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Noncommutative geometry, an offshoot of string theory, replaces pointlike structures with smeared

objects and has recently been extended to higher dimensions. The purpose of this paper is to obtain

wormhole solutions with this extended noncommutative geometry as a background. It is found through

this investigation that wormhole solutions exist in the usual four, as well as in five dimensions, but they do

not exist in higher-dimensional spacetimes.
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I. INTRODUCTION

The extension of general relativity to higher dimensions
was motivated in part by studies of the early Universe.
While it is generally believed that in the present Universe
the extra spatial dimensions have become compactified,
their very existence has led to many investigations in
various areas. Rahaman et al. [1] investigated whether
the usual solar system tests are compatible with the exis-
tence of higher spatial dimensions. Other studies involved
the motion of test particles [2], solar-system effects in a
Scharzschild-de Sitter spacetime [3], as well as numerous
other phenomena [4,5].

Many studies assume only one extra spatial dimension
when discussing higher-dimensional cases [6–14]. In this
regard we would like to have a special mention of some of
our recent works [13,14]. Ray [13] considers static spheri-
cally symmetric charged dust corresponding to (nþ 2)
dimensional Einstein-Maxwell spacetime and shows that
for n ¼ 3, the expression for gravitational mass corresponds
to the mass given by Bonnor [15] and Cohen and Cohen [16],
which in turn confirms the identification of mass as the fifth
dimension by Ponce de Leon [17]. In the later work,
Kuhfittig [14] assumes that the 3-brane is a de Sitter space
and there is only one extra spatial dimension assumed to be
time dependent. It is proposed in this work that the cosmo-
logical inflation of the 3-brane may provide a possible
explanation for the collapse of the extra dimension, as
well as for the energy stored in the resulting curled-up
dimension.

An important outcome of string theory (which assumes
extra dimensions) is the notion that coordinates may

become noncommutative operators in a D-brane [18,19].
The consequence is a fundamental discretization of space-
time due to the commutator ½x�;x�� ¼ i���, where ��� is
an antisymmetric matrix, similar to the way that the Planck
constant ℏ discretizes phase space [20]. This noncommu-
tative geometry is an intrinsic property of spacetime that
does not depend on particular features such as curvature.
Moreover, it was pointed out in Ref. [21] that noncommu-
tativity replaces pointlike structures by smeared objects,
thereby eliminating the divergences that normally appear
in general relativity. This smearing can be modeled by the

use of the Gaussian distribution of minimal length
ffiffiffi
�

p
instead of the Dirac delta function. So the energy density
of the static and spherically symmetric smeared and parti-
clelike gravitational source has the form [22]

�ðrÞ ¼ M

ð4��Þ3=2 e
�r2=4�: (1)

The mass M could be a diffused centralized object such as
a wormhole [23]. The Gaussian source has also been used
by Sushkov [24] to model phantom-energy supported
wormholes, as well as by Nicolini and Spalluci [25] for
the purpose of modeling the physical effects of short-
distance fluctuations of noncommutative coordinates in
the study of black holes. Galactic rotation curves inspired
by a noncommutative-geometry background are discussed
in one of our very recent works [26]. The stability of a
particular class of thin-shell wormholes in noncommuta-
tive geometry is analyzed elsewhere [27].
Therefore, the purpose of this paper is to obtain worm-

hole solutions within the framework of noncommutative
geometry, first by assuming the usual four dimensions in
general relativity and then by adding one extra spatial
dimension. It was subsequently discovered, however, that
for dimensions above five, no wormhole solutions exist,
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pointing out the danger of assuming only one extra spatial
dimension.

II. BASIC EQUATIONS

To describe a spherically symmetric wormhole space-
time in higher dimension, we take the metric to be

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2d�2
n; (2)

where the line element d�n
2 on the unit n sphere is

given by

d�n
2 ¼ d�1

2 þ sin2�1d�2
2 þ sin2�1sin

2�2d�3
2 þ � � �

þ Yn�1

i¼1

sin2�id�n
2: (3)

The most general energy-momentum tensor compatible
with static spherical symmetry is

T
�
� ¼ ð�þ prÞu�u� � prg

�
� þ ðpt � prÞ���� (4)

with u�u� ¼ ����� ¼ 1.

