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Integrable vortex-type equations on the two-sphere
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We consider the Yang-Mills instanton equations on the four-dimensional manifold S? X 3, where 3 is a
compact Riemann surface of genus g > 1 or its covering space H> = SU(1, 1)/U(1). Introducing a natural
ansatz for the gauge potential, we reduce the instanton equations on S X 3, to vortex-type equations on
the sphere S2. It is shown that when the scalar curvature of the manifold S?> X 3 vanishes, the vortex-type
equations are integrable, i.e., can be obtained as compatibility conditions of two linear equations
(Lax pair), which are written down explicitly. Thus, the standard methods of integrable systems can be
applied for constructing their solutions. However, even if the scalar curvature of S> X 3 does not vanish,
the vortex equations are well defined and have solutions for any values of the topological charge N.
We show that any solution to the vortex equations on S> with a fixed topological charge N corresponds to a

Yang-Mills instanton on S? X 3 of charge (g — 1)N.
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I. INTRODUCTION AND SUMMARY

The Abelian Higgs model on R X R? at critical value of
the coupling constant (the Bogomolny regime) admits
static vortex solutions on R? [1] that describe magnetic
flux tubes (vortex strings) penetrating a two-dimensional
superconductor. Vortices are important objects in modern
field theory [2] since it is believed that (electric) vortex
strings play an important role in the confinement of quarks.
Their stability is ensured by topology [3]. Many results
known for the Abelian Higgs model were generalized to
Riemann surfaces, noncommutative spaces, and to the
non-Abelian case (see e.g., Refs. [4—13] and references
therein).

It was shown recently that the vortex equations on a
Riemann surface 3, of genus g have a Lax pair representa-
tion if g > 1 and do not have it for g = 0, 1 [8]. This was
done by using the correspondence between vortices on 2,
and SU(Z)—equivariantl instantons on the four-manifold
3, X S?—the invariance conditions reduce the instanton
equations on 2, X S? to vortex equations on 2. Existence
of a Lax pair for the reduced equations on 2, is related with
vanishing of scalar curvature of 3 X S? when this manifold
becomes [15] a gravitational instanton. The nonexistence
of a Lax pair for vortex equations on S$?, T2, and R?
followed from the fact that the scalar curvature of 3 X
$? is nonvanishing for 3 = S, T2, and R?.

In this paper, we introduce an ansatz reducing the
instanton equations on M = §? X 3 to vortex-type equa-
tions not on 2 but on S2, and we show that these equations
are the compatibility conditions of two linear equations
(Lax pair) if the scalar curvature of M vanishes, similar to
the previous g > 1 cases [8]. Furthermore, the existence of

"This means a generalized SU(2) invariance, i.e., invariance
under space-time transformations up to gauge transformations
[14].
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solutions to the reduced equations on S? for any topologi-
cal charge N = 0 demands noncompact initial gauge group
for Yang-Mills theory on M and compact gauge group of
reduced Yang-Mills-Higgs theory on S2. This is similar to
the case of the Hitchin equations on S? and 72 obtainable
as reduction of the instanton equations [16]—smooth so-
lutions on S? (and 7?) exist only if one chooses noncom-
pact gauge group? in four dimensions [19].

The organization of this paper is as follows. In Sec. II,
we collect various facts concerning the geometry of the
manifold §? X H?, where H> = SU(1, 1)/U(1) is the unit
disk in the complex plane C. The explicit form of the
metric, Christoffel symbols, etc. are written down. Then,
in Sec. III, we introduce an SU(1,1)-equivariant ansatz that
reduces the instanton equations on S?> X H? to Abelian
vortex-type equations on S2. Solutions to these equations
give solutions of the self-dual Yang-Mills equations on
§? X H*> with the noncompact gauge group SU(I,I).
Section IV deals with integrability properties of the intro-
duced Abelian vortex equations. Finally, in Secs. V and VI,
we generalize results of Secs. I, III, and IV to the case of
non-Abelian vortex-type equations on S? and instantons
on manifolds S? X 3 with compact Riemann surfaces 2.
Bogomolny transformations for the Yang-Mills-Higgs ac-
tion functional is discussed and a relation between the
instanton and vortex topological charges is derived.

