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We show that the observed pattern of quark flavor mixing, such as jVusj ’ jVcdj, jVcbj ’ jVtsj,
jVcd=Vtdj ’ jVcs=Vtsj ’ jVtb=Vcbj, and jVub=Vcbj< jVtd=Vtsj, can essentially be understood in the chiral

and heavy quark mass limits. In particular, the phenomenologically successful relations jVub=Vcbj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
and jVtd=Vtsj ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
can be reasonably conjectured in the mb ! 1 and mt ! 1 limits,

respectively. We stress that the strength of weak CP violation in the quark sector is determined by the

moduli of the four corner elements of the Cabibbo-Kobayashi-Maskawa matrix. A comparison between

strong and weak CP-violating effects in the standard model is also made.
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I. INTRODUCTION

The standard model (SM) has proved to be very suc-
cessful in describing the fundamental properties of elem-
entary particles and their interactions, but it has to be
extended in the flavor sector by covering the facts that
the three known neutrinos are not massless and different
lepton flavors can mix [1]. In this case even a minimal
extension of the SM involves twenty (or twenty-two) flavor
parameters, among which twelve are masses, six are flavor
mixing angles, and two (or four) are CP-violating phases
if the massive neutrinos are of the Dirac (or Majorana)
nature.1 Determining the values of these parameters and
understanding why they are what they are constitute a
central part of today’s particle physics. However, we
have to confront some flavor puzzles revealed by current
experimental data.

The flavor puzzles include why up-type quarks, down-
type quarks, and charged leptons all have strong mass
hierarchies (i.e., mu � mc � mt, md � ms � mb, and
me � m� � m�) at a given energy scale; why the masses

of three neutrinos are extremely small in comparison with
those of nine charged fermions; why the six off-diagonal
elements of the Cabibbo-Kobayashi-Maskawa (CKM)
quark flavor mixing matrix V [2] are strongly suppressed
such that the three mixing angles are very small; why the
Maki-Nakagawa-Sakata-Pontecorvo lepton flavor mixing
matrix U [3] contains two relatively large mixing angles
and the third one is not strongly suppressed either; why the
patterns of V and U are so different but their smallest
matrix elements are both located at the upper-right corner
(i.e., Vub and Ue3) [4]; how the origin of CP violation is
correlated with the origin of fermion masses; and so on.

In the lack of a complete flavor theory capable of predict-
ing the flavor structures of leptons and quarks or revealing
possible symmetries behind them, it is a big challenge to
answer even a part of the aforecited questions. The great
ideas like grand unifications, supersymmetries, and extra
dimensions are still not very helpful to solve the flavor
puzzles, and the exercises of various group languages or
flavor symmetries turn out to be too divergent to converge
to something unique [5].
In this paper, we shall follow a purely phenomenological

way to speculate whether the observed pattern of quark
flavor mixing can be partly understood in some reasonable
limits of quark masses. This starting point of view is more
or less motivated by two useful working symmetries in
understanding the strong interactions of quarks and hadrons
by means of quantum chromodynamics (QCD) or an effec-
tive field theory based on QCD [6]: the chiral quark sym-
metry (i.e., mu, md, ms ! 0) and the heavy quark
symmetry (i.e., mc, mb, mt ! 1). The reason for the use-
fulness of these two symmetries is simply that the masses
of the light quarks are far below the typical QCD scale
�QCD � 0:2 GeV, whereas the masses of the heavy quarks

are far above it. Because the elements of the CKMmatrix V
are dimensionless and their magnitudes lie in the range of
0–1, they are in general expected to depend on the mass
ratios of the lighter quarks to the heavier quarks. The mass
limits corresponding to the chiral and heavy quark symme-
tries are therefore equivalent to setting the relevant mass
ratios to zero, and they are possible to help reveal a part of
the salient features of V. In this spirit, some preliminary
attempts have been made to look at the quark flavor mixing
pattern in the mu, md ! 0 or mt, mb ! 1 limits [7].
The present work aims to show that it is actually possible

to gain an insight into the observed pattern of quark flavor
mixing in the chiral and heavy quark mass limits. Such
model-independent access to the underlying quark flavor
structure can at least explain why jVusj ’ jVcdj and jVcbj ’
jVtsj hold to a good degree of accuracy, why jVcd=Vtdj ’
jVcs=Vtsj ’ jVtb=Vcbj is a reasonable approximation, and
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1In this regard we have assumed the 3� 3 lepton flavor

