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We study, in a d-dimensional space-time, the nonanalyticity of the thermal free energy in the scalar �4

theory as well as in QED. We find that the infrared divergent contributions induce, when d is even, a

nonanalyticity in the coupling � of the form ð�Þðd�1Þ=2 whereas when d is odd the nonanalyticity is only

logarithmic.
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As is well known, the presence of infrared divergences
in field theories at finite temperature leads to a breakdown
of the naı̈ve perturbation theory [1,2]. Then, a necessary
first step is a resummation of the hard thermal loops, which
leads to an effective perturbative expansion [3,4]. In this
context, a physical quantity of interest is the free energy of
a system of hot quanta and particles, in thermal equilib-
rium. This problem has been much studied in four-
dimensional space-time, where contributions to the free
energy have been evaluated to higher loop order [5–10]. In
this case, although the individual infrared divergent con-
tributions add up to an IR convergent result in the
resummed theory, these have the effect of introducing a
nonanalyticity in the perturbative series. This is manifested

firstly through the appearance of terms of order�3=2, where
� is the effective coupling constant.

Our work is motivated by the fact that field theories in
d � 4 dimensional space-time may also be relevant from a
physical point of view. For example, important phenomena
like the high-Tc superconductivity or the fractional quan-
tum Hall effect can be understood in the framework of
QED in lower dimensions [11]. On the other hand, in
higher dimensions, simple scalar theories with self-
coupled spinless fields exhibit some interesting similarities
with the gauge theories of QCD [12] or quantum gravity
[13,14].

The purpose of this note is to study the lowest order
nonanalyticity in the free energy of thermal field theories
defined in a d-dimensional space-time. We find that there is
a significant difference in the behavior of the free energy,
according to whether the dimensionality d of space-time is
even or odd. We show that, when d is even, the free energy

exhibits a powerlike nonanalyticity, of order �ðd�1Þ=2. On
the other hand, in a space-time where d is odd, the non-
analyticity is only logarithmic, behaving like ln�. In order
to explain this behavior, we first discuss, for more clarity, a
scalar field theory with an interaction potential g2�4. As

we will see, the basic features exhibited by the free energy
in this theory may then be readily extended to QED.
For our purpose, we find it convenient to work in the

imaginary time formalism [1,2], where the energies take
the discrete values !n ¼ 2�nT. We will assume that the
temperature T is much higher than the zero-temperature
masses, which consequently will be neglected. It can easily
be seen that the infrared divergences come only from the
static mode n ¼ 0. For the free energy in the scalar model,
the resummation method leads to the so-called ring dia-
grams shown in Fig. 1.
In a d-dimensional space-time, we find that the one-loop

thermal self-energy of the scalar particle has at high tem-
perature a leading behavior given by

�� ¼ g2Td�2 �ðd� 2Þ�ðd� 2Þ
2d�1�ðd�1Þ=2�ðd�1

2 Þ ; (1)

where � and � denote, respectively, the gamma and the
Riemann zeta functions [15]. By simple power counting, it
is easy to verify that the infrared contributions start when
the number of self-energy loops is N ¼ d=2, for d even, or
N ¼ ðd� 1Þ=2 for d odd. We denote by Eðd=2Þ the integer
part of d=2, so that Eðd=2Þ ¼ d=2 or Eðd=2Þ ¼ ðd� 1Þ=2,
respectively, for even or odd d. We then obtain, from the
dominant infrared divergent terms of the ring diagrams, the
following contributions to the free energy:

�ringðTÞ ¼ 1

2
VT

X1
N¼Eðd=2Þ

Z dd�1k

ð2�Þd�1

ð�1ÞNþ1

N

�
��

k2

�
N
;

(2)

where V is the (d� 1)-dimensional volume, 1=N is the
symmetry factor and k is the ring momentum. One can see

FIG. 1. Ring diagrams in the �4 model. Small blobs represent
one-loop self-energy diagrams.

*fbrandt@usp.br
†jfrenkel@fma.if.usp.br
‡joao@fma.if.usp.br

PHYSICAL REVIEW D 86, 107701 (2012)

1550-7998=2012=86(10)=107701(3) 107701-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.107701


that when d is even the sum begins with a linearly infrared
divergent contribution, which becomes stronger as N
increases. On the other hand, when d is odd the sum begins
with a logarithmically infrared divergent contribution, so that
in this case the infrared singularities are weaker termwise.

