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2Instituto de Fı́sica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,

Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, Mexico
3Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

4ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
(Received 10 July 2012; published 15 November 2012)

We consider the Hamiltonian formulation of Yang-Mills theory in the Coulomb gauge and apply the

recently developed technique of Hamiltonian flows. We formulate a flow equation for the color Coulomb

potential which allows for a scaling solution that results in an almost linearly rising confining potential.
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A profound understanding of the confinement mecha-
nism in QCD still represents, after almost 40 years of
intense research, one of the most important challenges in
modern theoretical particle physics. We here report on a
new approach to the subject which uses the recently devel-
oped technique of Hamiltonian flows [1]. The general setup
is the Hamiltonian formulation of Yang-Mills theory in the
Coulomb gauge [2]. Important progress has been made
over the last decade in this formulation, mainly via the
variational principle [3–12]. The horizon condition, in its
simplest form as a condition for the infrared behavior of
the ghost two-point function, is implemented in accord
with the Gribov-Zwanziger confinement scenario [13,14],
and scaling behavior of the equal-time two-point correla-
tion functions results together with an infrared fixed point
of an appropriately defined running coupling constant [10].

In Coulomb gauge Yang-Mills theory, after resolving the
Gauss law, a potential between static color sources can be
extracted, which is referred to as color Coulomb potential,
and which represents an upper bound to the true static
potential extracted from the Wilson loop. A confining
Coulomb potential is a necessary condition for the poten-
tial between static color charges to be confining [15].
The color Coulomb potential is given by the vacuum
expectation value

hð�@DÞ�1ð�@2Þð�@DÞ�1i (1)

[see Eq. (5) below for our definition of the covariant
derivative D] and is usually expressed as

hð�@DÞ�1ið�@2Þfð�@2Þhð�@DÞ�1i; (2)

with the so-called Coulomb form factor f, which satisfies a
Dyson-Schwinger equation (DSE). In order to calculate the
color Coulomb potential, in Ref. [6] the Coulomb form
factor was simply set equal to 1, while in Refs. [7,8,11] the
DSE for this form factor was approximated by replacing in
the loop integral the full ghost propagator hð�@DÞ�1i with
the bare one, which results in an infrared finite Coulomb
form factor. In this way, a strictly linear growth of the color
Coulomb potential with the distance between the color

sources (for sufficiently large distances) has been found
in Ref. [11]. It would now be natural to try to improve this
approximation by using the full DSE for the Coulomb form
factor. However, it turns out [7,16] that the one-loop DSE
for the Coulomb form factor considered so far cannot be
consistently solved together with the DSEs for the static
(equal-time) gluon and ghost propagators with an infrared-
divergent ghost form factor, i.e., implementing the horizon
condition. In other words, a confining color Coulomb
potential cannot be obtained within the present approxi-
mation if the one-loop DSE for the Coulomb form factor
is used.
In the present report, we focus on the determination

of the color Coulomb potential with the help of a different
functional technique, the Hamiltonian flows [1].
Interestingly, a consistent solution which exhibits scaling
behavior of the static propagators and the color Coulomb
potential is readily found in this framework, without any
additional approximation for the Coulomb form factor. The
organization of this report is as follows: We start with a
brief presentation of the Hamiltonian flow technique and
summarize the results of Ref. [1]. We then derive the flow
equation for the color Coulomb potential and, finally,
present and discuss its solution.
The Hamiltonian flows constitute an adaptation of the

functional renormalization group as put forward in
Ref. [17] to the Hamiltonian formulation of the theory
which seems more appropriate for the Coulomb gauge
fixing. The construction of the Hamiltonian flows starts
from the k-dependent generating functional for Green’s
functions at equal times,

Zk½J; �; ��� ¼
Z

DAD �cDce�S��SkþJ�Aþ ���cþ �c��; (3)

with the ‘‘action’’

S ¼ � lnjc ½A�j2 þ
Z

d3x �caðxÞð�@DÞabcbðxÞ; (4)

where c ½A� represents the vacuum wave functional and D
denotes the covariant derivative
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Dab
i ¼ �ab@i � gfabcAc

i : (5)

