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We consider the Yang-Mills instanton equations on the four-dimensional manifold S2 ��, where� is a

compact Riemann surface of genus g > 1 or its covering spaceH2 ¼ SUð1; 1Þ=Uð1Þ. Introducing a natural
ansatz for the gauge potential, we reduce the instanton equations on S2 �� to vortex-type equations on

the sphere S2. It is shown that when the scalar curvature of the manifold S2 � � vanishes, the vortex-type

equations are integrable, i.e., can be obtained as compatibility conditions of two linear equations

(Lax pair), which are written down explicitly. Thus, the standard methods of integrable systems can be

applied for constructing their solutions. However, even if the scalar curvature of S2 �� does not vanish,

the vortex equations are well defined and have solutions for any values of the topological charge N.

We show that any solution to the vortex equations on S2 with a fixed topological charge N corresponds to a

Yang-Mills instanton on S2 �� of charge ðg� 1ÞN.
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I. INTRODUCTION AND SUMMARY

The Abelian Higgs model on R� R2 at critical value of
the coupling constant (the Bogomolny regime) admits
static vortex solutions on R2 [1] that describe magnetic
flux tubes (vortex strings) penetrating a two-dimensional
superconductor. Vortices are important objects in modern
field theory [2] since it is believed that (electric) vortex
strings play an important role in the confinement of quarks.
Their stability is ensured by topology [3]. Many results
known for the Abelian Higgs model were generalized to
Riemann surfaces, noncommutative spaces, and to the
non-Abelian case (see e.g., Refs. [4–13] and references
therein).

It was shown recently that the vortex equations on a
Riemann surface � of genus g have a Lax pair representa-
tion if g > 1 and do not have it for g ¼ 0, 1 [8]. This was
done by using the correspondence between vortices on �
and SU(2)-equivariant1 instantons on the four-manifold
�� S2—the invariance conditions reduce the instanton
equations on �� S2 to vortex equations on �. Existence
of a Lax pair for the reduced equations on � is related with
vanishing of scalar curvature of�� S2 when this manifold
becomes [15] a gravitational instanton. The nonexistence
of a Lax pair for vortex equations on S2, T2, and R2

followed from the fact that the scalar curvature of ��
S2 is nonvanishing for � ¼ S2, T2, and R2.

In this paper, we introduce an ansatz reducing the
instanton equations on M ¼ S2 � � to vortex-type equa-
tions not on � but on S2, and we show that these equations
are the compatibility conditions of two linear equations
(Lax pair) if the scalar curvature of M vanishes, similar to
the previous g > 1 cases [8]. Furthermore, the existence of

solutions to the reduced equations on S2 for any topologi-
cal chargeN � 0 demands noncompact initial gauge group
for Yang-Mills theory on M and compact gauge group of
reduced Yang-Mills-Higgs theory on S2. This is similar to
the case of the Hitchin equations on S2 and T2 obtainable
as reduction of the instanton equations [16]—smooth so-
lutions on S2 (and T2) exist only if one chooses noncom-
pact gauge group2 in four dimensions [19].
The organization of this paper is as follows. In Sec. II,

we collect various facts concerning the geometry of the
manifold S2 �H2, where H2 ¼ SUð1; 1Þ=Uð1Þ is the unit
disk in the complex plane C. The explicit form of the
metric, Christoffel symbols, etc. are written down. Then,
in Sec. III, we introduce an SU(1,1)-equivariant ansatz that
reduces the instanton equations on S2 �H2 to Abelian
vortex-type equations on S2. Solutions to these equations
give solutions of the self-dual Yang-Mills equations on
S2 �H2 with the noncompact gauge group SU(1,1).
Section IV deals with integrability properties of the intro-
duced Abelian vortex equations. Finally, in Secs. Vand VI,
we generalize results of Secs. II, III, and IV to the case of
non-Abelian vortex-type equations on S2 and instantons
on manifolds S2 � � with compact Riemann surfaces �.
Bogomolny transformations for the Yang-Mills-Higgs ac-
tion functional is discussed and a relation between the
instanton and vortex topological charges is derived.

