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In this work we explore 1þ 1-dimensional p-wave superconductors using the probe D-brane con-

struction. Specifically, we choose three intersecting D-brane models: D1/D5, D2/D4, and D3/D3 systems.

According to the dilaton running behavior, we denote the former two systems as nonconformal models

and the last system as conformal. We find that all three models are qualitatively similar in describing

superconducting condensate as well as some basic features (such as the gap formation and DC super-

conductivity) of superconducting conductivity. There also exist some differences among the three models

as far as the AC conductivity is concerned. Specifically, for D3/D3 model there is no peak at nonzero

frequency for the imaginary part of the conductivity, which is present in the nonconformal models; their

asymptotic behaviors are different—for D1/D5 the real part of the AC conductivity approaches one at

large frequency limit, for D2/D4 it slowly goes to a certain nonzero constant smaller than one, and for D3/

D3 it goes to zero. We find that the profile of the AC conductivity for the D1/D5 system is very similar to

that of higher dimensional p-wave superconductors.

DOI: 10.1103/PhysRevD.86.106005 PACS numbers: 11.25.Tq

I. INTRODUCTION

The applications of AdS/CFT correspondence [1],
more generally gauge/gravity duality, to investigations of
strongly coupled systems have gained broad interest
varying from QCD phenomena at low energy to strongly
correlated condensed matter physics, see, e.g., Ref. [2]
for recent reviews. One of the most interesting applica-
tions is the construction of superconductinglike phase
transitions. Following the pioneering work of Ref. [3],
holographic superconductors have been constructed in
Refs. [4–6] by putting the Abelian Higgs model or SU(2)
gauge field into the anti–de Sitter (AdS) black hole geome-
try. When the Hawking temperature is decreased to some
critical value, the black hole background becomes unstable
against perturbations and gets hair by condensing some
field in order to cure the instability. This can be considered
as holographic realization of the superconducting phase
transition. This kind of construction of holographic super-
conductors takes the (asymptotically) AdS black hole
spacetime as the starting point. In some sense, this con-
struction should be taken as a bottom-up approach to the
gravity dual of strongly interacting superconductors,
since the theory in the bulk is directly written down
from the phenomenological point of view. Recently, there
have appeared some works on the UV completion of these
phenomenological superconducting models, see, e.g.,
Ref. [7], by embedding the holographic superconductors
into the superstring/M theory or gauged supergravity.
Another top-down approach to holographic superconduc-
tors where the dual field theory is known is based on a

probe D-brane in a black p-brane supergravity geometry.
Such a holographic superconductor has been established in
Ref. [8], where there is a �-meson condensate. Moreover,
a stringy mechanism for the condensation process has
been described. For the Sakai-Sugimoto model [9], a holo-
graphic superconductor involving a �-meson condensate
has been described in Ref. [10], based on earlier results on
� meson condensation in Ref. [11]. In Ref. [12] the D3/D5
system, constructed to be a defect theory, was used to study
different condensates corresponding to vector/scalar
modes on the flavor D5-brane world volume.
Themodels mentioned above are all concerned with higher

dimensional spacetime, say planar or 1þ 3-dimensional
superconductors. However, a 1þ 1-dimensional system
is also of great importance and interest in condensed matter
physics. It is, therefore, of large interest to see what holo-
graphic methods tell us about such systems. The work of
Ref. [13] takes the D3/D3-brane system (This model was
first studied in Ref. [14]) to model 1þ 1 dimensional
strongly coupled quantum liquid and found some
interesting properties different from higher dimensional
counterparts. Similar studies taking the Bañados-
Teitelboim-Zanelli (BTZ) black hole geometry as the grav-
ity background can be found in Ref. [15]. Some aspects of
holographic Luttinger theorem have been discussed in detail
in Ref. [16]. More recently, holographic s-wave supercon-
ductors in 1þ 1 dimensions have been constructed and well
studied in Refs. [17–19] by introducing a Maxwell-Scalar
system into the BTZ black hole geometry. Other recent
works for 1þ 1 dimensional boundary theory from holog-
raphy can be found in Refs. [20–22]. In Ref. [23] local
aspects of 1þ 1-dimensional superconductivity, which
followed the pioneering work of Ref. [24], have been*yybu@mpp.mpg.de
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investigated in a bottom-up approach. This ensures a true
superconductor, where a local symmetry is spontaneously
broken, instead of a superfluid where a global symmetry is
broken.

In this paper we take the probe D-brane approach to
study some aspects of a p-wave superconductor in 1þ 1
dimensional spacetime. More specifically, we take three
intersecting D-brane systems as our starting point: D1/D5,
D2/D4, and D3/D3. For stability of these brane systems,
we keep them supersymmetric in the sense that the
Neumann-Dirichlet number of each system is four. For
simplification, our study is limited to the zero quark mass
and probe limit (i.e., the backreaction of the flavor probe
brane on the background geometry is neglected). As in
Ref. [8], we embed two coincident probe D-branes into the
black p-brane geometry and just reserve the Yang-Mills
truncation of nonlinear Dirac-Born-Infeld action for probe
D-brane. As mentioned earlier, one advantage of taking the
intersecting D-brane system is that its field theoretical side
is known; here, they are supersymmetric gauge theories
coupled with fundamental matters. The superconducting
condensates are non-Abelian gauge fields, living on the
probe flavor branes, and have one Lorentzian index, indicat-
ing the phase transition is of thep-wave type. Our numerical
results for the D3/D3 model are very similar to those of
Ref. [23].However, onemain advantageof theD3/D3 system
is that its dual field theory is known [the defect 1þ1 dimen-
sional conformal field theory (CFT)] and the condensed
operator can be explicitly written down, see Eq. (12).

