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Nonlinear electrodynamics, QED included, is considered against the Lorentz-noninvariant external

field background, treated as an anisotropic medium. Hamiltonian formalism is applied to electromagnetic

excitations over the background, and entities of electrodynamics of media, such as field inductions and

intensities, are made sense of in terms of canonical variables. Both conserved and nonconserved

generators of space-time translations and rotations are defined on the phase space, and their

Hamiltonian equations of motion and Dirac bracket relations, different from the Poincaré algebra, are

established. Nonsymmetric, but—in return—gauge-invariant, energy-momentum tensor suggests a ca-

nonical momentum density other than the Poynting vector. A photon magnetic moment is found to govern

the evolution of the photon angular momentum. It is determined by the antisymmetric part of the energy-

momentum tensor.
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I. INTRODUCTION

While relativistic invariance as a symmetry under the
Lorentz group [SOð3; 1Þ] is usually an obligatory require-
ment imposed on a theory, some classes of theories in
which it is, at least, weakly broken are also of interest,
especially when looking beyond the Standard Model.
Quantum electrodynamics (QED) in an external classical
electromagnetic field (F ��) is a clear example of a

Lorentz-violating theory that may share principal features
with other theories of that series. This is a motivation for
studying it on a very general basis.

The self-coupling of electromagnetic fields by means of
the creation and annihilation of virtual charged fermions
makes QED a nonlinear electrodynamics. Like any other
nonlinear electrodynamics—for instance, Born-Infeld
electrodynamics—QED proposes an interaction between
a strong classical external field and electromagnetic fields
that live against its background even when these are small.
The linearized approximation based on the smallness of
these perturbations (‘‘photons’’) will be dealt with in this
paper. The most important object responsible for the inter-
action of photons with the background in the linearized
theory is the vacuum polarization tensor, ���ðx; x0Þ, cal-
culated in the external field. Through this object, the gauge
sector of QED is, in the first instance, provided with a
dependence on the F �� structure, and therefore on the

reference frame. Consequently, the photon vacuum seems
to behave like an (in general, moving) anisotropic material,

in which light propagation is strongly modified. Perhaps
the most remarkable property associated with this issue
concerns the existence of photon degrees of freedom which
are not in correspondence to the standard observable—
helicity values—of the respective irreducible SOð3; 1Þ rep-
resentations. Instead, the photon propagation modes turn
out to be closely associated with birefringent states [1], and
their speeds of propagation differ from the speed of light in
an empty space-time. Some interesting features that occur
in the linearized approximation, when the background is a
constant and homogeneous magnetic field, have been pre-
dicted. These are cyclotron resonance in the vacuum [2]
leading to photon capture [3], anisotropization, the short-
ranging and the dimensional reduction of the potential
[4] produced by a pointlike static charge in a supercritical
magnetic field jBj � Bc, Bc¼m2c3=eℏ¼4:42�1013 G,
where m and e are the electron mass and charge, respec-
tively,1 and also the production of a magnetic field by a
static charge (the magnetoelectric effect) [5] that takes
place in the external field, where electric and magnetic
fields coexist in parallel. Beyond the linearized approxi-
mation, the important effect of photon splitting and merg-
ing in a magnetic field [6] has attracted much attention.
Other consequences of the self-interaction of small elec-
tromagnetic fields are the magnetoelectric effect in QED
with an external magnetic field [7] and in the nonlinear
electrodynamics generated by the U�ð1Þ noncommutative
theory [8].
Despite the achievements reached in this area, a formal

treatment of Lorentz Symmetry Breaking (LSB) in
nonlinear electrodynamics has not yet been fully devel-
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importance in theoretical physics, since the QED vacuum in
an external field constitutes an ideal laboratory for studying
the unconventional properties of other Lorentz-violating
theories encompassed as possible extensions of the minimal
Standard Model of the fundamental interactions. Among
the candidates appear the Lorentz-violating electrodynam-
ics [9–11] and the noncommutative field theories [12] with
their phenomenologies closely related to those described in
the preceding paragraph. Moreover, since the classification
of particles is intimately related with the realization of the
space-time symmetry, the employing of this analysis could
lead to new insights on plausible phenomena in which other
spin representations like axions (spin 0) [13] and gravitons
(spin 2) [14] are coupled to F .

Of course, an experimental confirmation of all these
processes strongly depends on the external field strengths,
whose current laboratory values are much lower than the
critical field. As a consequence, all predicted phenomena
remain elusive and far from being detectable. Even so,
their studies still find a high motivation in light of upcom-
ing laser facilities [15,16] that will achieve the unprece-
dented level of jEj � 0:01–0:1Ec with Ec ¼ m2=e ¼
1:3� 1016 V=cm In addition, some evidence points to the
possible existence of ultrahigh magnetic jBj � Bc and
electric jEj � Ec fields in the surfaces of stellar objects
identified as neutron stars [17] and strange stars [18],
respectively. In such scenarios a pronounced LSB is
expected, and most of the quantum processes described
above could have significant astrophysical and cosmologi-
cal interest.

Inspired by the importance associated with LSB, we
make an attempt to fill some gaps in this topic. Our main
purpose is to analyze how the vacuum polarization effects
modify the Lorentz and Poincaré generators. The results
presented in this work are based on the Poincaré invariance
of the photon effective action as a functional of the back-
ground field. This implies that those Lorentz transforma-
tions which leave the external field invariant, together with
the space-time translations that do not affect the external
field either, as long as it is time and space independent,
provide the residual symmetry subgroup of the anisotropic
vacuum, while the full Poincaré group remains the group of
broken symmetry. To define the space-time translation and
rotation generators, although only a part of them is con-
served, we appeal to the context of the Noether theorem
and then introduce them into the framework of the
Hamiltonian formalism, which requires us to impose con-
straints associated with the gauge invariance of the theory,
and thus the Dirac brackets. The general aspects related to
the constrained Hamiltonian dynamics were developed by
Dirac [19] and have been applied to several problems in
quantum field theory [20], including the analysis of
Poincaré invariance in Yang-Mills theories quantized in
noncovariant gauges [21] (for the Coulomb gauge, see
Ref. [22]). We do not know whether the Hamiltonian

formalism was ever applied to electrodynamics of an an-
isotropic medium or whether the characteristic entities of
the latter are known in terms of canonical variables, but in
any event the present exploitation of this formalism results
in some interesting features. Among them is the distinction
between the generating function of infinitesimal canonical
transformations of spatial translations, that most naturally
turns out to be parallel to the wave vector in each eigen-
mode, and the Poynting vector that points in the direction
of the energy propagation and the group velocity. The
Dirac commutation relations between the space-time gen-
erators leave intact the Oð3Þ algebra of the angular mo-
mentum, although this symmetry group is broken, but the
rest of the Poincaré algebra commutation relations that
include transformations of the time are distorted. The
Hamiltonian equation of motion for the nonconserving
angular momentum indicates that its time evolution is
determined by the interaction of the external field with a
certain magnetic moment (that also contributes to the
Hamiltonian) emerging in the special frame in which a
pure magnetic field is present. Such a quantity is inter-
preted as the magnetic moment of the photon; i.e., the
magnetic moment of the anisotropic medium that is not
only polarized, but also magnetized by the photon field.
The possible connection of the photon magnetic moment
with the same notion introduced previously by Peréz Rojas
and one of the present authors (Villalba-Chavez) [23] (see
also Refs. [24,25]) will be discussed in a due place below.
It looks at an attribute of the photon interaction with an
anisotropic medium.
We organize the manuscript as follows: In Sec. IIA, we

recall some basic features of the photon propagation in an
external field based on the relativistic covariant formalism
introduced in Ref. [1] that involves diagonalization of the
polarization tensor and analysis of its eigenvalues and eigen-
vectors. In Sec. IIB, we consider the contribution of the
polarization operator to the effective nonlocal action (the
generating functional of irreducible vertices [26]) to give it
the form of the action of the equivalent linear anisotropic
medium with time and space dispersion. The tensor decom-
positions and principal values of dielectric, "ij, and

magnetic, �ij, permittivities—related to the special class

of Lorentz frames where there is only a magnetic, or only
an electric, external field—are presented in terms of the
polarization operator eigenvalues in an approximation-
independent way. We point out the uniaxial character of
the vacuum in these frames. This statement holds true also
for the most general combination of constant electric and
magnetic fields in the Lorentz frames, where these fields are
parallel. In Sec. IIC, for the same general external field, we
obtain the covariant decompositions of the global coordinate
transformations that leave the external field intact and thus
make the invariance subgroup of our problem.
In Sec. III and thenceforth, we confine ourselves to the

local approximation of the effective action, when it does
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not include field derivatives as the functional arguments.
This limitation will make the subsequent development of
the Hamiltonian formalism straightforward. The local ap-
proximation corresponds to the small four-momentum
(infrared) limit of the polarization operator and to the
frequency- and momentum-independent tensors "ij and

�ij. The latter are expressed in terms of derivatives of

the effective Lagrangian over the field invariants for the
cases reducible to a single field in a special frame (magnet-
iclike and electriclike cases). In Sec. III A, based on the
Noether theorem, we define a nonsymmetrical, but gauge-
invariant, energy-momentum tensor of small perturbations
of the vacuum that satisfies the continuity equation with
respect to only one of its tensor indices. The antisymmetric
part of this tensor will become, in what follows, respon-
sible for the nonconservation of those Lorentz and spatial
rotation generators of canonical transformations con-
structed using the energy-momentum tensor, which do
not leave the external field invariant. We stress the differ-
ence between the momentum flux vector (canonical mo-
mentum), whose direction is parallel to the wave vector
according to Appendix C, and the energy flux Poynting
vector, whose direction coincides with that of the
group velocity and the center-of-mass velocity of eigen-
modes, as demonstrated in Appendix D. The constrained
Hamiltonian formalism serving the dynamics of small
perturbations over the background field is presented in
Sec. III B following the procedure well elaborated in gauge
theories. It is the electric induction of the perturbation, and
not the field strength, that comes out as a variable, canoni-
cally conjugated to its three-vector potential. With the
Coulomb gauge condition extended to the problem of the
anisotropic vacuum under consideration, the Dirac brack-
ets are defined as performing the infinitesimal canonical
transformations in the phase space. In Sec. III C, referring
again to the Noether transformations, we define the
conserved and nonconserved components of the angular
momentum and the Lorentz boost, express them in terms of
the canonical variables, and find their Dirac brackets with
the fields and inductions. In Sec. IV, the Hamiltonian
equations of motion for these quantities are given
(Sec. IVA), as well as the set of Dirac commutators
for the generators of space-time translations and
rotations, defined above, that substitute for the standard
relations of the Poincaré algebra in the present case of the
vacuum invariant not under all Lorentz and space rotations
(Sec. IVB and Appendixes A and B). In Sec. IVC, we
dwell on the algebra of the space-time invariance subgroup
and define its conserved Casimir invariants.

In Sec. V, we deal with the magneticlike external field.
The magnetic moment M of the photon propagating over
the magnetized vacuum is analyzed. It appears as an entity
that governs the evolution of the photon angular momen-
tum J in the magnetic field B following the equation of
motion dJ =dx0 ¼ 2M� B and contributes to the photon

energy as �M � B. A further step in our understanding of
this quantity is given by showing its connection with the
optical tensors of our problem. In the large-jBj region, the
photon magnetic moment treated following the one-loop
approximation of quantum electrodynamics depends quad-
ratically on the photon electric field alone. Its appearance
may be understood as another manifestation of the mag-
netoelectric effect [5,7] in QED, known also in noncom-
mutative electrodynamics [8].
In Sec. VI, we write down the coefficient tensor custom-

arily used to serve the gauge sector in the general Lorenz-
violation approach to a Uð1Þ-invariant theory, as it follows
from the general covariant decomposition of the polariza-
tion tensor in a magnetic field found in Ref. [1]. We
establish that the coefficient tensor is not double traceless,
contrary to what is assumed in the above approach. The
double trace is physically meaningful as being connected
with the magnetic and electric permeability of the magne-
tized vacuum. We express the condition of the absence of
birefringence in terms of field derivatives of the effective
Lagrangian. Finally, we estimate the values of the magnetic
field likely to produce the Lorenz violation that would be
equivalent to the Lorentz violations intrinsic in the vacuum
and detectable using experimental devices of present-day
sensitivity. These magnetic fields are too large to make a
realistic cosmic background.
We present our concluding summary in Sec. VII, while

the essential steps of many calculations have been deferred
to the appendixes.