II. MANIFOLD S2 � H2

A. Riemann sphere

Consider the standard two-sphere S2 ffi CP1 ¼
SUð2Þ=Uð1Þ of constant radius R1. In local coordinates y ¼
x1 þ ix2, �y ¼ x1 � ix2 on CP1 the metric and the volume

1This means a generalized SU(2) invariance, i.e., invariance
under space-time transformations up to gauge transformations
[14].

2Yang-Mills fields with noncompact gauge groups were con-
sidered in many papers (see e.g., Refs. [17,18] and references
therein).
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form read

ds2
S2

¼ 2gy �ydyd�y ¼ 4R4
1

ðR2
1 þ y �yÞ2 dyd�y (2.1)

and

!S2 ¼
2iR4

1

ðR2
1 þ y �yÞ2 dy ^ d�y ¼ igy �ydy ^ d�y; (2.2)

respectively. For the nonvanishing components of the
Christoffel symbols and the Ricci tensor we have

�y
yy ¼ 2@y log�1 and ��y

�y �y ¼ 2@ �y log�1 with

�2
1
:¼ gy �y; (2.3)

Ry �y ¼ �2@y@ �y log�1 ¼ 1

R2
1

gy �y ) RS2 ¼ 2gy �yRy �y ¼ 2

R2
1

;

(2.4)

where RS2 is the scalar curvature of S
2.

For the components gy �y and gy �y ¼ 1=gy �y we have

gy �y ¼ e1ye
�1
�y and gy �y ¼ ey1e

�y
�1
; (2.5)

where ey1 and e �y
�1
are unitary (local) frame. We introduce a

basis of type (1,0) and (0,1) vector fields

e1 :¼ ey1@y and e�1 :¼ e �y
�1
@ �y (2.6)

on S2 ffi CP1. The dual basis of type (1,0) and (0,1) forms

is e1ydy and e
�1
�yd �y.

B. Coset space H2

Consider the symmetric space (unit disk)

H2 ¼ SUð1; 1Þ=Uð1Þ; (2.7)

where SU(1,1) is a noncompact real form of the group
SLð2;CÞ with elements h defined by

hy�h ¼ � for � ¼ 1 0
0 �1

� �
: (2.8)

The metric and the Kähler form in the coordinates z ¼
x3 � ix4, �z ¼ x3 þ ix4 on H2 are given by

ds2
H2 ¼ 2gz�zdzd�z ¼ 4R4

2

ðR2
2 � z�zÞ2 dzd�z; (2.9)

and

!H2 ¼ � 2iR4
2

ðR2
2 � z�zÞ2 dz ^ d�z ¼ �i� ^ ��; (2.10)

where

� :¼
ffiffiffi
2

p
R2
2dz

R2
2 � z�z

and �� :¼
ffiffiffi
2

p
R2
2d�z

R2
2 � z�z

(2.11)

are forms onH2 of type (1,0) and (0,1). These forms satisfy
the equations

d� ¼ �2a ^ �; d �� ¼ 2a ^ ��; and

da ¼ � 1

2R2
2

� ^ �� ¼ � i

2R2
2

!H2 :
(2.12)

The anti-Hermitian connection oneform

a ¼ 1

2ðR2
2 � z�zÞ ð�zdz� zd�zÞ (2.13)

with the curvature form da given in (2.12) is an H2-analog
of the monopole connection on CP1. Note that 2a is
the Levi-Civita connection on the tangent bundle TH2.
The one-form a is a connection on the square root L of
the holomorphic bundle T1;0H2.
The Christoffel symbols, Ricci tensor, and scalar curva-

ture for H2 are

�z
zz ¼ 2@z log�2 and ��z

�z �z ¼ 2@�z log�2 with

�2
2
:¼ gz�z; (2.14)

Rz�z ¼ �2@z@�z log�2 ¼ � 1

R2
2

gz�z )

RH2 ¼ 2gz�zRz�z ¼ � 2

R2
2

:
(2.15)

For (1,0) and (0,1) vector fields on H2 dual to forms (2.11)
we have

e2 :¼ ez2@z ¼ ��1
2 @z and e�2 :¼ e�z�2@�z ¼ ��1

2 @�z (2.16)

with �2 given in (2.14) and (2.9).
We also consider a four-manifold M given by a product

of S2 and H2 with the product metric

d s2M ¼ ds2
S2
þ ds2

H2 : (2.17)