Although these probe D-brane constructions for p-wave
superconductor seem very general as well as similar for
different D-branes, the results are not always the same.
Specifically, we find that non-Abelian condensates for the
three models are qualitatively the same, they have mean
field behavior near the critical temperature and approach to
some fixed constants at very low temperature. When turn-
ing to the electromagnetic response, we find that, for the
real parts of the conductivities, the three models give some
features in common, like the DC infinite conductivity and
the gap formation. However, for the D3/D3 model, there is
no peak at nonzero frequency for the imaginary part of the
AC conductivity compared to the others. Actually, the
conductivity formula for the D3/D3 system is very differ-
ent from the other two models due to the nontrivial behav-
ior for the electromagnetic fluctuations near the AdS
boundary. Another main difference among these models
is that their asymptotic behaviors of the AC conductivity
are quite different. The real part of the AC conductivity
approaches one at large frequency limit for the D1/D5
system and goes to a nonzero constant (much smaller
than one and also very slowly) for the D2/D4 model, while
for the D3/D3 system it tends to zero.

The rest of this work is organized as follows. In Sec. II,
we shortly review previous studies on quantum field theory
in 1þ 1 dimensional spacetime by taking the approach.

We then introduce the models studied in this work and
numerically solve the nonlinear equations of motion
for background fields. With these numerical solutions, we
plot the superconducting condensate as well as the free
energy versus the dimensionless temperature. Section III is
devoted to the study of the electromagnetic fluctuation.
We plot the AC conductivities for all three systems and
give some comments on the results. We end with a short
summary and some discussions in Sec. IV.

II. FLAVOR P-WAVE SUPERCONDUCTORS FROM
INTERSECTING D-BRANES

A. Some reviews

In this subsection, we shortly review previous studies
about 1þ1 dimensional quantum field theory by taking the
AdS/CFT approach. The first aspect we intend to mention
here is about holographic quantum liquids in 1þ 1 dimen-
sions, initially studied in Refs. [13,15]. Although the
authors in Ref. [13] take defect D3/D3 intersecting
D-brane models as the starting point, their results are in
quite agreement with those of Ref. [15], which directly
takes the charged BTZ black hole to compute correlation
functions for probe scalar, spinor and vector operators in
this geometry. In contrast with higher dimensional defects,
a persistent dissipationless zero sound mode is found in
Ref. [13]. The correlation between log periodicity and the
presence of finite spectral density of gapless modes is seen
in Ref. [15]. Meanwhile, the real part of the conductivity
(given by the current-current correlator) also vanishes as
! ! 0 as expected. The fermionic Green’s function shows
quasiparticle peaks with approximately linear dispersion
but the detailed structure is neither Fermi liquid nor
Luttinger liquid and bears some similarity to a ‘‘Fermi-
Luttinger’’ liquid. As will be seen in later sections, to some
degree, our numerical results for the AC conductivity in
D3/D3 model is in agreement with these conclusions.
The second point is about holographic realization of

symmetry breaking in 1þ 1 dimensional spacetime, which
has been discussed in Refs. [17,18]. The authors in
Ref. [18] considered a system of 3D gravity coupled to
matter to study the symmetry breaking phases in 1þ 1
dimensional spacetime. To be specific, they model sym-
metry breaking phases of a strongly coupled 1þ 1 dimen-
sional CFT as black holes with scalar hair. It concluded
that, in the case of a discrete symmetry, these theories
admit metastable phases of broken symmetry. Moreover,
the three-dimensional Einstein-Maxwell theory shows
continuous symmetry breaking at low temperature. The
latter conclusion can be used to construct holographic
s-wave superconductors in 1þ 1 dimensional spacetime.
Intuitively, continuous symmetry breaking in 1þ 1 dimen-
sional spacetime seems to contradict the Coleman-
Mermin-Wagner theorem [25], which states that in 1þ 1
and 2þ 1 spacetime dimensions at finite temperature,
spontaneous continuous symmetry breaking is impossible.
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However, in the large-N limit, these lower dimensional
systems can have another phase in which the continuous
symmetry is almost spontaneously broken and the fall of the
correlation functions is of the power law type as pointed out
in Ref. [26]. Under the framework of the AdS/CFT corre-
spondence, one may expect that Oð1=NÞ corrections will
wash out the symmetry breaking phase. Actually, this indeed
happens as was explored in Ref. [27] for the AdS4 black
hole. It is then reasonable to believe that this idea also holds
in the three dimensional bulk case. Given these facts, it is
very interesting to see what holographic method can tell us
about the superconducting phase transition in two dimen-
sional spacetime with vector order parameter. What we
found is that, when working in the large N limit, which
is the fundamental assumption of AdS/CFT correspon-
dence, holographic superconductor symmetry breaking in
1þ 1-dimensional spacetime does happen.

Another interesting feature for three-dimensional bulk
theory is the chiral anomaly, which has been studied in
Ref. [21] with applications to condensed matter physics
and in Ref. [22] for correctly producing meson spectrum.
In the bulk side, the chiral anomaly is the Chern-Simons
term in the bulk action. The author in Ref. [21] studied the
holographic description of finite-density systems in two
dimensions. Quite interestingly, it was shown that the
chiral anomaly for symmetry currents in two-dimensional
CFT completely determines their correlators. The impor-
tant exception is a CFT with a gauge theory to which we
may couple an external current, as in the probe D3/D3
system or the putative dual to the charged BTZ black hole.
In Ref. [22], the defect D2/D8-brane model was used
to holographically realize large number of colors massless
QCD in two-dimensional spacetime. The flavor axial
anomaly is dual to a three-dimensional Chern-Simons
term which turns out to be of leading order, and it affects
the meson spectrum and holographic renormalization in
crucial ways. It was also shown that an external dynamical
photon acquires a mass through the three-dimensional
Chern-Simons term as expected from the Schwinger mecha-
nism. Massless two-dimensional QCD at large Nc exhibits
anti-vector-meson dominance due to the axial anomaly.
Explicitly, one still cannot give a general argument on the
effect of the chiral anomaly term on the dynamics. However,
the models studied in this work do not contain the chiral
anomaly terms, which greatly simplify our analysis as well
as numerical computations. If we go beyond the massless
limit for the flavor quark, the Chern-Simons (corresponding
to chiral anomaly) will appear, and we leave the study along
this line for future work.