II. LORENTZ SYMMETRY BREAKING:
GENERAL ASPECTS

A. The photon effective action

In the presence of an external fieldA�ðxÞ ¼ � 1
2F��x

�

with a constant field strengthF �� ¼ @�A� � @�A�, the

action which describes small-amplitude electromagnetic
waves a�ðxÞ over a constant background field reads

S ¼ � 1

4

Z
f��f��d

4xþ �; (1)

where f�� ¼ @�a� � @�a�, and � is called the effective

action, connected as � ¼ R
Ld4x with the effective

Lagrangian L. Effective action may be expanded in powers
of the small field potential as

� ¼ 1

2

Z
d4xd4x0a�ðxÞ���ðx; x0jAÞa�ðx0Þ þ . . . ; (2)

where þ . . . stands for higher-order terms in a�, whereas

���ðx; x0jAÞ is the second-rank polarization tensor re-

lated as

D�1
��ðx; x0jAÞ ¼ ½h��� � @�@���ð4Þðx0 � xÞ

þ���ðx; x0jAÞ; (3)
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with the inverse photon Green function D�1
��ðx; x0jAÞ.

Hereafter, the metric tensor ��� has the signature þþ
þ� with �11 ¼ �22 ¼ �33 ¼ ��00 ¼ 1; the electric field
is given by Ei ¼ F 0i, whereas the magnetic field is defined

by Bi ¼ 1=2�ijkF jk. The tensor ~F �� ¼ 1=2�����F ��

(with ����� being the fully antisymmetric unit tensor,
�1230 ¼ 1) represents the dual of F ��. The field invar-

iants are F ¼ 1=4F ��F �� ¼ ðB2 �E2Þ=2 and G ¼
1=4F �� ~F �� ¼ �E �B ¼ 0. For the special case of an

external field mainly dealt with in the present work, we
shall chooseG ¼ 0. Then the corresponding external field
will be referred to as magneticlike (ifF> 0) or electriclike
(if F< 0), because in either case a Lorentz frame exists
wherein the field is purely magnetic or electric,
respectively.

According to Eq. (2), a photon can interact with the
external field through the vacuum polarization tensor
���ðx; x0jAÞ. In this context, the QED Schwinger-

Dyson equation for the photon field a�ðxÞ is given byZ
d4x0D�1

��ðx; x0jAÞa�ðx0Þ ¼ 0: (4)

The external field strength is independent of the space-time
coordinates; therefore, the polarization tensor, as a gauge-
invariant quantity, should correspond to a spatially homo-
geneous optical medium whose properties do not change
with time. This is provided by the translational invariance
of ���: it depends only on the coordinate difference

���ðx; x0jAÞ ¼ ���ðx� x0jAÞ [27]. In this case, a

Fourier transform converts Eq. (4) into a linear homoge-
neous algebraic equation given by

½k2��� � k�k� ����ðkjAÞ�a�ðkÞ ¼ 0; (5)

with

���ðkjAÞ ¼
Z

���ðx� x0jAÞe�ikðx�x0Þd4ðx� x0Þ: (6)

To understand what follows, it is necessary to recall
some basic results developed in Refs. [1,27]. In the pres-
ence of a constant magneticlike or electriclike field, the

four eigenvectors of the polarization operator [ð�Þ
� are

known in a final, approximation-independent form. In

addition to the photon momentum four-vector [ð4Þ
� ¼ k�

(its zeroth component k0 being the frequency !), the three
other mutually orthogonal four-transverse eigenvectors

[ð�Þ
� are

[ð1Þ
� ¼ k2F 2

��k
� � k�ðkF 2kÞ; [ð2Þ

� ¼
~F ��k

�

ðk ~F 2kÞ1=2 ;

[ð3Þ
� ¼ F ��k

�

ð�kF 2kÞ1=2 ;
(7)

k�[ð�Þ
� ¼ 0 for � ¼ 1, 2, 3. (The eigenvectors relating to

the most general case, F � 0, G � 0, are written in

Refs. [1,27–29].) We remark that [ð�Þ
� fulfills both the

orthogonality condition, [ð�Þ
� [�ð�0Þ ¼ ���0 ð[ð�ÞÞ2, and the

completeness relation,

��� �
k�k�

k2
¼ X3

�¼1

[ð�Þ
� [ð�Þ

�

ð[ð�ÞÞ2 : (8)

Note that from [ð�Þ, one obtains the fundamental scalars

k2 ¼ z1þ z2; z1 ¼ k ~F 2k

2F
and z2 ¼�kF 2k

2F
: (9)

The last two scalars acquire simple forms in a special
reference frame where the external field is purely magnetic
(if F> 0) or purely electric (when the opposite inequality
holds). The same equations hold in reference frames that
are moving parallel to the external field. For the magnetic
background F> 0, one finds that z2 ¼ k2? and z1 ¼ k2k �
!2. On the contrary, if the electric field is considered, z2 ¼
k2k �!2, whereas z1 ¼ k2?. The previous relations involve
the vectors k? and kk, which denote the components of k
perpendicular to and along the external field, respectively.
Henceforth, boldface letters will designate the spatial part
of our four-vectors.
Besides the creation of the fundamental scalars, i.e.,

Eq. (9), the vectorial basis [ð�Þ is suitable to express the
vacuum polarization tensor in a diagonal form:

��� ¼ X4
�¼0

ß�ðz1; z2;FÞ[
ð�Þ
� [ð�Þ

�

ð[ð�ÞÞ2 : (10)

Here ß� denotes the eigenvalues of the vacuum polariza-
tion tensor

��
	[ðaÞ

	 ¼ ßaðkÞ[ðaÞ
� ; a ¼ 1; 2; 3; 4;

which define the energy spectrum of the electromagnetic
waves and poles of the photon propagator. Owing to the
transversality property (k���� ¼ 0), the eigenvalue cor-

responding to the fourth eigenvector vanishes identically

[ßð4Þ ¼ 0]. Substituting Eq. (10) into Eq. (5) and using the
orthogonality condition, we find its solutions in the form

of a superposition of eigenmodes given by a�ðkÞ ¼P3
�¼1 F��ðk2 � ß�Þ[ð�Þ

� , where F� are arbitrary functions

of k. According to the latter, three nontrivial dispersion
relations arise:

k2 ¼ ß�ðz2; z1;FÞ; � ¼ 1; 2; 3; (11)

whose solutions can be written as

!2
� ¼ k2k þ f�ðk2?;FÞ: (12)

The term f�ðk2?;FÞ arises as a sort of dynamical mass. Due

to the gauge invariance condition ß�ð0; 0;FÞ ¼ 0, there
always exist two (out of three) solutions with f�ð0;FÞ ¼ 0
that correspond to photons whose rest energy is zero, and the
number of polarization degrees of freedom is two. Massive
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branches of all the three polarizations, f�ð0;FÞ � 0, � ¼ 1,
2, 3, may also exist. For more details, we refer the reader to
Refs. [5,28].

Moreover, by considering a� � [ð�Þ
� as the electromag-

netic four-vector describing the eigenmodes, we obtain the
corresponding electric and magnetic fields of each mode in
the special frame, provided that F> 0:

eð�Þ ’ ið!ð�Þ[ð�Þ �k0[ð�ÞÞ and bð�Þ ’ ik�[ð�Þ: (13)

Up to a nonessential proportionality factor, they are explic-
itly given by

eð1Þ ’�in?!; bð1Þ ’�ikk �n?;

eð2Þ? ’�ik?kk=ðk2k �!2Þ1=2; eð2Þk ’�inkðk2k �!2Þ1=2;
bð2Þ ’ i!ðk?�nkÞ=ðk2k �!2Þ1=2; eð3Þ ’ i!ðn?�nkÞ;
bð3Þk ’�inkk?; bð3Þ? ’ in?kk:

Here, nk ¼ kk=jkkj and n? ¼ k?=jk?j are the unit vectors
associated with the parallel and perpendicular directions
with respect to the magnetic field B in the special frame in
which the external electric field E vanishes identically.

B. The vacuum as an anisotropic medium
within a linear optics approximation

In classical electrodynamics, the Maxwell action of a
linear continuous medium with the dielectric tensor
"ijðk; !Þ and the magnetic permeability tensor �ijðk; !Þ
is given by the expression (quadratic in the fields)

S¼R
L¼ 1

2dð�k;�!Þ �eðk;!Þ� 1
2hð�k;�!Þ �bðk;!Þ:

(14)

Here e, b are connected by means of the relations

dðk; !Þ ¼ "$ðk; !Þ � eðk; !Þ;
hðk; !Þ ¼ �$�1ðk; !Þ � bðk; !Þ;

(15)

where the double-sided arrow denotes a tensorial quantity.
In this context, "$ � e ¼ "ijej and �$�1 � b ¼ ��1

ij bj.

The optical properties of an anisotropic medium depend
primarily on the symmetry of its tensors "ij and �ij. In an

uniaxial medium, one of the principal axes of "ij and �ij

forms the ‘‘optical axis.’’ In what follows, we denote the
principal values of "ij and�ij relating to this axis as "k and
�k, respectively, and the values relating to the plane per-

pendicular to the optical axis as "? and �?, respectively.
With this in mind, the Maxwell Lagrangian [Eq. (14)]
acquires the following form:

L ¼ 1

2

�
"?je?j2 � 1

�?
jb?j2 þ "kjekj2 � 1

�k
jbkj2

�
; (16)

where we have decomposed e ¼ ðe?; ekÞ and b ¼ ðb?; bkÞ.
Here the symbols ? and k refer to the optical axis as well.

Let us consider now the quadratic part of the effective
action corresponding to the dynamical gauge field sector of
QED in an external field. Substituting Eq. (10) into Eq. (2)
and making use of Eq. (8), we find for the integrand of S
[Eq. (1)] in momentum space L ¼ � 1

4 f
��f�� þ L,

L ¼ � 1
4O

��f��: (17)

Here the second-rank antisymmetric tensor O�� reads

O�� ¼
�
1� ß1

k2

�
f�� � 1

2

ß1 � ß2

k ~F 2k
ðf�� ~F ��Þ ~F ��

� 1

2

ß1 � ß3
kF 2k

ðf��F ��ÞF ��: (18)

The Lagrangian L was written in Ref. [28]; its small-
momentum form [corresponding to Eq. (47) in the next
subsection] is present in an earlier paper [30].
The expression above is valid for both magneticlike and

electriclike cases (F + 0, G ¼ 0) and defines the corre-
sponding induction vectors according to the following rule:

di¼O0i¼@L=@ei; hi¼1

2
�ijkOjk¼�@L=@bi; (19)

where eðxÞ ¼ ra0ðxÞ � @0aðxÞ and b ¼ r� a are the
averaged (classical) electric and magnetic fields associated
with the electromagnetic wave. With these definitions, the
Maxwell equations have the recognizable form

r � d ¼ 0; r � b ¼ 0;

r� e ¼ � @b

@x0
; r� h ¼ @d

@x0
:

(20)

The above expressions allow us to obtain the most general
structure of the dielectric and magnetic permeability ten-
sor. To derive it, we first note that our effective Lagrangian
L in Eq. (17) acquires the structure of Eq. (14) as long as it
is expressed in terms of the induction vectors d, h and the
electric e and magnetic b fields of the small electromag-
netic waves. Likewise, the optical tensors can be defined as
in Eq. (15). In fact, by considering the following relations,
valid in the special frames,

�1

4
f�� ~F�� ¼ 1

2
e �B; 1

4
f��F �� ¼ 1

2
b �B; F> 0;

�1

4
f�� ~F�� ¼ 1

2
b �E;

1

4
f��F �� ¼�1

2
e �E; F< 0;

(21)

one can express them for the magnetic external field:

"ijðk; !Þ ¼
�
1� ß1

k2

�
�ij þ ß1 � ß2

k2k �!2

BiBj

B2
;

��1
ij ðk; !Þ ¼

�
1� ß1

k2

�
�ij þ ß1 � ß3

k2?