II. MANIFOLD $? x H?

A. Riemann sphere

Consider the standard two-sphere S§? = CP' =
SU(2)/U(1) of constant radius R,. In local coordinates y =
x' +ix?, § = x! — ix? on CP!' the metric and the volume

2Yang—Mills fields with noncompact gauge groups were con-
sidered in many papers (see e.g., Refs. [17,18] and references
therein).
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form read

ds2, = 2g,5dydy = @.1)

(R} + ')2
and
2iR4

e 2.2)

we = igyydy A dy,

respectively. For the nonvanishing components of the
Christoffel symbols and the Ricci tensor we have

I}y = 2d,logp; and F% = 2d;logp; with
p% = 8yy» (23)
1 Vv
Ry = —2d,05logp; = 28 = Ry = 2¢"R; = o
1 1
(2.4)
where Ry is the scalar curvature of S2.
For the components g, and g¥=1/ 8yy We have
gy = elel and g7 = elel, (2.5)

where e){ and e? are unitary (local) frame. We introduce a
basis of type (1,0) and (0,1) vector fields

Y e Y
e; = e, and e = ej0;

on $? = CP!. The dual basis of type (1,0) and (0,1) forms
is eydy and eydy.

(2.6)

B. Coset space H?
Consider the symmetric space (unit disk)
H? = SU(1, 1)/U(1), 2.7)

where SU(1,1) is a noncompact real form of the group
SL(2, C) with elements & defined by

htnh=n forn= ((1) _01 ) (2.8)

The metric and the Kihler form in the coordinates z =
3

X} —ix* 7= x3 +ix* on H? are given by
4R%
2 = _ 2 -
dSH2 = ZgzdedZ = (R%_—Zz)zdzdz, (29)
and
2R A dz iBAB,  (2.10)
wp = —————dzAdZT = — , .
" (R} — z2)*
where
V2R3dz _ 2R3z
= and f:i=-2 2.11
A R} —zZ k R:—zZ @1

are forms on H? of type (1,0) and (0,1). These forms satisfy
the equations
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dB=—-2anApB, dB=2aApB and
1 _ i (2.12)
da = _Z—R%B/\ﬁ = _2—]{'%0)112'
The anti-Hermitian connection oneform
1
————(zdz — zd 2.13
a= 2R = )(zz zdz) (2.13)

with the curvature form da given in (2.12) is an H*-analog
of the monopole connection on CP'. Note that 2a is
the Levi-Civita connection on the tangent bundle TH?>.
The one-form a is a connection on the square root L of
the holomorphic bundle 7"°H?.

The Christoffel symbols, Ricci tensor, and scalar curva-
ture for H? are

=20,logp, and T%.=29.logp, with

p3 =g (2.14)

1
R.:= —20.0:logp, = T R2 8 =
5

(2.15)

Rip = 28%R: = = .
2

For (1,0) and (0,1) vector fields on H? dual to forms (2.11)

we have
e, :=¢30,=p;'9, and e;:= ega =p;'o; (2.16)

with p, given in (2.14) and (2.9).
We also consider a four-manifold M given by a product
of $? and H? with the product metric

ds3, = ds?92 + dsi,2 2.17)
For the scalar curvature of M = S2 X H? we have
Ry = Rg + Ry = 2(% = %) (2.18)
1 >

III. VORTICES ON S? AS YANG-MILLS
CONFIGURATIONS ON $? x H?

A. SU(1,1)-equivariant gauge potential

Consider the manifold M = §?> X H?. Let £ — M be an
SU(1,1)-equivariant complex vector bundle of rank 2 over
M with the group SU(1,1) acting trivially on S? and in the
standard way by SU(1,1)-isometry on H> = SU(1, 1)/U(1).
Let A be an su(l,l)-valued local form of SU(I,1)-
equivariant connection on & (cf. Refs. [7,8]); it can be

chosen in the form
Loep )

JA®1 +1®a
7'5<£®,B -lA®l1-1@®a

1 1 1
— (EA 4 a)a'3 +dBo tsdBo. (D)
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where

1 O 0 1 q
= , = an

727 \o -1 77 \o o

00
o_ = .