Before concluding this subsection, we briefly comment
on the models used in this work. Although the three
models considered here look quite similar, there are still
some differences among them, which result in different
features for the AC conductivity, which we will reveal
in later sections. The D1/D5 and D2/D4 models are

nonconformal in the sense that the dilaton profiles are
nontrivial. Then, according to the AdS/CFT correspon-
dence, the gauge coupling constant on the dual field theory
side run along the radial direction, which can be thought of
as the energy scale. We may naively denote these two
models as the nonconformal SYM gauge theory coupled
to fundamental matter. However, the D3/D3 model is a
conformal one. These differences together with the specific
background spacetime tell us that the gauge field living on
the probe D-brane has quite different asymptotic behavior
(here we mean the behavior at the AdS conformal bound-
ary) for these models. In particular, there is a logarithmic
term for the boundary expansion of gauge field in the D3/
D3 case, which will be clear in Sec. II C. This makes one
identify the coefficient of the logarithmic term instead of
the constant term as the source. This never happens for the
higher-dimensional (asymptotic) AdS geometry case.1

Furthermore, due to this point, one has to give a new
prescription for the computation of the transport coeffi-
cients in D3/D3 system. The details on these issues will be
given in later sections. In Refs. [8,10], the authors mainly
focused on the decoupled sector,2 which has similar equa-
tion of motion as in the s-wave case. However, here we
directly encounter the coupled modes and need to define a
gauge-invariant variable to plot the conductivity. This
makes our numerical computations complex, especially
for the D3/D3 system.

B. Equation of motion for the background fields

The gravity dual of the p-wave superconductor was first
constructed in Refs. [5,6] by putting the SU(2) gauge field
into the AdS4 black hole geometry. The action for this
gravity system is

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�� 1

4
Fa
��F

a��

�
; (1)

where the field strength tensor of non-Abelian SU(2) gauge
field Aa

� is defined as Fa
�� ¼ @�A

a
� � @�A

a
� þ �abcAb

�A
c
�

with totally antisymmetric tensor �123 ¼ þ1. Working in
the probe limit allows us to ignore the backreaction of the
gauge field on the background geometry. Therefore, we can
fix the black hole geometry as the Schwarzschild-AdS
spacetime and study non-Abelian gauge field in this curved
geometry. The anisotropic features of the p-wave super-
conductor were explicitly reflected on different behaviors
of the conductivities along x and y directions. Following
this work are some developments of holographic p-wave
superconductors; see Ref. [30] for an incomplete list.
However, all of these works are taking higher-

dimensional AdS black hole geometry as the starting point.

1However, this happens in choosing the Lifshitz black hole
geometry to construct the strong coupling superconductor with
dynamical exponent, as seen in Ref. [28].

2The coupled sector in the probe D-brane setup has been
revealed recently in Ref. [29].
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Here, we use the probe-brane method, which is first applied
to holographic p-wave superconductor in Ref. [8], to
explore some properties of 1þ 1-dimensional p-wave
superconductors. We choose the p-brane geometry as our
background metric,

ds2p ¼ H�1=2ð�fð�Þdt2 þ d~x2Þ

þH1=2

�
d�2

fð�Þ þ �2d�2
8�p

�
; (2)

with

e� ¼ H
3�p
4 ; H ¼

�
L

�

�
7�p

; fð�Þ ¼ 1�
�
�0

�

�
7�p

;

(3)

where ~x ¼ ðx1; x2; . . . ; xpÞ denotes the p-dimensional space
of the black p-brane. Explicitly, there is a horizon in above
the metric at � ¼ �0, and the Hawking temperature is

T ¼ 7� p

4�L

�
�0

L

�5�p
2
: (4)

For our purpose, we will choose p ¼ 1, 2, 3 and parame-
terize the internal spaces �8�p as follows,

d�2
7 ¼ d�2 þ cos2�dS23 þ sin2�dS023 ;

d�2
6 ¼ d�2 þ cos2�dS22 þ sin2�dS23;

d�2
5 ¼ d�2 þ cos2�d	2 þ sin2�dS23:

(5)

The probe D-brane extends along ðt; x1; �; S3Þ for D1/D5
model, ðt; x1; �; S2Þ for D2/D4 model, and ðt; x1; �; 	Þ
for D3/D3 system, respectively. The embedding profile for
the probe D-brane can be parameterized by �ð�Þ. As men-
tioned before, we here consider the zero quark mass case,
i.e., �ð�Þ ¼ 0 and leave the effect of the nonzero quark mass
for future research. With these assumptions, the induced
metrics on the flavor probes are

ds25 ¼
�
�0

L

�
3 1

u3
ð�fðuÞdt2 þ dx2Þ

þ L2

�0u

du2

fðuÞ þ
L3

�0

udS23;

fðuÞ ¼ 1� u6;

ds24 ¼
�
�0

L

�
5=2

u�5=2ð�fðuÞdt2 þ dx2Þ

þ L5=2

�1=2
0

u�3=2 du
2

fðuÞ þ
L5=2

�1=2
0

u1=2dS22;

fðuÞ ¼ 1� u5;

ds23 ¼
�
�0

L

�
2 1

u2
ð�fðuÞdt2 þ dx2Þ

þ L2

u2
du2

fðuÞ þ L2d	2;

fðuÞ ¼ 1� u4;