The Einstein equations are

e��

�
n�0

2r
� nðn� 1Þ

2r2

�
þ nðn� 1Þ

2r2
¼ 8��; (5)

e��

�
nðn� 1Þ

2r2
þ n�0

2r

�
� nðn� 1Þ

2r2
¼ 8�pr; (6)

1

2
e��

�
1

2
ð�0Þ2 þ �00 � 1

2
�0�0 þ ðn� 1Þ

r
ð�0 � �0Þ

þ ðn� 1Þðn� 2Þ
r2

�
� ðn� 1Þðn� 2Þ

2r2
¼ 8�pt: (7)

In higher dimensions, the energy density of the static and
spherically symmetric smeared and particlelike gravita-
tional source having a minimal spread Gaussian profile is
taken as [28]

� ¼ M

ð4��Þðnþ1Þ=2 exp

�
� r2

4�

�
; (8)

where M is the total mass of the source which is diffused

throughout a region of linear dimension
ffiffiffi
�

p
due to the

uncertainty.

III. SOLUTIONS

We are going to assume a constant redshift function for
our model, the so-called zero-tidal force solution [29], to
make the wormhole traversable by humanoid travelers. In
other words, we have

� ¼ �0; (9)

where �0 is a constant.
Using Eq. (9), we can rewrite the field equations (5)–(7)

in terms of the shape function bðrÞ, where bðrÞ¼
rð1�e��Þ:

nb0

2r2
þ nðn� 2Þb

2r3
¼ 8�M

ð4��Þnþ1
2

exp

�
� r2

4�

�
; (10)

8�pr ¼ � nðn� 1Þb
2r3

; (11)

8�pt ¼ ð3� nÞðn� 1Þb
2r3

� ðn� 1Þb0
2r2

: (12)

From Eq. (10), we get the following solution for the
shape function:

bðrÞ ¼ 16�

nrn�2ð4��Þðnþ1Þ=2

h
2nð1�Þ�ðnþ1Þ=2

n
rnþ12ð1�nÞ=2ð1�Þðnþ1Þ=2ðr2� Þ�ðnþ1Þ=4 expð� r2

8�ÞMWðnþ1
4 ; nþ3

4 ; r
2

4�Þ
oi

ðnþ 3Þðnþ1
2 Þ

þ 16�

nrn�2ð4��Þðnþ1Þ=2

h
2ð3�nÞ=2rn�1ð1�Þðn�1Þ=2ðr2� Þ�ðnþ1Þ=4 expð� r2

8�ÞMWðnþ5
4 ; nþ3

4 ; r
2

4�Þ
i

nþ1
2

þ C

rn�2
; (13)

where C is an integration constant and the Whittaker mass
MW can be defined as

MWð�; �; zÞ ¼ exp

�
� z

2

�
zð1=2þ�Þ

� hypergeom

��
1

2
þ ���

�
; ½1þ 2��; z

�
:

(14)

This solution is obviously very difficult to deal with. In
the following subsections we will therefore discuss various
cases for specific dimensions. However, C being an

integration constant, mathematically, bðrÞ is a solution
for every value of C. The flare-out condition, on the other
hand, is a physical requirement that is satisfied only for a
certain range of values of C, which in turn depend on the
other parameters. Because of the complexity of the shape
function, we will use a graphical approach to analyze the
wormhole structure, including the location of the throat, in
terms of typical values of the parameters. In this manner it
is shown that wormhole solutions exist in four and five
dimensions only. The higher-dimensional cases require
some additional discussion and will be dealt with in the
later phase.
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A. n ¼ 2

When n ¼ 2, i.e., for a four-dimensional spacetime, the
shape function of the wormhole takes the following form:

bðrÞ ¼ Mffiffiffiffiffiffiffiffiffi
��3

p
�
�2�rexp

�
� r2

4�

�
þ 2�

3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
�
þC

�
:

(15)

The other parameters are

8�pr ¼ � 1

r3

�
Mffiffiffiffiffiffiffiffiffi
��3

p
�
�2�r exp

�
� r2

4�

�

þ 2�
3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
�
þ C

��
(16)

and

8�pt ¼ 1

2r3

�
Mffiffiffiffiffiffiffiffiffi
��3

p
�
�2�rexp

�
� r2

4�

�

þ 2�
3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
�
þC

��
� 8�M

ð4��Þ3=2 exp
�
� r2

4�

�
:

(17)

The next step is to verify that the shape function has all
the properties required for a wormhole structure. To do so,
we need to assign some typical values to the parameters, an
example of which is shown in Fig. 1. We can see from
Fig. 2 that bðrÞ=r ! 0 as r ! 1, so that in conjunction
with the constant redshift function, the spacetime is asymp-
totically flat. The throat of the wormhole is located at
r ¼ r0, where GðrÞ ¼ bðrÞ � r cuts the r axis, shown in
Fig. 3.