mixing matrix to be unitary, regardless of the origin of tiny
neutrino masses. Here the effective strong CP-violating parame-
ter �� is not taken into account, but it will be briefly discussed in
Sec. IV.
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why jVub=Vcbj should be smaller than jVtd=Vtsj. In par-
ticular, the phenomenologically successful relations

jVub=Vcbj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
and jVtd=Vtsj ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
can be rea-

sonably conjectured in the heavy quark mass limits. We
also point out that the strength of CP violation in the quark
sector is simply determined by the product of the four
corner elements of V (i.e., jVudj, jVubj, jVtdj, and jVtbj),
based on the experimental fact that two of the CKM
unitarity triangles are almost the right triangles. This inter-
esting observation motivates us to pay more attention to a
particular parametrization of V [8], in which the three
flavor mixing angles are all comparable with the Cabibbo
angle and the tiny CP-violating phase shows up only in the
four corners of V. Finally, we make a brief comment on the
effect of strong CP violation and then compare its strength
with that of weak CP violation.

II. THE CKM MATRIX IN THE
QUARK MASS LIMITS

We begin with the weak charged-current interactions of
six quarks in their mass basis:

�Lcc ¼ gffiffiffi
2

p u c t
� �

L�
�V

d

s

b

0
BB@

1
CCA

L

Wþ
� þ H:c:; (1)

where the CKM matrix V measures a nontrivial mismatch
between the flavor and mass eigenstates and can be decom-

posed into V ¼ Oy
uOd with Ou and Od being the unitary

transformations responsible for the diagonalizations of the
up- and down-type quark mass matrices in the flavor basis,
respectively. Namely,

Oy
uHuOu ¼ Oy

uMuM
y
uOu ¼ Diagfm2

u;m
2
c; m

2
t g;

Oy
dHdOd ¼ Oy

dMdM
y
dOd ¼ Diagfm2

d;m
2
s ; m

2
bg;

(2)

where Hu and Hd are defined to be Hermitian. To be
explicit, the nine elements of V read

V�i ¼
X3
k¼1

ðOuÞ�k�ðOdÞki; (3)

where � and i run over ðu; c; tÞ and ðd; s; bÞ, respectively.
Because of Eqs. (2) and (3), the dimensionless V�i ele-
ments are expected to be more or less dependent on the
quark mass ratios and nontrivial phase differences between
Mu and Md. Given current experimental data and the
unitarity of V, the magnitudes of all the nine CKM matrix
elements have been determined to an impressively good
degree of accuracy [1]:

jVj ¼
0:97427� 0:00015 0:22534� 0:00065 0:00351þ0:00015

�0:00014

0:22520� 0:00065 0:97344� 0:00016 0:0412þ0:0011
�0:0005

0:00867þ0:00029
�0:00031 0:0404þ0:0011

�0:0005 0:999146þ0:000021
�0:000046

0
BB@

1
CCA: (4)

We shall show that the strong mass hierarchies of up- and
down-type quarks allow us to account for a part of the ob-
served flavor mixing properties in a model-independent way.

A. Hu and Hd in the quark mass limits

In general, the mass limit mu ! 0 (or md ! 0) does not
correspond to a unique form of Hu (or Hd). The reason is
simply that the form of a quark mass matrix is always basis
dependent. Without loss of generality, one may choose a
particular flavor basis such thatHu andHd can bewritten as

lim
mu!0

Hu ¼
0 0 0

0 � �
0 � �

0
BB@

1
CCA;

lim
md!0

Hd ¼
0 0 0

0 � �
0 � �

0
BB@

1
CCA;

(5)

in which ‘‘�’’ denotes an arbitrary nonzero element. To
prove that Eq. (5) is the result of a basis choice instead of
an assumption, we refer the reader to the Appendix.