(6)

where in the above formulas we have transformed
holographic coordinate � to a finite interval [0,1] by trans-
forming �0=� ¼ u because we found it is more convenient
to work with u coordinate for numerical computations.
In this new coordinate system, u ¼ 0 denotes the AdS
conformal boundary, where the dual field theory lives and
the horizon is located at u ¼ 1.
Two coincident probe D-branes in the above black hole

geometries have U(2) gauge symmetry on their world
volumes. However, in this work we concentrate on the
non-Abelian subgroup SU(2) for the purpose of inducing
a p-wave superconducting phase transition. In the probe
limit, dynamics of the probe Dq-brane is fully determined
by non-Abelian Dirac-Born-Infeld action,3 and we only
reserve the Yang-Mills truncation of it,

S ¼ �TqNf

4

Z
dqþ1xe�� ffiffiffiffiffiffiffi�g

p
Fa
��F

a��; (7)

with the determinant g calculated from the induced metric
in Eq. (6). One further assumption which will simplify
our computation is that we do not consider the internal
coordinates dependence of the SU(2) gauge field. Then we
can integrate out the internal space in Eq. (7)

S ¼ �N q

Z
d3x

ffiffiffiffiffiffiffiffi�G
p

Fa
��F

a��; (8)

where
ffiffiffiffiffiffiffiffi�G

p ¼ ffiffiffiffiffiffiffi�g
p

e��gS with gS the internal metric and

N q a model-dependent factor, which is irrelevant for later

computations. The equation of motion from this action is
of the form,

@�½
ffiffiffiffiffiffiffiffi�G

p
Fa��� þ ffiffiffiffiffiffiffiffi�G

p
�abcAb

�F
c�� ¼ 0: (9)

We consider the chemical-potential-induced supercon-
ductinglike phase transition. To achieve this goal, we turn
on one time component of non-Abelian SU(2) gauge field,
say A3

0ðuÞ � 0 (here, we only consider homogenous holo-

graphic superconductor, i.e., the background A3
0 and A1

1

only depend on holographic coordinate u.). Similar to the
arguments in Ref. [3], one can show that when the chemi-
cal potential (whose meaning will be clear later), provided
by the non-normalizable mode of A3

0, is increased to some

critical value, the black hole will get unstable against
perturbations. This instability can be cured by condensing
some component of the gauge field Aa

�, say A1
1ðuÞ. More

specifically, we consider the following ansatz4 for the hairy
black hole,

3Note that, for the intersecting D-brane models considered
here, there is no Chern-Simons term contribution to the D-brane
action. For one thing, we take the zero mass limit for the probe
D-brane embedding profile; for another, we do not consider the
excitation of the gauge field along the internal space.

4Another configuration for the background has been consid-
ered in Refs. [5,6]. But it is unstable and has a higher energy
compared to the one in Eq. (10).
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A ¼ A3
0


3dtþ A1
1


1dx: (10)

As emphasized in the first two references of Ref. [8], the
solution with nontrival profile for A1

1 will be the new
ground state when T < Tc, and this new ground state can
be interpreted as a �-meson superfluid. In what follows we
take the D3/D3 system as an example to explicitly write
down the condensate operator from field theory point of
view. More detailed discussions can be found in the first
two references of Ref. [8]. The isospin chemical potential,
provided by non-normalizable mode of A3

0, is introduced as

source of the operator

J30 / �c�3�0c þ��3@0�; (11)

where c ¼ ðc u; c dÞ and � ¼ ð�u;�dÞ are fundamental
quarks and squarks under gauge group SU(2); �i denotes
the Pauli matrices and �� the Dirac matrices in two

dimensional spacetime. In the same way, the condensate
operator, holographically provided by normalizable mode
of bulk field A1

1, takes the following form

J11 / �c�1�1c þ��1@1�: (12)

The condensate in Eq. (10) breaks both the SU(2) and
translational invariance in the bulk completely. However,
one should keep in mind that the broken symmetry con-
sidered here is the flavor symmetry, like that of the QCD
theory, which is somewhat different from the symmetry
being broken in studies such as Refs. [5,6]. The symmetry
breaking pattern going through the superconducting
phase transition can be understood in the following way.
The nonzero value of A3

0 at the AdS conformal boundary

explicitly breaks the SU(2) to its subgroup Uð1Þ3, gener-
ated by rotation in the colored 12-plane. We can identify
this residual unbroken symmetry as the electromagnetic
symmetry. Strictly speaking, this identification is not right
because gauge symmetry in the bulk corresponds to a
global symmetry on the boundary field theory side.
However, this model can produce many superconductor-
like features. We, therefore, ignore this difference and just
go ahead. The U(1) symmetry should be spontaneously
broken when going through a superconducting phase
transition. It is implemented by the nonzero expectation
value for the operator O dual to A1

1. Additionally, we need
to impose the source for O to be zero for spontaneous
symmetry breaking.

Plugging the ansatz (10) into the equation of motion (9)
results in

8><
>:
�00 � 1

u�
0 � u2

fðuÞ c
2� ¼ 0;

c 00 þ
h
f0ðuÞ
fðuÞ � 1

u

i
c 0 þ u2

f2ðuÞ�
2c ¼ 0

; (13)

where ð�; c Þ � 3
2�T ðA3

0; A
1
1Þ for D1/D5 model. Similar

results for D2/D4 and D3/D3 systems are listed as below,

8><
>:
�00 � u

fðuÞ c
2� ¼ 0;

c 00 þ f0ðuÞ
fðuÞ c

0 þ u
f2ðuÞ�

2c ¼ 0
(14)

with ð�; c Þ � 5
4�T ðA3

0; A
1
1Þ for D2/D4 and

8><
>:
�00 þ 1

u�
0 � 1

fðuÞ c
2� ¼ 0;

c 00 þ
h
f0ðuÞ
fðuÞ þ 1

u

i
c 0 þ 1

f2ðuÞ�
2c ¼ 0

(15)

with ð�; c Þ � 1
�T ðA3

0; A
1
1Þ for D3/D3 one. In the above

equations, the prime denotes derivative with respect to u,
and this notation convention will be used in later
representations.