For the scalar curvature of M ¼ S2 �H2 we have

RM ¼ RS2 þ RH2 ¼ 2

�
1

R2
1

� 1

R2
2

�
: (2.18)

III. VORTICES ON S2 AS YANG-MILLS
CONFIGURATIONS ON S2 � H2

A. SU(1,1)-equivariant gauge potential

Consider the manifold M ¼ S2 �H2. Let E ! M be an
SU(1,1)-equivariant complex vector bundle of rank 2 over
M with the group SU(1,1) acting trivially on S2 and in the
standardway bySU(1,1)-isometry onH2 ¼ SUð1; 1Þ=Uð1Þ.
Let A be an su(1,1)-valued local form of SU(1,1)-
equivariant connection on E (cf. Refs. [7,8]); it can be
chosen in the form

A ¼
1
2A � 1þ 1 � a 1ffiffi

2
p � � �

1ffiffi
2

p �� � �� � 1
2A � 1� 1 � a

0
@

1
A

¼
�
1

2
Aþ a

�
�3 þ 1ffiffiffi

2
p ���þ þ 1ffiffiffi

2
p �� ����; (3.1)
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where

�3 ¼
1 0

0 �1

 !
; �þ ¼ 0 1

0 0

 !
and

�� ¼ 0 0

1 0

 !
:

(3.2)

Here, A ¼ Aydyþ A �yd�y is an Abelian connection on a

(Hermitian) complex line bundle E over CP1 ffi S2, a is

the connection (2.13) on the complex line bundle L over
H2, � is a section of the bundle E, �� is its complex
conjugate, and forms �, �� on H2 are given in (2.11). In
local complex coordinates y, �y on CP1 we have A ¼
Aðy; �yÞ and � ¼ �ðy; �yÞ.

B. Field strength tensor

In local coordinates on S2 �H2 the calculation of the
curvature F for A of the form (3.1) yields

F ¼ dAþA ^A ¼
1
2F� 1

2

�
1
R2
2

�� ��

�
� ^ �� 1ffiffi

2
p ðd�þ A�Þ ^ �

1ffiffi
2

p ðd ��� A ��Þ ^ �� � 1
2Fþ 1

2

�
1
R2
2

�� ��

�
� ^ ��

0
BBB@

1
CCCA

¼ F y �ydy ^ d�yþF yzdy ^ dzþF y�zdy ^ d�zþF �yzd�y ^ dzþF �y �zd�y ^ d�zþF z�zdz ^ d�z (3.3)

with the nonvanishing field strength components

F y �y ¼ 1

2
Fy �y�3; F z�z ¼�1

2
gz�z

�
1

R2
2

�� ��

�
�3; (3.4)

F �yz ¼ �2ffiffiffi
2

p ð@ �y�þ A �y�Þ�þ;

F yz ¼ �2ffiffiffi
2

p ð@y�þ Ay�Þ�þ;
(3.5)

F y�z ¼ �2ffiffiffi
2

p ð@y ��� Ay
��Þ��;

F �y �z ¼ �2ffiffiffi
2

p ð@ �y
��� A �y

��Þ��:
(3.6)

In (3.4) we have defined F ¼ dA ¼ Fy �ydy ^ d�y ¼
ð@yA �y � @ �yAyÞdy ^ d�y for A ¼ Aydyþ A �yd�y.

C. Vortex equations on S2

Let us consider the self-dual Yang-Mills equations
�F ¼ F on S2 �H2, where � is the Hodge operator. In
local coordinates these equations have the form

F �y �z ¼ 0 ¼ ðF yzÞy and gy �yF y �y þ gz�zF z�z ¼ 0:

(3.7)

Substitution of (3.4), (3.5), and (3.6) into (3.7) shows that
the self-dual Yang-Mills equations (3.7) on S2 �H2 are
equivalent to the Bogomolny-Prasad-Sommerfield (BPS)
vortex-type equations on S2:

Fy �y ¼ gy �y

�
1

R2
2

�� ��

�
, iF ¼

�
1

R2
2

�� ��

�
!S2 ; (3.8)

@y�þ Ay� ¼ 0 , @A� ¼ 0; (3.9)

where @A ¼ dyð@y þ AyÞ. Note that for the standard vortex
equations instead of Eqs. (3.9) one has @ �y�þ A �y� ¼ 0.