When the mass of a given quark goes to infinity, we
argue that it becomes decoupled from the masses of other
quarks. In this sense we may choose a specific flavor basis
where Hu and Hd can be written as

lim
mt!1Hu ¼

� � 0

� � 0

0 0 1

0
BB@

1
CCA;

lim
mb!1Hd ¼

� � 0

� � 0

0 0 1

0
BB@

1
CCA:

(6)

In other words, the 3� 3 Hermitian matrices Hu and Hd

can be simplified to the effective 2� 2 Hermitian matrices
in either the chiral quark mass limit or the heavy quark
mass limit. In view of the fact that mu � mc � mt and
md � ms � mb hold at an arbitrary energy scale [9], we
believe that Eqs. (5) and (6) are phenomenologically rea-
sonable and can help explain some of the observed prop-
erties of quark flavor mixing in a model-independent way.
Let us go into detail in the following.
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B. Why do jVusj ’ jVcdj and jVcbj ’ jVtsj hold?
A glance at Eq. (4) tells us that jVusj ’ jVcdj is an

excellent approximation. Such an approximate equality
can be well understood in the heavy quark mass limits,
where Hermitian Hu and Hd may take the form of Eq. (6).
In this case the unitary matrices Ou and Od used to diago-
nalize Hu and Hd in Eq. (2) can be expressed as

lim
mt!1Ou ¼ P12

c12 s12 0

�s12 c12 0

0 0 1

0
BB@

1
CCA;

lim
mb!1Od ¼ P0

12

c012 s012 0

�s012 c012 0

0 0 1

0
BB@

1
CCA;

(7)

where cð0Þ12�cos#ð0Þ
12 , s

ð0Þ
12�sin#ð0Þ

12 , andP
ð0Þ
12¼Diagfei�ð0Þ

12 ;1;1g.
So Eq. (7) yields

jVusj ¼ jc12s012 � s12c
0
12e

i�12 j ¼ jVcdj (8)

in the mt ! 1 and mb ! 1 limits, where �12 � �0
12 �

�12 denotes the nontrivial phase difference between the up-
and down-quark sectors. Since mu=mc �mc=mt � �4 and
md=ms �ms=mb � �2 hold [9], where � � sin�C ’ 0:22
with�C being theCabibbo angle, themass limits taken above
are apparently a good approximation. Therefore, we con-
clude that the approximate equality jVusj ’ jVcdj is attrib-
uted to the fact thatmt � mu, mc andmb � md, ms hold.

2

One may similarly consider the chiral quark mass limits
mu ! 0 and md ! 0 in order to understand why jVtsj ’
jVcbj holds. In this case, Eq. (5) leads us to

lim
mu!0

Ou ¼ P23

1 0 0

0 c23 s23

0 �s23 c23

0
BB@

1
CCA;

lim
md!0

Od ¼ P0
23

1 0 0

0 c023 s023
0 �s023 c023

0
BB@

1
CCA;

(9)

where cð0Þ23�cos#ð0Þ
23 , s

ð0Þ
23�sin#ð0Þ

23 , andP
ð0Þ
23¼Diagf1;1;ei�ð0Þ

23g.
We are therefore left with

jVcbj ¼ jc23s023 � s23c
0
23e

i�23j ¼ jVtsj (10)

in themu ! 0 andmd ! 0 limits, where�23 � �0
23 ��23

stands for the nontrivial phase difference between the
up- and down-quark sectors. This model-independent result
is also in good agreement with the experimental data jVcbj ’
jVtsj as given in Eq. (4). In other words, the approximate

equality jVcbj ’ jVtsj is a natural consequence ofmu � mc,
mt and md � ms, mb in no need of any specific
assumptions.3

C. Why does jVcd=Vtdj ’ jVcs=Vtsj ’ jVtb=Vcbj hold?
Given the magnitudes of the CKM matrix elements in

Eq. (4), it is straightforward to obtain jVcd=Vtdj ’ 26:0,
jVcs=Vtsj ’ 24:1, and jVtb=Vcbj ’ 24:3. These numbers
imply jVcd=Vtdj ’ jVcs=Vtsj ’ jVtb=Vcbj as a reasonably
good approximation, which has not come into notice in
the literature. We find that such an approximate relation
becomes exact in the mass limits mu ! 0 and mb ! 1.
To be explicit,