Performing the summation in Eq. (2), we obtain

�ringðTÞ ¼ 1

2
VT

Z dd�1k

ð2�Þd�1

�
ln

�
1þ��

k2

�

� XEðd=2Þ�1

N¼1

ð�1ÞNþ1

N

�
��

k2

�
N
�
; (3)

where the last term should be omitted for d ¼ 2 or d ¼ 3.
Although this result is IR convergent, it does exhibit a
nonanalyticity in the coupling constant g2 present in ��.

To see this, it will be convenient to study separately the
cases when d is even or odd, as it turns out that the non-
analyticity behaves differently in these cases.

When d is even, we may perform an integration by parts
in (3) so that, since the surface terms vanish, one finds

�d even
ring ðTÞ ¼ VT

ð�1Þd=2þ1

2d�ðd�3Þ=2�ðdþ1
2 Þ ð��Þðd�1Þ=2; (4)

where the factor ð��Þðd�1Þ=2 basically arises on dimen-

sional grounds. We see that, since d is even, d�1
2 is a

half-integer, so (4) exhibits a powerlike nonanalyticity in
the coupling constant g2. When d ¼ 4, (4) reduces to the
well-known result [1,2]

�d¼4
ring ðTÞ ¼ �VT4

12�

�
g2

24

�
3=2

: (5)

On the other hand, when d is odd, one can no longer
neglect the surface term when (3) is integrated by parts.
This term, which arises from the region jkj ! 1, turns out
to give the nonvanishing contribution

VT

ð2�Þd�1

ð�1Þdþ1
2

ðd� 1Þ2
2�

d�1
2

�ðd�1
2 Þ jkj

d�1

�
��

k2

�d�1
2

¼ VT

d� 1

ð�1Þdþ1
2

2ðd�1Þ�d�1
2 �ðdþ1

2 Þ ð��Þd�1
2 : (6)

Furthermore, the integral of the terms containing the de-

rivative of the square bracket in (3) with respect to j ~kj is
logarithmically divergent for large values of j ~kj. In this
case, it is necessary to set an upper cutoff � on the k
integral. The � scale is arbitrary, but one would naturally
expect it to be of order T at high temperature. Proceeding
in this way, we then obtain for the free energy the result

�d odd
ring ðTÞ ¼ VT

�
2

d� 1
þ ln

�
1þ �2

��

��

� ð�1Þðdþ1Þ=2

2d�ðd�1Þ=2�ðdþ1
2 Þ ð��Þðd�1Þ=2: (7)

Again, the factor ð��Þðd�1Þ=2 arises on dimensional

grounds. However, since in this case ðd� 1Þ=2 is an inte-
ger, this factor no longer introduces a nonanalyticity in the
coupling constant. Instead, in this case the nonanalyticity
will only be logarithmic, due to the presence of the cou-
pling constant in the argument of the logarithm.
Like in the scalar theory, higher order contributions to

the thermal free energy in QED are also nonanalytic in the
coupling constant. Such contributions arise from the set of
ring diagrams shown in Fig. 2. In QED the photon self-
energy is gauge invariant and satisfies the transversality
condition:

k����ðkÞ ¼ 0: (8)

When these self-energies are inserted in the ring loop, the
result will be manifestly gauge invariant, since the gauge-
dependent part of the photon propagator vanishes when it
multiplies ��� as a consequence of the current conserva-

tion. Thus, we may use, without loss of generality, the
Feynman gauge, where the photon propagator is rather
similar to the propagator of the massless scalar field in
�4 theory. Due to (8), the photon self-energy may be
expressed in terms of two projection operators PL

�� and

PT
��, which are d-dimensionally transverse, the former

being (d� 1)-dimensionally longitudinal, while the latter
is also (d� 1)-dimensionally transverse. Their compo-
nents are

PT
00 ¼ PT

0i ¼ PT
i0 ¼ 0; (9a)

PT
ij ¼ �ij �

kikj

k2
; (9b)

PL
�� ¼ PT

�� �
k�k�

k2
þ 	��: (9c)

Thus, one can write the photon self-energy in the form

���ðkÞ ¼ FðkÞPL
�� þGðkÞPT

��; (10)

where F and G are scalar functions of k0 and jkj. The
potential singularities in the ring diagram occur at

high temperature in the static limits Fð0; ~k ! 0Þ and

Gð0; ~k ! 0Þ. Upon examination of Eq. (10) and by using
the QED Ward identity, one finds that

FIG. 2. Ring diagrams in QED. Small blobs represent one-loop
photon self-energy diagrams.