Figure 3 also indicates that for r > r0, GðrÞ< 0,
i.e., bðrÞ�r<0, which implies that bðrÞ=r<1 for r>r0,
an essential requirement for a shape function. Moreover,
GðrÞ is a decreasing function for r � r0. Since G0ðrÞ< 0,
we have b0ðr0Þ< 1, which is the flare-out condition. With
this condition now satisfied, the shape function has pro-
duced the desired wormhole structure. For completeness
let us note that for the given parameters, r0 ¼ 0:1955 to
four decimal places with b0ð0:1955Þ � 0:20 obtained from
Eq. (10).
The close connection between the flare-out condition

and the energy conditions calls for a check on the latter.
According to Fig. 4, the null energy condition is satisfied,

FIG. 1 (color online). Diagram of the shape function of the
wormhole in four dimensions for the specific values of the
parameters as � ¼ 0:002, M ¼ 0:08 and C ¼ 0:03916.

FIG. 3 (color online). The throat of the wormhole given in
Fig. 1 occurs where GðrÞ cuts the r axis.

FIG. 2 (color online). Asymptotic behavior of the shape func-
tion of the wormhole given in Fig. 1.
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but the weak energy condition and strong energy condition
are violated.

B. n¼ 3

When n ¼ 3, i.e., for a five-dimensional spacetime, the
shape function of the wormhole is given by

bðrÞ ¼
��2�ð4�þ r2ÞM expð� r2

4�Þ
3�r�2

�
þ C

r
: (18)

The other parameters are

8�pr ¼ � 3

r3

���2�ð4�þ r2ÞM expð� r2

4�Þ
3�r�2

�
þ C

r

�
(19)

and

8�pt ¼ 1

r3

���2�ð4�þ r2ÞM expð� r2

4�Þ
3�r�2

�
þ C

r

�

� 16�M

3ð4��Þ2 exp

�
� r2

4�

�
: (20)

One can see from Fig. 5 that bðrÞ ¼ r at some point.
More precisely, for the particular parameters chosen,
bð0:0878Þ ¼ 0:0878 to four decimal places. This is in
agreement with Fig. 6, which shows GðrÞ intersecting the
r axis at r ¼ r0. Also, from Eq. (10), b0ð0:0878Þ � 0:34<
1. The function continues to increase to the right of r0 ¼
0:0878; its slope is still positive at r1 ¼ 0:0893 but soon
becomes negative. So we have a valid solution around the
throat. Moreover, r1 ¼ 0:0893 is a convenient cutoff for
the wormhole material and subsequent junction to the
corresponding external Schwarzschild spacetime

ds2 ¼ �
�
1� 2�

r2

�
dt2 þ

�
1� 2�

r2

��1
dr2

þ r2ðd�12 þ sin2�1d�2
2 þ sin2�1sin

2�2d�3
2Þ:

Here � is related to the mass ’m0 of the five-
dimensional Schwarzschild black hole as � ¼ 4Gm

3� .

Therefore, for the present case it can be evaluated as� ¼
1
2 r1bðr1Þ � 0:0039318, while e�¼ð1�2�

r2
1

Þ, so that ��
lnð1�0:0078636

r21
Þ��4:27546. This yields the respective

interior and exterior line elements:

FIG. 4 (color online). The variations of the left-hand sides of
the expressions for the energy conditions of the matters com-
prising the four-dimensional wormhole are plotted against r.

FIG. 5 (color online). Diagram of the shape function of the
wormhole in five dimensions for the specific values of the
parameters as � ¼ 0:0002, M ¼ 1 and C ¼ 0:0083.

FIG. 6 (color online). The throat of the wormhole given in
Fig. 5 occurs where GðrÞ cuts the r axis.
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ds2¼�e�4:27546dt2þ dr2�
1�bðrÞ

r

	

þr2ðd�12þsin2�1d�2
2þsin2�1sin

2�2d�3
2Þ (21)

for r < r1 and

ds2¼�
�
1�0:0078636

r2

�
dt2þ dr2

ð1� 0:0078636
r2

Þ
þr2ðd�12þsin2�1d�2

2þsin2�1sin
2�2d�3

2Þ (22)

for r � r1. (Due to the spherical symmetry, the remaining
components are already continuous [30].) Observe that
only the interior solution retains the zero-tidal forces.
One can note that here the junction is a thin shell. Since
the shell is infinitely thin, the radial pressure is zero.
According to the Darmois-Israel junction condition
[31], the surface density is also zero, however, the tan-
gential pressure is nonzero (see Ref. [32] for details).

For the five-dimensional case, Fig. 7 indicates that only
the null energy condition is satisfied, while the weak
energy condition and strong energy condition are violated.