V ¼ lim
mu!0

Oy
u lim
mb!1Od

¼ P0
12

c012 s012 0

�c23s
0
12 c23c

0
12 �s23

�s23s
0
12 s23c

0
12 c23

0
BB@

1
CCAPy

23; (11)

where Eqs. (7) and (9) have been used. Therefore,

��������Vcd

Vtd

��������¼
��������Vcs

Vts

��������¼
��������Vtb

Vcb

��������¼ j cot#23j (12)

holds in the chosen quark mass limits, which assure the
smallest CKM matrix element Vub to vanish. This simple
result is essentially consistent with the experimental data if
#23 ’ 2:35	 is taken.4 Note that the quark mass limits
mt ! 1 and md ! 0 are less favored because they predict
both jVtdj ¼ 0 and jVus=Vubj ¼ jVcs=Vcbj ¼ jVtb=Vtsj,
which are in conflict with current experimental data. In
particular, the limit jVubj ¼ 0 is apparently closer to reality
than the limit jVtdj ¼ 0.
But why Vub is smaller in magnitude than all the other

CKMmatrix elements remains a puzzle, since it is difficult
for us to judge that the quark mass limits mu ! 1 and
mb ! 0 should make more sense than the quark mass
limits mt ! 1 and md ! 0 from a phenomenological
point of view. The experimental data in Eq. (4) indicate
jVtdj * 2jVubj and jVtsj ’ jVcbj. So a comparison between
the ratios jVub=Vcbj and jVtd=Vtsj might be able to tell us
an acceptable reason for jVtdj> jVubj.

D. Why is jVub=Vcbj smaller than jVtd=Vtsj?
With the help of Eqs. (3), (6), and (7), we can calculate

the ratios jVub=Vcbj and jVtd=Vtsj in the respective heavy
quark mass limits:

2Quantitatively, jVusj ’ jVcdj ’ � holds. Hence, s12 ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p ’ �2 and s012 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p ’ � are often conjectured
and can easily be derived from some Ansätze of quark mass
matrices [10].

3It is possible to obtain the quantitative relationship jVcbj ’jVtsj ’ �2 through s23 ’ mc=mt ’ �4 and s023 ’ ms=mb ’ �2

from a number of Ansätze of quark mass matrices [11].
4This numerical estimate implies tan#23 ’ �2 ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mc=mt

p
,

which can easily be derived from the Fritzsch Ansatz of quark
mass matrices [12].
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lim
mb!1

��������Vub

Vcb

�������� ¼
��������ðOuÞ3u
ðOuÞ3c

��������;
lim
mt!1

��������Vtd

Vts

�������� ¼
��������ðOdÞ3d
ðOdÞ3s

��������:
(13)

This result is quite nontrivial in the sense that jVub=Vcbj
turns out to be independent of the mass ratios of three
down-type quarks in the mb ! 1 limit, and jVtd=Vtsj has
nothing to do with the mass ratios of three up-type quarks
in the mt ! 1 limit. In particular, the flavor indices
showing up on the right-hand side of Eq. (13) are rather
suggestive: jVub=Vcbj is relevant to u and c quarks, and
jVtd=Vtsj depends on d and s quarks. We are therefore
encouraged to conjecture that jVub=Vcbj (or jVtd=Vtsj)
should be a simple function of the mass ratio mu=mc

(or md=ms) in the mt ! 1 (or mb ! 1) limit.
Given the renormalized quark mass values

mu¼1:38þ0:42
�0:41MeV, md ¼ 2:82 � 0:048 MeV, ms ¼

57þ18
�12 MeV, and mc ¼ 0:638þ0:043

�0:084 GeV at the energy

scale � ¼ MZ [9], the simplest phenomenological conjec-
tures turn out to be

lim
mb!1

��������Vub

Vcb

�������� ’ c1

ffiffiffiffiffiffiffi
mu

mc

s
; lim

mt!1

��������Vtd

Vts

��������’ c2

ffiffiffiffiffiffiffi
md

ms

s
; (14)

where c1 and c2 are the Oð1Þ coefficients. In view offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p ’ �2 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p ’ �, we expect that
jVub=Vcbj is naturally smaller than jVtd=Vtsj in the
heavy quark mass limits. Taking c1 ¼ 2 and c2 ¼ 1,
for example, we obtain jVub=Vcbj ’ 0:093 and
jVtd=Vtsj ’ 0:222 from Eq. (14), consistent with the
experimental results jVub=Vcbj ’ 0:085 and jVtd=Vtsj ’
0:214 as given in Eq. (4) [1]. Because mt ¼ 172:1�
1:2 GeV and mb ¼ 4:19þ0:18

�0:16 GeV at � ¼ MZ [9], one

may argue that mt ! 1 is a much better limit and thus

the relation jVtd=Vtsj ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
has a good chance to

be true. In comparison, jVub=Vcbj ’ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
suffers

from much bigger uncertainties associated with the
values of mu and mc, and even its coefficient ‘‘2’’ is
questionable.

