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Based on the truncated Dyson-Schwinger equation for the fermion propagator, the Cornwall-Jackiw-

Tomboulis effective potential near the critical point is investigated. We show that, at zero temperature, the

system undergoes a continuous phase transition into the chiral symmetric phase at a critical number of

fermion flavors, while undergoing a second-order phase transition at high temperature.
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I. INTRODUCTION

Dynamical chiral symmetry breaking (DCSB) in quan-
tum electrodynamics in (2þ 1) dimensions (QED3) has
been investigated for a long time. Although it is an Abelian
gauge theory, QED3 is shown to exhibit DCSB [1–6] and
confinement [7,8], which is similar to QCD. In addition,
since the discovery of high-Tc superconductivity, QED3

has attracted more attention from physicists. It is generally
believed that QED3 with N flavors can be regarded as a
possible effective theory for high-Tc superconductivity
in underdoped cuprates [9–11] and graphene [12–14].
Because of these features, QED3 has been extensively
studied in recent years.

A breakthrough in the study of chiral phase transition
(CPT) in QED3 was achieved in the paper of Appelquist
et al. [1], who found thatCPT happens when the number of
flavors of massless fermions reaches a critical number
Nc � 3:24. They arrived at this conclusion by analytically
and numerically solving the lowest-order approximation
for the Dyson-Schwinger equation (DSE) for the fermion
propagator, where the wave reformulation Aðp2Þ � 1 and
the involved one-loop boson polarization are obtained by
the free form of the fermion propagator. Later, some groups
adopted improved schemes for DSE and obtained qualita-
tively similar results with Nc � 3:3 [6,15]. However, as far
as we know, the nature of CPT at Nc has not been reported
in the existing literature. One of the motivations in this
paper is to study this issue.

At finite temperature, much of the literature shows that
CPT in QCD with two massless quarks is likely to be of
second order [16,17]. Then, two natural questions may be
raised: how does one chart the phase transition of QED3 at
finite temperature and does this phenomenon exist in this
Abelian system. Although the results from chiral and fer-
mion number susceptibility of QED3 reveal that this sys-
tem exhibits a typical characteristic of second-order phase
transition driven by chiral symmetry restoration [18], it is

interesting to adopt an alternative method (more specifi-
cally, the Cornwall-Jackiw-Tomboulis (CJT) effective po-
tential) to reanalyze the nature of this phase transition and
see whether it is consistent with the results obtained using
chiral and fermion number susceptibility.
In thermal QED3, following the lowest-order DSE

for the fermion propagator, Dorey investigated the DCSB
of QED3 and showed that QED3 at N ¼ 1 undergoes CPT
into a chiral symmetric phase when the temperature
reaches a critical value Tc. Later, the authors of
Refs. [19,20] studied an improved truncated scheme for
DSE to study the CPT and found that the correctional
contribution to the factor only slightly changes the results
qualitatively. These conclusions suggest that the lowest-
order DSE for the fermion propagator is a suitable approxi-
mation for studying CPT in thermal QED3.
In the rainbow approximation, the CJT effective poten-

tial provides us with a useful tool to analyze the phase
structure of QED3 [21]. Therefore, in this paper, we shall
try to adopt the CJT effective potential and the truncated
DSE for the fermion propagator at zero and finite tempera-
ture to study the nature of the phase transition in QED3.

