� channel are of about
125–250 keV, taking reasonable values for the �M pa-
rameter between 2 and 3 GeV.
In Ref. [9] the authors include the charge components

of DþD�� � c:c:, which were found necessary to explain
the ratio of Xð3872Þ to J=c� and J=c! in Refs. [17,21]
(see further developments in this direction in Ref. [22]).
The novelty with respect to the previous work of Dong
et al. [8] is that the authors use a smaller �M cutoff, of
the order of 0.5 GeV, to regularize the loop function, such
that the wave function of the D0 �D�0 � c:c: is much more
extended in space. The final results of the new evaluations
differ quantitatively from those of Dong et al. [8] and are
now in the range of 2–17 keV. It is then clear that a more
systematic approach to the problem has to be done if one
wishes to obtain accurate numbers from the molecular
picture of the Xð3872Þ. This is the purpose of the present
paper.
A dynamical picture of the Xð3872Þ in the coupled

channels of D �D� � c:c: was elaborated in Ref. [21] using

an extrapolation to SUð4Þ of chiral Lagrangians used in
the study of pseudoscalar meson interaction with vector

mesons [23]. This is equivalent to extending to SUð4Þ the
local hidden gauge approach of [24–27] with a particular

SUð4Þ breaking. Given the subtlety of the small binding

for the neutral D0 �D�0 � c:c: component versus the about
7-MeV binding for the charged DþD�� � c:c: compo-

nents, a coupled channel approach considering these

explicit channels with their exact mass, and not as-

suming isospin symmetry, was done in Ref. [28], con-

cluding that the couplings of the resonance to the neutral

and charged components are very similar, which tells
us that in strong processes the Xð3872Þ behaves as a

rather good I ¼ 0 object. The Dþ
s D

��
s � c:c: components
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were also included in Refs. [21,28], and we include them
here too.1

In the present work we follow the approach of [17,28],
where all the couplings are determined from the unitary
coupled channel approach and are tied to the binding of the
Xð3872Þ, which is generated dynamically as a composite state
ofD �D� in this picture, but we update these couplings consid-
ering the latest results for the masses of particles. The mecha-
nisms for radiative decay are then basically the same as in
Ref. [9], except thatwe also have contributions from theDs

�D�
s

components and have, although not many, different couplings
of the resonance to the neutral and chargedD �D� components.
The work is also technically different. The use of wave
functions with an arbitrary- size parameter is what regularizes
the loops in Ref. [9]. Our work has a different approach to the
regularization of the loops, andmost of the terms are shown to
be convergent. Some terms are formally divergent, but we can
isolate thedivergence into a termproportional to the same loop
function G which appears in scattering. The function G is
regularized in the scattering problem in order to fit the position
of the resonance, so when it comes to evaluate the radiative
decay, it is already fixed. Even then, there is still the possibility
that a new vertex of the radiative decay loop function intro-
duces a cutoff of longer range (� smaller in a momentum
cutoff) which introduces extra uncertainties, but we investi-
gate them and find them small.

Traditionally the Xð3872Þ could be considered as a JP ¼
1þþ or JP ¼ 2�þ state, and there is a work similar to the
one of Dong et al. [9] but assuming JP ¼ 2�þ [30]. Here
we will continue to use the JP ¼ 1þþ, which is supported
by recent analysis of data in Refs. [31,32].

Our work proceeds as follows: in the next section we
present the formalism for the work with the Feynman
diagrams used and the scheme to evaluate them. In
Sec. III we present the results for Xð3872Þ ! J=c�,
J=c!, J=c� and compare them to the experiment, dis-
cussing the role of the charged components of the Xð3872Þ
wave function. In Sec. IV we summarize our results.

II. FORMALISM

A. Brief summary of the model used
for D �D� interaction

In Refs. [21,33], the interaction between pseudoscalars and
vector mesons is studied including the charm sector. The

potential is like theWeinberg-Tomozawa interaction between
pseudoscalar mesons but including the vector meson fields
[23]. In Refs. [21,28], all the different currents within the
SUð4Þ scheme are classified in terms of SUð3Þ currents, and
the breaking symmetry parameters are introduced to account
for the suppression of the heavy meson exchange.2 Within
this formalism, the Xð3872Þ is a dynamically generated
resonance from the interaction of D �D�, having an eigenstate
of positive C parity with isospin I ¼ 0. It also has some
component ofDs

�D�
s . In fact, the basis of positiveC parity and

I ¼ 0 for these two channels corresponds to

1ffiffiffi
2

p jðD� �D� �D�DÞ; I ¼ 0; I3 ¼ 0i

¼ 1

2
jðD�þD� �D��Dþ þD�0 �D0 � �D�0D0Þi

1ffiffiffi
2

p jðD�
s
�Ds � �D�

sDsÞ; I ¼ 0; I3 ¼ 0i

¼ 1ffiffiffi
2

p jðD�þ
s D�

s �D��
s Dþ

s Þi: (1)

The method employed in Ref. [21] is a fully unitary
approach solving the Bethe-Salpeter equations in coupled
channels. The on-shell factorized form of these equations
is used, providing a structure of the amplitude like the one
of a renormalized theory described in the Appendix of
Ref. [35] [see Eq. (A2)] but not restricted to energies close
to threshold. Indeed in Refs. [36,37], it was explicitly
shown how the terms tied to the of-shell part of the poten-
tials could be absorbed into renormalized parameters of the
theory. Alternatively, using the N=D method and disper-
sion relations, in Refs. [38,39] the same results were
obtained with the resulting amplitude in matrix form for
the coupled channels

T�1 ¼ ðV�1 �GÞ; (2)

where V is the kernel of the interaction, that we call
potential, and G is the loop function for the four-
dimensional integral of two mesons propagator

GðP ¼ pþ kÞ ¼ i
Z d4q

ð2�Þ4
1

q2 �m2
P þ i�

� 1

ðpþ k� qÞ2 �m2
V þ i�

; (3)

diagonal in the coupled channel space. This integral is
conveniently regularized with a cutoff in the three

1We should recall that in any field theory one always
selects some channels and ignores others. The ignorance of
some channels can be coped with by introducing counter-
terms in the theory, then losing predicting power for some
processes, but they can serve to study other processes where
the counterterms are negligible. One does not know this
a priori, but in principle the explicit consideration of
close-by channels renders the theory more predictive than
if they were ignored. One example of this can be found in
the study of the scattering of D and D� mesons off the
Xð3872Þ as done in Ref. [29], where the D �D�0 component is
by far dominant.