This equation can be obtained if in (3.1) one chooses �� in
the upper right corner and �� in the lower left corner
[compact gauge group SU(2)] but then in (3.8) one will
have �1=R2

2 and such vortex-type equations will not have
solutions due to the Kazdan-Warner theorem [20].
Vortex number N is defined as the first Chern number

c1ðEÞ of the bundle E ! CP1,

N ¼ c1ðEÞ ¼ i

2�

Z
S2
F: (3.10)

From (3.8) it follows that

i

2�

Z
S2
Fþ 1

2�

Z
S2
� ��!S2 ¼

1

2�R2
2

Z
S2
!S2 ¼ 2

�
R1

R2

�
2
;

(3.11)

and we obtain (cf. Ref. [4]) the inequality

N � 2

�
R1

R2

�
2
: (3.12)

For any N � 0 the condition (3.12) can be satisfied for a
sufficiently large ratio R1=R2 and then the moduli space of
vortices on S2 will be nonempty.

D. Liouville-type equations on S2

Consider the N-vortex solution � ¼ expð12 ðuþ i�ÞÞ,
where u and � are real-valued functions. Since � can
have zeros at yi 2 CP1, then uðyÞ ! �1 as y ! yi and
�ðyÞ is a multivalued function with ramification points at
yi. Equation (3.9) implies that

Ay ¼ �@y log� ¼ � 1

2
@yðuþ i�Þ and

A �y ¼ @ �y log �� ¼ 1

2
@ �yðu� i�Þ:

(3.13)

Plugging (3.13) into (3.8), we obtain the Liouville-type
equations on S2,
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@y@ �yu ¼ gy �y

�
1

R2
2

� eu
�
; (3.14)

away from the singularities of u.
Note that the sign on the right-hand side of Eq. (3.14)

with gy �y given in (2.1) is opposite to the sign in the standard

vortex equations on S2. However, equations of type (3.14)
on compact Riemann surfaces (including S2) were consid-
ered by Kazdan and Warner [20]. They have shown, in
particular, that equations

@y@ �yu ¼ �gy �y

�
1

R2
2

� eu
�

(3.15)

have solutions for both signs in (3.15) and equations

@y@ �yu ¼ 	gy �y

�
1

R2
2

þ eu
�

(3.16)

have no solutions. These four cases exhaust possible
Liouville-type equations on S2 with R2

2 � 1.
Recall that Eq. (3.15) can be obtained by the reduction of

the self-dual Yang-Mills (SDYM) equations from S2 � S2

to S2 with gauge group SU(2) (lower sign) and from S2 �
H2 to S2 with gauge group SU(1,1) (upper sign). Similarly,
Eqs. (3.16) correspond to the reduction of the SDYM
equations from S2 �H2 to S2 with gauge group SU(2)
(lower sign) and from S2 � S2 to S2 with gauge group
SU(1,1) (upper sign). Thus, only the gauge group SU
(1,1) is allowed for the considered case of the reduction
S2 �H2 ! S2, and solutions of (3.14) exist for anyN � 0.

If one considers the reduction of the SDYM equations
from S2 �H2 toH2, the allowed gauge group is SU(2) [8].
In other words, depending on a symmetry [SU(2) or SU
(1,1) equivariance] imposed on gauge fields, on S2 �H2

there exist solutions of the SDYM equations with gauge
groups as SU(2) and SU(1,1).

IV. INTEGRABILITY OF VORTEX
EQUATIONS ON S2

A. Integrable case

We considered the BPS vortex-type equations (3.8) and
(3.9) and showed their equivalence to the self-dual Yang-
Mills equations (3.7) on the manifold M ¼ S2 �H2. Note
that for equal radii R1 ¼ R2 of S2 and H2 the scalar
curvature (2.18) ofM vanishes. In this case the Weyl tensor
for the manifold M is self-dual [15].