II. PHASE TRANSITIONAT ZEROTEMPERATURE

A. CJT effective potential

In Euclidean space, the Lagrangian of QED3 with N
fermion flavors in the chiral limit reads

L ¼ XN
j

�c jð6@þ ie 6AÞc j þ 1

4
F2
��; (1)

where the four-component spinors are employed. At zero
temperature and density, this Lagrangian is chiral symmet-
ric, but DCSB occurs because of nonperturbative effects.
The order parameter of CPT is defined by

h �c c i ¼ Tr½Sðx� 0Þ� ¼
Z d3p

ð2�Þ3
4Bðp2Þ

A2ðp2Þp2 þBðp2Þ : (2)

The two functions Aðp2Þ and Bðp2Þ in the above equation
are related to the inverse fermion propagator as

*fenght@seu.edu.cn
†zonghs@chenwang.nju.edu.cn

PHYSICAL REVIEW D 86, 105042 (2012)

1550-7998=2012=86(10)=105042(5) 105042-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.105042


S�1ðpÞ ¼ i� � pAðp2Þ þ Bðp2Þ: (3)

Working in CJT’s framework [21], we write the effective
pressure as

P ðNÞ ¼
Z d3p

ð2�Þ3 Tr

�
lnð1� BSÞ � 1

2
BS

�
; (4)

where the trace operation is over the flavor indices. After
some algebra, the CJT effective potential in the truncated
DSE for the fermion propagator reduces to

P ðNÞ ¼ 2N
Z d3p

ð2�Þ2
�
ln

�
1þ B2

p2

�
� B2

p2 þ B2

�
: (5)

B. Order parameter

To indicate the order of the phase transition, we regard
P ðNÞ as a function of N and give the Taylor expansion for
P ðNÞ near N ¼ Nc

P ðNÞ ¼ P ðNcÞ þ ðN � NcÞ @P ðNÞ
@N

��������N¼Nc

þ ðN � NcÞ2
2

@2P ðNÞ
@N2

��������N¼Nc

þ� � �

¼ P ðNcÞ þ ðN � NcÞP 0ðNcÞ

þ ðN � NcÞ2
2

P 00ðNcÞ þ . . . ; (6)

with

P 0ðNÞ � @P ðNÞ
@N

��������N
; (7)

P 00ðNÞ � @2P ðNÞ
@N2

��������N
: (8)

The singularity of P 0ðNcÞ shows a first-order phase tran-
sition and its continuity might imply a second-order phase
transition.

From Eq. (5), the two parameters P 0, P 00 are given as

P 0ðNÞ ¼ 2
Z d3p

ð2�Þ3
�
ln

�
1þ B2

p2

�
� B2

p2 þ B2

þ 2NB3B0

ðp2 þ B2Þ2
�
; (9)

P 00ðNÞ ¼ 4
Z d3p

ð2�Þ3
�
2B3B0 þ 3NB2B02 þ NB3B00

ðp2 þ B2Þ2

� 4NB4B02

ðp2 þ B2Þ3
�
; (10)

where B0 ¼ @B
@N and B00 ¼ @2B

@N2 . According to the above two

equations, once the function B is obtained, one can analyze
the nature of the phase transition near the critical number
of fermion flavors.

C. Numerical results

The next task is to calculate the three functions in the
right-hand side of Eqs. (9) and (10), which can be obtained
via the fermion self-energy:

Bðp2Þ ¼
Z d3k

ð2�Þ3
2Bðk2Þ

½k2 þ B2ðk2Þ�½q2 þ Nq
8 �

; (11)

where q ¼ p� k and the coupling constant e2 ¼ 1. From
the iterative equation, we also obtain B0, B00. The typical
behaviors of the three functions in breaking phase are
shown in Fig. 1.

FIG. 1. The typical behavior of the three functions B, B00, and
�B0 for several values of N.
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From Fig. 1 it can be seen that each of the three functions
almost keeps a constant value in the infrared region and
diminishes at large p2. Comparing the behaviors of the
three functions, we also find that all of them / 1=p2 in the
high-energy region and hence the two parameters P 0ðNÞ
and P 00ðNÞ are also convergent. Substituting Eq. (11) into
Eqs. (5), (9), and (10), we immediately obtain the three
parameters for the phase transition which are plotted in
Fig. 2.

From Fig. 2 we see that, with the increasing N, all four
parameters diminish and chiral symmetry gets restored
because of the vanishing h �c c i at Nc. Moreover, it is found
that the curves for P 0, P00 fall monotonously and do not
show any singularity as the number of fermion flavors rises.