2Concerning the use of the SUð4Þ treatment of Gamermann
and Oset [28], we would like to refer the reader to Sec. II D of
Ref. [34], where a thorough discussion on this issue is given,
providing arguments in favor of its use and also showing the
limitations. In the present case we could just invoke SUð3Þ
symmetry to relate the potentials, or the couplings, and finally
impose the Weinberg compositeness condition in coupled chan-
nels, Eq. (4), to determine the couplings.
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momentum or using dimensional regularization. The latter
means that the integral is calculated for d ¼ 4þ � and
� ! 0 after making a subtraction. The procedure is
equivalent to using a subtraction in the dispersion relation
of the N=D method used in Refs. [38,39]; the equivalence
of both methods was established in Refs. [39,40].

The potential used in Refs. [21,28] is a contact potential,
since it is based on the exchange of vector mesons from the
perspective of the local hidden gauge formalism, and due
to the large mass of the vector mesons, their propagators
are effectively replaced by constants.3

Different approaches have been used in the literature,
and one of them is pion exchange [41–49]. The way to treat
pion exchange differs from one approach to another, and so
do the results and the conclusions. A review of those works
is given in Ref. [50], where a thorough study of the issue is
done, considering the coupled channels D �D�, �DD�, and
D �D�. It is shown there that a short range D �D� ! D �D�
contact term is needed to arrive at well-defined equations,
with its strength tied to the regulator needed to make the
theory convergent. Because of this ambiguity, it was con-
cluded there that no model-independent statement can be
made on the importance of the one pion exchange in the
formation of the Xð3872Þ. However, with respect to what
concerns us here, a relevant finding in Ref. [50] is that the
Xð3872Þ coupling to the D0 �D�0 component is weakly
dependent on the kind of pion dynamics included.

Actually, in a different approach and a similar problem,
the interaction of D� �D� mesons leading to X, Y, Z mole-
cules, the � exchange is explicitly taken into account by
means of a box diagram that eliminates all possible ambi-
guities tied to the possibility of having the pion on shell
[51]. There it was found that the corrections to the ampli-
tudes induced by the �-exchange driven box diagram were
very small, using cutoffs or form factors of reasonable size
for the effective theories.

The Weinberg compositeness condition is very accurate
to determine the coupling, and for a binding of the D0 �D�0
channel below 1 MeV, as is the case here, the results with a
contact potential or with the dynamical pion are practically
indistinguishable.

With the D �D�0 coupling under control, a model
is needed to obtain the coupling to the charged
DþD�� � c:c: or charmed-strange Dþ

S D
��
S � c:c: compo-

nents, and for this we use the model of Gamermann and
Oset [21,28] as described above.

In Ref. [28] it was found that the Xð3872Þ had couplings
to the charged and neutral components of DD� that were
very close to each other, implying an approximate I ¼ 0
character for the state. Since the masses and bindings used

in Refs. [21,28] have been updated, we have redone the
calculation of Gamermann and Oset [21,28] with updated
masses, assuming the present binding of 0.2 MeV of the
Xð3872Þ with respect to the D0 �D�0 � c:c component. In
Ref. [28] we have two subtraction constants, �L and �H

(for the light and heavy sector) in the pseudoscalar-vector
loop functions, and in view of the minor role played by the
light channel, only the �H parameter was varied to fix the
new binding of the Xð3872Þ. The couplings to the channels
are then reevaluated. They are obtained from the residues
at the pole of the Xð3872Þ resonance, which is obtained
from a coupled channels unitary approach to the
D �D� � c:c: interaction. This approach, an extension of
the chiral unitary approach to the charm sector, accounts
for the rescattering of the components and resums all the
diagrams of the Bethe-Salpeter equation. The residue at the
pole of the tij scattering matrix, where i and j are two

channels, is given by gigj, where gi are the couplings. The

results of the couplings are shown in Table I.
From the couplings in Table I, we observe that there is

some isospin violation, which is however very small, less
than 1%. Intuitively, one might think that the D0 �D�0 com-
ponent is the only one relevant, because the binding of the
D0 �D�0 is very small, of the order of 0.2 MeVand the wave
function extends much further than for the charged com-
ponent, which is bound by about 8 MeV. However, as we
mentioned, the relevant interactions in most processes are
short ranged and so the wave functions around the origin,
proportional to the couplings in the approach we follow,
are what matters.4 Thus the wave function of the Xð3872Þ
is very close to the isospin I ¼ 0 combination of
D0 �D�0 � c:c: and DþD�� � c:c: and has a sizable fraction
of the DþD�� � c:c: of Eq. (1). However, in a field theo-
retical approach, like the one we follow, one only needs the
couplings to calculate observables, without having to

TABLE I. Couplings gR of the pole at ð3871:6� i0:001Þ MeV
to the channels (�H ¼ �1:27 here).

Channel jgR!PV j [MeV]

ðK�K�þ � c:c:Þ= ffiffiffi
2

p �53
ðK0 �K�0 � c:c:Þ= ffiffiffi

2
p �49

ðD�D�þ � c:c:Þ= ffiffiffi
2

p
3638

ðD0 �D�0 � c:c:Þ= ffiffiffi
2

p
3663

ðD�
s D

�þ
s � c:c:Þ= ffiffiffi

2
p

3395

3The formalism also makes approximations setting j ~qj=MV to
zero, with ~q the on-shell momentum of the vectors.
Improvements on this were done in Ref. [23] (see
Appendix B), which, when applied to the present problem,
lead to negligible corrections.

4In Ref. [17], using a potential Vð ~q; ~q0Þ ¼ v�ð�� ~qÞ�
�ð�� ~q0Þ, one proves that gG ¼ �ð~r ¼ 0Þ, but with other
regulators instead of the sharp cutoff, �ð~r ¼ 0Þ is replaced by
the function around the origin. Close to a pole, where 1�vG¼0,
one can trade V and G changing �V ¼ ��G, and the wave
function at the origin would change. The freedom is reduced if
one reproduces experimental data in a wider energy range and
certainly for the ratio of couplings of two channels. For what
concerns the present work, it suffices to keep in mind that the
mentioned relationship provides a qualitative picture to distin-
guish wave functions and probabilities.
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invoke the wave functions explicitly. The dynamics of the
process in one reaction like ours, with propagators and
couplings in the loops, determine the effective range of
the process (see also Ref. [52] in this respect).