The functional integral
R
DA is taken over the transverse

spatial gauge fields that fulfill the Coulomb gauge condi-
tion @iA

a
i ¼ 0 (we denote the contravariant spatial indices

as subindices). The dot in, e.g., J � A stands for the con-
traction of color and spatial indices and the integral over
position or momentum:

J � A ¼
Z

d3xJai ðxÞAa
i ðxÞ ¼

Z d3p

ð2�Þ3 J
a
i ð�pÞAa

i ðpÞ: (6)

The regulator term in Eq. (3) is given by

�Sk½A; c; �c� ¼ 1

2

Z d3p

ð2�Þ3 A
a
i ð�pÞRA;kðpÞAa

i ðpÞ

þ
Z d3p

ð2�Þ3 �c
að�pÞg �Rc;kðpÞcaðpÞ; (7)

with the regulator functions chosen in the present work as

RA;kðpÞ ¼ 2p exp

�
k2

p2
� p2

k2

�
;

�Rc;kðpÞ ¼ p2 exp

�
k2

p2
� p2

k2

�
:

(8)

Here and in the following, we use the notation p ¼ jpj.
The change of Zk as defined in Eq. (3) under a change
of k constitutes a (functional) renormalization group
transformation.

We parameterize the static propagators as

ð2�Þ6 �2 lnZk

�Jai ð�pÞ�Jbj ðqÞ
��������J¼�¼ ��¼0

¼ GA;kðpÞ�abtijðpÞð2�Þ3�ðp� qÞ;

�ð2�Þ6 �2 lnZk

� ��að�pÞ��bðqÞ
��������J¼�¼ ��¼0

¼ 1

g
�Gc;kðpÞ�abð2�Þ3�ðp� qÞ;

(9)

with the functions

GA;kðpÞ ¼ 1

2!kðpÞ þ RA;kðpÞ ;

�Gc;kðpÞ ¼ 1

p2=dkðpÞ þ �Rc;kðpÞ
:

(10)

In the first part of Eq. (9), tijðpÞ denotes the transverse

projector or spatially transverse Kronecker delta.
Retaining only the contributions that are relevant to the

infrared behavior, the renormalization group equation for
Zk induces the following flow equations for the static
propagators [1]:

@

@k
!kðpÞ¼�Nc

2

Z d3q

ð2�Þ3
�
�Gc;k

@ �Rc;k

@k
�Gc;k

�
ðqÞ

� �Gc;kðjpþqjÞq2ð1�ðp̂ � q̂Þ2Þ;
@

@k
d�1
k ðpÞ¼Nc

Z d3q

ð2�Þ3
��

GA;k

@RA;k

@k
GA;k

�
ðqÞ

� �Gc;kðjpþqjÞþ
�
�Gc;k

@ �Rc;k

@k
�Gc;k

�
ðqÞ

�GA;kðjpþqjÞ q2

ðpþqÞ2
�
ð1�ðp̂ � q̂Þ2Þ; (11)

where we have neglected in each equation the contribution
of a tadpole term. For details of the derivation of these
equations and a diagrammatic representation, we refer the
reader to Ref. [1].
We have found in Ref. [1] numerical solutions of

Eq. (11) that show a power behavior for small momenta
of the functions!k¼0ðpÞ and dk¼0ðpÞ (in the physical limit
of vanishing infrared regulators):

!0ðp ! 0Þ / p��; d0ðp ! 0Þ / p��; (12)

with the numerical values for the exponents

� ¼ 0:28; � ¼ 0:64: (13)

We have argued in Ref. [1] that replacing the functions
!kðpÞ and dkðpÞ on the right-hand sides of Eq. (11) with
!0ðpÞ and d0ðpÞ effectively takes into account part of the
tadpole terms that we have omitted so far. The related
technical derivation is detailed in Ref. [18], Chap. V. With
!0ðpÞ and d0ðpÞ on the right-hand sides of Eq. (11), we
can perform the integration over k analytically and end up
with equations very similar to those of the variational
approach. We have shown in Ref. [1] that the numerical
solution of these equations matches almost perfectly that of
Refs. [7,8], with