III. PHASE TRANSITION AT FINITE
TEMPERATURE

Under rainbow-ladder approximation, the pressure at
finite temperature is

P ðTÞ ¼ 1

V
Tr

�
lnð�S�1Þ � 1

2
BS

�
; (12)

with � ¼ 1=T. As a general discussion, we only investi-
gate CPT in the case of N ¼ 1. Before going to the model
calculation of the pressure, let us first analyze its limiting
behavior at high temperature. In the limit of high tempera-
ture, the dressed fermion propagator reduces to the free one
and the pressure for a free gas is given as

P 0ðTÞ ¼ T

V
Tr lnð�S�1

0 Þ ¼ 2T
X
n

Z d2P

ð2�Þ2 ln
P2 þ$2

n

T2

¼ 2
Z d2P

ð2�Þ2 ½Ep0 þ 2T lnðe��Ep0 þ 1Þ�

¼ 4T
Z d2P

ð2�Þ2 lnðe��Ep0 þ 1Þ ¼ 3�ð3Þ
2�

T3; (13)

where the term Ep0 ¼
ffiffiffiffiffiffi
P2

p
has been dropped since it is

independent of T and thus we are not interested in it.

A. Model for the pressure

In the case of zero chemical potential, the fermion
propagator at finite temperature T can be written as

S�1ðPÞ ¼ i ~� � ~PAðP2Þ þ i$n�3CðP2Þ þ BðP2Þ; (14)

with $n ¼ ð2nþ 1Þ�T. Just as we mentioned in the
Introduction, in this paper we work in the lowest-order
DSE, so the fermion propagator reduces to

S�1ðPÞ ¼ i ~� � ~Pþ i$n�3 þ BðP2Þ; (15)

and the pressure is totally determined by the fermion
self-energy,

P ðTÞ ¼ T
X
n

Z d2P

ð2�Þ2 Tr
�
ln½�S�1ðPÞ� � 1

2
BðP2ÞSðPÞ

�

¼ 2T
X
n

Z d2P

ð2�Þ2
�
ln
P2 þ$2

n þB2

T2

B2

P2 þ$2
n þB2

�
:

(16)

Since the zero frequency approximation is widely adopted
[18–20,22], we also work in this framework and then the
pressure at finite temperature is obtained

P ðTÞ ¼ 2T
X
n

Z d2P

ð2�Þ2
�
ln
$2

n þ E2
p

T2
� B2

$2
n þ E2

p

�

¼ 2
Z d2P

ð2�Þ2
�
Ep þ 2T lnð1þ e��EpÞ

� B2

2Ep

tanh
Ep

2T

�
; (17)

where Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ B2ðP2Þp

. It can be easily seen that the

integral in Eq. (17) is divergent. We can use a small trick
described in the equation below to treat this divergence,

P ðTÞ ¼ P ðTÞ � P 0ðTÞ þ P 0ðTÞ

¼ 2
Z d2P

ð2�Þ2
�
Ep � Ep0 þ 2T ln

e��Ep þ 1

e��Ep0 þ 1

� B2

2Ep

tanh
Ep

2T

�
þ T3 3�ð3Þ

2�
: (18)

From Eq. (18) it can be easily seen that P ðTÞ reduces to
Eq. (5) when T ! 0 and to its free value (13) in the high-
temperature limit, respectively. This is what one expects in
advance.
Once the fermion self-energy is known, we can

immediately obtain the pressure. Then, from Eq. (11), the
integral equation for the dynamically generated mass func-
tion at finite temperature reads [22]

FIG. 2. The dependence of h �c c i, P , P0, P00 on the number of
fermion flavors, where each parameter is normalized by its value
at N ¼ 1 and hence is dimensionless (here we note that the
original value of P 0 is negative).
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BðP2Þ ¼ 2T
X
n