BiBj

B2
:

(22)

It is notable that the components of the three-momentum
vector k do not take part in forming these tensors; only

QED WITH AN EXTERNAL FIELD: HAMILTONIAN . . . PHYSICAL REVIEW D 86, 105040 (2012)

105040-5



components of B do. This feature is not typical of
crystal optics with spatial dispersion and can be attributed
to the explicit exploitation of the gauge invariance laid in
Eq. (18). The eigenvalues of matrices in Eq. (22) [the
principal values of the electric and (inverse) magnetic
permittivities] are

"? ¼ ��1
? ¼ 1� ß1

k2
; "k ¼ 1� ß1

k2
þ ß1 � ß2

k2k �!2
;

��1
k ¼ 1� ß1

k2
þ ß1 � ß3

k2?
:

(23)

The values "k and ��1
k correspond to the eigenvector

directed along the external magnetic field B, which there-
fore makes it the direction of the principal optical axis. The
values "? ¼ ��1

? correspond to the eigenvectors directed

transverse to the external magnetic field. The principal
values of Eq. (23) are rotational scalars and depend upon
direction: their arguments are the frequency ! and the
scalar product B � k, combined into z1 ¼ !2 � k2k, z2 ¼
k2?. We also find a similar result for an electriclike back-

ground (F< 0). In this case, the optical axis is determined
by E and

"ijðk; !Þ ¼
�
1� ß1

k2

�
�ij þ ß1 � ß3

k2k �!2

EiEj

E2
;

��1
ij ðk; !Þ ¼

�
1� ß1

k2

�
�ij þ ß1 � ß2

k2?

EiEj

E2
:

(24)

From these tensors, we obtain that "? and ��1
? have the

same structure as in Eq. (23), whereas

"k ¼ "? þ ß1 � ß3
k2k �!2

; ��1
k ¼ ��1

? þ ß1 � ß2
k2?

: (25)

The results given in Eqs. (22)–(25) point out that in the
presence of an external magnetic or electric field, the
vacuum behaves like a uniaxial anisotropic material.
Note that the procedure shown in this section is indepen-
dent of any approximation made in the calculation of the
vacuum polarization tensor. However, it is only valid in a
class of special frames, in which the external field is
purely magnetic (when G ¼ 0, F> 0) or purely electric
(when G ¼ 0, F< 0). In a general Lorentz frame, an
electric (magnetic) component is added to the primarily
purely magnetic (electric) field, as produced by the
Lorentz boost. Hence, the statement that the vacuum is
uniaxial is no longer true in that frame, because the
second axis is specialized by the direction of the added
component—or, in other words, by the direction of the
motion of the reference frame with respect to the special
frame. Therefore, the vacuum is a biaxial medium that
can be rendered uniaxial by an appropriate Lorentz trans-
formation. (In the case of a material anisotropic medium,
which is uniaxial in its rest frame, we can also state that it
becomes biaxial if it moves with respect to an observer,

the direction of motion specializing additional direction in
the frame of the observer.)
The same statements are readily extended to the case of

a general external field with both the field invariants differ-
ent from zero:G � 0, F � 0. In this general case, (a class
of) special frames exist, where the external electric and
magnetic fields are mutually parallel, their common direc-
tion specializing the principal optical axis in such frames.
The point is that the diagonal representation for the polar-
ization operator [Eq. (10)] remains valid, the only reser-

vation being that now the eigenvectors [ð�Þ
� in it are not just

the vectors of Eq. (7), but linear combinations of them [29].
A representation analogous to Eq. (18) can be written in
that case, and the principal values substituting for Eq. (23)
again depend on the same combinations of momenta
!2 � k2k and k2?, where now the designations k and ?
mark the directions parallel and orthogonal to the common
direction of the external fields.

C. The vacuum symmetry subgroup ISOAð3; 1Þ:
Covariant decomposition of transformations

Actually, the anisotropic character of the medium,
equivalent to that of the vacuum with an external field,
arises due to the Lorentz and rotational symmetry break-
down [which is not manifest in the Maxwell Lagrangian of
Eq. (14), because it relates only to the rest frame of the
medium and does not reflect its spatial symmetry]. The
Lagrangian [Eq. (17)] is not Lorentz and rotational invari-
ant, because it contains an external tensor responsible for
the external field. So, to keep it invariant, one should
transform the external field together with the photon field.
Correspondingly, the explicit forms of the scalars z2 and z1,
as well as ßi, when these are expressed through the photon
momentum components, depend on the reference frame.
However, the Lagrangian [Eq. (17)] turns out to be invari-
ant under those space-time transformations which leave the
external field intact. Thus, bearing in mind the translational
invariance of our problem, the proper inhomogeneous
orthochronous Lorentz transformations relating to the
symmetry group of an anisotropic homogeneous vacuum
occupied by an external space- and time-independent clas-
sical field must fulfill the conditions

x� ! ��
�x

� þ ��; ��� ¼ ��
��

�
����;

F �� ¼ ��
��

�
�F ��; det� ¼ 1; �0

0 > 0:
(26)

The set of pairs f�;�g satisfying Eq. (26) form a subgroup
of the Poincaré group [ðISOð3; 1ÞÞ] which will be referred
to as the ‘‘Amputated Poincaré Group,’’ ISOAð3; 1Þ. Also,
� 2 SOAð3; 1Þ, where SOAð3; 1Þ is called the ‘‘Amputated
Lorentz Group.’’ Due to Eq. (26), the infinitesimal Lorentz
transformation associated with our problem can be written
as [31]

��
�¼��

�þ!�
�; with !�

�¼#0F �
�þ
0 ~F �

�; (27)
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where #0 and 
0 are real infinitesimal parameters. Note that
the description above is not restricted to a magneticlike or
electriclike field. On the contrary, it holds for any other
constant and homogeneous external field configuration
with the second field invariant, G � 0, and it emerges in
any other nonlinear electrodynamics different from QED.

We exploit Eq. (27) to obtain explicitly the structure of
those Lorentz transformations that are associated with our
problem, i.e., � 2 SOAð3; 1Þ. Before doing this, we rede-
fine the group parameter in Eq. (27), #0¼#=ðN þþN �Þ
and 
0 ¼ 
=ðN þ þN �Þ, where N � ¼ ½ðF2 þG2Þ1=2
�F�1=2 are eigenvalues of the external field tensor F . In
addition, we express the finite Lorentz transformation as an
exponential of a matrix argument

� ¼ exp

�
#F

N þ þN �
þ 
 ~F

N þ þN �

�
; (28)

defined by its series expansion.
Substantial simplifications can be achieved by the intro-

duction of the matrix basis

ðZ�Þ�� ¼ N � ~F�
� 	N 	F �

�

N 2þ þN 2�
; (29)

ðZ2�Þ�� ¼ F ��F �� �N 2���
�

N 2þ þN 2�
; (30)

whose elements fulfill the following properties:

ZþZ� ¼ 0; Z2nþ ¼ Z2þ; Z2nþ1þ ¼ Zþ;

Z2n� ¼ ð�1Þn�1Z2�; Z2nþ1� ¼ ð�1ÞnZ�:
(31)

With these details in mind, a finite Lorentz transformation
belonging to SOAð3; 1Þ decomposes according to

�¼Z� sin’þZþ sinh��Z2�cos’þZ2þcosh�; (32)

where the arguments of the trigonometric and hyperbolic
functions are

� ¼ N þ

N þ þN �

� N �#
N þ þN �

; (33)

’ ¼ N �

N þ þN �

þ N þ#
N þ þN �

: (34)

In contrast to the cases considered in Secs. II A and II B,
the covariant decomposition of the Lorentz transformation
[Eq. (32)] deduced here relates to the most general case of
a constant and homogeneous external field with both its
invariants G, F different from zero. (Therefore, it remains
valid in the crossed field system G ¼ F ¼ 0 and jEj ¼
jBj.) For the magnetized vacuum (G ¼ 0, F> 0), the
variables in Eq. (32) become � ¼ 
 and ’ ¼ #, whereas
in an electric background (G ¼ 0, F< 0) they turn out to
be � ¼ �# and ’ ¼ 
.

Now, the explicit structure of � in terms of the external
electric E and magnetic B fields is rather complicated in a
general Lorentz frame. However, it becomes simpler if one
considers the external field configurations inherent to spe-
cial frames, where the vectors E and B are parallel, and
directed, say, along the z axis. In these special frames, the
transformations of Eq. (32) have a simple sense of rotation
about the axis z by the angle’, and the Lorentz boost along
this axis is parametrized by � .
Considering the general case G � 0, F � 0 in the

special frame where B ¼ ð0; 0; BzÞ, E ¼ ð0; 0; EzÞ, we
found that

��
� ¼ R�

�ð’ÞB�
�ð�Þ ¼ DSOð2Þ 
DSOð1;1Þ: (35)

The expression above involves the matrices

Rð’Þ ¼ DSOð2Þ 
 1 and Bð�Þ ¼ 1 
DSOð1;1Þ; (36)

where the
 denotes the usual direct sum of matrices, and 1
denotes a 2� 2 identity matrix. Here both DSOð2Þ and

DSOð1;1Þ are two-dimensional representations of SOð2Þ
and SOð1; 1Þ, respectively. Explicitly, they read

DSOð2Þ ¼ cos’ sin’

� sin’ cos’

" #
;

DSOð1;1Þ ¼ cosh� sinh�

sinh� cosh�

" #
:

Both matrices conform two independent Abelian-invariant
subgroups of SOAð3; 1Þ, which emphasizes their nonsemi-
simple structure. Moreover, the group parameter space is

the product manifold Sð1Þ � <ð1Þ, where Sð1Þ is the circle

and<ð1Þ the real line. Therefore, the topology of SOAð3; 1Þ
is the surface of a circular cylinder, a manifold which is
neither compact nor simply connected. (Indeed, it is infi-
nitely connected.)

III. GENERATORS OF SPACE-TIME
TRANSFORMATIONS

The constrained Hamiltonian formulation of the electro-
magnetic field in an anisotropic material remains poorly
developed in the literature; we are not aware of previous
Hamiltonian treatment for these optical media. In this
section, we shall see how this method can be implemented
in QED with an external constant electromagnetic field. To
pursue this analysis, we first note that the effective
Lagrangian L in Eq. (17) is not a local function, since it
depends on momenta in a very cumbersome way. The
canonical formalism in its standard form is not applicable
to nonlocal situations. For this reason, we will restrict
ourselves to the infrared approximation, k� ! 0, in which

case the effective Lagrangian L becomes a local function
on the photon field a�ðxÞ. This approximation corresponds

to anisotropic media with no spatial or frequency disper-
sion. In our case, it becomes actual in the region of very
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strong external fields, where the external field dominates
over the photon momentum [32].

Consider the static (! ¼ 0) case. When k? ¼ 0, we
have from Eq. (23)

"kðkk; 0Þ ¼ 1� ß2
k2k

��������!;k?¼0
:

When ! ¼ 0, kk ¼ 0, we have that

��1
k ðk?; 0Þ ¼ 1� ß3

k2?
: (37)

Owing to the degeneracy property [5], ß1 ¼ ß2 at
!2 � k2k ¼ 0, we also have that

"?ðk?; 0Þ ¼ ��1
? ðk?; 0Þ ¼ 1� ß1

k2?

��������!;kk¼0
:

So, in the infrared limit k� ! 0, the quantities in Eq. (23)

coincide with the permittivities defined for that case in
Ref. [28]—according to the correspondences "? , "tr,

�? , �w
tr , "k , "long, �

�1
k , �pl

tr—and responsible for

screening charges and stationary currents of special
configurations.