� ¼ 0:60; � ¼ 0:80: (14)

We now come to the calculation of the color Coulomb
potential in the functional renormalization group approach.
For its definition, one considers the theory in the presence
of an external static color charge density. Then the color
Coulomb potential is the vacuum expectation value of the
part of the Hamiltonian that depends on the external color
charges, explicitly in momentum space (in an integral
kernel notation):

Fabðp;�qÞ ¼ hhp; ajð�@DÞ�1ð�@2Þð�@DÞ�1jq; bii
¼ VcðpÞ�abð2�Þ3�ðp� qÞ: (15)

Introducing the composite operator

K ¼
Z d3k

ð2�Þ3 �c
dð�kÞk2cdðkÞ; (16)

one can write
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Fabðp;�qÞ ¼ hcaðpÞK �cbð�qÞiGC: (17)

The label GC on the vacuum expectation value stands for
‘‘ghost-connected,’’ meaning that one has to restrict the
contributing diagrams to those where the operator K is
connected to the external points via ghost lines.

The k-dependent color Coulomb potential Fab
k ðp;�qÞ is

then naturally defined by including the cutoff term �Sk in
the functional integral representation of the vacuum expec-
tation value [Eq. (17)] as in Eq. (3), and a flow equation for
Fk can be derived in the standard way. For reasons of
space, however, here we present a much quicker and
equivalent derivation of the flow equation for Fk which is
based on the identity [19]

@

@g
½gð�@DÞ�1� ¼ ð�@DÞ�1ð�@2Þð�@DÞ�1 (18)

for the operators. We generalize this identity to

@

@g
½gð�@Dþ g �Rc;kÞ�1�
¼ ð�@Dþ g �Rc;kÞ�1ð�@2Þð�@Dþ g �Rc;kÞ�1 (19)

for our present purposes, so that

Fab
k ðp;�qÞ ¼

�
hp; aj @

@g
½gð�@Dþ g �Rc;kÞ�1�jq; bi

�
k

¼ Vc;kðpÞ�abð2�Þ3�ðp� qÞ: (20)

Note that the rescaling of the ghost regulator function with
a factor of g is essential to achieve a form equivalent to the
definition of Fk described above.

In order to put the identity of Eq. (19) to use inside the
vacuum expectation values we are interested in, we define a
g derivative ‘‘at fixed integration measure,’’

@gjfmhOik ¼
Z

DA detð�@Dþ g �Rc;kÞ
�
@

@g
O½A�

�
jc ½A�j2

� exp

�
� 1

2
A � RA;k � A

�
; (21)

for an arbitrary operatorO½A�. This definition immediately
implies that

@gjfmGA;k ¼ 0: (22)

For the application of the g derivative to the static ghost
propagator, we use the identity

hcaðpÞ �cbð�qÞik ¼ hhp; ajð�@Dþ g �Rc;kÞ�1jq; biik: (23)

With the help of the definitions in Eqs. (9) and (20), we
then find

@gjfm �Gc;kðpÞ ¼ Vc;kðpÞ: (24)

Introducing the Coulomb form factor fkðpÞ by

Vc;kðpÞ ¼ 1

g2
�Gc;kðpÞp2fkðpÞ �Gc;kðpÞ; (25)

we may rewrite the latter identity as

@gjfmd�1
k ðpÞ ¼ 1

p2
@gjfm �G�1

c;k ðpÞ ¼ � 1

g2
fkðpÞ: (26)

As a consequence of these relations, we can derive a
flow equation for the Coulomb form factor by simply
differentiating the flow equation [Eq. (11)] for d�1

k with

respect to g, with the result

@

@k
fkðpÞ¼�Nc

Z d3q

ð2�Þ3
��

GA;k

@RA;k

@k
GA;k

�
ðqÞ

� �G2
c;kðjpþqjÞðpþqÞ2fkðjpþqjÞ

þ2

�
�Gc;k

@ �Rc;k

@k
�G2
c;k

�
ðqÞq2fkðqÞ

�GA;kðjpþqjÞ q2

ðpþqÞ2
�
ð1�ðp̂ � q̂Þ2Þ; (27)

where we have used the fact that @gjfm and the k derivative

commute. Since we have derived Eq. (27) from Eq. (11),
several approximations are implicit in Eq. (27), corre-
sponding to those employed before in the derivation of
the flow equation for d�1

k .