An important feature of Kähler manifoldsM with scalar
curvature RM is that the so-called twistor space Z of M
becomes a complex manifold if RM ¼ 0. Let us consider
an open subset U of M ¼ S2 �H2 with complex coordi-
nates y, z. Then the twistor space ofU (i.e., the restriction
of Z to U) is diffeomorphic to U� CP1, ZjU ’ U�
CP1, with a local complex coordinate � 2 CP1nf1g on
the last factor. On Z there is a distribution generated by
three vector fields of type (0,1) closed under the Lie
bracket. They hazve the form (cf. Ref. [8])

V�1 :¼ ~e�1 � �~e2; V�2 :¼ ~e�2 þ �~e1; and V�3 ¼ @ ��;

(4.1)

where

~e1 ¼ ��1
1 ð@y � ð@y log�1Þ�@�Þ;

~e�1 ¼ ��1
1 ð@ �y þ ð@ �y log�1Þ�@�Þ;

(4.2)

~e2 ¼ ��1
2 ð@z � ð@z log�2Þ�@�Þ;

~e�2 ¼ ��1
2 ð@ �z þ ð@�z log�2Þ�@�Þ:

(4.3)

Recall that �2
1 ¼ gy �y and �

2
2 ¼ gz�z are components of met-

rics on S2 and H2; their explicit forms are given in Sec. II.
The vector fields (4.1) define an almost complex struc-

ture J on Z such that

J ðV �kÞ ¼ �iV �k (4.4)

for k ¼ 1, 2, 3. For commutators of type (0,1) vector fields
(4.1) we have

½V�1;V�2
¼���2
1 ð@y�1ÞV�1þ���2

2 ð@z�2ÞV�2

þ2�2

�
1

R2
1

� 1

R2
2

�
V3;

½V�1;V�3
¼0¼½V�2;V�3
; (4.5)

where V3 ¼ @� is the (1,0) vector field onZ. Recall that for
integrability of an almost complex structure J on Z it is
necessary and sufficient that the commutator of any two
vector fields of type (0,1) with respect to J is of type (0,1).
For our case we see from (4.5) that J is integrable—andZ
is a complex manifold—if and only if

R1 ¼ R2; (4.6)

i.e., when the scalar curvature RM of the manifold M ¼
S2 �H2 vanishes. In this case the bundle E ! M pulled

back to the bundle Ê over the twistor space Z allows an
integrable holomorphic structure defined by a (0,1)-type
connection along the vector fields (4.1). The integrability
of this structure, F 0;2 ¼ 0, is equivalent [21] to the self-
duality equations on M.

B. Lax pair

For the case (4.2) from (3.12) we obtain the inequality

N � 2; (4.7)

i.e., bundles Ê over Z with integrable holomorphic struc-
tures describe configurations of N ¼ 1 and N ¼ 2 vortices
on S2. We emphasize that vortices exist for any N > 0 but
only for N � 2 the vortex equations (3.8) and (3.9) appear
from a Lax pair.
For presenting vortex equations on S2 as an integrable

system (for R1 ¼ R2) one should introduce two linear
equations (Lax pair) whose compatibility conditions will
produce the vortex equations. For that we introduce a (0,1)

part r̂0;1
of the covariant derivative r̂ on Ê by the formulas
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r̂V�1
� V�1 þ ÂV�1

:¼ ~e�1 � �~e2 þA�1 � �A2; (4.8a)

r̂V�2
� V�2 þ ÂV�2

:¼ ~e�2 þ �~e1 þA�2 þ �A1; (4.8b)

r̂V�3
� V�3 þ ÂV�3

:¼ @ ��; (4.8c)

where r̂X denotes the covariant derivative along the vector
field X. The components

A1 ¼ ey1Ay; A�1 ¼ e �y
�1
A �y;

A2 ¼ ez2Az; A�2 ¼ e�z�2A�z

(4.9)

are easily extracted from (3.1).
Let us now introduce a 2� 2matrix c ¼ c ðy; �y; z; �z; �Þ

that does not depend on �� and consider two linear
equations

r̂V�1
c :¼½~e�1þA�1��ð~e2þA2Þ
c ¼0; (4.10a)

r̂V�2
c :¼½�ð~e1þA1Þþ~e�2þA�2Þ
c ¼0: (4.10b)

It is not difficult to check that the compatibility conditions
of the linear equations (4.10),

ð½r̂V�1
; r̂V�2


 � r̂½V�1;V�2
Þc ¼ 0; (4.11)

are equivalent to the vortex equations (3.8) and (3.9) forA
given in (3.1).