From Table I we can also see that the couplings to the
K�K�þ � c:c: and K0 �K�0 � c:c: channels represent less
than the 1% of the contributions from the other channels
(the ���þ � c:c: has even smaller strength). Therefore,
we will treat the Xð3872Þ as if it were dynamically gen-
erated only from the last three channels in the Table.

We have mentioned before that the Weinberg compo-
siteness condition essentially provided the couplings of the
Xð3872Þ to the D0 �D0� component. We can see this now
from a different perspective using the generalization of the
Weinberg compositeness condition to coupled channels
[17]. The sum rule obtained in Ref. [17] for dynamically
generated states is

�X
i

g2i
@G

@s
¼ 1; (4)

where gi are the couplings of the state to any of the
channels and G is the loop function of Eq. (3) regularized
with a subtraction in Refs. [21,28], leading to

G ¼ 1

16�2

�
�l þ log

m2
l

�2
þM2

l �m2
l þ s

2s
log

M2
l

m2
l

þ ~pffiffiffi
s

p
�
log

s�M2
l þm2

l þ 2~p
ffiffiffi
s

p
�sþM2

l �m2
l þ 2~p

ffiffiffi
s

p

þ log
sþM2

l �m2
l þ 2~p

ffiffiffi
s

p
�s�M2

l þm2
l þ 2~p

ffiffiffi
s

p
��
; (5)

where ~p is the 3-momentum in the center-of-mass refer-
ence frame andMl and ml are the two particles in the loop.
The expression of G in Eq. (5) is commonly called the
dimensional regularization formula [39]. The subtraction
constants �l, of natural size [39], are finally tuned within

reasonable ranges to obtain the generated resonance at the
right physical energy. In Ref. [28] one takes �L and �H for
the light and heavy sectors. As mentioned above, in the
present work we refitted the �H to the new binding of the
Xð3872Þ. Note that the subtraction constant in the regulari-
zation of Eq. (5) does not play a role in the derivative of G
in Eq. (4), which is now convergent.
As shown in Ref. [17], each one of the terms in Eq. (4)

stands for the probability of finding the i channel in thewave
function, while gGmeasures thewave function at the origin.
The numerical values obtained for the terms in Eq. (4) are
0.86 for D0 �D�0, 0.124 for DþD��, 0.016 for Dþ

S D
��
S . As

one can see, the probability of finding theD0 �D�0 component
is the largest, due to the small binding energy [35].

B. The radiative decay Xð3872Þ ! J=c�

In the framework described above, the Xð3872Þ decays
into J=c� through the diagrams shown in Fig. 1. From this
figure we observe that there are four kinds of different
Feynman diagrams, all of them with an anomalous vertex
coupling two vectors and a pseudoscalar, depending on
whether the diagram contains a PPVor a 3V vertex, or the
photon emerges from the anomalous vertex. To begin with,
there are three different channels: D0 �D�0, DþD��, and
Dþ

s D
��
s , which lead to 12, plus another 12 for the complex

conjugate Feynman diagrams to evaluate. The formalism
used is very similar to the one of Molina et al. [53], where
the authors study the radiative decay of the dynamically
generated resonance K�

2ð1430Þ [54] into K�, via diagrams

containing anomalous vector-vector-pseudoscalar vertices.
The VPP, 3V, and V� vertices are evaluated using the local
hidden gauge approach [24–27], which automatically
incorporates vector meson dominance, by means of which
the photons couple to other hadrons converting themselves
into �0, !, 	, and J=c . As a consequence of this, we are

FIG. 1. Different types of Feynman diagrams for the decay of the Xð3872Þ into J=c�.
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also able to evaluate the rates of the Xð3872Þ decay into
J=c�, J=c! and the ratios of the decay rates, which can
be compared to existing data.

In summary, the Lagrangians we need in order to evalu-
ate the amplitudes are the following:

LVVP ¼ G0ffiffiffi
2

p ��
��h@�V
@�V�Pi; (6)

LV� ¼ �M2
V

e

g
A�hV�Qi; (7)

LPPV ¼ �ighV�½P; @�P�i; (8)

L3V ¼ ighðV�@
V� � @
V�V
�ÞV
Þi; (9)

with e the electron mass (e2=4� ¼ �), G0 ¼ 3g02=ð4�2fÞ,
g0 ¼ �GVM�=ð

ffiffiffi
2

p
f2Þ,GV ¼ f=

ffiffiffi
2

p
, and g ¼ MV=2f. The

constant f is the pion decay constant f� ¼ 93 MeV, Q ¼
diagð2;�1;�1; 2Þ=3, and MV is the mass of the vector
meson, for which we take M�.

The P and V matrices contain the 15-plet of the pseu-
doscalars and the 15-plet of vectors, respectively, in the
physical basis considering �, �0 mixing [55],

P¼

�ffiffi
3

p þ �0ffiffi
6

p þ �0ffiffi
2

p �þ Kþ �D0

�� �ffiffi
3

p þ �0ffiffi
6

p � �0ffiffi
2

p K0 D�

K� �K0 � �ffiffi
3

p þ
ffiffi
2
3

q
�0 D�

s

D0 Dþ Dþ
s �c

0
BBBBBBBB@

1
CCCCCCCCA
;

(10)

and V� represents the vector nonet

V� ¼

!þ�0ffiffi
2

p �þ K�þ �D�0

�� !��0ffiffi
2

p K�0 D��

K�� �K�0 	 D��
s

D�0 D�þ D�þ
s J=c

0
BBBBBBB@

1
CCCCCCCA

�

: (11)

From Eqs. (6)–(9), we can write the vertices involved in
the diagram of type (1) of Fig. 1 as

tRVP ¼ gX�
ðVÞ��ðXÞ� tVp� ¼ PM2

Vp

e

g
�ð�Þ� �ðVpÞ�

tPPlJ=c ¼ PVgð2q� pÞ��ðJ=c Þ�

tVVpPl
¼ AG0�����ðP� qÞ��ðVÞ� k��

ðVlÞ
� ;