The standard derivation of the flow equation that makes
use of the composite operator K [defined in Eq. (16)] and
its equivalence with the argument presented above, as well
as an algebraic construction that avoids reference to ghost-
connected diagrams as in Eq. (17), will be detailed in a
future publication.
Since the flow equations [Eq. (11)] for !kðpÞ and dkðpÞ

do not involve fkðpÞ, we can insert the solutions of the
latter equations found in Ref. [1] into Eq. (27) and integrate
this flow equation applying the same techniques used in the
solution of Eq. (11); i.e., we convert Eq. (27) into an
integral equation and solve it numerically by an iterative
procedure. Equation (27) is linear and homogeneous in
fkðpÞ, and we decided to normalize fkðpÞ to 1 in the
ultraviolet (below the initial scale �) by appropriately
adjusting the initial condition f�ðpÞ � f�. It is clear
from perturbation theory that fkðpÞ should be constant in
the ultraviolet (as long as k � p) except for logarithmic
corrections.
Somewhat surprisingly, and contrary to the negative

result of the search for a scaling solution in the variational
approach complemented with DSEs [16], a solution of
Eq. (27) is readily found in the way described and is here
represented in Fig. 1. With the propagators obtained from
the flow equations [Eq. (11)], we get a power behavior

fkðpÞ / p�� (28)

in the infrared, with � ¼ 0:57 for p * kmin; see Fig. 1
(left). Note that in the numerical solution of the equation,
as in the numerical solution of Eq. (11) before, we have to
introduce a minimal cutoff value kmin for technical reasons.
The equation can then be integrated over k down to
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k ¼ kmin. It is clear from the figure that the scaling or
power behavior of the solution extends deeper and deeper
into the infrared as the value of kmin is lowered.

Consequently, the color Coulomb potential behaves as

Vc;kðpÞ / p��; � ¼ 2þ 2�þ � (29)

for p * kmin; see Eqs. (10) and (25). Making use of our
result in Eq. (13) for �, we extrapolate Vc;kðpÞ to

Vcðp ! 0Þ / p�3:85 (30)

for k ¼ 0. We thus come quite close to a p�4 behavior
which would correspond to a potential that rises linearly
with distance (for sufficiently large distances). Also note
that our result in Eq. (13) for � is supposed to be smaller
than the correct value (see Ref. [1]), hence an improvement
of the current approximation is expected to enhance the
infrared exponent of VcðpÞ.

The result of Eq. (30) has been obtained with the propa-
gators taken from the flow equations [Eq. (11)] that do not
include the tadpole diagrams. As argued below Eq. (13),
we can easily take a part of the tadpole contributions into
account in an effective way by replacing !kðpÞ and dkðpÞ
on the right-hand sides of Eq. (11) with !0ðpÞ and d0ðpÞ.
In Ref. [1], we have also computed the flow of this
improved truncation leading to � ¼ 0:80. Inserting the
latter solution into the flow equation for the Coulomb

form factor [Eq. (27)], we are led to Fig. 1 (right). The
resulting infrared potential reads

Vcðp ! 0Þ / p�4:25: (31)

The exponents in Eqs. (30) and (31) provide us with an
estimate for the systematic error of the present approxima-
tion:

Vcðp ! 0Þ / p�� with � 2 ½3:85; 4:25�; (32)

including � ¼ 4.
In summary, the method of Hamiltonian flows allows for

scaling solutions for the static two-point functions and the
color Coulomb potential without additional approxima-
tions for the Coulomb form factor, contrary to variational
approaches. In particular, we find an infrared-divergent
Coulomb form factor and an almost linearly confining
potential VcðpÞ / p�� with � 2 ½3:85; 4:25�. We expect
that an improvement of the approximation employed nar-
rows the above interval for � while still including � ¼ 4.
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