1 0
Here, A = Aydy + A)-,dy is an Abelian connection on a
(Hermitian) complex line bundle E over CP! = §2, a is

(3.2)

F=dA+AANA=

L(dd —Ad) A B

= FydyAdy + Fydy Adz+ Fydy AdZ + Fydy Adz + Fyzdj AdZ + Fpdz AdZ

with the nonvanishing field strength components
1

F= —2gzz(R1% - ¢<f_’)0'3» (3.4)

F5. = %(avd’ +Ay¢)0'+,

P2 (3.5)
Fy. = ji(ay¢ +A oy,
P25
Fz ﬁ(ayqs Ado_, e

.Tyz = %(ayﬁf_’ - Ayd_))a',.

In (3.4) we have defined F=dA = FdyAdy=
(0,A; — 9;A,)dy A dy for A = A dy + A;dy.

C. Vortex equations on S2

Let us consider the self-dual Yang-Mills equations
#«F = F on $? X H?, where * is the Hodge operator. In
local coordinates these equations have the form

Fs:=0=(F,)t and g F;+g“F..=0.
3.7)

Substitution of (3.4), (3.5), and (3.6) into (3.7) shows that
the self-dual Yang-Mills equations (3.7) on S? X H? are
equivalent to the Bogomolny-Prasad-Sommerfield (BPS)
vortex-type equations on S

F@=:&(£§—¢$)¢:1F=($g—¢$}%L (3.8)

0,p+A,p=0 & =0, (3.9)

where d4 = dy(d, + A,). Note that for the standard vortex
equations instead of Egs. (3.9) one has d;¢ + A;¢p = 0.

1F=A(h - 0d)p AR
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the connection (2.13) on the complex line bundle L over

H?, ¢ is a section of the bundle E, ¢ is its complex
conjugate, and forms B, 8 on H? are given in (2.11). In
local complex coordinates y, ¥ on CP' we have A =

A(y,y) and ¢ = ¢(y, y).

B. Field strength tensor

In local coordinates on S? X H? the calculation of the
curvature F for A of the form (3.1) yields

L (dgp +Ap) A B
el - ed)ens
(3.3)

I
This equation can be obtained if in (3.1) one chooses 3 in
the upper right corner and — 3 in the lower left corner
[compact gauge group SU(2)] but then in (3.8) one will
have —1/R3 and such vortex-type equations will not have
solutions due to the Kazdan-Warner theorem [20].

Vortex number N is defined as the first Chern number
¢ (E) of the bundle E — CP',

i
= (E) = — F.
N = ey(B) =5 fsz

o

(3.10)

From (3.8) it follows that

wJor e footes = [ooe =27
— — wo = ——= we =2[—],
27 Js? 27 Js2 § 27TR% 52 § R,

3.11)
and we obtain (cf. Ref. [4]) the inequality

N = 2(5)2.
R,

For any N = 0 the condition (3.12) can be satisfied for a
sufficiently large ratio R, /R, and then the moduli space of
vortices on S? will be nonempty.

(3.12)

D. Liouville-type equations on S>

Consider the N-vortex solution ¢ = exp(%(u +160)),
where u and 6 are real-valued functions. Since ¢ can
have zeros at y; € CP', then u(y) — —o0 as y — y; and
0(y) is a multivalued function with ramification points at
y;. Equation (3.9) implies that

1
Ay = —d,loge = —an(u +1i0) and
o (3.13)
Ay = d5logp = 58)—,(14 —i6).

Plugging (3.13) into (3.8), we obtain the Liouville-type
equations on 2,
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1
d,0;u =g (— — e“),
yO5y yy R%

away from the singularities of u.