Z d2K

ð2�Þ2
BðK2Þ

½$2
n þ E2

k�½Q2 þ�0ðQÞ�

¼
Z d2K

ð2�Þ2
BðK2Þ tanhEp

2T

Ep½Q2 þ�0ðQÞ� ; (19)

where Q ¼ P� K and

�0ðQÞ ¼ T

�

Z 1

0
dx ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞQ2

p
2T

�
: (20)

To numerically solve this equation, an iteration algorithm
is employed. In the real numerical calculation, we adopt an
ultraviolet cutoff� ¼ 104, which is large enough to ensure
that the calculated results are stable with respect to �.
Then, we obtain the dependence of P on the temperature,
and the results are plotted in Fig. 3. It can be seen that as the
temperature rises, the fermion chiral condensate decreases
and vanishes at Tc ¼ 2:5� 10�2, where the system under-
goes CPT from the chiral symmetry breaking phase into
the chiral symmetric phase, whereas the pressure increases
monotonously around Tc.

B. Continuous entropy

With the increasing temperature, the entropy rises.
It is generally believed that this parameter skips near the
critical point when a first-order phase transition occurs,
whereas it shows a continuous behavior at the critical point
for a second-order phase transition. The definition of en-
tropy is given trivially via the pressure,

sðTÞ ¼ @P ðTÞ
@T

: (21)

From the expression for the pressure (18), we immediately
obtain the dependence of the entropy on the temperature
which is shown in Fig. 4. We see that s also increases
continuously with the rise of temperature and shows an
inflexion at Tc where CPT happens. Moreover, the slope of
sðTÞ in the chiral symmetry breaking phase is obviously
larger than that in the chiral symmetric phase.

C. Signal for second-order phase transition

Analogous to the relation between the entropy and the
first-order phase transition, the specific heat can be treated
as a typical order parameter to indicate a second-order
phase transition and exhibits its singular behavior at the
critical point. It is defined by the entropy

CV ¼ @sðTÞ
@T

¼ @2P ðTÞ
@T2

: (22)

Based on Eqs. (18) and (21), we can obtain the specific heat
of QED3 as the rise of temperature and the data near Tc are
plotted in Fig. 5.
One sees that CV in each phase exhibits a continuous

behavior with the alteration of temperature but skips
at Tc. Near the critical point, the value of CV in the
chiral symmetry breaking phase is about four times larger
than that in the chiral symmetric phase. The jumping
behavior of the specific heat at Tc shows that the system
in the original chiral symmetry breaking phase undergoes
a second-order phase transition into the chiral symmetric
phase.

FIG. 3. The dependence of the fermion chiral condensate and
the pressure on the temperature near the critical point Tc. FIG. 4. Entropy as a function of temperature.

FIG. 5. The behavior of the specific heat near Tc.
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IV. CONCLUSIONS

In this paper, we adopt the lowest-order approximation
of Dyson-Schwinger equation to investigate the CJT effec-
tive potential and try to say something about the nature of
the phase transition of QED3 at zero density.

At zero temperature, we investigate the CJT effective
potential as the rise of the number of fermion flavors and
illustrate that, at the critical value Nc, the chiral phase tran-
sition is neither of first order nor of second order, and thus it
should be a continuous phase transition of higher order.

With the increasing temperature, the behaviors of the
entropy and the specific heat are investigated. It is found
that the entropy shows a continuous behavior while the
specific heat jumps at the critical temperature. This result
implies that the chiral phase transition at finite temperature
is of second order and is consistent with those obtained
using the chiral and fermion number susceptibility as

the order parameter [18]. Therefore, both of the two
approaches show that the chiral phase transition at finite
temperature is a second-order phase transition.
Of course, the adopted model in the present work is

schematic and might be discrepant from reality, since the
lowest-order DSE for the fermion propagator and the zero
frequency approximation are adopted. To further confirm
those observations, we need to study this problem in more
realistic models.
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