(12)

where gX ¼ 3638=
ffiffiffi
2

p
; 3663=

ffiffiffi
2

p
; 3395=

ffiffiffi
2

p
MeV, for

D�D�þ, �D0D�0, D�
s D

�þ
s and �3638=

ffiffiffi
2

p
, �3663=

ffiffiffi
2

p
,

�3395=
ffiffiffi
2

p
MeV, for DþD��, D0 �D�0, Dþ

s D
��
s , respec-

tively, and P, PV , and A are numerical factors.
The Vp ! � conversion essentially replaces, up to a

constant, �
ðVpÞ
� with �ð�Þ� . Therefore, we can write the

amplitude of the diagram (1) depicted in Fig. 1 as

�it1 ¼ �BegXG
0 Z d4q

ð2�Þ4 �
ðVÞ�0

�ðXÞ
�0 �ðJ=c Þ�

� ð2q� pÞ������ðP� qÞ��ðVÞ� k��
ð�Þ
�

1

q2 �m2
P

� 1

ðq� pÞ2 �m2
Pl

1

ðP� qÞ2 �m2
V

; (13)

where B ¼ PAPV (the values of B for each case are shown
in Table II). Summing over the polarizations of the internal
vector, we have

X
�

�ðVÞ� �ðVÞ
�0 ¼ �g��0 þ ðP� qÞ�ðP� qÞ�0

m2
V

: (14)

When contracting with the antisymmetric tensor �����, the
term ðP� qÞ�ðP� qÞ�0 disappears. Thus, we have an

integral like

TABLE II. Coefficients B and C of the different diagrams in
Fig. 1.

Diagram P V P1 B

1 D0 �D�0 D0 4
3
ffiffi
2

p

Dþ D�� Dþ 1
3
ffiffi
2

p

Dþ
s D��

s Dþ
s

1
3
ffiffi
2

p
�1 �D0 D�0 �D0 � 4

3
ffiffi
2

p

D� D�þ D� � 1
3
ffiffi
2

p

D�
s D�þ

s D�
s � 1

3
ffiffi
2

p

3 D0 �D�0 D0 0

Dþ D�� Dþ 1ffiffi
2

p

Dþ
s D��

s Dþ
s � 1ffiffi

2
p

�3 �D0 D�0 �D0 0

D� D�þ D� � 1ffiffi
2

p

D�
s D�þ

s D�
s � 1ffiffi

2
p

Diagram P V V1 C

2 D0 �D�0 D�0 0

Dþ D�� D�þ � 1ffiffi
2

p

D�
s D�þ

s D�þ
s

1ffiffi
2

p
�2 �D0 D�0 �D�0 0

D� D�þ D�� 1ffiffi
2

p

D�
s D�þ

s D��
s

1ffiffi
2

p

4 D0 �D�0 D�0 � 4
3
ffiffi
2

p

Dþ D�� D�þ � 1
3
ffiffi
2

p

Dþ
s D��

s D�þ
s � 1

3
ffiffi
2

p
�4 �D0 D�0 �D�0 4

3
ffiffi
2

p

D� D�þ D�� 1
3
ffiffi
2

p

D�
s D�þ

s D��
s

1
3
ffiffi
2

p
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Z d4q

ð2�Þ4
ð2q� pÞ�ðpþ k� qÞ�

ðq2 �m2
P þ i�Þððq� pÞ2 �m2

Pl
þ i�Þððpþ k� qÞ2 �m2

V þ i�Þ
¼ iðag�� þ bk�k� þ cp�k� þ dk�p� þ ep�p�Þ (15)

because of Lorentz covariance. After contracting with the
antisymmetric tensor ����� and applying the Lorentz con-
dition p��

ðJ=c Þ� ¼ 0, only the coefficients a and c remain
to be evaluated. The a coefficient is related to the logarith-
mically divergent part of the integral in Eq. (15) and,
therefore, the evaluation of this coefficient needs special
treatment as we will see later on. We arrive at an amplitude
of the form

t1 ¼ BeG0gX�����ða�ðJ=c Þ
� þ cp�k � �ðJ=c ÞÞ�ðXÞ� k��

ð�Þ
� :

(16)

Now we want to evaluate the a and c coefficients. We do
it using the formula of the Feynman parametrization for
n ¼ 3,

1

���
¼ 2

Z 1

0
dx

Z x

0
dy

1

½�þ ð�� �Þxþ ð�� �Þy�3 :

(17)

In the integral of Eq. (15), we can perform the above
parametrization with

� ¼ ðq� pÞ2 �m2
Pl

� ¼ q2 �m2
P

� ¼ ðpþ k� qÞ2 �m2
V:

(18)

We define a new variable q0 ¼ qþ pðx� y� 1Þ � ky,
such that the integral of Eq. (15) can be expressed as

4
Z 1

0
dx

Z x

0
dy

Z d4q0

ð2�Þ4

�ðq0 þpð1�xþyÞþkyÞ�ðk�q0 �pðy�xÞ�kyÞ�
ðq02þs1Þ3

;

(19)

with

s1¼�m2
Pl
þðm2

Pl
�m2

PÞxþðk2þm2
P�m2

VÞy
þp2ðx�yÞð1�xþyÞþ2pkyðx�yÞ�k2y2: (20)

From Eq. (19), we must take the iag�� and icp�k� terms.