Note that the sign on the right-hand side of Eq. (3.14)
with g5 givenin (2.1) is opposite to the sign in the standard
vortex equations on S2. However, equations of type (3.14)
on compact Riemann surfaces (including $?) were consid-
ered by Kazdan and Warner [20]. They have shown, in
particular, that equations

1
d,0;u = ig,—,(— - e”)
¥y Y\R2

have solutions for both signs in (3.15) and equations

1
d,0;u = 1g,-,<— + e”)
¥y Y\R2

have no solutions. These four cases exhaust possible
Liouville-type equations on S? with R} # oo.

Recall that Eq. (3.15) can be obtained by the reduction of
the self-dual Yang-Mills (SDYM) equations from §? X §2
to S? with gauge group SU(2) (lower sign) and from $? X
H? to §? with gauge group SU(1,1) (upper sign). Similarly,
Egs. (3.16) correspond to the reduction of the SDYM
equations from S? X H? to S? with gauge group SU(2)
(lower sign) and from §% X S? to §% with gauge group
SU(1,1) (upper sign). Thus, only the gauge group SU
(1,1) is allowed for the considered case of the reduction
§2 X H* — $?, and solutions of (3.14) exist for any N = 0.

If one considers the reduction of the SDYM equations
from S? X H? to H?, the allowed gauge group is SU(2) [8].
In other words, depending on a symmetry [SU(2) or SU
(1,1) equivariance] imposed on gauge fields, on $? X H?
there exist solutions of the SDYM equations with gauge
groups as SU(2) and SU(1,1).

(3.14)

(3.15)

(3.16)

IV. INTEGRABILITY OF VORTEX
EQUATIONS ON §2

A. Integrable case

We considered the BPS vortex-type equations (3.8) and
(3.9) and showed their equivalence to the self-dual Yang-
Mills equations (3.7) on the manifold M = S> X H?. Note
that for equal radii R, = R, of S?> and H? the scalar
curvature (2.18) of M vanishes. In this case the Weyl tensor
for the manifold M is self-dual [15].

An important feature of Kihler manifolds M with scalar
curvature R, is that the so-called twistor space Z of M
becomes a complex manifold if R, = 0. Let us consider
an open subset ‘U of M = §? X H? with complex coordi-
nates y, z. Then the twistor space of ‘U (i.e., the restriction
of Z to U) is diffeomorphic to U X CP', Z|¢y ~ U X
CP!', with a local complex coordinate A € CP'\{co} on
the last factor. On Z there is a distribution generated by
three vector fields of type (0,1) closed under the Lie
bracket. They hazve the form (cf. Ref. [8])
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Vi = é7 — Aé,, Vs =286 + Aé;, and V3=9;
4.1)
where
e = p; (0, — (9,logp)Ad,), “2)
ey = pl_l(('))—, + (ay logp;)Ad,), .
&= p; (0. — (9, logp;y)Ad ), @3)

& = p5'(9; + (9:1ogpy)Ad)).

Recall that p{ = g,; and p3 = g are components of met-
rics on S? and H?; their explicit forms are given in Sec. II.

The vector fields (4.1) define an almost complex struc-
ture J on Z such that

TV = ~ivg

for k = 1, 2, 3. For commutators of type (0,1) vector fields
(4.1) we have

[V, V3]=2Ap12(3,p1)Vi + Ap52(0.p2) V5

+ 2A2<i2—i2>v3,
Rl R2

[Vi, V3]=0=[V3 V3]

4.4)

4.5)

where V3 = 9, is the (1,0) vector field on Z. Recall that for
integrability of an almost complex structure 7 on Z it is
necessary and sufficient that the commutator of any two
vector fields of type (0,1) with respect to J is of type (0,1).
For our case we see from (4.5) that 7 is integrable—and Z
is a complex manifold—if and only if

R, = R,, (4.6)

i.e., when the scalar curvature R,, of the manifold M =
§? X H? vanishes. In this case the bundle £ — M pulled
back to the bundle & over the twistor space Z allows an
integrable holomorphic structure defined by a (0,1)-type
connection along the vector fields (4.1). The integrability
of this structure, F%? = 0, is equivalent [21] to the self-
duality equations on M.