In the infrared limit, the eigenvalues of the vacuum
polarization tensor can be expressed in terms of the first
and second derivatives of an effective Lagrangian L
[connected with the generating functional � of irreducible
many-photon vertices in an external field, as pointed
out below Eq. (1)] over the constant field with respect to
the corresponding external field invariants F and G
(see details in Ref. [28]):

ß1 ¼ k2LF; ß2 ¼ ß1 � 2FLGGz1;

ß3 ¼ ß1 þ 2FLFFz2;
(38)

where LF ¼ @L=@F, LGG ¼ @2L=@G2, and LFF ¼
@2L=@F2, with G set equal to zero after differentiation.
It follows from Eqs. (38), (22), and (24) that

"ij ¼ ð1� LFÞ�ij þ LGGBiBj

��1
ij ¼ ð1� LFÞ�ij � LFFBiBj

9=
;F> 0;

"ij ¼ ð1� LFÞ�ij þ LFFEiEj

��1
ij ¼ ð1� LFÞ�ij � LGGEiEj

9=
;F< 0:

(39)

For the magneticlike case F> 0, this is equivalent to

"? ¼ ��1
? ¼ 1� LF; "k ¼ 1� LF þ 2FLGG;

��1
k ¼ 1� LF � 2FLFF;

(40)

The following relations were established in Ref. [28] on the
basis of causality and unitarity principles, valid for F + 0:

1� LF � 0; 1� LF þ 2FLGG � 0;LGG � 0;

1� LF � 2FLFF � 0;LFF � 0;
(41)

which guarantees the consistency of the theory.

A. The energy-momentum tensor

The symmetry reduction by the external magnetic field
does not alter the translational group embedded in
ISOð3; 1Þ. Therefore, for a photon, the space-time configu-
ration with an external classical field is translation invari-
ant. To find in the local approximation the associated
Noether current of the electromagnetic radiation, let us
first insert Eq. (38) into Eq. (18) to find

O�� ¼ ð1� LFÞf�� � 1

2
LGGðf�� ~F ��Þ ~F ��

� 1

2
LFFðf��F ��ÞF ��: (42)

The substitution of this tensor intoL [Eq. (17)] defines the
Lagrangian [28,30] of the small-amplitude, low-frequency,
long-wave electromagnetic field a�ðxÞ:

L ¼ � 1

4
f��f�� þ L

¼ � 1

4
ð1� LFÞf��f�� þ 1

8
LGGðf�� ~F ��Þ2

þ 1

8
LFFðf��F ��Þ2: (43)

The corresponding conserved stress-energy tensor is
obtained from it by following the Noether theorem in the
standard way:

T�� ¼ ���L� @L
@ð@�a�Þ@

�a�: (44)

Here

@L
@ð@�a�Þ ¼ � @L

@ð@�a�Þ ¼ �O��; (45)

in accordance with Eqs. (17)–(19). The antisymmetricity
of this tensor is owing to the gauge invariance manifesting,
in that the Lagrangian contains only the field tensor.
Substituting Eq. (43) into Eq. (44), we obtain

T�� ¼ ð1� LFÞf��@�a� � 1

2
LGGðf%� ~F %�Þ ~F ��@�a�

� 1

2
LFFðf%�F %�ÞF ��@�a�

þ ���

�
� 1

4
ð1� LFÞf%�f%� þ 1

8
LGGðf�% ~F �%Þ2

þ 1

8
LFFðf�%F �%Þ2

�
: (46)

Let us define the tensor

��� ¼ L��� þO��f�� � j�a� (47)

related to Eq. (44) as

T�� ¼ ��� � @�K
���; (48)

where K��� ¼ �O��a� is antisymmetric in its first two
indices, while the electric current
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j� ¼ @�
@L

@ð@�a�Þ ¼ �@�O�� (49)

disappears on equations of motion, j� ffi 0. It conserves

@�j� ¼ 0 due to antisymmetricity of the tensor O��

[Eq. (45)]. When taken on the equations of motion, the
tensors T�� and ��� coincide up to a full derivative.
However, the latter depends only on the field strengths of
the small electromagnetic field f�
, and not on its four-

vector potential a�, as was the case with the tensor of

Eqs. (44) and (46). The achievement of this gauge-
invariance property of the tensor ��� [Eq. (47)] was
the motivation [28] for taking it as the stress-energy
tensor (on equations of motion). It remains, however,
not symmetric. Substituting Eq. (42) into Eq. (47) re-
sults in

��� ¼ ð1� LFÞf��f�� �
1

2
LGGðf%� ~F %�Þ ~F ��f��

� 1

2
LFFðf%�F %�ÞF ��f��

þ ���

�
� 1

4
ð1� LFÞf%�f%� þ 1

8
LGGðf�% ~F �%Þ2

þ 1

8
LFFðf�%F �%Þ2

�
� j�a�: (50)

In an empty Minkowski space (F ¼ 0), the possibility
of symmetrization of the canonical stress-energy tensor by
adding a full derivative is provided by the conservation of
SOð3; 1Þ generators. (For details, we refer the reader to
Ref. [26] and references therein.) In our case, there is a lack
of isotropy due to the external field which implies that
only a subset of the Lorentz generators are conserved
(see Secs. III C and IVA). This fact, therefore, prevents
us from obtaining an equivalently symmetrized version of
Eq. (44), and some dramatic differences arise in compari-
son with the case of an empty vacuum. The relation obeyed
by Eq. (50) to substitute for the symmetricity property is
�f �� ¼ ��T �f, where �� and �f are the matrices��� and f��,

while ��T is the transposed matrix. When there is no

Lorentz breaking, the matrix �� commutes with the matrix
�f, because in this case the stress-energy tensor is built only
of the field tensor and the unit metric tensor, its explicit
dependence on the coordinate vector not being admitted. In
this case, the symmetricity of � is in agreement with the
above relation.

The stress-energy tensor ���, as well as T��, satisfies
the continuity equation with respect to the first index on
equations of motion,

@��
�� ¼ 0; (51)

with their difference satisfying the same property
@�@�K

��� ¼ 0. Its components, explicitly, are

�00 ¼ 1

2
d � eþ 1

2
h � bþ a0r � d; (52)

�0i ¼ ½d� b�i � air � d; (53)

�i0 ¼ ½e� h�i � a0½@0di � ðr� hÞi�; (54)

�ij ¼ �diej � bihj þ 1

2
�ijðe � dþ b � hÞ

þ aj½@0di � ðr� hÞi�; (55)

where the electric and magnetic induction vectors are
defined in Eq. (19). Explicitly,

d ¼ ð1� LFÞeþ LGGðe �BÞB for F> 0;

d ¼ ð1� LFÞeþ LFFðe �EÞE for F< 0;
(56)

and

h ¼ ð1� LFÞb� LFFðb � BÞB for F> 0;

h ¼ ð1� LFÞb� LGGðb �EÞE for F< 0:
(57)

Let us consider the case in which the equations of motion
are fulfilled, i.e., when the current j� ¼ 0 vanishes identi-
cally. By integrating the continuity equation [Eq. (51)] with
� ¼ 0 over a final spatial volume Vand defining the energy
in this volume as

P 0
V ¼ R

V d3x�00ðxÞ ¼ R
V d3x

�
1
2d � eþ 1

2h � b
�
; (58)

we get

@P 0
V

@x0
¼

I
S
�i0d�i ¼

I
S
ðe� hÞid�i; (59)

where the integral in the right-hand side is run over the
surface S surrounding the volume V. Therefore, the
Poynting vector �i0 ¼ ðe� hÞi accounts for the energy
per unit of time, per unit area, transported by the small
electromagnetic waves. It is parallel to the group velocity
of eigenmodes and to their center-of-mass velocity, as
described in Appendix D. In the infinite-volume limit,
V ¼ 1, and under the assumption that the fields e, h fall
off at spatial infinity, we find that the energy inside the
infinite volume P 0 ¼ P 01 does not depend on time:

@P 0

@x0
¼ 0: (60)

By integrating the continuity equation [Eq. (51)] with � ¼
j over a final spatial volume V, we find that the momentum
in this volume,

P j
V ¼

Z
V
d3x�0jðxÞ ¼

Z
V
d3xðd� bÞj; (61)

satisfies the equation

@P i
V

@x0
¼

I
S
�ijd�i; (62)
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which indicates that the total momentum contained inside
the infinite volume P ¼ P1 conserves,

@P
@x0

¼ 0; (63)

under the same assumption that the fields decrease at
spatial infinity. Note that the momentum density �d� b
and the Poynting vector �e� h describe different quanti-
ties, which does not take place in an empty space-time.
Observe that, on the equation of motion, the structure of
Eqs. (52)–(55) does not differ from the case of light propa-
gation in an anisotropic material [33].2

In the general case in which the current j� does not
vanish, the spatial integral of Eqs. (52) and (53) defines the
translation generators. For further convenience, we express
the latter in terms of the momentum �i ¼ @L=@ð@0aiÞ,
canonically conjugated to the field ai taken as a canonical
coordinate. It coincides with the electric induction, defined
in Eq. (19), d ¼ ��. We invert Eq. (15) so that the electric
field of the wave can be expressed as ei ¼ "�1

ij dj, where

"�1
ij must be understood as the inverse of the tensors given

in Eq. (39):

"�1
ij ¼ 1

1�LF

�
�ij� LGG

1�LFþ 2FLGG

BiBj

�
F> 0;

"�1
ij ¼ 1

1�LF

�
�ij�

LFF

1�LF� 2FLFF

EiEj

�
F< 0:

(64)

With these details in mind, the translation generators turn
out to be

P ¼ �
Z

d3xf� � b� aðr � �Þg;

P 0 ¼
Z

d3x

�
1

2
�i"

�1
ij �j þ 1

2
bi�

�1
ij bj � a0ðr � �Þ

�
:

(65)

Some comments are in order. First of all, we point out that
these generators and their respective translational charges,
Eqs. (61) and (58) differ from each other in the terms which
are proportional to Gauss’s law, r � � ¼ 0. Such terms are
intrinsically associated with the constrained Hamiltonian
formalism [19] (see the next subsection). Correspondingly,
we shall show that the expression involved in Eq. (65)
canonically realizes the space-time translations, at least
when acting on a phase space defined by constraints asso-
ciated with the gauge symmetry.

B. Gauge fixing and Dirac brackets

The local approximation [Eq. (43)] of our effective
Lagrangian L does not depend on the velocity @a0=@x

0,
so that the related momentum vanishes identically.
Obviously, this leads us to introduce

’1 
 �0 � 0 (66)

as a ‘‘primary constraint.’’ Note that the symbol�must be
understood as ‘‘weak equality’’; i.e., the constraints cannot
be assumed to equal zero until the Poisson bracket between

two arbitrary functionals Q̂ and Q of the field variables
ða�;��Þ is calculated:

fQ̂;Qg ¼
Z

d3x

�
�Q̂

�a�ðxÞ
�Q

���ðxÞ �
�Q̂

���ðxÞ
�Q

�a�ðxÞ
�
:

(67)

According to the Dirac algorithm, ’1 must be imple-
mented within the canonical Hamiltonian

H C 
 P 0 ¼
Z

d3x

�
�

@a

@x0
�L

�
; (68)

by means of a Lagrangian multiplier C, so that the ‘‘total’’
Hamiltonian turns out to be

H ¼ P 0 þ
Z

d3xCðxÞ�0ðxÞ: (69)

In this context, the equation of motion for Q̂ reads

dQ̂
dx0

¼ @Q̂
@x0

þ fQ̂;H g; (70)

and, in particular, for Q̂ ¼ �0, one has

d�0

dx0
¼ f�0;H g ¼ r � �: (71)

The constraint ’1 should hold at all times. In consequence,
Gauss’s law

’2 
 r � � � 0; (72)

which is one of the field equations, j0 ¼ r � d ¼ 0, arises
as a ‘‘secondary constraint.’’ However, the latter is already
present in H C ¼ P 0 in the form a0r � � [see Eq. (65)].
Therefore, a0 can be considered as a Lagrange multiplier
and thus an arbitrary function of x. Its equation of motion
implies that

da0
dx0

¼ fa0;H g ¼ CðxÞ: (73)

The string of constraints stops here because Gauss’s law
commutes with the Hamiltonian. Moreover, our primary
and secondary constraint are ‘‘first class’’ with a vanishing
Poisson bracket:

f�0ðxÞ;r � �ðx0Þg ¼ 0: (74)

The remaining algebra of the constraints and the
Hamiltonian is given by

f�0ðxÞ; �0ðx0Þg ¼ 0; fr � �ðxÞ;r � �ðx0Þg ¼ 0;

f�0;H Cg ¼ �r � �; fr � �;H Cg ¼ 0:
(75)

2Remember that we restrict ourselves to the low-frequency,
low-momentum limit in the present subsection and in the rest of
the article.
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Observe that the Lagrangian multipliers C and a0 transfer
an arbitrariness to the Hamiltonian [Eq. (69)]. As a con-
sequence, we are forced to deal with a phase space plagued
by nonphysical degrees of freedom. This problem is
closely associated with the gauge invariance property and
is formally removed by imposing two gauge-fixing con-
ditions. Because of this fact, the two existing multipliers
are rendered to precise dependences on the physical fields,
and can eventually be removed from the theory.