The c coefficient can be evaluated very easily, since

Z d4q0

ðq02 þ s1Þ3
¼ i�2

2s1
; (21)

and we have

c ¼ 1

8�2

Z 1

0
dx

Z x

0
dy

yðx� yÞ
s1

: (22)

The evaluation of the a coefficient is a little bit more
elaborated. We have the identity

iag��¼�4
Z 1

0
dx

Z x

0
dy

Z d4q0

ð2�Þ4
q0�q0�

ðq02þs1þ i�Þ3 ; (23)

and after taking the trace,

ia ¼ �
Z 1

0
dx

Z x

0
dy

Z d4q0

ð2�Þ4
q02

ðq02 þ s1 þ i�Þ3 : (24)

This part is logarithmically divergent and we will relate
it to the two-meson function loop GðPÞ of Eq. (3) as
follows: we multiply the integrand of Eq. (3) by the factor
ððq�pÞ2�m2

Pl
Þ=ððq�pÞ2�m2

Pl
Þ and using the Feynman

parametrization with the change of variable q0 ¼
qþ pðx� y� 1Þ � ky, we obtain

GðPÞ ¼ 2i
Z 1

0
dx

Z x

0
dy

Z d4q0

ð2�Þ4

� q02 þ ðkyÞ2 þ 2pkyðy� xÞ þ p2ðx� yÞ2 �m2
Pl

ðq0 þ s1Þ3
(25)

and

a ¼ GðPÞ
2

þ 1

32�2

Z 1

0
dx

�
Z x

0
dy

ðkyÞ2 þ 2pkyðy� xÞ þ p2ðx� yÞ2 �m2
Pl

s1 þ i�
:

(26)

However, to assume that the divergent term of Eq. (24)
in the three-particle loop can be regularized like in the two-
body loop function appearing in scattering requires a jus-
tification. Certainly, this derivation only makes sense if
there is a common cutoff in the two integrals. Indeed, the
use of the same cutoff can be justified writing the potential
of the chiral unitary approach as [17]

Vð ~q; ~q0; EÞ ¼ vðEÞ�ðqmax � j ~qjÞ�ðqmax � j ~q0jÞ; (27)

which led to a T matrix with the same factorization

Tð ~q; ~q0; EÞ ¼ TðEÞ�ðqmax � j ~qjÞ�ðqmax � j ~q0jÞ: (28)

This means that the PV ! PV amplitude in the Xð3872Þ
pole goes as

T � gX�ðqmax � j ~qjÞgX�ðqmax � j ~q0jÞ
s�M2

X

; (29)
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and hence the cutoff of the scattering is inherent to the
vertex in the X ! D �D�, which is used in Fig. 1. The
derivation above assumes that no extra cutoffs come
from the other vertices in the diagrams, as usually assumed
in most calculations, or that they involve bigger cutoffs
which become then redundant. In order to test the accuracy
of this procedure, we introduce an extra cutoff in the
J=cDD� vertex, �ð�0 � j ~qjÞ. For this we first evaluate
the cutoff equivalent of the G function of scattering in
dimensional regularization used in Refs. [21,28]. We find
a cutoff of qmax ¼ 751:7 MeV for the D0 �D�0 channel and
qmax ¼ 733:3 MeV for the DþD�� channel. We take
qmax ¼ 700 MeV for the Dþ

S D
��
S channel. Any larger

value �0 of the J=cDD� cutoff, �ð�0 � j ~q0jÞ, will not
make any change. So we choose values of �0 smaller than
qmax but in a reasonable range.

Another possibility is to take a form factor of the type

eq
2=�02

. Such a form factor, with�0 ¼ 1:2 MeV, was taken
in Ref. [56] in a similar vertex involving D mesons, the
D�D� vertex. Normalized such that it is unity when we
have the intermediate D �D� on shell, the extra factor to be

considered in three-dimensional integration of the loop

function is eð ~q2on� ~q2Þ=�02
.

Then, we take the two options, �0 ’ 600 MeV with a
sharp cutoff and the exponential form factor, and we see
how much the results change.
Now, we want to calculate the amplitude for the second

diagram in Fig. 1 containing the three-vector vertex.
The only difference with the previous diagram is the
three-vector vertex. Thus, the amplitudes corresponding
to the three-vector vertex and the anomalous vertex are,
respectively,

tVVlVp
¼ V3gfðq� pþ kÞ��ðVlÞ


 �ðVÞ��ðVpÞ


� ðpþ 2k� qÞ
�ðVÞ� �ðVlÞ
�ðVpÞ�

þ ð2ðp� qÞ þ kÞ
�ðVÞ� �ðVlÞ��ðVpÞ
g
tVlJ=cP ¼ AG0�����ðq� pÞ��ðVlÞ

� p��
ðJ=c Þ
� ; (30)

where V3 and A are numerical factors.
Thus, we can write the amplitude of the diagram (2) in

Fig. 1 as

�it2 ¼ �eG0gXC
Z d4q

ð2�Þ4 �
����ðq� pÞ��ðVlÞ

� p��
ðJ=c Þ
� �ðXÞ


0 �ðVÞ

0 fðq� pþ kÞ��ðVlÞ


 �ðVÞ��ð�Þ


� ðpþ 2k� qÞ
�ðVÞ� �ðVlÞ
�ð�Þ� þ ð2ðp� qÞ þ kÞ
�ðVÞ� �ð�Þ
�ðVlÞ�g 1

q2 �m2
P þ i�

1

ðq� pÞ2 �m2
Vl
þ i�

� 1

ðpþ k� qÞ2 �m2
V þ i�

;

where C ¼ V3PA. In this process the �D�0 is very close to
being on-shell with zero three-momentum. To be consis-
tent with the approach of Gamermann and Oset [28], which
is neglecting the three-momentum compared to the mass of
the vector meson, j ~qj=mV ’ 0, �ðVÞ0 ’ 0, we perform the
sum over polarizations asX

�

�ðVÞ��ðVÞ
0 ’ �ð�
0Þspatial ¼ �ij: (31)

Wealso cankeep the covariant formalismand remember at the
end that�, 
0 are spatial. Theway to proceed is very similar to
that of the previous diagram. The second term of the three-
vector vertex proportional to ðpþ 2k� qÞ� does not con-
tribute, sincewe have ðq� pÞ�p�ðpþ 2k� qÞ� ¼ q�ðpþ
2kÞ�p��

����, which applying Lorentz covariance in the in-
tegral turns into a term like ða0p�k�þb0p�k�Þp��

����¼0.
Therefore, we have two kinds of integrals,

Z d4q

ð2�Þ4
q�ðq� pþ kÞ
0

ðq2 �m2
P þ i�Þððq� pÞ2 �m2

Vl
þ i�Þððpþ k� qÞ2 �m2

V þ i�Þ
¼ iða1g�
0 þ b1k�k
0 þ c1p�k
0 þ d1p
0k� þ e1p
0p�Þ (32)

and

Z d4q

ð2�Þ4
q�2ðp� qÞ


ðq2 �m2
P þ i�Þððq� pÞ2 �m2

Vl
þ i�Þððpþ k� qÞ2 �m2

V þ i�Þ
¼ iða2g�
 þ b2k�k
 þ c2p�k
 þ d2k�p
 þ e2p�p
Þ: (33)