It is well known that the Fritzsch Ansatz of quark mass
matrices [12] predicts c1 ’ c2 ’ 1. A straightforward
extension of the Fritzsch texture [13],

Mq ¼
0 Cq 0

C�
q

~Bq Bq

0 B�
q Aq

0
BB@

1
CCA (15)

with jAqj � jBqj � j ~Bqj � jCqj (for q ¼ u or d), can also

lead us to c1 ’ c2 ’ 1. However, it is always possible to

get c1 ’
ffiffiffi
2

p
(or

ffiffiffi
3

p
; 2; . . . ) together with c2 ’ 1 if the

matrix elements Aq and Bq have a quite weak hierarchy

in magnitude [14]. This observation is interesting, as it
implies that the phenomenological conjectures made in

Eq. (14) can be a good starting point of view for model
building in order to understand a possible correlation
between the quark mass spectrum and the flavor mixing
structure.

III. IMPLICATIONS OF THE RIGHT
UNITARITY TRIANGLES

A rephasing-invariant description of CP violation in
the quark sector is the Jarlskog parameter J q defined

through [15]

ImðV�iV�jV
�
�jV

�
�iÞ ¼ J q

X
�

	���
X
k

	ijk; (16)

in which the greek and latin subscripts run over ðu; c; tÞ
and ðd; s; bÞ, respectively. The unitarity of V leads us to
six triangles in the complex plane, whose areas are all
equal to J q=2 [11]. Among the six CKM unitarity tri-

angles, 4s and 4c are defined, respectively, by the
orthogonality relations

4s:VudV
�
ub þ VcdV

�
cb þ VtdV

�
tb ¼ 0;

4c:VtbV
�
ub þ VtsV

�
us þ VtdV

�
ud ¼ 0;

(17)

as illustrated in Fig. 1. They are especially interesting in
the sense that they are essentially the right triangles with
a common inner angle

� � arg

�
� VtdV

�
tb

VudV
�
ub

�
¼ ð89:0þ4:4�4:2Þ	; (18)

as determined by current experimental data [1]. Given
� ¼ 90	 exactly, it turns out that ReðVtbVudV

�
tdV

�
ubÞ ¼ 0

holds, and thus the rephasing-invariant quartet
VtbVudV

�
tdV

�
ub is purely imaginary [16]. In this case,

FIG. 1 (color online). The CKM unitarity triangles 4s and 4c

in the complex plane. They share a common inner angle �,
which is essentially equal to 90	 as indicated by current experi-
mental data.
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4s and 4c can be rescaled in such a way that they share a
common side which is equal to5

J q ¼ jVudj 
 jVubj 
 jVtdj 
 jVtbj; (19)

as shown in Fig. 2, where 40
s and 40

c are the re-
scaled versions of 4s and 4c, respectively, with � ¼
90	 (i.e., 40

s: jVudV
�
ubj2 þ VudVcbV

�
ubV

�
cd þ iJ q ¼ 0 and

40
c: jVtbV

�
ubj2 þ VusVtbV

�
ubV

�
ts þ iJ q ¼ 0). This result is

quite suggestive: The strength of weak CP violation in
the quark sector is simply determined by the moduli of
the four matrix elements at the four corners of V.
Note that jVtbj > jVudj > jVcsj � jVusj > jVcdj �
jVcbj > jVtsj � jVtdj > jVubj holds for the nine CKM

matrix elements [17], so J q is actually equal to the

product of the two largest and two smallest elements of
V in magnitude. Because jVudj ! 1 and jVubj ! 0
(or jVtbj ! 1 and jVtdj ! 0) can be achieved in the
mu ! 0 and md ! 0 limits (or in the mt ! 1 and
mb ! 1 limits), we have J q ! 0 in both cases. With

the help of Eqs. (4) and (19), we directly arrive at J q ’
2:96� 10�5, which is perfectly consistent with the
result J q ¼ ð2:96þ0:20