A suitable set of gauge conditions can be found by
solving Gauss’s law [Eq. (72)] with respect to a0:

a0 ¼ 1

r"r @0ðri"ijajÞ; (76)

wherer"r ¼ ri"ijrj. Guided by this result, we are led to

choose a generalized version of the Coulomb gauge as the
third constraint of the theory:

’3 
 ri"ijaj � 0: (77)

The consistency consequence of this gauge condition can be
found by Poisson-commuting the Hamiltonian [Eq. (69)]
with ’3. However, it can be read off directly from Eq. (76)
and promotes the last constraint,

’4 
 a0 � 0: (78)

Since this is found to be stationary aswell, Eq. (73) provides
a vanishing value of the Lagrangian multiplier C, and there
are no further constraints.

The accessibility of these gauge conditions can be
checked by using the gauge function

� ¼ � 1

r"rri"ijaj: (79)

In fact, for any value of a, a0, the gauge-transformed fields

a0iðxÞ ¼ aiðxÞ þ ri�; a00ðxÞ ¼ a0ðxÞ þ @0�; (80)

obey the gauge conditions of Eqs. (77) and (78).
Explicitly,3

ri"ija
0
j ¼ ri"ijaj þri"ijrj� ¼ 0;

r � �0 ¼ �ri"ijrja
0
0 ¼ ri"ijrja0 þri"ijrj@0� ¼ 0:

(81)

Note, in addition, that the constraints f’ig defined above
restrict the original phase space of the theory to a four-
dimensional hypersurface,

� 
 fða�;��Þj’i � 0; i ¼ 1 . . . 4g; (82)

in which the time evolution of two physical degrees of
freedom takes place.
Certainly the set f’ig is second class, with a character-

istic matrix C�
ðx; x0Þ 
 f’�ðxÞ; ’
ðx0Þg given by

C�
 ¼

0 0 0 1

0 0 rx"rx 0

0 �rx"rx 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA�ð3Þðx�x0Þ: (83)

Since C�
ðx; x0Þ is regular by construction, we can also

write down its inverse:

C�1
�
 ¼

0 0 0 �1

0 0 � 1
rx"rx 0

0 1
rx"rx 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA�ð3Þðx� x0Þ: (84)

With the help of the latter, we introduce the Dirac bracket:

fQ̂ðxÞ;Qðx0Þg� ¼ fQ̂ðxÞ;Qðx0Þg �
Z

d3yfQ̂ðxÞ; ’�ðyÞg

�
Z

d3zC�1
�
ðy;zÞf’
ðzÞ;Qðx0Þg: (85)

In this context, the fundamental bracket of the theory can
be calculated straightforwardly and reads

faiðxÞ; �jðx0Þg� ¼ tijðx; x0Þ; (86)

where

tijðx; x0Þ 

�
�ij �rx

i

1

r"r "jkrx
k

�
�ð3Þðx� x0Þ (87)

is a projector-valued distribution which fulfills the relationZ
d3ytilðx; yÞtljðy; x0Þ ¼ tijðx; x0Þ: (88)

This, however, is not symmetric [tijðx; x0Þ � tjiðx; x0Þ]4
and, depending on the field to be projected, one must
contract one index or the other. For instance, let us decom-
pose the canonical field into two mutually orthogonal
pieces: aðx; tÞ ¼ a	ðx; tÞ þ a‘ðx; tÞ. Here the transversal
component is obtained by contracting the field aðx; tÞ
with the index of tijðx; x0Þ, which is provided by the optical
tensor "lj. Thus,

a	i ðx; tÞ ¼
Z

d3x0tijðx; x0Þajðx0; tÞ

¼
�
�ij �ri

1

r"rrk"kj

�
ajðx; tÞ: (89)

3It is worth observing at this point that the electric field
associated with the small-amplitude waves e ¼ ra0 � @0a is a
gauge-invariant quantity. As a consequence, the canonical mo-
menta �i ¼ �"ijej are invariant as well. So, under the gauge
transformation of Eq. (80), �0 ¼ �.

4For a vanishing external field, this reduces to the symmetric
transversal projector associated with the Coulomb gauge
tCoulij ðx; x0Þ ¼ ½�ij �rirj=r2��ð3Þðx� x0Þ.
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Accordingly, the longitudinal components of a turn out to
be a‘i ðx; tÞ ¼

R
d3x0lijðx; x0Þajðx0; tÞ, where

lijðx; x0Þ 
 rx
i

1

r"rrx
k"kj�

ð3Þðx� x0Þ (90)

is the nonsymmetric longitudinal projector. Likewise, we
decompose � ¼ �	 þ �‘. However, to extract its trans-
versal and longitudinal elements, the canonical momentum
must be contracted with the index provided by the gradient
operator:

�	
j ðx; tÞ ¼

Z
d3x0tijðx; x0Þ�iðx0; tÞ

¼
�
�ij �rx

i

1

r"rrx
k"kj

�
�iðx; tÞ: (91)

Due to the gauge-fixing condition [Eq. (77)] and Gauss’s
law [Eq. (72)], the longitudinal components a‘i ¼R
d3x0lijðx; x0Þajðx0; tÞ and �‘

j ðx; tÞ ¼
R
d3x0lijðx; x0Þ

�iðx0; tÞ vanish identically. Keeping these details in mind,
the fundamental Dirac bracket of our system [Eq. (86)]
acquires the following structure:

fa	i ðxÞ; �	
j ðx0Þg� ¼ tijðx; x0Þ: (92)

On the other hand, the Dirac bracket of a0 or �0 with an

arbitrary functional Q̂ vanishes identically by construction:

fQ̂ðxÞ; a0ðx0Þg� ¼ 0; fQ̂ðxÞ; �0ðx0Þg� ¼ 0: (93)

Because of this, the sector ða0; �0Þ can be formally elimi-
nated from the phase space, and the theory is fully described

in terms of ða	;�	Þ. Moreover, with Q̂ being a generic
functional, one has

fQ̂ðxÞ;r � �ðx0Þ
zfflfflfflfflffl}|fflfflfflfflffl{’2

g� ¼ fQ̂ðxÞ;ri"ijajðx0Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{’3

g� ¼ 0: (94)

Thus, both the second and third constraints [Eqs. (72) and
(77)] are no longer ‘‘weak’’ equalities, and instead they
can be used as ‘‘strong’’ equations. The latter terminology
is conceptually equivalent to replacing the symbol � by
¼ in the set of constraints f’ig. So, once the Dirac
brackets [Eq. (85)] are constructed, they can be set to
zero everywhere.

Making use of Eq. (85) and Eqs. (88)–(91), we find

fP 0; aiðxÞg� ¼ @0aiðxÞ; fP 0; �iðxÞg� ¼ @0�iðxÞ;
fP; aiðxÞg� ¼ raiðxÞ; fP; �iðxÞg� ¼ r�iðxÞ;
which are the well-known time and spatial transformation
properties of fields. It follows that for any polynomial

functional Q̂ of a and � that does not depend explicitly
on x, one has

fP�; Q̂ðxÞg� ¼ @�Q̂ðxÞ: (95)

To conclude this subsection, we derive the modified
Maxwell equations. Whatever the nature of the electro-
magnetic background (F> 0 or F< 0), the Hamiltonian
equation of motion for � becomes Ampere’s law:

d�

dx0
¼ f�;P 0g� ¼ r� �P 0

�b
¼ �r� h: (96)

Together with the constraint ’2 ¼ 0 (Gauss’s law), they
make the second pair of Maxwell equations. The
Hamiltonian equation for b,

db

dx0
¼ fb;P 0g� ¼ r� �P 0

��
¼ �r� e; (97)

where e ¼ �@0a, becomes Faraday’s equation. It is ful-
filled as an identity. Together with another identity, Gauss’s
law for magnetism, r � b ¼ 0, which is not a Hamilton
equation of motion, they make the first pair of Maxwell
equations.
We stress that the procedure developed in this subsection

is also applicable to any other linear approximation of
electrodynamics in which the optical tensors depend on
neither the space-time coordinates nor the derivates with
respect to the latter. Observe that it is even suitable to
describe the situation in which there exists a certain biax-
iality associated with the crossed fields configuration; i.e.,
where the external field invariants vanish identically,
F ¼ G ¼ 0.

C. Generators of rotations and
Lorentz transformations

In this subsection, we first obtain the conserved gener-
ators associated with the Amputated Lorentz Group,
SOAð3; 1Þ. The Noether theorem for infinitesimal trans-
formations from the SOAð3; 1Þ group over the field a�ðxÞ
that leave the action � in Eq. (2) invariant reads

@�

�
@L

@ð@�a�Þ�a
� þ T�

��x
�

�
¼ 0; (98)

whereL is the quadratic Lagrangian of Eq. (17), T�
� is the

canonical stress-energy tensor of Eq. (44), and the trans-
formation laws are

�a�ðxÞ ¼ i

2
!�
ðJ�
Þ��a�ðxÞ;

�x� ¼ i

2
!�
ðJ�
Þ��x�;

(99)

with !�
 determined by Eq. (27) and with the vectorial
representation of the Lie algebra generator of SOð3; 1Þ,

ðJ�
Þ�� ¼ ið��

��� � ��

��
�Þ: (100)

With these details inmind, theNoether conservation equation
[Eq. (98)] may be written as
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@�

�
1

2
#F �
J

��
 þ 1

2

 ~F �
J

��


�
¼ 0: (101)

Correspondingly, the conserved currents associated with the
SOAð3; 1Þ symmetry are given by

J� ¼ 1

2
F �
J

��
 and ~J� ¼ 1

2
~F �
J

��
: (102)

Their respective continuity equations read

@�J
� ¼ 1

2
F �
@�J

��
 ¼ 0; (103)

@�~J
� ¼ 1

2
~F�
@�J

��
 ¼ 0: (104)

To provide the fulfillment of Eqs. (101), (103), and (104), it is
sufficient to define the generally nonconserved current J��


in the form

J��
 ¼ �
�
T��x� þ @L

@ð@�a�Þa
�

�
iðJ�
Þ��; (105)

which imitates the elements associated with SOð3; 1Þ invari-
ance. For further convenience, we express J��
 in terms of
��� [Eq. (50)]. To this end, we substitute Eq. (48) and make
use of the identity

@L
@ð@�a�Þ a

� ¼ @�

�
x�

@L
@ð@�a�Þ a

�

�
� x�@�

�
@L

@ð@�a�Þa
�

�
:

Consequently,

J��
 ¼ �i���x�ðJ�
Þ�� ¼ x���
 � x
���: (106)

Observe that the nonconservation of J��
 is intrinsically
related to the nonsymmetric feature of the energymomentum
tensor [Eq. (50)]. In fact,

@�J
��
 ¼ ��
 ��
�: (107)

Since the continuity equations [Eqs. (103) and (104)] involve
the projection of Eq. (107) onto the external field tensors, we
end up with the following identities:

F �
�
�
 ¼ 0 and ~F �
�

�
 ¼ 0: (108)

Now, the respective spatial integrals of the time compo-
nents of the currents contained in Eq. (102) provide the
conserved charges

G ¼ 1

2
F ��J �� and ~G ¼ 1

2
~F ��J ��; (109)

with

@G
@x0

¼ 0 and
@~G
@x0

¼ 0: (110)

These scalars involve a second-rank tensor whose structure
extends the known representation of the Lorentz generator

J ��

Z
d3xJ0��ðx;tÞ¼

Z
d3xðx��0��x��0�Þ; (111)

to the case of the violated Lorentz invariance under con-
sideration. Correspondingly, we can define both the photon
angular momentum J ¼ ðJ 23;J 31;J 12Þ and the photon
boost generator K ¼ ðJ 10;J 20;J 30Þ.
Considering the prescription above, we can express the

conserved charges of SOAð3; 1Þ in the most general case of
a constant and homogeneous external field as

G ¼ B �J �E �K ; ~G ¼ B �K þE �J : (112)

Thus, as soon as the effects of the vacuum polarization
tensor are considered, the number of Lorentz generators is
reduced from 6 to 2. Therefore, the vacuum symmetry
group ISOAð3; 1Þ has dimension 2.
The explicit structure of J and K in terms of the

canonical fields ða;�Þ follows from Eqs. (111) and (47),
and reads

J ¼ �
Z

d3xfx� ½� � b� � ðx� aÞðr � �Þg; (113)

K ¼�x0Pþ
Z
d3x

�
x

�
1

2
�i"

�1
ij �jþ1

2
bi�

�1
ij bja0r ��

��
;

(114)

where b ¼ r� a. Note how the secondary constraint of
our problem is implemented in both generators through
terms proportional to �r � �. In the phase subspace
defined in Eq. (82), such terms vanish identically, and the
resulting expression of J coincides with the angular mo-
mentum of light in an optical medium [33].
Now, using the definition of the Dirac bracket [Eq. (85)]

and equipped with the ‘‘Lorentz-like’’ generators J i and
Ki in Eqs. (113) and (114), we are able to express

fJ i;ajðxÞg�¼ðx�rÞiajðxÞþ�ijlalðxÞ��ikm
rj"lkrm

r"r alðxÞ

��ikl
rj"kmrm

r"r alðxÞ; (115)

fJ i; �jðxÞg� ¼ ðx� rÞi�jðxÞ þ �ijl�lðxÞ; (116)

fKi; ajðxÞg� ¼ xi@0ajðxÞ � x0riajðxÞ

� rj"klrl

r"r ½xi@0akðxÞ�; (117)

fKi; �jðxÞg� ¼ �x0ri�j � �ijk�
�1
kmðr� aÞm

þ xi�jkl�
�1
lm rkðr� xÞm: (118)

These expressions deserve some comments. The first pair
of brackets realizes the infinitesimal rotation on the ca-
nonical variables a and �, respectively. Note that, in con-
trast to the momentum �, the field a transforms as a vector
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up to terms associated with the gauge-fixing condition
[Eq. (77)]. A similar statement applies to the boost trans-
formation properties contained in Eqs. (117) and (118). We
find it convenient to emphasize that all these brackets
guarantee that the infinitesimal canonical transformations
induced by the generating functionsJ i,Ki do not lead out
from the constrained phase subspace of Eq. (82). Indeed,

rm"mjfJ i; ajðxÞg� ¼ 0; rjfJ i; �jðxÞg� ¼ 0; (119)

rm"mjfKi;ajðxÞg� ¼ 0; rjfKi;�jðxÞg� ¼ 0: (120)

While the first column realizes ’3 ¼ 0 [Eq. (77)], the
second one verifies’2 ¼ 0 [Eq. (72)]. It is worth observing
at this point that in the limit in which the external field
vanishes, "ij ¼ ��1

ij ¼ �ij, the gauge condition is reduced

to the standard Coulomb gauge ðr � a ¼ 0Þ. Due to this
fact, the rotation transformation property of the gauge field
[Eq. (115)] becomes similar to the one associated with the
canonical momentum [Eq. (116)].

The transformation properties of the gauge field aðxÞ in
Eqs. (115) and (117) are not very helpful as they stand. For
computing more cumbersome brackets involving gauge-
invariant quantities, it is more convenient to represent the
a-containing part of Eqs. (115)–(118) in terms of the
magnetic field h and magnetic induction b, respectively.
To this end, we apply r� to Eqs. (115) and (117). Then

fJ i; bjðxÞg� ¼ ðx� rÞibjðxÞ þ �ijkbkðxÞ; (121)

fJ i; �jðxÞg� ¼ ðx� rÞi�jðxÞ þ �ijk�kðxÞ; (122)

fKi; bjðxÞg� ¼ ��ijkek þ xiðr� eÞj � x0ribj; (123)

fKi; �jðxÞg� ¼ ��ijkhk þ xiðr� hÞj � x0ri�j: (124)

These brackets constitute the starting point for determining
the effects induced by the vacuum polarization within
Lorentz algebra. Note the remarkable symmetry under
the interchange �⇆b of the first pair of these equations.
The second pair, however, is invariant under the simulta-
neous replacement �⇆b and e⇆h.

IV. DIRAC COMMUTATORS AND EQUATIONS
OF MOTION FOR GENERATORS

The goal of this section is to determine the equations of
motion of the generators of the Lorentz rotations and to
establish the Dirac commutation relations distorting the
Lie algebra of the Poincaré group. By contracting these
relations with the field tensor and with its dual, the closed
algebra of the vacuum symmetry subgroup is obtained. As
with other algebraic relations, the vacuum invariance holds
in the physical subspace of the phase space specialized by
constraints, where the evolution of the physical degrees of
freedom takes place.

A. Equations of motion for the angular
momentum and for the boost generator

The vacuum polarization tensor provides an effective
coupling between photons and the external field F . In
order to explore the role of this quantity within LSB, we
first consider the equation of motion associated with the
total angular momentum of the electromagnetic waves:

dJ
dx0

¼ @J
@x0

þ fJ ;P 0g�: (125)

The first term on the right-hand side vanishes identically,
since J does not depend explicitly on time (x0 ¼ t),
whereas the Dirac bracket provides the total torque exerted
over the photon field. In our context (see details in
Appendix A, Sec. A), this can be expressed as

fJ ;P 0g� ¼
Z

d3x½� � eþ h� b�: (126)

In the rotation-invariant case—say, a vacuum or isotropic
material—when the dielectric permeability is a unit tensor,
Eq. (126) disappears in correspondence with the momen-
tum conservation. In this case, � k e, h k b, and their
vector products are zero. As a consequence, the equation
of motion for the photon angular momentum can be written
in terms of the spatial part of the energy momentum tensor
[Eq. (55)]:

dJ i

dx0
¼ 1

2
�ijk

Z
d3xð�jk ��kjÞ: (127)

On the contrary, the equation of motion associated with
the photon boost generator is given by

dK
dx0

¼ @K
@x0

þ fK ;P 0g�: (128)

Because of the explicit dependence of K on time [see
Eq. (114)], the first term on the right-hand side contributes
to the equation of motion @K=@x0 ¼ �P. The Dirac
bracket involved in this expression is calculated in
Appendix A, Sec. B and reads

fK ;P 0g� ¼
Z

d3xe� h: (129)

Combining these details, Eq. (128) acquires the following
structure:

dKi

dx0
¼

Z
d3x½ðe� hÞi þ ð� � bÞi�

¼
Z

d3x½�i0 ��0i�; (130)

where �i0 and �0i are the Poynting vector and the density
of momentum, respectively.
Both Eqs. (127) and (129) can be embedded in a com-

pact four-dimensional expression
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dJ ��

dx0
¼ T ��; (131)

in which the antisymmetric tensor T �� is connected to the
stress-energy tensor by means of the following expression:

T �� 

Z

d3x	��ðxÞ; 	�� 
 ��� ����: (132)

The structure of Eq. (131) with Eq. (132) is somewhat
expected: the spatial integration of Eq. (107) reproduces
the same equation for the Lorentz-like generators up to a
surface integral �H

S d�iJ
i�
, which vanishes identically

when the rapid falloff of the canonical fields at spatial
infinity (S ! 1) is provided.

Observe that the projections of Eq. (131) onto the
external field tensors are consistent with the conservation

law of G and ~G [Eq. (110)]. In fact, due to Eq. (108), we
obtain that

1

2
F ��T �� ¼ 0 and

1

2
~F��T �� ¼ 0: (133)

We shall see that these identities, together with the
equation of motion of J ��, turn out to be very con-
venient to evaluate the vacuum polarization effects on
‘‘Poincaré-like’’ algebra.

B. Distorted Poincaré algebraic relations

Let us consider Eq. (95) with Q̂ replaced by �0�. After
an integration over x, we obtain

fP�;P �g� ¼
Z

d3x@��0�ðx; tÞ: (134)

Using the divergence theorem and assuming that the ca-
nonical fields a and� vanish sufficiently rapidly at infinity,
we find

fP i;P �g� ¼
Z

d3x@i�0�ðx; tÞ ¼ 0: (135)

Therefore,

fP i;P jg� ¼ 0 and fP i;P 0g� ¼ 0: (136)

Because of the antisymmetry of the Dirac bracket, we have
that fP 0;P 0g� vanishes identically as well. Having these
aspects in mind, we can write Eq. (134) as

fP�;P �g� ¼ 0: (137)

We also apply Eq. (95) to the following case:

fP�; J0��g� ¼ x�fP�;�0�g� � x�fP�;�0�g�
¼ x�@��0� � x�@��0�; (138)

where the integrand in Eq. (111) has been considered.
Thanks to the identity x�@
�0	 ¼ @
ðx��0	Þ �
�
��0	, we are able to express Eq. (138) as

fP�; J0��g� ¼ ����0� � ����0� � @�J0��: (139)

Integrating the expressions above over x, we find

fP�;J ��g� ¼���P �����P��
Z

d3x@�J0��: (140)

Because of the rapid vanishing of the field at infinity, we
obtain that, for � ¼ i,

R
d3x@iJ0�� vanishes identically.

However, if � ¼ 0, the last integral can be written as
@0

R
d3xJ0�� ¼ @0J ��. With these details in mind, and

using Eq. (131), we end up with

fP�;J ��g� ¼ ���P � � ���P� � ��0T ��; (141)

where T �� is specified in Eq. (132). The bracket above
reproduces the commutators associated with ISOð3; 1Þ Lie
algebra up to a term manifesting LSB.
Our analysis on the Poincaré-like algebra is to be com-

pleted by deriving the Lorentz-like algebra, which includes
fKi;J jg�, fJ i;J jg�, and fKi;Kjg�. A detailed deriva-
tion of these Dirac brackets can be found in Appendix B. In
particular, we have obtained that

fJ i;J jg� ¼ �ijkJ k;

fJ i;Kjg� ¼ �ijkKk þ 1

2
�ilm

Z
d3xxj	lm;

fKi;Kjg� ¼ ��ijkJ k �
Z

d3xðxi	j0 � xj	i0Þ;

(142)

with 	ij being the spatial part of the tensorial density 	��

defined in Eq. (132). Naturally, the brackets above can be
combined in a four-dimensional expression,

fJ ��;J ��g� ¼���J ������J ��þ���J ������J ��

�
Z
d3xðx���0�x���0Þ	��

�
Z
d3xðx���0�x���0Þ	��; (143)

where the right-hand side reproduces the standard well-
known result of the Lorentz algebra up to terms that
contain the antisymmetric part of the energy-momentum
tensor. Note that in spite of its nonconservation, the spatial
rotation generators retain the standard angular momentum
algebra according to the first line in Eq. (142). This is a
usual situation in classical and quantum mechanics with
broken symmetries under transformations that do not touch
the time variable. It cannot be the same with the whole of
the Poincaré algebra, because the Hamiltonian itself is one
of its generators, whereas its commutators with other
members of the algebra that do not conserve cannot help
being affected. That is why the violation of the algebra in
the second and third lines of Eq. (142) is not unexpected.
This result indicates, in addition, that the Lorentz invari-
ance in pure Coulomb-gauge r � a ¼ 0 Maxwell theory is
established only when the Lorentz generators are con-
served. We conclude our analysis by pointing out that the
brackets in Eqs. (141) and (143) coincide with algebra
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obtained in Ref. [21] within the context of the free field
quantization in a noncovariant gauge.