One can see that only the coefficients proportional to a1, b1, d1, a2, and d2 survive. Thus, we finally get

t2 ¼ �CeG0gX�����fða1�ðXÞ� þ ðb1k� þ d1p
�Þ�ðXÞ� k�Þ�ð�Þ� þ ða2�ð�Þ� þ d2�

ð�Þ
� p�k�Þ�ðXÞ� gp��

ðJ=c Þ
� ; (34)
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where now

a1 ¼ �GðPÞ
4

� 1

64�2

Z 1

0
dx

Z x

0
dy

ðkyÞ2 þ 2pkyðy� xÞ þ p2ðx� yÞ2 �m2
Vl

s2 þ i�
b1 ¼ 1

16�2

Z 1

0
dx

Z x

0
dy

yðyþ 1Þ
s2 þ i�

d1 ¼ 1

16�2

Z 1

0
dx

Z x

0
dy

yðy� xÞ
s2 þ i�

a2 ¼ �2a1 d2 ¼ �2d1; (35)

with

s2 ¼ �m2
Vl
þ ðm2

Vl
�m2

PÞxþ ðk2 �m2
V þm2

PÞyþ p2ðx� yÞð1� xþ yÞ þ 2kypðx� yÞ � k2y2: (36)

In order to evaluate diagrams (3) and (4) in Fig. 1, we only
have to do the exchanges k $ p and �ð�Þ $ �ðJ=c Þ in the
amplitudes of diagrams (1) and (2).

We have

t3 ¼ BeG0gcX�����ða�ð�Þ� þ dk�ðp � �ð�ÞÞÞ�ðXÞ� p��
ðJ=c Þ
� ;

(37)

with

a ¼ GðPÞ
2

þ 1

32�2

Z 1

0
dx

�
Z x

0
dy

ðpyÞ2 þ 2pkyðy� xÞ �m2
Pl

s3 þ i�
; (38)

and

d ¼ 1

8�2

Z 1

0
dx

Z x

0
dy

yðx� yÞ
s3

; (39)

where

s3 ¼ �m2
Pl
þ ðm2

Pl
�m2

PÞxþ ðp2 þm2
P �m2

VÞy
þ 2pkyðx� yÞ � p2y2; (40)

for diagram (3), and

t4 ¼ �CeG0gX�����fða1�ðXÞ�

þ ðc1k� þ e1p
�Þ�ðXÞ� p�Þ�ðJ=c Þ

�

þ ða2�ðJ=c Þ
� þ c2�

ðJ=c Þ
� k�p�Þ�ðXÞ� gk��ð�Þ� ; (41)

with

a1 ¼ �GðpÞ
4

� 1

64�2

Z 1

0
dx

�
Z x

0
dy

ðpyÞ2 þ 2pkyðy� xÞ �m2
Vl

s4 þ i�

e1 ¼ 1

16�2

Z 1

0
dx

Z x

0
dy

yðyþ 1Þ
s4 þ i�

c1 ¼ 1

16�2

Z 1

0
dx

Z x

0
dy

yðy� xÞ
s4 þ i�

a2 ¼ �2a1 c2 ¼ �2c1; (42)

and

s4 ¼ �m2
Vl
þ ðm2

Vl
�m2

PÞxþ ðp2 �m2
V þm2

PÞy
þ 2kypðx� yÞ � p2y2 (43)

for diagram (4).

FIG. 2. Different types of Feynman diagrams for the decay of the Xð3872Þ into J=c� and J=c!.
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C. The Xð3872Þ decay to J=c� and J=c!

This formalism also allows us to evaluate the amplitudes
for the decays X ! J=c� and X ! J=c! (Fig. 2). We
can proceed in complete analogy with the radiative decay
to determine these amplitudes, simply removing the final
photon and leaving the vector meson in the final state, the
�0 or the !. Moreover, we must take into account that the
�0 and the! do not couple to the strangeDmesons, so that
we have again four different kinds of diagrams, but only
two channels plus their complex conjugate, that is 16
Feynman diagrams to evaluate. Doing this, we can observe
that the new amplitudes have the same structure as the
previous ones and can be obtained, up to a coefficient,

directly with the substitutions e $ g and �ð�Þ $ �ð�;!Þ. For
instance, in the case of the diagram (1a) of Fig. 2, we have

t1a ¼ B0gG0gX�����ða�ðJ=c Þ
� þ cp�k � �ðJ=c ÞÞ�ðXÞ� k��

ð�;!Þ
� ;

(44)

with a and c the same as before

a ¼ GðPÞ
2

þ 1

32�2

Z 1

0
dx

�
Z x

0
dy

ðkyÞ2 þ 2pkyðy� xÞ þ p2ðx� yÞ2 �m2
Pl

s1 þ i�
;

c ¼ 1

8�2

Z 1

0
dx

Z x

0
dy

yðx� yÞ
s1

(45)

and B0 ¼ PVA of Eqs. (12). However, since we are dealing
with different vertices, the new numerical coefficients, that
we call B0 and C0, are now different and they are written in
Tables III and IV.

III. RESULTS

Following the procedure in Sec. II, we can obtain the
total decay amplitude for the radiative decay of the X
meson and evaluate the correspondent decay width for
this channel by means of the formula

� ¼ j ~kj
8�M2

X

�XX jtj2; (46)

where we sum over the polarizations of the final states and
average over the X meson polarizations.
Applying Eq. (46), we obtain

�ðX ! J=c�Þ ¼ 149:5 keV: (47)

In order to make an estimation of the theoretical
uncertainty on this quantity, we perform a suitable
variation of the parameters used to compute the total am-
plitude: the coupling G0 for the vertex coupling two vectors
and a pseudoscalar vertex [Eq. (6)], the axial-vector-
pseudoscalar couplings gX for the three channels, and the
two subtraction constants in the loop function, � and �S.
We allow the constant f, contained in G0, to vary, but

keep the relationship GV ¼ f=
ffiffiffi
2

p
and replace MV ¼ M�

TABLE III. Coefficients B0 and C0 of the different diagrams in
Fig. 2 in the case of a � meson in the final state.