Note that equations

F̂ 0;2 ¼ 0 , F̂ ðV�{; V�|Þ ¼ ½r̂V�{
; r̂V�|


 � r̂½V�{ ;V�|
 ¼ 0

(4.12)

for r̂V�|
given in the first two formulas from (4.8) can

be imposed even if an almost complex structure J on Z is
not integrable, that is, the case when R1 � R2. Then
Eqs. (4.12) define a pseudoholomorphic structure [22] on

the bundle Ê ! Z. These equations are again equivalent to
the self-duality equations on S2 �H2 since

F̂ ðV�1; V�2Þ ¼ F �1 �2 � �ðF 1�1 þF 2�2Þ þ �2F 12;

F̂ ðV�1; V�3Þ ¼ 0 ¼ F̂ ðV�2; V�3Þ; (4.13)

where

F �1 �2 ¼ e�1A�2�e�2A�1þ½A�1;A�2
¼ e �y
�1
e�z�2F �y �z; (4.14a)

F 12¼ e1A2�e2A1þ½A1;A2
¼ ey1e
z
2F yz; (4.14b)

F 1�1 ¼ e1A�1�e�1A1þ½A1;A�1
���1
1 ðe�1�1Þ

A1þ��1
1 ðe1�1ÞA�1 ¼gy �yF y �y; (4.14c)

F 2�2 ¼ e2A�2�e�2A2þ½A2;A�2
���1
2 ðe�2�2Þ

A2þ��1
2 ðe2�2ÞA�2 ¼gz�zF z�z: (4.14d)

After substituting SU(1,1)-equivariant gauge potential
(3.1), Eqs. (4.13) reduce to the vortex equations on S2

having solutions with N > 2. So, for N > 2 vortex equa-
tions on S2 do not appear as a compatibility condition of a
Lax pair but are derivable nevertheless from the self-dual
Yang-Mills equations similarly to vortex equations on

Riemann surfaces with genus g > 1, where vortex equa-
tions were integrable only for N � 2ðg� 1Þ [8].

V. QUIVER VORTEX EQUATIONS

Here and in Sec. VI, we generalize Eqs. (3.8) and (3.9)
to the non-Abelian case and describe relations between
vortices on S2 and instantons on the manifold S2 � �,
where � is a compact Riemann surface of genus g > 1.

A. Equivariant vector bundle

Consider the manifoldM ¼ CP1 �H2, whereCP1ffiS2

is the Riemann sphere and H2 is the unit disk described in
Sec. II. Let E ! M be an SU(1,1)-equivariant rank-k com-
plex vector bundle, with the group SU(1,1) acting trivially
on CP1 and by isometry on H2 ¼ SUð1; 1Þ=Uð1Þ. Let A
be a connection on E. Imposing the condition of SU(1,1)
equivariance means that we should look for representations
of the group SU(1,1) on Ck. Notice that for each positive
integer m, the module

C k ¼ �m
i¼0

Cki with
Xm
i¼0

ki ¼ k (5.1)

gives such a representation if Cmþ1 is an irreducible rep-
resentation of SU(1,1). Let

E ¼ �m
i¼0

Ei ! CP1 (5.2)

be a rank-k Zmþ1-graded complex vector bundle over CP1

and Ai’s are connection forms on the bundles Ei ! CP1.
Then

E ¼ �m
i¼0

Ei with Ei ¼ Ei � Lm�2i; (5.3)

where Lm�2i ¼ ðLÞ�ðm�2iÞ and the bundle L ! H2 with a
connection a given in (2.13) was introduced in Sec. II.

B. Symmetric gauge potential and field strength tensor

Similar to the compact SU(2) case [7], the SU(1,1)-
equivariant gauge potential A with values in End (Ck)
decomposes into connections Ai 2 uðkiÞ on the complex
rank-ki vector bundles Ei ! CP1 with i ¼ 0; 1; . . . ; m and
a multiplet of scalar fields �iþ1 on CP1 with i ¼
0; 1; . . . ; m� 1 transforming in the bifundamental repre-
sentationCki � ðC_Þkiþ1 of the groupUðkiÞ � Uðkiþ1Þ, i.e.,
�	H omðEi; Eiþ1Þ. Collecting these Higgs fields into the
upper triangular k� k complex matrix

�ðmÞ :¼

0 �1 0 . . . 0

0 0 �2 . . . 0

..