�0:16Þ � 10�5 obtained by the Particle

Data Group [1].
Given weak CP violation in the quark sector as a corner

effect of the CKM matrix V, we have a good reason to
consider the following parametrization of V [8]:

V ¼
cy 0 sy

0 1 0

�sy 0 cy

0
BB@

1
CCA

cx sx 0

�sx cx 0

0 0 e�i
q

0
BB@

1
CCA

cz 0 �sz

0 1 0

sz 0 cz

0
BB@

1
CCA

¼
cxcycz þ sysze

�i
q sxcy �cxcysz þ sycze
�i
q

�sxcz cx sxsz

�cxsycz þ cysze
�i
q �sxsy cxsysz þ cycze

�i
q

0
BB@

1
CCA; (20)

where cx � cos#x and sx � sin#x, and so on. One can see
that the CP-violating phase 
q just appears in the four
corners of V. Confronting Eq. (20) with current experi-
mental data leads us to #x ’ 13:2	, #y ’ 10:1	, #z ’
10:3	, and 
q ’ 1:1	 [8], consistent with� ’ 90	 or equiv-
alently ReðVtbVudV

�
tdV

�
ubÞ ’ 0. Note that #x and 
q are

essentially stable when the energy scale changes, but #y

and #z may slightly be modified due to radiative correc-
tions. To see this point more clearly, let us take account
of the approximate one-loop renormalization-group equa-
tions (RGEs) of nine CKM matrix elements [18]:

d

dt
lnjVudj’ d

dt
lnjVcsj’ d

dt
lnjVtbj’ d

dt
lnjVusj’ d

dt
lnjVcdj’0;

d

dt
lnjVubj’ d

dt
lnjVcbj’ d

dt
lnjVtdj’ d

dt
lnjVtsj’cðy2t þy2bÞ;

(21)

where t � ð1=16�2Þ lnð�=MZÞ for a given energy scale �
above the electroweak scale, yt and yb standard for the
Yukawa coupling eigenvalues of top and bottom quarks,
respectively, and c ¼ �3 (or �1) holds in the SM (or its
supersymmetric extension). Combining Eq. (20) with
Eq. (21), we obtain the approximate one-loop RGEs of
#x, #y, #z, and 
q as follows:

d

dt
lnsin#x ’ d

dt
lnsin
q ’ 0;

d

dt
lnsin#y ’ d

dt
lnsin#z ’ cðy2t þ y2bÞ:

(22)

Hence the mixing angle #x and the CP-violating phase 
q

are almost stable against the RGE running effects, and the
mixing angles #y and #z are expected to have the same
RGE running behaviors at the one-loop level. Because of
J q ¼ cxs

2
xcysyczsz sin
q, the RGE evolution of J q is

mainly controlled by that of sy and sz.

FIG. 2 (color online). The rescaled CKM unitarity triangles40
s

and 40
c, which share a common side equal to the Jarlskog

invariant J q (due to � ¼ 90	), in the complex plane.

5One may also obtain J q ¼ jVudVubj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijVcdVcbj2 � jVudVubj2

p
or J q ¼ jVubVtbj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijVusVtsj2 � jVubVtbj2
p

from Fig. 1 by means
of the Pythagorean theorem. In both cases, J q is proportional to
the smallest CKM matrix element jVubj. Hence, jVubj � 0 is a
necessary condition of CP violation.
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IV. A BRIEF COMMENT ON THE
STRONG CP PROBLEM

So far we have only paid attention to weak CP violation
based on the CKM matrix in the SM. Here let us make a
brief comment on the strong CP problem, because it is
closely related to the quark masses and may naturally
disappear if one of the six quark masses vanishes. It is
well known that there exists a P- and T-violating term L�,
which comes from the instanton solution to the Uð1ÞA
problem [19], in the Lagrangian of QCD for strong inter-
actions of quarks and gluons [20]. This CP-violating term
can be compared with the mass term of six quarks, Lm, as
follows:

L� ¼ �
�s

8�
Ga

��
~Ga��;

Lm ¼ ðu c t d s b ÞLM

u

c

t

d

s

b

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

R

þ H:c:;

(23)

where � is a free dimensionless parameter characterizing
the presence of CP violation, �s is the strong fine-structure
constant, Ga