C. Algebra of the symmetry subgroup

In order to pursue our research, we proceed to contract

Eq. (141) with 1
2F �� and 1

2
~F ��. As a consequence,

fG;P�g� ¼ F ��P � � ��0 1

2
F ��T ��; (144)

f~G;P�g� ¼ ~F ��P � � ��0 1

2
~F ��T ��; (145)

where the definitions of G and ~G have been used.
According to Eq. (133), the last terms on the right-hand
sides of these brackets vanish identically. Therefore,

fG;P�g� ¼ F ��P �; f~G;P�g� ¼ ~F ��P �: (146)

The remaining Dirac bracket involving G and ~G can be
determined by projecting Eq. (143) twice onto the external
field tensors. This procedure generates the following
brackets:

fG;Gg� ¼ F ��F �
�J ��; f~G; ~Gg� ¼ ~F ��

~F �
�J ��;

fG; ~Gg� ¼ 1

2

Z
d3x½F �

0x� ~F ��	
�� þ ~F �

0x�F ��	
���:
(147)

Both F ��F �
� and ~F ��

~F �
� ¼ 2F��� þF ��F �

� are

symmetric tensors. Hence, their contractions with the anti-

symmetric tensor J �� vanish identically, and fG;Gg� ¼
f~G; ~Gg� ¼ 0. The latter result is expected because it comes

out from Eq. (67) that fQ̂; Q̂g ¼ 0, with Q̂ being a generic
function of the canonical variables. Furthermore, by con-
sidering Eq. (133), we can claim that the right-hand side of
the last Dirac bracket vanishes identically as well.

We can then summarize the Lie algebra of ISOAð3; 1Þ as
follows:

fP�;P �g� ¼ 0; fG; ~Gg� ¼ 0;

f~G;P�g� ¼ ~F ��P �; fG;P�g� ¼ F ��P �;
(148)

with the external field tensorsF and ~F playing the roles of
group structure constants. Certainly the translation gener-
ators induce an Abelian-invariant subalgebra which defines
the nonsemisimple structure of SOAð3; 1Þ. Moreover, the
Casimir invariants of our problem are given as

P 2 ¼ Z1 þZ2; Z1 ¼ P ~F 2P
2F

;

and Z2 ¼ �PF 2P
2F

: (149)

It is worth mentioning at this point that the scalars involved
in Eq. (9) are, therefore, maps of the invariants above:

P 2 � k2, Z1 � z1, Z � z2: Moreover, in the special
frame where the field is purely magnetic (F> 0) or purely
electric (F< 0), Eq. (143) expands into

fP x;P yg� ¼ 0; fP z;P 0g� ¼ 0;

fJ z;P xg� ¼ P y; fKz;P 0g� ¼ �P z;

fJ z;P yg� ¼ �P x; fKz;P zg� ¼ �P 0;

where Eq. (112) has been used. Each column in this set of
commutators manifests a subalgebra: the first one corre-
sponds to the two-dimensional Euclidean group ISOð2Þ,
whereas the second one corresponds to the (1þ 1)-
dimensional pseudo-Euclidean group ISOð1; 1Þ. The latter
groups are associated with the transverse and pseudopar-
allel planes with respect to the BðEÞ direction. Therefore,
the symmetry subgroup SOAð3; 1Þ, down to which the
Poincaré group is broken due to the presence of an external
field, reduces in the reference frame—where that field is
purely magnetic or electric—to the direct product of
ISOð2Þ and ISOð1; 1Þ. Besides, we want to remark that
as long as a photon propagates transverse to the external
field, the square of the Pauli-Lubanski operator w� ¼
1=2����%J ��P % is no longer a Casimir invariant. This

fact reflects the underlying difference between the vacuum
in an external field F and the case of an empty space-time
in which the SOð3; 1Þ symmetry is preserved and all par-
ticles are classified according to the spin and helicity
representations encoded in the w2 eigenvalues.

V. MAGNETIC MOMENT OF SMALL
ELECTROMAGNETIC PERTURBATIONS

OF THE VACUUM

In this section, we analyze some consequences associ-
ated with the equation of motion for the photon angular
momentum [Eqs. (125) and (126)]:

dJ
dx0

¼T ; with T ¼
Z

d3xð�� eþh�bÞ: (150)

In the special case where the external field is magneticlike
(F> 0), the explicit substitution of � and h [Eqs. (56) and
(57)] into T [Eq. (150)] allows us to express the latter in a
rather meaningful form:

T ¼ 2M�B;

M ¼ 1

2

Z
d3x

�
LGG

"?"k
ð� �BÞ� þ LFFðb � BÞb

�
; (151)

where Eq. (40) has been used. The expression above
mimics the torque exerted by the external field on the
magnetic dipole M. The torque T [Eq. (151)] vanishes
when projected onto B, so Eq. (150) implies that the
parallel component of the photon angular momentum,
J k, is a constant of motion. On the contrary, the projection

(helicity) h�J �P of the angular momentum of a photon
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onto its canonical momentum [Eq. (65)]5 is not a conserved
quantity unless P turns out to be parallel to the external
field.

The magnetic moment M is a feature of the small elec-
tromagnetic perturbations of the vacuum (photons in the
first place), when the former interact with it through virtual
electron-positron pairs. This interaction makes the photon
behave like a magnetic dipole. Note thatM [Eq. (151)] is a
gauge-invariant quantity, also orthogonal to the photon
canonical momentum, P �M ¼ 0. Moreover, it has two
components in correspondence with the cylindrical sym-
metry imposed by the external magnetic field. One of them,

M? ¼ 1

2

Z
d3x

�
LGG

� �B
"?"k

�?þLFFðb �BÞb?
�
; (152)

is perpendicular to B; whereas the remaining one,

M k ¼ 1

2

Z
d3x

�
LGG

� �B
"?"k

�k þ LFFðb �BÞbk
�

(153)

is parallel to the axis in which the external field lies, and
therefore invariant under rotation about the magnetic
field direction. This, however, does not contribute to T
[Eq. (151)]. Hence, it does not play any role within the
equation of motion of the photon angular momentum
[Eq. (150)]. Nevertheless, Mk contributes to the effective

Hamiltonian [Eq. (65), H 
 P 0], and thus to the photon
energy. Note that with the use of Eq. (40), the latter can be
conveniently written as

H ¼
Z

d3x

�
1

2"?
�2 þ 1

2
��1

? b2
�
�M � B: (154)

In contrast to Mk, the perpendicular component of M
neither remains invariant under a rotation around the B
direction nor contributes to the photon energy, since it is
projected out from the scalar product involved in Eq. (154).
However, it turns out to be a clear manifestation of LSB,
since it specifies, by means of Eq. (150), that not all com-
ponents of the photon angular momentum are conserved
quantities. Furthermore, it follows from Eqs. (40) and (153)
that Mk � 0 behaves paramagnetically. By contrast, it is

not possible to establish a definite magnetic behavior in
M?, because it contains terms which mix not only �k and
�?, but also b? and bk.

Let us consider the case in which the external magnetic
field is asymptotically large,b ¼ jBj=Bc ! 1. In this limit,
the basic entities contained in Eq. (154) [see Eq. (41)]
are written in Ref. [28], referring to L as the one-loop term
of the Euler-Heisenberg Lagrangian [34–37]:

LF � �

3�
lnb; 2FLGG � �

3�
b; 2FLFF � �

3�
:

(155)

Observe that for a magnetic field with 10< b � 3�=�,
one can treat "? ¼ ��1

? � 1 and therefore � ��e�
LGGðe �BÞB. The resulting effective Hamiltonian H reads

H �
Z

d3x

�
1

2
�2 þ 1

2
b2
�
�M �B: (156)

In this approximation, the second term in Eq. (151) decreases
as1=b, and thus contributes inH as a small constant.Hence, it
can be disregarded in comparison with the term provided by
the first term of Eq. (151), which turns out to be a linear
function on the external field strength. As a consequence, the
magnetic dipole acquires the following structure:

M � g
e

2m
S; (157)

with g ¼ �=3� being a sort of Landé factor, whereas

S ¼ 1

"km

Z
V
d3x�kðx; x0Þ�ðx; x0Þ

� 1

m

Z
V
d3xekðx; x0Þeðx; x0Þ: (158)

It is worth mentioning that S is only determined by the
electric induction vector associated with the small electro-
magneticwaves. TherebyM can be interpreted as amagnetic
moment, with S playing the role of the ‘‘spin’’ of the small
electromagnetic waves. This terminology, however, is used
just to establish an analogy with the case of the electron
magnetic moment. In contrast to any massive particle, a
photon lacks a rest frame, and thus one cannot define a spin
for it. Besides,S does not fulfill the standard Dirac bracket of
the angular momentum, i.e., the first bracket in Eq. (142).
We continue our research by considering the electric

field of each eigenmode as a monochromatic plane wave,
so that

e ð�Þðx; x0Þ ¼ Eð�Þ
0

eð�ÞðkÞ
jeð�ÞðkÞj cos½!�x

0 � k � x�: (159)

Here Eð�Þ
0 and !�ðkÞ are the amplitude and frequency of

mode �, respectively. Note that the shape of eð�ÞðkÞ can be
found below Eq. (13). Observe, in addition, that only mode
2 has an electric field parallel to B. As a consequence,
S becomes physically relevant for the second polarization
mode. Inserting the expression above into Eq. (158),
we find

S ’
Z
V
d3x

k?E
ð2Þ2
0

mjkj scos2½!2x
0 � k � x�; (160)

where the leading term has been withheld so that !ð2Þ �
jkj and s 
 eð2Þ=jeð2Þj � n� ðnk � n?Þ. Equipped with

these approximations, the time average of M reads

5Recall that this is the direction of the momentum flux and the
wave vector (see Appendix C), not of the energy flux, whose
direction coincides with the Poynting vector and with that of the
group velocity.
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hMi ¼ g
e

2m
hSi; with hSi � 1

2

Eð2Þ2
0 Vk?
jkjm s: (161)

Here, V denotes the volume over which the integral con-
tained in S is considered. It is worth observing at this point
that M is proportional to the average energy associated

with the second propagating mode: � 1
2 E

ð2Þ2
0 .

We should also mention at this point that the notion of
the photon magnetic moment was introduced in Ref. [23]
and discussed in Refs. [24,25]. In those works, it was
defined as contributing to the photon energy as a function
of both its momentum and the external field strength.
Moreover, it was conceptually analyzed in different energy
regimes and magnetic field contexts of the photon disper-
sion curve. Only in Ref. [25] were the asymptotic condi-
tions investigated in the present work considered. The
connection between the respective photon magnetic
moment andM in Eq. (161) can only be established under
the second quantization of our problem, which requires us
to substitute the Dirac brackets with standard commutator
relations.6 In such a case, the frequencies !2ðkÞ and !3ðkÞ
are related to the respective photon energies, and in corre-
spondence, the mode-2 photon density turns out to be

N ¼ 1
2 E

ð2Þ2
0 =!2. Dividing hMi by the total number of

mode-2 photons contained in the volume V, we obtain

m ¼ hMi
N V

¼ g
e

2m
fðk?Þs; (162)

where m is the electron mass and fðk?Þ ¼ k?=m is a
dimensionless form factor which guarantees the gauge
invariance of the theory; i.e., m does not provide a photon
rest mass mðk? ! 0Þ ! 0. Equation (162) coincides with
the photon anomalous magnetic moment previously
obtained by one of the authors in Ref. [25]. However, in
that work, m was defined as the coefficient of B when the
dispersion curve!2ðkÞ is linearly approximated in terms of
the external magnetic field.