C. Solution for the background fields

Due to the nonlinear coupling between � and c in
Eqs. (13)–(15), we turn to a numerical shooting method
to solve them. The philosophy of our numerical approach is
that we first find a power series solution for c and � near
the horizon. We then take these near-horizon solutions as
initial conditions to numerically integrate these fields from
the horizon to the conformal boundary. To the conformal
boundary (here, represented by u ¼ 0), we impose that the
source for the operator O is zero. This condition can filter
out the wanted solutions.
We now have a look at the asymptotic behavior of the

background fields � and c . Near the conformal boundary,
we can get the following asymptotic behaviors from
Frobenius analysis of Eqs. (13)–(15) near the singularity
u ¼ 0,

D1=D5: �ðu ! 0Þ ��þ �u2 þ � � � ;
c ðu ! 0Þ � c ð0Þ þ c ð1Þu2 þ � � � ;

D2=D4: �ðu ! 0Þ ��þ �uþ � � � ;
c ðu ! 0Þ � c ð0Þ þ c ð1Þuþ � � � ;

D3=D3: �ðu ! 0Þ � �þ� loguþ � � � ;
c ðu ! 0Þ � c ð1Þ þ c ð0Þ loguþ � � � :

(16)

Notice that the asymptotic behaviors for � and c between
the conformal and nonconformal models are different—
there is a logarithmic term for the D3/D3 model, which
also happens in later fluctuation analysis when investigat-
ing the electromagnetic response. This difference makes
the identification of the source and the operator very
different from conventional cases. Here, for the D3/D3

model, the constant term c ð1Þ is identified as the operator
expectation value because it is now normalizable with

respect to the logarithmal term while c ð0Þ as the source.
Actually, due to this fact, the formula for the AC
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conductivity of the D3/D3 model is also different from the
other two models. As mentioned before, to make the phase
transition a spontaneous symmetry breaking, we should
impose

c ð0Þ ¼ 0; c ð1Þ � hOi: (17)

For the� field, the chemical potential� should be nonzero
and the charge density � is a function of it. Actually, D3/
D3 model has been exhaustively analyzed in the first
reference of Ref. [14] from the field theory point of view.
The action for this system is most easily and elegantly
constructed in (2,2) superspace. Different modes on probe
D3-brane have also been studied there. However, one
main difference from our work is that it also takes into
account the 	 [internal space in Eq. (6)] dependence of the
flavor U(1) gauge field.5 Therefore, the asymptotic behav-
ior for gauge modes near conformal boundary is different
from our results.

Near the horizon u ¼ 1, one must have �ð1Þ ¼ 0 for its
norm to be finite, while c should be finite there. We then

have the following Frobenius expansions for � and c near
the horizon,

�ðu� 1Þ ¼ a1ðu� 1Þ þ b1ðu� 1Þ2 þ c1ðu� 1Þ3
þ d1ðu� 1Þ4 þ � � � ;

c ðu� 1Þ ¼ a2 þ b2ðu� 1Þ þ c2ðu� 1Þ2
þ d2ðu� 1Þ3 þ e2ðu� 1Þ4 þ � � � ;

(18)

where the coefficients bi, etc. can be uniquely determined
in terms of a1 and a2, after plugging these expansion into
Eqs. (13)–(15) and counting by order of (u� 1). In carry-
ing out numerical computations, one first guesses some
values for a1 and a2. Then one uses this near-horizon
expansion to apply a finite-element differential equation
solving method. At the boundary u ¼ 0, the condition

c ð0Þ ¼ 0 will filter out the wanted solutions. As in
Ref. [5], we will restrict this work to the solutions where
c has no nodes because, on general grounds, the solutions
with nodes are expected to be thermodynamically unstable
and have higher energy.
We plot in Fig. 1 the condensate hOi versus dimension-

less temperature T=Tc. Explicitly, they approach fixed
constants as T goes to zero, as is expected for a supercon-
ductor. However, the expectation values of the condensates
near zero temperature are much larger than predictions
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FIG. 1 (color online). The condensate of the two-dimensional p-wave superconductors for the operator O corresponding to D1/D5
(top-left), D2/D4 (top-right), and D3/D3 (bottom).

5Since we are interested in the lowest energy state, it is
reasonable to ignore the 	 dependence for flavor gauge
field.
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from BCS theory, which should be explained as the
strongly coupled feature of holographic superconductors.
Moreover, our results are similar to higher-dimensional
counterparts [4]. This may be understood as one of the
universal properties of holographic methods applied to
strongly interacting superconductors.