BRIEF REPORTS PHYSICAL REVIEW D 86, 107701 (2012)

107701-2



Gð0; ~k!0Þ¼ 1

d�2
�iið0; ~k!0Þ

¼ e2T

d�2

X
p0

Z dd�1p

ð2�Þd�1
Tr

�

i

@SðpÞ
@pi

�
¼0 (11)

since the free electron propagator SðpÞ vanishes for asymp-
totic momenta jpij ! 1. This result reflects the fact that
the magnetic mass is zero in QED.

On the other hand, the leading high temperature

behavior of Fð0; ~k ! 0Þ is
F� ¼ �00ð0; ~k ! 0Þ

¼ e22Eðd=2Þðd� 2Þ
ð2�Þd�1

Z dd�1p

ð2�Þd�1

1

jpj
1

ej ~pj=T þ 1

¼ e2Td�2 ð1� 23�dÞ�ðd� 1Þ�ðd� 2Þ
2d�Eðd=2Þ�2�ðd�1Þ=2�ðd�1

2 Þ ; (12)

which is similar to the result (1) obtained in the case of the

scalar field theory. Note that ðF�Þ1=2 generates an effective
electric mass for the photon.

Using the above results and the properties

PL��PL
�� ¼ PL�

� ; PL�
� ¼ 1; (13)

we obtain the following contribution to the ring free energy
in QED:

�ringðTÞ ¼ 1

2
VT

Z dd�1k

ð2�Þd�1

�
ln

�
1þ F�

k2

�

� XEðd=2Þ�1

N¼1
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N

�
F�

k2
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N
�
: (14)

Apart from the substitution F� ! ��, this expression is

completely analogous to that obtained in (3) for the mass-
less �4 theory. Hence, using the same arguments as in the
previous case, we conclude that the free energy in QED is

nonanalytic in the coupling � ¼ e2=4�. Thus, we find that
for d even [see Eq. (4)]

�d even
ring ðTÞ ¼ VT

ð�1Þd=2þ1

2d�ðd�3Þ=2�ðdþ1
2 Þ ðF�Þðd�1Þ=2; (15)

where F� is given by (12). In particular, in four-

dimensional space-time, (15) reduces at high temperature
to the well-known QED result [1,2]

�d¼4
ring ðTÞ ¼ �VT

ðF�Þ3=2
12�

¼ �VT4

12�

�
e2

3

�
3=2

: (16)

On the other hand, when the dimension of space-time is
odd we obtain [compare with Eq. (7)]

�d odd
ring ðTÞ ¼ VT

�
2

d� 1
þ ln

�
1þ �2

F�

��

� ð�1Þðdþ1Þ=2

2d�ðd�1Þ=2�ðdþ1
2 Þ ðF�Þðd�1Þ=2: (17)

We note here that in Eqs. (15) and (17) the factor

ðF�Þðd�1Þ=2, which has dimensions of ðmassÞd�1, basically

arises on dimensional grounds, ensuring that � has the
correct dimension of energy. When d is even, the exponent
ðd� 1Þ=2 is a half-integer, which leads to a powerlike

nonanalyticity of the form ð�Þðd�1Þ=2. On the other hand,
when d is odd, this exponent is an integer, so that it does
not lead to a breakdown of perturbation theory. In this case
the nonanalyticity is only logarithmic, due to the presence
of the coupling constant in the argument of the logarithm.
The above nonanalyticities of the free energy are due to

the infrared divergences which are generated by the ther-
mal interactions. The occurrence of softer nonanalyticities
when d is odd, is a consequence of the fact [see the remarks
following Eq. (2)] that in this case the infrared singularities
of the free energy are weaker.
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