�� (for a ¼ 1; 2; . . . ; 8) denote the SUð3Þc
gauge fields, ~Ga�� � 	����Ga

��=2, and M is the overall

6� 6 quark mass matrix. The chiral transformation of the
quark fields q ! expði�q�5Þq (for q ¼ u, c, t; d, s, b)

leads to the changes

� ! �� 2
X
q

�q;

argðdetMÞ ! argðdetMÞ þ 2
X
q

�q;

(24)

in which the change of � follows from the chiral anomaly
[21] in the chiral currents

@�ð �q���5qÞ ¼ 2imq �q�5qþ �s

4�
Ga

��
~Ga��: (25)

Then the effective CP-violating term in QCD, which is
invariant under the above chiral transformation, turns out
to be

L �� ¼ ��
�s

8�
Ga

��
~Ga��; (26)

where �� ¼ �þ argðdetMÞ is a sum of the QCD and
electroweak contributions [22]. The latter depends on the
phase structure of the quark mass matrix M. Because of

j detMj ¼ mumcmtmdmsmb; (27)

the determinant of M becomes vanishing in the mu ! 0
(or md ! 0) limit. In this case the phase of detM is
arbitrary, and thus it can be arranged to cancel out � such

that �� ! 0. Namely, QCD would be a CP-conserving
theory if one of the six quarks were massless. But current
experimental data have definitely ruled out the possibility
of mu ¼ 0 or md ¼ 0. Moreover, the experimental upper
limit on the neutron electric dipole moment yields �� <
10�10 [23]. The strong CP problem is therefore a theore-
tical problem of how to explain why �� is nonzero but so
small [24].
A comparison between the weak and strong

CP-violating effects might make sense, but it is difficult
to choose a proper measure for either of them. The issue
involves the reference energy scale and flavor parameters
which may directly or indirectly determine the strength
of CP violation. To illustrate, we consider the following
preliminary measures of weak and strong CP-violating
effects in the SM6:

CPweak � 1

�6
EW

ðmu �mcÞðmc �mtÞðmt �muÞðmd �msÞ

� ðms �mbÞðmb �mdÞJ q � 10�13;

CPstrong � 1

�6
QCD

mumcmtmdmsmb sin ��� 104 sin �� < 10�6;

(28)

where �EW � 102 GeV, �QCD � 0:2 GeV, and the sine

function of �� has been adopted to take account of the
periodicity in its values. So the effect of weak CP violation
would vanish if the masses of any two quarks in the same
(up or down) sector were equal,7 and the effect of strong
CP violation would vanish if mu ! 0 or sin �� ! 0 held.
The significant suppression of CP violation in the SM
implies that an interpretation of the observed matter-
antimatter asymmetry of the Universe [1] requires a new
source of CP violation beyond the SM, such as leptonic
CP violation in the decays of a heavy Majorana neutrino
based on the seesaw and leptogenesis mechanisms [28] in
neutrino physics.

V. SUMMARY

We have pointed out that it is possible to partly
understand the observed pattern of quark flavor mixing
in the chiral and heavy quark mass limits. Such
model-independent access to the underlying quark flavor
structure can help us explain jVusj ’ jVcdj, jVcbj ’ jVtsj,
jVcd=Vtdj ’ jVcs=Vtsj ’ jVtb=Vcbj, and jVub=Vcbj<
jVtd=Vtsj. In particular, we have argued that the phenom-

enologically successful relations jVub=Vcbj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
6We admit that running the heavy quark masses mc, mb, and

mt down to the QCD scale might not make sense [25]. One may
only consider the masses of up and down quarks [26] and then
propose CPstrong �mumd sin ��=�

2
QCD as an alternative measure

of strong CP violation.
7In this special case, one of the three mixing angles of V must

vanish, leading to J q ¼ 0, too [27].
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and jVtd=Vtsj ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
can be reasonably conjectured in

the heavy quark mass limits. In view of the experimental
fact that two of the CKM unitarity triangles are almost
the right triangles with � ’ 90	, we have obtained J q ’
jVudj 
 jVubj 
 jVtdj 
 jVtbj. A particular parametrization of
V with the minimal CP-violating phase has been empha-
sized, and the RGE running behaviors of its parameters
have been discussed. We have also made a very brief
comment on the strong CP problem and compared
between the preliminary measures of strong and weak
CP-violating effects in the quark sector within the SM.