In the mean field theory for the superconductors, the
order parameters have their square root behavior,

hOi � ðT � TcÞ1=2 when T ! Tc: (19)

By fitting the curves in Fig. 1, we also find such mean field
behavior for the condensates in our models:

D1=D5: hOi � ð17:8815TcÞ2ð1� T=TcÞ1=2 as T ! Tc;

(20)

where the critical temperature when expressed in terms of
the charge density is Tc ¼ 0:0654409�;

D2=D4: hOi � 15:6435Tcð1� T=TcÞ1=2 when T ! Tc

(21)

with Tc ¼ 0:0692836�;

D3=D3: hOi � 15:8992Tcð1� T=TcÞ1=2 as T ! Tc; (22)

where the critical temperature Tc is expressed in terms of
the chemical potential as Tc ¼ 0:0827962�.
From these numerical results, we conclude that all three

models nearly give the same results when concerned with
superconducting condensates.
Before closing this subsection, we plot the results for

the free energies for the three systems, which can be
taken as evidence that the superconducting phase transi-
tion does happen when decreasing the temperature to the
critical value Tc. With the equations of motion (13)–(15)
for the backgrounds c and �, we can reduce the action
in Eq. (8) to some simpler expression. Then, the free
energy difference between the normal and superconduct-
ing phases is

��N�SC ¼ V
Z 1

0
du

ffiffiffiffiffiffiffiffi�G
p

gxxgtt½�ðuÞc ðuÞ�2 � V�F;

(23)

where V is a model-dependent factor; we will not give
its explicit expression here since it does not affect later
arguments. Figure 2 is for the plot of the free energy
difference �F. We clearly see from these plots that the
superconducting phases are thermodynamically favored
below the critical temperature Tc.
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FIG. 2 (color online). The dimensionless free energy difference between the normal and the superconducting phases for D1/D5 (top-
left), D2/D4 (top-right), and D3/D3 (bottom), respectively.
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III. ELECTROMAGNETIC FLUCTUATION AND
AC CONDUCTIVITY

A. Fluctuation analysis: formula for
the conductivity

In this section we move on to the study of the electro-
magnetic response for the superconductor models
constructed in the previous section. In particular, we are

concerned with the AC conductivity �ð!Þ and assume
that the fluctuations have no spatial dependence. We focus
on the following decoupled sector fa1t ðt; uÞ; a2t ðt; uÞ;
a3xðt; uÞg for the gauge field fluctuations and take the
Fourier ansatz for them, say fa1t ðt; uÞ; a2t ðt; uÞ; a3xðt; uÞg �
e�i!tfa1t ðuÞ; a2t ðuÞ; a3xðuÞg. Then the linearized version
of Eq. (9) when considering the fluctuations are as
follows,

D1=D5:

8>>>><
>>>>:

a100t � 1
u a

10
t þ u2

fðuÞ�c a3x ¼ 0

a200t � 1
u a

20
t � u2

fðuÞ ði ~!c a3x þ c 2a2t Þ ¼ 0

a300x þ
h
f0ðuÞ
fðuÞ � 1

u

i
a30x � u2

f2ðuÞ ½� ~!2a3x þ�c a1t þ i ~!c a2t � ¼ 0;

(24)

where dimensionless frequency ~! ¼ 3
2�T !. For later convenience, in the below list we write corresponding equations for

D2/D4 and D3/D3 models,

D2=D4:

8>>>><
>>>>:

a100t þ u
fðuÞ�c a3x ¼ 0

a200t � u
fðuÞ ði ~!c a3x þ c 2a2t Þ ¼ 0

a300x þ f0ðuÞ
fðuÞ a

30
x � u

f2ðuÞ ½� ~!2a3x þ�c a1t þ i ~!c a2t � ¼ 0;

(25)

with ~! ¼ 5
4�T !;

D3=D3:

8>>>><
>>>>:

a100t þ 1
u a

10
t þ 1

fðuÞ�c a3x ¼ 0

a200t þ 1
u a

20
t � 1

fðuÞ ði ~!c a3x þ c 2a2t Þ ¼ 0

a300x þ
h
f0ðuÞ
fðuÞ þ 1

u

i
a30x � 1

f2ðuÞ ½� ~!2a3x þ�c a1t þ i ~!c a2t � ¼ 0;

(26)

where ~! ¼ 1
�T !. Actually, these modes are not indepen-

dent because the radial gauge aau ¼ 0 has been chosen
in deriving these fluctuation equations. This gauge choice
gives two constraint equations for this decoupled sector. We
do not present them here as these constraints have no effect
on the definition or the numerical computations for the
conductivity, which will be clear later. The AC conductivity
is defined by following Kubo’s formula,

�ð!Þ ¼ GRð!Þ
i!

: (27)

Therefore, our aim to produce the electromagnetic response
of the superconducting models we constructed in Sec. II is
then reduced to calculation of the retarded Green’s function
GRð!Þ. Under the gauge/gravity duality approach, a good
prescription for the retarded Green’s function can be found
in Ref. [31].
For the retarded Green’s function, we should impose

ingoing wave boundary conditions at the horizon for
these fluctuation modes. A simple Frobenius analysis for
Eqs. (24)–(26) near the horizon reveals that

8>>><
>>>:
a3x ¼ ð1� uÞ½1þ a3

ð1Þ
x ð1� uÞ þ a3

ð2Þ
x ð1� uÞ2 þ a3

ð3Þ
x ð1� uÞ3 þ � � ��

a1t ¼ ð1� uÞ½a1ð1Þt ð1� uÞ þ a1
ð2Þ
t ð1� uÞ2 þ a1

ð3Þ
t ð1� uÞ3 þ � � ��

a2t ¼ ð1� uÞ½a2ð1Þt ð1� uÞ þ a2
ð2Þ
t ð1� uÞ2 þ a2

ð3Þ
t ð1� uÞ3 þ � � ��;

(28)

where we have used the linearity of Eqs. (24)–(26) to set
the scale of a3x to 1 at the horizon. The indices appearing
in these equations are �i ~!=6, �i ~!=5, and �i ~!=4 for
the three models, respectively. The coefficients in above

equations can be uniquely determined once plugging these
expansions into Eqs. (24)–(26) and counting by powers of
(1� u). Therefore, Eqs. (28) can provide initial conditions
for these second-order differential equations. We, in fact,
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use these power solutions to do numerical integration
from the horizon to the conformal boundary by the
MATHEMATICA NDSOLVE.