B. Lax pair
For the case (4.2) from (3.12) we obtain the inequality

N =2 4.7

i.e., bundles & over Z with integrable holomorphic struc-
tures describe configurations of N = 1 and N = 2 vortices
on S2. We emphasize that vortices exist for any N > 0 but
only for N = 2 the vortex equations (3.8) and (3.9) appear
from a Lax pair.

For presenting vortex equations on S” as an integrable
system (for Ry = R,) one should introduce two linear
equations (Lax pair) whose compatibility conditions will
produce the vortex equations. For that we introduce a (0,1)

part V%! of the covariant derivative V on & by the formulas
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Vy. =Vi+ Ay =& — Aey + A — A A, (4.89)
Vi, =Vs+ Ay, =8 + A8, + A; + XA, (4.8b)
Vy, = V5 + Ay, =05, (4.8¢)

where Vy denotes the covariant derivative along the vector
field X. The components

.
A=A,
— ,2
\/,le = ezﬂlz,

=
I
2

(4.9)

=
I
(3N
P2 iy

8T}

are easily extracted from (3.1).
Let us now introduce a 2 X _2 matrix ¢ = ¢ (y, 5,22, A)

that does not depend on A and consider two linear
equations

(4.10a)
(4.10b)

Vy, i =[e1+ Aj =A@, + AP =0,
Vi, b i=[A@E, + A)) +& + Ay)]p =0

It is not difficult to check that the compatibility conditions
of the linear equations (4.10),

([ﬁviy ﬁvé] - ﬁ[vf,vi])lﬂ =0,

are equivalent to the vortex equations (3.8) and (3.9) for A
given in (3.1).
Note that equations

F¥?=0e F(v, Vi) = [@vi, ﬁvj] - ﬁ[vi,vj] =0

4.11)

(4.12)

for @Vi given in the first two formulas from (4.8) can

be imposed even if an almost complex structure 7 on Z is
not integrable, that is, the case when R; # R,. Then
Egs. (4.12) define a pseudoholomorphic structure [22] on
the bundle & — Z. These equations are again equivalent to
the self-duality equations on S> X H? since

FWVi,Vs) = Fis — MFi1 + Fn) + X2 Fn,

Fvivs) =0=F(V5V3), 4.13)
where
Fiz=eiA;—e; A1 +[ A Azl = ei Fyz (414a)
Frn=eA,—e; A +[ A, A)]=e1e5F,,, (4.14b)
Fi=elAi—ei A +[ A, Ai]—pi'(eip))
A +pilep)Ar=g"Fy5 (4.14c)
Fn=eAs—e; Ay +[ Ay Azl = py ' (e3p2)
A+ 03 (e20) As = g7 F . (4.14d)

After substituting SU(1,1)-equivariant gauge potential
(3.1), Egs. (4.13) reduce to the vortex equations on S>
having solutions with N > 2. So, for N > 2 vortex equa-
tions on S? do not appear as a compatibility condition of a
Lax pair but are derivable nevertheless from the self-dual
Yang-Mills equations similarly to vortex equations on
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Riemann surfaces with genus g > 1, where vortex equa-
tions were integrable only for N =< 2(g — 1) [8].

V. QUIVER VORTEX EQUATIONS

Here and in Sec. VI, we generalize Egs. (3.8) and (3.9)
to the non-Abelian case and describe relations between
vortices on S? and instantons on the manifold S% X 3,
where 3, is a compact Riemann surface of genus g > 1.