Diagram P V P1 B0

1 D0 �D�0 D0 1
2

Dþ D�� Dþ � 1
2

�1 �D0 D�0 �D0 � 1
2

D� D�þ D� 1
2

3 D0 �D�0 D0 � 1
2

Dþ D�� Dþ 1
2

�3 �D0 D�0 �D0 1
2

D� D�þ D� � 1
2

Diagram P V V1 C0

2 D0 �D�0 D�0 1
2

Dþ D�� D�þ � 1
2

�2 �D0 D�0 �D�0 � 1
2

D� D�þ D�� 1
2

4 D0 �D�0 D�0 1
2

Dþ D�� D�þ � 1
2

�4 �D0 D�0 �D�0 � 1
2

D� D�þ D�� 1
2

TABLE IV. Coefficients B0 and C0 of the different diagrams in
Fig. 2 in the case of a ! meson in the final state.

Diagram P V P1 B0

1 D0 �D�0 D0 1
2

Dþ D�� Dþ 1
2

�1 �D0 D�0 �D0 � 1
2

D� D�þ D� � 1
2

3 D0 �D�0 D0 � 1
2

Dþ D�� Dþ � 1
2

�3 �D0 D�0 �D0 1
2

D� D�þ D� 1
2

Diagram P V V1 C0

2 D0 �D�0 D�0 1
2

Dþ D�� D�þ 1
2

�2 �D0 D�0 �D�0 � 1
2

D� D�þ D�� � 1
2

4 D0 �D�0 D�0 1
2

Dþ D�� D�þ 1
2

�4 �D0 D�0 �D�0 � 1
2

D� D�þ D�� � 1
2
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with MD� . The couplings gX for the neutral and strange
channels are also varied, independently, by 10%. This
might be extreme for the neutral channel, since it is basi-
cally determined by the Weinberg compositeness condi-
tion, but we also have an uncertainty in the binding which
can induce this change. For that reason we perform later on
another sort of error analysis based on experimental uncer-
tainties. On the other hand, the variation of the coupling for
the charged channel is done in such a way that the ratio
between it and the one for the neutral channel is kept
constant, in order to preserve the isospin of the Xð3872Þ.
Then, we let the subtraction constants � and �S vary
between �1:60 and �1:27. This range is motivated by
the range chosen for f. Indeed, going to higher values of
the constant f causes a decrease of the potential in the
Lippman-Schwinger equation used to evaluate the scatter-
ing amplitude which determines the position of the reso-
nance. One would need to go to more negative values of the
subtraction constants � and �S in the loop function, which
appears in the a coefficients, to keep the pole representing
the resonance in the same position. The range is thus
chosen such as to produce an effect in the pole position
similar to that induced by the change in f.

We obtain the result

�ðX ! J=c�Þ ¼ ð117� 40Þ keV: (48)

There is another source of error that stems from experi-
mental uncertainties in the binding of the Xð3872Þ, and we
also evaluate it. We have then performed a different exer-
cise changing just �H such that the binding goes from 0.1
to 0.4 MeV, which is indeed within the experimental limits
but still keeps the Xð3872Þ bound. We recalculate the
couplings and evaluate again the rates and we find

�ðX ! J=c�Þ ¼ ð117þ48
�35Þ keV: (49)

This gives a new perspective on the uncertainties, showing
that errors from the experimental uncertainties are of the
same order of the rough estimate of the theoretical errors.

We can also evaluate the branching ratios for the decays
X ! J=c� and X ! J=c!. These two decays, if we
consider the � and the!with fixed masses, are not allowed
because of the phase space, but they can occur when their
mass distributions are taken into account and they are
observed in the decays X ! J=c�� and X!J=c���,
respectively. The two- and three-pion states are produced
in the decays of the � and the !.

Thus, the decay widths, convoluted with the spectral
functions, are given by the formula

��=! ¼ 1

N

Z ðm�=!þ2��=!Þ2

ðm�=!�2��=!Þ2
d ~m2

�
� 1

�

�

� Im

�
1

~m2 �m2
�=! þ i~��=! ~m

�

� �Xð ~mÞðmX �mJ=c � ~mÞ; (50)

where

N¼
Z ðm�=!þ2��=!Þ2

ðm�=!�2��=!Þ2
d ~m2

�
� 1

�

�
Im

�
1

~m2�m2
�=!þ i~��=! ~m

�
;

(51)

where �Xð ~mÞ is given by Eq. (46), replacing m� and m!

with ~m.
In Eqs. (50) and (51), m� ¼ 775:49 MeV and m!¼

782:65MeV are the masses of the mesons, ��¼
149:1MeV and �! ¼ 8:49 MeV are the on-shell widths and

~� �=! ¼ ��=!

�
~q

q�=!

�
3
; (52)

where ~q and q�=! are the on-shell relative momenta of the

mesons in the center-of-mass reference frame for the mass
~m and the physical mass, respectively,

~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 � 4m2

�

p
2

ð ~m� 2m�Þ;

q�=! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�=! � 4m2
�

q
2

:

(53)

In Eq. (50), �X is the total decay width of the X into J=c�
or J=c! to simplify the notation, and in Eq. (53),m� is the
pion mass.
Using Eq. (50) we find

�� ¼ 821:9 keV; �! ¼ 1096:6 keV; (54)

and when the error analysis that leads to Eq. (48) is done,
the band of values becomes

��¼ð645�221Þ keV; �!¼ð861�294Þ keV: (55)

Similarly to Eq. (49) we also have errors due to the
uncertainties in the binding. Taking the same range that
led to Eq. (48), we find

�� ¼ ð645þ264
�192Þ keV; �! ¼ ð861þ353

�257Þ keV: (56)

With the results of Eq. (54) we can evaluate the ratio

R ¼ BðX ! J=c���Þ
BðX ! J=c��Þ ¼ �!

��

¼ 1:33: (57)

However, the experiment gives the ratio [57]

Rexp ¼ BðX ! J=c�þ���0Þ
BðX ! J=c�þ��Þ ¼ 0:8� 0:3 (58)

and, to compare our result with this, we must take into
account that the ! decays into �þ���0 with a branching
ratio B!;3� ¼ 0:892.
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Hence, our ratio to compare with Rexp is

Rth ¼ �!