. ..
. . .

. . .
. ..

.

0 0 0 . . . �m

0 0 0 . . . 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; (5.4)

we get
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A¼AðmÞ �1þ�ðmÞ �aþ 1ffiffiffi
2

p �ðmÞ ��þ 1ffiffiffi
2

p �y
ðmÞ � ��;

(5.5)

where

AðmÞ :¼ Xm
i¼0

Ai ��i; �ðmÞ :¼
Xm
i¼0

ðm� 2iÞ1ki ��i;

(5.6)

and �i: E ! Ei are the canonical orthogonal projectors of
rank 1, �i�j ¼ 
ij�j, which may be represented by di-

agonal ðmþ 1Þ � ðmþ 1Þmatrices�i ¼ ð
ji
liÞj;l¼0;1;...;m

of unit trace. Here � and �� are forms on H2 of type (1,0)
and (0,1) defined in Sec. II.

The calculation of the curvature F for A of the form
(5.5) yields

F ¼ dAþA ^A

¼ FðmÞ � 1� 1

2

�
1

R2
2

�ðmÞ � ½�ðmÞ; �
y
ðmÞ


�
� ^ ��

þ 1ffiffiffi
2

p ðd�ðmÞ þ ½AðmÞ; �ðmÞ
Þ ^ �þ 1ffiffiffi
2

p ðd�y
ðmÞ

þ ½AðmÞ; �y
ðmÞ
Þ ^ ��; (5.7)

where FðmÞ ¼ dAðmÞ þ ½AðmÞ; AðmÞ
. The derivation of (5.7)
uses formulas (2.12).

C. Non-Abelian vortex equations on CP1

Let us consider the self-dual Yang-Mills equations
�F ¼ F on M. In local coordinates on M these equations
have the form (3.7). Substitution of (5.7) into the instanton
equations on M ¼ S2 �H2 reduce them to non-Abelian
quiver vortex equations (cf. Refs. [7,8])

iFðmÞ ¼ 1

2

�
1

R2
�ðmÞ � ½�ðmÞ; �

y
ðmÞ


�
!S2 ; (5.8)

@�ðmÞ þ ½AðmÞ
ð1;0Þ; �ðmÞ
 ¼ 0; (5.9)

where @ ¼ dy@y and !S2 is given in (2.2). In terms of

ðAi; �iÞ these equations have the form

2iFi ¼
�
m� 2i

R2
1ki þ�y

i �i ��iþ1�
y
iþ1

�
!S2 ; (5.10)

@�iþ1 þ Ai
ð1;0Þ�iþ1 ��iþ1A

iþ1
ð1;0Þ ¼ 0; (5.11)

where Ai
ð1;0Þ ¼ Ai

ydy, i ¼ 0; . . . ; m and �0 :¼ 0 ¼: �mþ1.

Finally, in local complex coordinates on CP1 we get

2gy �yFi
y �y ¼

m� 2i

R2
1ki þ�y

i �i ��iþ1�
y
iþ1; (5.12)

@y�iþ1 þ Ai
y�iþ1 ��iþ1A

iþ1
y ¼ 0: (5.13)

VI. INSTANTONS WITH NONCOMPACT
GAUGE GROUPS

A. Riemann surfaces

Recall that any simply connected Riemann surface � of
genus g > 1 is conformally equivalent to the unit disk
H2 ¼ SUð1; 1Þ=Uð1Þ. In other words, H2 is a universal
cover of � ¼ H2=�, where � is a Fuchsian group.3 Here,
we will show that the ansatz (5.5) can also be used on the
manifold M ¼ S2 ��, where � is a compact Riemann
surface of genus g > 1.
The metric and the volume form on � in local (confor-

mal) coordinates z, �z are given by

d s2� ¼ 2gz�zdzd�z and !� ¼ igz�zdz ^ d�z: (6.1)

Furthermore, for the nonvanishing components of the
Christoffel symbols and the Ricci tensor we have

�z
zz ¼ 2@z log� and ��z

�z �z ¼ 2@�z log� with

�2 :¼ gz�z; (6.2)