A. Equivariant vector bundle

Consider the manifold M = CP! X H?, where CP! = §2
is the Riemann sphere and H? is the unit disk described in
Sec. II. Let £ — M be an SU(1,1)-equivariant rank-k com-
plex vector bundle, with the group SU(1,1) acting trivially
on CP! and by isometry on H> = SU(1, 1)/U(1). Let A
be a connection on £. Imposing the condition of SU(1,1)
equivariance means that we should look for representations
of the group SU(1,1) on C. Notice that for each positive
integer m, the module

m
Ck= & Ch with Yk =k (5.1)
i=0 i=0
gives such a representation if C”*! is an irreducible rep-
resentation of SU(1,1). Let
E= é) E, — CP! (5.2)
be a rank-k Z,, ,,-graded complex vector bundle over CP!

and A”s are connection forms on the bundles E; — CP!.
Then

£ = é) g with &=E®L"™2  (53)
where L™ "% = (L)®m~2) and the bundle L — H? with a
connection a given in (2.13) was introduced in Sec. II.

B. Symmetric gauge potential and field strength tensor

Similar to the compact SU(2) case [7], the SU(1,1)-
equivariant gauge potential A with values in End (CF)
decomposes into connections A’ € u(k;) on the complex
rank-k; vector bundles E; — CP'withi=0,1,..., mand
a multiplet of scalar fields ¢;., on CP' with i=
0,1,...,m — 1 transforming in the bifundamental repre-
sentation Ck @ (CY)ki*1 of the group U(k;) X U(k;,,), i.e.,
¢eH om(E;, E; ). Collecting these Higgs fields into the
upper triangular k£ X k complex matrix

0 ¢, 0 ... 0
0 0 ¢y ... 0
b =1 ) (5.4
00 0 .. o,
00 0 ... 0

we get
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A= A<'">®1+Ym®a+ dm®B+—o! B
(m) NR \/— (m)
(5.5

where

A= AleIl, Y 1= D.(m = 2i)1;, ® 11,
i=0 i=0
(5.6)

and I1;: E — E; are the canonical orthogonal projectors of
rank 1, II;IT; = &;;11;, which may be represented by di-
agonal (m + 1) X (m + 1) matrices I1; = (8;;8,1);1=0,1,..m
of unit trace. Here 8 and S are forms on H? of type (1,0)
and (0,1) defined in Sec. II.

The calculation of the curvature ‘F for A of the form
(5.5) yields

F=dA+AANA

171 -
— r(m _ _ T
=rFm g1 2<R% Y — LD ¢<m)]),3 AB

1 1
+ T(dfﬁ(m) +[A™, $(]) A B + \Tz(qu(er)

+[A", ¢ DAB,

where F"™ = dA™ + [A A(™] The derivation of (5.7)
uses formulas (2.12).

(5.7)

C. Non-Abelian vortex equations on CP!

Let us consider the self-dual Yang-Mills equations
*F = F on M. In local coordinates on M these equations
have the form (3.7). Substitution of (5.7) into the instanton
equations on M = §? X H? reduce them to non-Abelian
quiver vortex equations (cf. Refs. [7,8])

) 1/1
i Fm = E(F Yy = [Py ¢(‘fm)])wsz, (5.8)
a¢(m) + [A(l 0)’ ¢(m):| =0, (59)

where 9 = dyd, and wg is given in (2.2). In terms of
(A, ¢,) these equations have the form

—2i

2ir = (M 4 bl b= bl Jos. G10)
Ipir1 + Al g Pi1 — Pin1Alg) =0, (5.11)

where A(1o) Aldy, i=0,...,mand ¢y :=0=: ¢,,.
Finally, in local complex coordinates on CP! we get

21

+ ¢l — (5.12)

287 Fi; = bir1dl),

dydir1 + Aydip — P AT =0 (5.13)
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VI. INSTANTONS WITH NONCOMPACT
GAUGE GROUPS

A. Riemann surfaces

Recall that any simply connected Riemann surface X, of
genus g > 1 is conformally equivalent to the unit disk
H? = SU(1, 1)/U(1). In other words, H? is a universal
cover of 3 = H?/T', where I" is a Fuchsian group.® Here,
we will show that the ansatz (5.5) can also be used on the
manifold M = S? X 3, where X is a compact Riemann
surface of genus g > 1.