��

� B!;3� ¼ 1:19; (59)

well within the experimental error.
The result we obtain for the ratio

�ðX ! J=c�Þ
�ðX ! J=c��Þ ¼ 0:18; (60)

is also compatible with the two values known from the
experiment ð0:14� 0:05Þ [1] and ð0:22� 0:06Þ [2].

We can also estimate the theoretical errors for the two
ratios in Eqs. (59) and (60), by evaluating the �, �, and !
decays with the same set of parameters and varying these
parameters in the range used to evaluate �ðX ! J=c�Þ,

Rth ¼ ð0:92� 0:13Þ
�ðX ! J=c�Þ
�ðX ! J=c��Þ ¼ ð0:17� 0:02Þ:

(61)

We should note that changing the binding, as done to get
the errors in Eq. (49), barely changes the ratios of Eq. (61)
since the ratios of the couplings of the Xð3872Þ to the
different channels barely change. This was already found
in Ref. [28]. The uncertainties in the ratios are smaller than
for the absolute values and they are of the order of 15%.

At this point we also take into account uncertainties
from the association of the loop with two propagators to
the G function of scattering, including extra cutoffs or the
form factor discussed above. The values that we find are
shown in Table V, where the errors from the three sources
discussed are added in quadrature. We can see that we have
good agreement with the experiment in the two ratios
measured.

Finally, we do another exercise removing the DþD�� �
c:c and Dþ

S D
��
S � c:c and allowing only the D0 �D�0 � c:c

contribution. The coupling of the D0 �D�0 � c:c is reeval-
uated, taking the same binding for the Xð3872Þ, such that
Eq. (4) is now fulfilled with just this channel. The results
that we obtain are

�� ¼ 0:53 keV �� ¼ 10589 keV �! ¼ 429 keV

Rth ¼ 0:04
�ðX ! J=c�Þ
�ðX ! J=c��Þ ¼ 5:05 � 10�5: (62)

As we can see, the two ratios that we have to compare
with the experiment largely diverge from the experimental
values, and �� by itself becomes much bigger than the

width of the Xð3872Þ (�X < 1:2 MeV).
In Table VI we compare our results with a variety of

results available in the literature using different models. It
would be interesting to test these models with the new
information on the experimental ratios to help discriminate
among them.
The ratio of J=c� to J=c�� is also evaluated in

Ref. [9], where the Weinberg compositeness condition
[15] is used to determine the couplings but other assump-
tions are made, and they find a range of values from 0.18 to
1.57, depending on the model they consider, as mentioned
in the Introduction. We should stress that once the X is
obtained in our case and, hence, the couplings are deter-
mined, the uncertainties that we have from theoretical
sources and experimental errors in the masses are much
smaller than in Ref. [9].
We should note that our results are tied to the masses of

the particles in the PDG, and there are still large errors.
When in the future the binding can be more accurately
determined, we can also obtain more accurate values of the

TABLE V. Values of the partial decay width in units of keV. First column: using the standard G function of scattering. Second
column: multiplying the integrand of G by ð�0 � j ~qjÞ with �0 ¼ 600 MeV. Third column: multiplying the integrand of G by
eð ~q2on� ~q2Þ=�02

with �0 ¼ 1200 MeV. Fourth column: range of values for all the rates including the three sources of errors, from
uncertainties in the couplings, binding of the X and the G function, summed in quadrature. Fifth column: experimental results.

Standard G �ð�0 � j ~qjÞ eð ~q2on� ~q2Þ=�02
Range Experiment

�� 150 190 180 117þ73
�53

��ð2�Þ 821 991 905 645þ383
�293

�!ð3�Þ 1097 1593 1380 861þ500
�390

�!

��
� B!;3� 1.19 1.43 1.36 0:92þ0:27

�0:13 0:8� 0:3 [57]

��=��ð2�Þ 0.18 0.19 0.20 0:17þ0:03
�0:02 ð0:14� 0:05Þ [1] ð0:22� 0:06Þ [2]

TABLE VI. Results from previous works for the decay width
of the Xð3872Þ into J=c�, using different models.

Model � [keV]

c �c 11 [5]

c �c 139 [6]

Molecule 8 [6]

Molecule 125–250 [8]

c �c 11–71 [9]

Molecule þc �c 2–17 [9]

2�þ 1.7–2.1 [30]

c �c 45–80 [10]

Tetraquark 10–20 [11]

Present work 64–190
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absolute rates. On the other hand, the values of the ratios
will be essentially unaltered.

IV. CONCLUSIONS

In this paper we have exploited the picture of the Xð3872Þ
as a composite state of D �D� � c:c: dynamically generated
by the interaction of the D and D� states. The couplings of
the state to the different D �D� � c:c: channels have been
calculated before within this model, but we have recalculated
them here to take into account the more precise values of the
particle masses tabulated in the PDG [58]. The coupling for
theD0 �D�0 � c:c is similar to the one that would be obtained
using the compositeness condition of Weinberg, since
the state is barely bound in the D0 �D�0 component, but
the dynamics of the model also produce couplings for the
DþD�� � c:c andDþ

S D
��
S � c:c states. Using an extension

to SUð4Þ with an explicit breaking of this symmetry of the
local hidden gauge approach, used before successfully in
the study of related processes, one can determine the
widths of the Xð3872Þ to J=c�, J=c!, and J=c� and
compare with the ratios determined experimentally in
recent works. We find a very good agreement with the
experimental results. The absolute numbers obtained for
the different widths are also reasonable and their sum
within errors, ð1:6þ0:9

�0:7Þ MeV, is compatible with the recent

total Xð3972Þ upper limit of the width, � ¼ 1:2 MeV.

We have also conducted a test neglecting the charged
and strange components of the wave function, thus having
only the D0 �D0� � c:c: component. We obtain ratios in
great disagreement with the experiment and an absolute
value for the Xð3872Þ partial width into J=c� that largely
exceeds the experimental upper bound for the total width
of the Xð3872Þ. This exercise confirms the relevance of the
charged channels to describe the process that we studied
and the approximate I ¼ 0 character of this resonance.
This does not mean that the use the neutral channel alone
is an incorrect way to proceed in general. It is just incom-
plete, but in any field theoretical approach, the missing
channels can be accounted for by means of counterterms,
which, however, make the theory less predictive. For the
present case it became clear that the explicitly considering
the charged D �D� channels rendered the theory more pre-
dictive than omitting them.
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