Although our present attempts in this regard remain
quite limited, we have obtained some encouraging results.
We hope that the underlying flavor theory, which might
be related to a certain flavor symmetry and its spontaneous
or explicit breaking mechanism, could provide us with a
more convincing dynamical reason for what we have
observed about the structure of quark flavor mixing and
CP violation.

One may naturally ask whether the leptonic flavor mix-
ing structure could similarly be understood in the reason-
able mass limits of the charged leptons and neutrinos.
While the charged leptons have a strong mass hierarchy,
the neutrino mass spectrum remains unknown to us—we
do not know whether the three neutrinos have a normal
mass hierarchy m1 <m2 <m3 or an inverted mass hier-
archy m3 <m1 <m2. On the other hand, our knowledge
on the Maki-Nakagawa-Sakata-Pontecorvo matrix is still
poor, because its CP-violating phases are all undeter-
mined. Hence a lot more experimental and theoretical
efforts are needed to make progress towards a better under-
standing of the flavor issues in the lepton sector.
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APPENDIX

Given the 3� 3 quark mass matrices Mu and Md in an
arbitrary flavor basis, it is always possible to make an
appropriate basis transformation such that the resulting
mass matrices �Mu and �Md simultaneously have vanishing
(1, 1), (2, 2), (1, 3), and (3, 1) elements [29]:

�Mu ¼
0 Xu 0

X0
u 0 Yu

0 Y0
u Zu

0
BB@

1
CCA; �Md ¼

0 Xd 0

X0
d 0 Yd

0 Y0
d Zd

0
BB@

1
CCA:
(A1)

The determinants of �Mu and �Md turn out to be

j det �Muj ¼ jXuX
0
uZuj ¼ mumcmt;

j det �Mdj ¼ jXdX
0
dZdj ¼ mdmsmb:

(A2)

In this basis, one may simply set Xu ! 0 (or Xd ! 0) to
achieve the chiral quark mass limit mu ! 0 (or md ! 0),

or vice versa. Defining �Hq � �Mq
�My
q (for q ¼ u or d), we

then obtain

lim
mu!0

�Hu ¼
0 0 0

0 jX0
uj2 þ jYuj2 YuZ

�
u

0 Y�
uZu jY0

uj2 þ jZuj2

0
BB@

1
CCA;

lim
md!0

�Hd ¼
0 0 0

0 jX0
dj2 þ jYdj2 YdZ

�
d

0 Y�
dZd jY0

dj2 þ jZdj2

0
BB@

1
CCA:

(A3)

Hence, Eq. (5) is the result of a specific basis choice instead
of a pure assumption. But we admit that a given quark mass
limit does not uniquely correspond to a definite texture of
the quark mass matrix, simply because the latter is basis
dependent.
To illustrate the above point in a more transparent way,

let us take a look at the following typical example of quark
mass matrices in two different bases [11]:

MðHÞ
q ¼ Aq

0 0 0

0 0 0

0 0 1

0
BB@

1
CCA; MðDÞ

q ¼ Aq

3

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA;
(A4)

where q ¼ u or d. It is well known that the democratic

texture MðDÞ
q can be transformed into the hierarchical tex-

ture MðHÞ
q via U0M

ðDÞ
q Uy

0 ¼ MðHÞ
q , where

U0 ¼

1ffiffi
2

p �1ffiffi
2

p 0

1ffiffi
6

p 1ffiffi
6

p �2ffiffi
6

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0
BBBB@

1
CCCCA; (A5)

which is actually the leading term of the democratic flavor
mixing pattern [30]. We may obtain mu ¼ mc ¼ 0 (or

md ¼ ms ¼ 0) from either MðDÞ
u (or MðDÞ

d ) or MðHÞ
u (or

MðHÞ
d ), but their textures are apparently different. If a

diagonal perturbation of the form �Mq / Diagf0; 0; A0
qg

(for jA0
qj � jAqj) is simultaneously added to MðDÞ

q and

MðHÞ
q , one will arrive at mu ¼ md ¼ 0 without any non-

trivial quark flavor mixing in the hierarchical case, but
mu ¼ md ¼ 0 with a nontrivial flavor mixing effect
between the second and third quark families in the demo-
cratic case. This observation clearly illustrates the point
that a specific quark mass limit may correspond to quite
different forms of the quark mass matrix in different flavor
bases, leading to quite different flavor mixing effects.
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