The metric and the volume form on 2, in local (confor-
mal) coordinates z, Z are given by

ds} =2g.:dzdz and oy =igdzAdz  (6.1)

Furthermore, for the nonvanishing components of the

Christoffel symbols and the Ricci tensor we have
=29.logp and T%.=2d:logp with

P2 = 822 (62)

R.: = —20.9:logp = xg.- = Ry = 2¢%¥R_; = 2x,

(6.3)

where Ry is the constant scalar curvature of 3. The area of
the Riemann surface with genus g # 1 is

Vol (3) = fz w0y = 47”(1 “ o).

Introducing forms 8 and B of type (1,0) and (0,1) on X,

(6.4)

B:i=pdz and B:=pdz=ds3 =2BB, (6.5
we obtain that
dB = —2a A, dB=2anAp, da——%,B/\B,
(6.6)
where
2a = (9,logp)dz — (9;logp)dz (6.7)

is the Levi-Civita u(1) connection on the tangent bundle
T3, of 3. Denoting the holomorphic part 793 of T2,  C
by L?, we obtain the complex line bundle L — 3. with the
connection a. Finally, after choosing

(6.8)

we see that a, 8, and B in (6.6) satisfy the same equations
as forms in (2.12) and therefore the ansatz (5.5) on the
manifold CP' X ¥ yields to the curvature (5.7) and to the
quiver vortex equations (5.8), (5.9), (5.10), (5.11), (5.12),
and (5.13). That is why, in what follows, we will consider
our gauge theory on the compact spaces M = CP' X 3.

31t is a discrete subgroup of the group SU(1, 1) = SL(2, R).
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B. Reduction of the Yang-Mills functional

The dimensional reduction of the Yang-Mills equations
from CP' X 3 to CP' can also be seen at the level of the
Yang-Mills Lagrangian. For simplicity, we consider the
case m =1 for which the instanton equations on

1
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CP' X X are equivalent to Eqgs. (3.8) and (3.9) with
A =2A" ¢ = ¢,, and R = R,. Substituting (5.5), (5.6),
and (5.7) with m = 1 into the standard Yang-Mills func-
tional and performing the integral over 2, we arrive at the
action

|
1
S=- 872 ]SZXE u(F A*F) = 167 jszxz d4deet(gp0)tr(fMVj:W)

R2

=(g— 1y ,[s2 wsz{(gY)_’)Q(Fyy)z —2¢"(D,¢D,¢p + DypDyp) + (% - ¢q3)2}

R2

=(g— 1)4— fsz idy A dy{gyi<Fy}-, + gyf<¢4§ - %))2 - 4D),¢Dy_¢>} + (g — 1)& fsz F,

T

where w, v,...=1,...,4, Dyzay—i-Ay, andDyza)-,—l—Ay.
On solutions (4, ¢) of vortex equations (3.8) and (3.9) this
action coincides with (g — 1)N, where

N=i[ F = ¢,(E) (6.10)
2 S?
is the vortex number.
C. Topological charges
For self-dual gauge fields we have
1
N =@ =5 [ wFaF)
87 Js2xs
i
=Dy [ F=G-DN, (6.11)
T Js?

“For N = 0 one should consider the anti-self-dual Yang-Mills
equations *F = — F that reduce to antivortex equations.

(6.9)

i.e., the instanton number N, is proportional to the
vortex number N. In the derivation of (6.9), (6.10), and
(6.11) it is assumed that N = 0.* From (6.9) we see that
due to noncompactness of the gauge group SU(1,1) the
energy density for vortices is not positive definite but
for (A, ¢) satisfying the BPS vortex equations (3.8) and
(3.9) the action S coincides with the topological invari-
ant (g — 1)c;(E) = —c,(€). Thus, by solving Egs. (5.8)
and (5.9) on CP! one can obtain instantons on CP' X 3,
with noncompact gauge group and the topological
charge Ny, = (g — 1)N.
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