At the AdS conformal boundary u ¼ 0, the general
solution to the equations of motion is distinguished
between the D1/D5 (D2/D4) and D3/D3 models. More
specifically,

D1=D5ðD2=D4Þ:

8>>><
>>>:
a1t ¼ A1ð0Þ

t þ A1ð1Þ
t u2ðuÞ þ � � �

a2t ¼ A2ð0Þ
t þ A2ð1Þ

t u2ðuÞ þ � � �
a3x ¼ A3ð0Þ

x þ A3ð1Þ
x u2ðuÞ þ � � �

(29)

and

D3=D3:

8>>><
>>>:
a1t ¼ A1ð0Þ

t þ A1ð1Þ
t loguþ � � �

a2t ¼ A2ð0Þ
t þ A2ð1Þ

t loguþ � � �
a3x ¼ A3ð0Þ

x þ A3ð1Þ
x loguþ � � � ;

(30)

where we have represented the boundary expansions for
the D1/D5 and D2/D4 models together and the expressions
in the parentheses are for the D2/D4 system. Explicitly, the
logarithmic terms appear again in the boundary behavior of
the gauge field fluctuations for the D3/D3 model.

As argued in Ref. [5], the conductivity is a physical
quantity and should be gauge invariant. We should con-
struct a new mode from a1t , a

2
t , a

3
x, and this mode should

be invariant under the gauge transformation that keeps
our gauge choice. The details for the constructions of the
gauge-invariant modes can be found in the original
paper [5], and in the following we write down this mode
directly,

~a 3
x � a3x þ c

i ~!a2t þ�a1t
�2 � ~!2

: (31)

Plugging the boundary behavior in Eq. (29) into the newly
defined mode in Eq. (31) and expanding it near u ¼ 0
results in

D1=D5ðD2=D4Þ: ~a3x ¼ ~A3ð0Þ
x þ ~A3ð1Þ

x u2ðuÞ þ � � � ; (32)

with

~A 3ð0Þ
x ¼ A3ð0Þ

x ; ~A3ð1Þ
x ¼ A3ð1Þ

x þ c ð1Þ i ~!A2ð0Þ
t þ�A1ð0Þ

t

�2 � ~!2
:

(33)

Then, the formula for the conductivity can be straightfor-
wardly written down for D1/D5 and D2/D4 systems,

�ð!Þ ¼ 1

i!

~A3ð1Þ
x

~A3ð0Þ
x

: (34)

Notice that the above formula is the same as Eq. (4.19) of
Ref. [5]. We can expect that numerical results for the
conductivity of these two models should have some sim-
ilarities with the results reported in Ref. [5] for ~�xx; and

this does happen for our results.

Involving the D3/D3 model, we have the corresponding
results for the mode ~a3x near u ¼ 0,

D3=D3: ~a3x ¼ ~A3ð1Þ
x þ ~A3ð0Þ

x loguþ � � � ; (35)

with

~A 3ð0Þ
x ¼ A3ð0Þ

x ; ~A3ð1Þ
x ¼ A3ð1Þ

x þ A1ð0Þ
t c ð1Þ

�
: (36)

Due to the appearance of the logarithmic term logu in the
asymptotic behavior for the fluctuation modes, we should

identify ~A3ð0Þ
x as the source and ~A3ð1Þ

x as the expectation value
of the dual operator. Moreover, the definition for the
retarded Green’s function as well as the conductivity
should be modified to

GRð!Þ ¼ �
~A3ð1Þ
x

~A3ð0Þ
x

and �ð!Þ ¼ � 1

i!

~A3ð1Þ
x

~A3ð0Þ
x

: (37)

We have seen that this formula is greatly different from the
counterparts, Eqs. (33) and (34) for D1/D5 and D2/D4
models. In the next subsection, we will see that this differ-
ence will be reflected in the imaginary parts of the
conductivity.

B. Numerical results for the conductivity

We report our numeric results for the AC conductivity
for all three models in this subsection. Before this, we have
a brief explanation for our numerical method. We use the
horizon expansions as in Eq. (28) to generate initial con-
ditions for the equations of motion for the fluctuations.
We then use the MATHEMATICA NDSOLVE to numerically
solve these Eqs. (24)–(26). The expansion coefficients
appearing in the conductivity formula can be directly
read off from boundary behavior of different modes as in
Eqs. (29) and (30) once the backgrounds c and � as well
as the frequency ! are specified.
In Figs. 3–8, we plot the real and imaginary parts of the

AC conductivities for all the three models.
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FIG. 3 (color online). The real part of the AC conductivity
with different condensates corresponding to T=Tc ¼ 1:0,
0.603055, 0.277291, 0.193113, 0. 126896 for D1/D5 from top
to down.
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We conclude with some explanations of these figures for
the conductivity:

First, consider the normal phase, i.e., T=Tc ¼ 1. For the
D1/D5 model, Re�ð!Þ is a constant 1 and Im�ð!Þ is
always zero. This is consistent with higher-dimensional
models. On the other hand, for D2/D4 and D3/D3 models,
Re�ð!Þ decreases monotonously as the frequency !=T
increases. Moreover, Re�ð!Þ of D3/D3 approaches zero at
high frequency, while Re�ð!Þ for D2/D4 goes to a nonzero
constant. This feature has also been found by studying the
flavor U(1) dynamics of the D3/D3 model or BTZ black
hole in Refs. [13,15,17].

When decreasing the temperature, we go to the con-
densed phase, i.e., hOi � 0. We find that Re�ð!Þ for all
three models displays gap formation, which is similar to
the findings in Refs. [4,5,17]. More specifically, Re�ð!Þ is
very small in the infrared (i.e., for small!=T in the figures)
and then rises quickly at some critical frequency !g. Near

! ¼ 0, there appears a delta peak in the conductivity,

which can be explained by the Kramers-Kronig relations.
This relation relates the real and imaginary parts of casual
quantities and can detect the distributional parts of them.
Take the D1/D5 system as an example. The Kramers-
Kronig relation states that,

Im ½�ð!Þ� ¼ �P
Z 1

�1
d!0

!