C. n¼ 4 and n¼ 5

When n ¼ 4, i.e., for a six-dimensional spacetime, the
shape function of the wormhole is

bðrÞ ¼ M

8�r2
ffiffiffiffiffiffiffiffiffi
��5

p
�
�2r3�exp

�
� r2

4�

�

þ 6�

�
�2�rexp

�
� r2

4�

�
þ 2�

3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
���

þ C

r2
:

(23)

The other parameters are

8�pr ¼ � 6

r3

�
M

8�r2
ffiffiffiffiffiffiffiffiffi
��5

p
�
�2r3� exp

�
� r2

4�

�

þ 6�

�
�2�r exp

�
� r2

4�

�
þ 2�

3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
����

� 6C

r5
; (24)

8�pt ¼ 3M

16�r5
ffiffiffiffiffiffiffiffiffi
��5

p
�
�2r3� exp

�
� r2

4�

�

þ 6�

�
�2�r exp

�
� r2

4�

�
þ 2�

3
2

ffiffiffiffi
�

p
erf

�
r

2
ffiffiffi
�

p
���

þ 3C

2r5
� 6�M

ð4��Þ52 exp
�
� r2

4�

�
: (25)

Figure 8 shows the shape function bðrÞ and Fig. 9 locates
the presumptive throat of the wormhole. Observe that bðrÞ
is strictly decreasing, a problem that also occurs in the case
n ¼ 5, i.e., for seven-dimensional spacetimes (see Fig. 10).
For n ¼ 5, we get

bðrÞ ¼ 1

r3

�
C� ð32�2 þ 8�r2 þ r4ÞM expð� r2

4�Þ
10�2�2

�
: (26)

So it appears that there are no wormhole solutions
for dimensions above five as bðrÞ contains the factor
1

rn�2 (n � 2) which causes bðrÞ to be a monotonic decreas-

ing function. The reason is that both expð� r2

4�Þ and

erfð r
2
ffiffi
�

p Þ level off rapidly in the outward radial direction.

As a result, b0ðrÞ is completely dominated by ð ddrÞð C
rn�2Þ

FIG. 7 (color online). The variations of left-hand sides of the
expressions for the energy conditions of the matters comprising
the five-dimensional wormhole are plotted against r.

FIG. 8 (color online). Diagram of the presumptive shape func-
tion of the wormhole in six dimensions for the specific values of
the parameters as � ¼ 0:0002, M ¼ 1 and C ¼ 0:02.
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for larger n and proper choice of C. So one would expect
the slope of bðrÞ to become even steeper with increasing
n, which is clearly born out in Figs. 8 and 10. The
steepness can only increase further as n increases. For
smaller n, this dominance does not necessarily hold.

Thus, according to Fig. 5, for n ¼ 3 and proper choice
of C, the term C

r allows bðrÞ to crease long enough to yield

an interior solution. For the case n ¼ 2, none of these
arguments apply, and the result is an asymptotically flat
spacetime.

IV. CONCLUSION

Noncommutative geometry, an offshoot of string the-
ory, replaces pointlike structures by smeared objects and
has recently been extended to higher dimensions. In this
paper we obtain two wormhole solutions within the
framework of this extended noncommutative geometry.
In general, the primary ingredient for sustaining travers-
able wormholes is the presence of exotic matter that
violates the null energy condition. However, we have
proposed a set of new wormhole solutions within the
framework of noncommutative geometry background,
where the matter satisfies the null energy condition but
violates the weak energy condition and strong energy
condition. It is shown that wormhole solutions exist in
the usual four, as well as in five dimensions, but they do
not exist in six or seven dimensions suggesting that such
solutions do not exist beyond five dimensions. This out-
come points out the danger of assuming only one extra
spatial dimension, as is often done. In the analysis of this
work, we considered a constant redshift function, the so-
called zero-tidal force solution to make the wormhole
traversable by humanoid travelers. This assumption sim-
plified the mathematical calculations, but it also pro-
vided sufficiently exciting exact solutions. It is
worthwhile to mention here that the wormhole in four-
dimensional spacetime is asymptotically flat whereas in
five dimensions it is asymptotically nonflat and for
higher than five dimensions no wormhole exists. Thus
up to four dimensions, one can get a regular wormhole
and for five-dimensional spacetime, one gets wormhole
geometry only in a very restricted region. The possibility
of getting a wormhole geometry will cease beyond five
dimensions.
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FIG. 9 (color online). The throat of the wormhole given in
Fig. 8 normally occurs where GðrÞ cuts the r axis.

FIG. 10 (color online). Diagram of the presumptive shape
function of the wormhole in seven dimensions for the specific
values of the parameters as � ¼ 0:0002, M ¼ 1 and C ¼ 0:02.
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