Rz�z ¼ �2@z@�z log� ¼ ßgz�z ) R� ¼ 2gz�zRz�z ¼ 2ß;

(6.3)

where R� is the constant scalar curvature of �. The area of
the Riemann surface with genus g � 1 is

Vol ð�Þ ¼
Z
�
!� ¼ 4�

ß
ð1� gÞ: (6.4)

Introducing forms � and �� of type (1,0) and (0,1) on �,

� :¼ �dz and �� :¼ �d�z ) ds2� ¼ 2� ��; (6.5)

we obtain that

d� ¼ �2a ^ �; d �� ¼ 2a ^ ��; da ¼ 1

2
ß� ^ ��;

(6.6)

where

2a ¼ ð@z log�Þdz� ð@�z log�Þd�z (6.7)

is the Levi-Civita uð1Þ connection on the tangent bundle
T� of �. Denoting the holomorphic part T1;0� of T� � C
by L2, we obtain the complex line bundle L ! � with the
connection a. Finally, after choosing

ß ¼ � 1

R2
; (6.8)

we see that a, �, and �� in (6.6) satisfy the same equations
as forms in (2.12) and therefore the ansatz (5.5) on the
manifold CP1 �� yields to the curvature (5.7) and to the
quiver vortex equations (5.8), (5.9), (5.10), (5.11), (5.12),
and (5.13). That is why, in what follows, we will consider
our gauge theory on the compact spaces M ¼ CP1 � �.

3It is a discrete subgroup of the group SUð1; 1Þ ffi SLð2;RÞ.
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B. Reduction of the Yang-Mills functional

The dimensional reduction of the Yang-Mills equations
from CP1 �� to CP1 can also be seen at the level of the
Yang-Mills Lagrangian. For simplicity, we consider the
case m ¼ 1 for which the instanton equations on

CP1 � � are equivalent to Eqs. (3.8) and (3.9) with
A ¼ 2A0, � ¼ �1, and R ¼ R2. Substituting (5.5), (5.6),

and (5.7) with m ¼ 1 into the standard Yang-Mills func-

tional and performing the integral over �, we arrive at the

action

S ¼ � 1

8�2

Z
S2��

trðF ^ �F Þ ¼ � 1

16�2

Z
S2��

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg��Þ

q
trðF ��F ��Þ

¼ ðg� 1Þ R
2

4�

Z
S2
!S2

�
ðgy �yÞ2ðFy �yÞ2 � 2gy �yðDy�Dy�þD �y�D �y�Þ þ

�
1

R2
�� ��

�
2
�

¼ ðg� 1Þ R
2

4�

Z
S2
idy ^ d�y

�
gy �y

�
Fy �y þ gy �y

�
� ��� 1

R2

��
2 � 4Dy�Dy�

�
þ ðg� 1Þ i

2�

Z
S2
F; (6.9)

where�; �; . . . ¼ 1; . . . ; 4,Dy¼@yþAy, andD �y¼@ �yþA �y.
On solutions ðA;�Þ of vortex equations (3.8) and (3.9) this
action coincides with ðg� 1ÞN, where

N ¼ i

2�

Z
S2
F ¼ c1ðEÞ (6.10)

is the vortex number.

C. Topological charges

For self-dual gauge fields we have

Ninst ¼ �c2ðEÞ ¼ � 1

8�2

Z
S2��

trðF ^F Þ

¼ ðg� 1Þ i

2�

Z
S2
F ¼ ðg� 1ÞN; (6.11)

i.e., the instanton number Ninst is proportional to the
vortex number N. In the derivation of (6.9), (6.10), and
(6.11) it is assumed that N � 0.4 From (6.9) we see that
due to noncompactness of the gauge group SU(1,1) the
energy density for vortices is not positive definite but
for ðA;�Þ satisfying the BPS vortex equations (3.8) and
(3.9) the action S coincides with the topological invari-
ant ðg� 1Þc1ðEÞ ¼ �c2ðEÞ. Thus, by solving Eqs. (5.8)
and (5.9) on CP1 one can obtain instantons on CP1 ��
with noncompact gauge group and the topological
charge Ninst ¼ ðg� 1ÞN.
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