Re½�ð!0Þ�
!0 �!

; (38)

where P denotes the principal part of the integration. It is
clear from this formula that Reð!Þ has a delta peak,
Re�ð!Þ � �ð!Þ, only when Im�ð!Þ has a pole at ! ¼
0, Re�ð!Þ � 1=!, and vice versa. The delta peak at! ¼ 0
indicates a DC superconductivity. Similarly, the pole
in the imaginary part of the AC conductivity at finite !
can also be understood from the Kramers-Kronig rela-
tion. As mentioned before, this pole can be easily seen
from the formula for the conductivity Eq. (33). From
Eq. (38), we can conclude that a simple pole in Im½�ð!Þ�
at ! ¼ !0 implies a delta-function contribution
�ð!�!0Þ to Re½�ð!Þ�. We already see that this peak
becomes higher and narrower as the temperature decreases.
However, as far as we understand, we do not think of it as a
massive excitation. We rather take it as artificial,
as we use the newly defined mode to plot the conductivity,
which in some sense implies that it is not a good choice
of gauge-invariant mode used in this work and the pole
is introduced by hand, however inevitable as far as we
know.
In the superconducting phase, there is a pole in

Im�ð!Þ for D1/D5 and D2/D4 models, which is in
contrast to the D3/D3 model. Actually, from the formulas
of the conductivity for all three models, we have seen
some differences, and the peak should appear at ~!0 ¼ �
from Eq. (33) with the residue proportional to the
condensate hOi. However, for D3/D3 model, we can
easily read off the !g if we follow the analysis of

Ref. [32] and define !g as the frequency which minimizes

Imð!Þ,

!g

T
� 25 when

T

Tc

¼ 0:269669: (39)

When taking large ! limit, all the results go to those of
the normal phase, which is expected from general grounds,
the large ! will wash out the effect of the superconducting
condensates. This can also be seen clearly from the
Eqs. (24)–(26).
With these comments in mind, we can conclude that all

three models can reproduce some basic features of the
1þ 1 dimensional p-wave superconductor, like the DC
infinite conductivity (a signal for superconductivity)
and gap formation when decreasing the temperature.
The results of D1/D5 model are more related to the
higher-dimensional counterparts. The D3/D3 model for
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FIG. 5 (color online). The real part of the AC conductivity
with different condensates corresponding to T=Tc ¼ 1:0 (solid),
0.664919 (dashed), 0.269669 (dotted), 0.189074 (thick dashed)
for D3/D3 model.
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FIG. 4 (color online). The real part of the AC conductivity
with different condensates corresponding to T=Tc ¼ 1:0,
0.464611, 0.254859, 0.141036, 0. 0978091 for D2/D4 model
from top to down.
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FIG. 6 (color online). The imaginary part of the AC conductivity with different condensates corresponding to T=Tc ¼ 1:0, 0.603055,
0.277291, 0.193113, 0.126896 for D1/D5 from left to right and top to down.
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FIG. 7 (color online). The imaginary part of the AC conductivity with different condensates corresponding to T=Tc ¼ 1:0, 0.464611,
0.254859, 0.141036 for D2/D4 from left to right and top to down.

1þ 1-DIMENSIONAL p-WAVE SUPERCONDUCTORS FROM . . . PHYSICAL REVIEW D 86, 106005 (2012)

106005-11



the p-wave superconductor has some common features
with the s-wave case as studied in Ref. [17].

IV. SUMMARY

In this paper we have taken the D-brane probe approach
to explore some properties of holographic p-wave super-
conductors in 1þ1 dimensional spacetime. In the large-N
limit, we can bypass the no-go theorem (the Coleman-
Mermin-Wagner theorem) which forbids the supercon-
ducting phase transition. We found that all the three
models are quantitatively similar in producing some key
features of the p-wave superconductor, like the mean field
behavior of the superconducting condensate near Tc, the
DC delta peak, and the gap formation, etc. These are
common with the higher-dimensional superconductors
under the holographic approach. Therefore, these charac-
teristics can be regarded as universally characteristic of
the holographic method. Besides these, we also found
some particular ones for different models, especially for
the AC conductivity. Specifically, the high-frequency lim-
its of the conductivities are different: for D1/D5, it
goes like the higher dimensional counterparts, Re�ð!Þ!1
and Im�ð!Þ ! 0; for D2/D4, both Re�ð!Þ and Im�ð!Þ
approach some nonzero constants but very slowly compared
to the other two models; the conductivity of the D3/D3
model is basically the same as its s-wave counterpart, which
is first studied in Ref. [17]. However, the condensates

found here are greatly different from the results of
Ref. [17], where hOi decreases or increases in the zero
temperature limit. Leaving aside these model-dependent
differences, we can conclude the holographic approach to
the superconducting phase transition, which reproduces
some common features and gives us some directions for
strongly correlated condensed matter systems.

Actually, in this work we explored some basic aspects of

the 1þ 1-dimensional superconductor from the holo-

graphic viewpoint. There are some interesting problems

that deserve further investigation. The first one is to go

beyond the zero quark mass limit and study its effect on the

superconducting phase transition and conductivity. There

is only one conductivity for 1þ 1-dimensional spacetime,

and it looks like �xxð!Þ in the higher-dimensional case.

However, such a quantity in colorful superconductors from

the probe D-brane approach has not been computed. So we

hope to come to this question in the near future and have a

complete comparison between our work and its higher-

dimensional counterparts.
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