VI. CORRESPONDENCES WITH THE GENERAL
LORENTZ-VIOLATING ELECTRODYNAMICS

The present work is not concerned with all thinkable
Lorentz violations associated with extensions beyond the
standard model like Refs. [9–11]. Just the opposite; it is
developed entirely within standard model and deals spe-
cifically with such Lorentz symmetry violations as are
stimulated by a background electromagnetic field, mostly
by a time- and space-independent magneticlike field
(G ¼ 0, F> 0Þ within quantum electrodynamics (QED).

Nevertheless, it makes sense to try to reduce the ap-
proaches of Refs. [9–11] and of related studies [henceforth
referred to as General Lorentz-Violating Electrodynamics
(GLVE)] to a common denominator with the results of
many works dealing in a relativistic, covariant way with
external fields, nontrivial metrics, and/or a medium, as was
proposed by a referee of PRD. When treated in the frame-
work of conventional physics, these are acting as Lorentz
and SOð3Þ invariance-violating agents, and therefore may
supply special examples to serve as models for verifying
general constructions in GLVE. A full analysis in this field
would require a quite separate study. So as not to deviate
too far from our principal theme, we are now only listing—
for an external magneticlike field—the CPT-even
ð�FÞ���� coefficients, whose combinations are subject to
measurements in various experiments intended for detect-
ing Lorentz violations, as they follow from the general
covariant decomposition of the polarization tensor in a
nonlinear electrodynamics. We shall see that, contrary to
the postulate accepted in GLVE, in our context this tensor
is not double traceless, but quite the opposite; its trace is
physically meaningful and associated with the diffractive
properties of the anisotropic medium formed by the back-
ground field. Even if admitted, the case where the double
trace would vanish identically could not introduce any
modification to the distorted Poincaré algebra, i.e., Eqs.
(141) and (143). The double tracelessness condition modi-
fies the optical tensors of the theory, but the Poincaré-like
generators keep their structure as long as they are
expressed in terms of the canonical variables. Besides,
the energy-momentum tensor remains nonsymmetric,
also as in Ref. [9], a fact needed to save the nontrivial
equation of motion of the angular momentum of light.
We also comment on how the sensitivity achieved in

experiments aimed at detecting possible Lorentz viola-
tions in the vacuum might be confronted with measuring
equivalent magnetic fields. We made sure that the accu-
racy available would not be sufficient to detect the
Lorentz violation produced even by the hitherto strongest
laboratory magnetic field in the vacuum. To detect an
effect of Lorentz violation presumably inherent in the
vacuum, which might be equivalent to the one stemming
from QED with an external magnetic field on the order of
the cosmic background (10�6 G), the experimentalist
would need to achieve a sensitivity of 10�44 in experi-
ments that might, besides, exclude the influence of any
dielectric material involved in the experimental device.
This surpasses the boldest prospects of sensitivity under
present-time considerations by at least 30 orders of
magnitude.

A. The components of the CPT-even tensor

The quadratic part of the effective Lagrangian L
[Eqs. (17), (18), and (43)] in an external magnetic or
electric field can be expressed as

6The second quantization of the small electromagnetic field in
an external field becomes a necessary issue as far as one wishes
to go beyond the purely electromagnetic sector by including not
only virtual, as here, but also free charged particles. This task,
however, is not the issue of the present work, although some
needed building blocks are prepared in it.
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L ¼ � 1

4
ð�FÞ����f��f��: (163)

In accordance with Eq. (2), this is the same as

L ¼ 1

2
a����a

�:

Thanks to the antisymmetry of the field tensor f��, the

coefficient tensor ð�FÞ���� is not defined by Eq. (163) in a
unique way: its parts, symmetric under the permutations
within the first and second pair of indices, are left unde-
termined. For this reason, this tensor is to be understood as
antisymmetric under these permutations:

ð�FÞ���� ¼ �ð�FÞ���� ¼ �ð�FÞ����: (164)

Analogously, only the part of the tensor ð�FÞ����, which is
symmetric under the permutation of the first and second
pairs of indices, contributes to Eq. (163). For this reason,
this tensor is also to be understood as symmetric under
these permutations:

ð�FÞ���� ¼ ð�FÞ����: (165)

By using the definition f�� ¼ iðk�a� � k�a�Þ in Eq. (163),
we see that the polarization tensor that has direct physical
meaning is connectedwith combinations of tensor ð�FÞ����

components in momentum space as

���ðkÞ ¼ 1

2
k�k�½ð�FÞ���� � ð�FÞ���� � ð�FÞ����

þ ð�FÞ�����
¼ 2k�k�ð�FÞ����: (166)

The properties of Eqs. (164) and (165) provide that this
polarization tensor will be symmetric, ��� ¼ ���, as it

should be in the vacuum with a background field [27]; and
transverse, ���k� ¼ 0, as is prescribed by the gauge in-

variance. Using the relation

~F �
 ~F 

� þF �
F 


�

¼ 2Fð����


 � ��
��


Þ þ ���F 

�F

�



� ��

F


�F �
� þ �



F
��F �

� � �
�F ��F �
;

in Eq. (43), the coefficients ð�FÞ���� for the infrared limit in
QED with a constant magnetic field may be chosen as

ð�FÞ���� ¼ 1

2
ð�LF þ 2FLGGÞð������ � ������Þ

� 1

2
LGGð���F ��F �

� � ���F ��F �
�

þ ���F ��F �
� � ���F ��F �

�Þ
þ 1

2
ðLGG � LFFÞF ��F ��: (167)

The (anti)symmetry properties of Eqs. (164) and (165) are
obeyed by Eq. (167). The Lorentz violation induced by the

magnetic field is characterized by 6� 1 ¼ 5 components of
the antisymmetric external field tensor F�� subjected to

one condition G ¼ 0, and by the three scalars LF, LGG,

LFF determined by the dynamics of the interaction.

Beyond the infrared limit, Eqs. (17) and (18) imply
that the extension of the tensor ð�FÞ���� to include the
infinite series of space-time derivatives ð�̂FÞ���� ¼P

nð�FÞ�����1...�n@1 . . . @n reduces to multiplications—in
the momentum space—of its separate parts by the scalar
functions ß1

k2
ß1�ß2
kF 2k

, and ß1�ß3
kF 2k

built of the polarization op-

erator eigenvalues, or to equivalent action of the corre-
sponding (nonlocal) integral operators in the coordinate
space. This factorization feature is not a consequence of
Eqs. (14) and (20), since these equations hold true already
in a more general case of nonlocality [38]. On the contrary,
it follows from the structure of the polarization operator in
a magnetic field [Eq. (10)].

B. The double trace

The double trace of Eq. (167) turns out to be

ð�FÞ��
�� ¼ �6LF þ 2FðLGG � LFFÞ: (168)

This is, in general, a nonvanishing quantity. This statement
can be verified, for instance, by considering the weak- field
approximation of the Euler-Heisenberg Lagrangian. In
QED, ‘‘weak’’ means small as compared to the Schwinger
characteristic value, Bc ¼ m2=e ¼ 4:42� 1013 G pro-
videdF> 0. In this asymptotic regime, the field derivatives
read [39]

LF¼ 2�

45�

B2

B2
c

; LFF¼ 4�

45�

1

B2
c

; LGG¼ 7�

45�

1

B2
c

: (169)

Then the double trace of Eq. (168) becomes

ð�FÞ��
�� ¼ � �

3�

B2

B2
c

:

It is worth mentioning at this point that the double trace-
lessness condition is customarily taken in GLVE on the
grounds that the trace may be absorbed into the field renor-
malization [9]. In QED, the (infinite) renormalization has
been fulfilled at the stage of the one-loop calculations that
underlie the QED expressions for L and for its field deriva-
tives, the polarization tensors. The standard renormaliza-
tion procedure of QED relates only to the zero-background
field limit, while the background field-dependent part is
fixed and obeys the condition reflecting the correspondence
principle:LF ! 0 as B ! 0. This condition is respected by
Eq. (169) and establishes the absence of radiative correc-
tions to theMaxwell Lagrangian for small and steady fields.
So, the Maxwell Lagrangian remains untouched in this
limit, which is the physically necessary requirement.
Therefore, no renormalization of the electromagnetic field
additional to the one performed in the course of the infinite
renormalization procedure is admitted. All the terms in
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Eq. (168) are physically important, as they serve various
components responsible for the vacuum refraction pro-
cesses [Eq. (40)]. We shall see in Sec. VID that this situ-
ation is retained even in the nonbirefringent case.

C. Magnetoelectric coefficients

Let us introduce, as is customary, the matrix combina-
tions ð�DEÞij ¼ �2ð�FÞ0i0j, ð�HBÞij ¼ 1

2 �
ikl�jpqð�FÞklpq,

and ð�DBÞij ¼ �ð�HEÞji ¼ �kpqð�FÞ0jpq. In terms of these
quantities, the most general form of the quadratic
Lagrangian is [10]

L ¼ 1

2
ei½�ij þ ð�DEÞij�ej � 1

2
bi½�ij þ ð�HBÞij�bj

þ eið�DBÞijbj: (170)

We wish to specialize this expression to the case where a
magneticlike background (F> 0, G ¼ 0) induces LSB.
To this end, we compare Eq. (170) with Eq. (14). As a
consequence, the following relations are established:

"ij¼�ijþð�DEÞij; ��1
ij ¼�ijþð�HBÞij;

ð�DEÞij¼�LF�ijþLGGB
iBj;

ð�HBÞij¼�LF�ij�LFFB
iBj:

(171)

The derivation of these relations requires the use of the
corresponding optical tensors given in Eq. (39) and is in
agreement with Eq. (167). The remaining matrices, i.e.,
ð�DBÞij and ð�HEÞji, are responsible for the magnetoelec-
tric effect, which is the magnetic linear response to an
applied electric field and, reciprocally, the electric linear
response to an applied magnetic field. These matrices
vanish identically in our framework. For the magnetoelec-
tric effect, and hence for the matrices ð�DBÞij and ð�HEÞji,
to exist, it is necessary to admit [5] the nonvanishing of the
pseudoscalar invariant of the external field, G � 0, i.e., to
take a general combination of an electric and a magnetic
field as the external field.

D. The anisotropic nonbirefringent case

The special option of anisotropy without birefringence is
often paid attention in GLVE; for example, in Ref. [40]. To
establish the conditions for the absence of birefringence in
our context, we must equalize the dispersion laws for the
two different eigenmodes of Eq. (12) f2ðk2?Þ ¼ f3ðk2?Þ. It
follows from Eq. (38) that in the infrared limit, one has [28]

f2ðk2?Þ ¼ k2?

�
1� LF

1� LF þ 2FLGG

�
; (172)

f3ðk2?Þ ¼ k2?

�
1� 2FLFF

1� LF

�
: (173)

Hence, there is no birefringence, provided that the ef-
fective Lagrangian is subject to the condition

2FLGGLFF ¼ ð1� LFÞðLGG � LFFÞ: (174)

This condition is Lorentz invariant: once there is no bire-
fringence in a special frame, there is none in any inertial
frame. Note that the nonbirefringence condition is not the
condition of coincidence of the eigenvalues ß2 and ß3
[Eq. (38)] (which does not take place even on the common
mass shell of the two eigenmodes [28]), nor the coinci-
dence of the two dielectric permeability values [Eq. (40)],
contrary to what one might think. The condition of
Eq. (174) is not fulfilled in QED, where the Heisenberg-
Euler Lagrangian [34–37] is taken for L. The only
Lagrangian where the background field tensor makes up
its single argument free of birefringence is (as inferred in
Ref. [41]) the Born-Infeld Lagrangian [42],7 wherein

LF
BI ¼ 1�

�
1þ 2F

a2

��1=2
; LFF

BI ¼ 1

a2

�
1þ 2F

a2

��3=2
;

LBI
GG

¼ 1

a2

�
1þ 2F

a2

��1=2
:

Here, a is the dimensional parameter inherent in that
model, and the requirement of the correspondence princi-
ple LFjF¼0 ¼ 0 is obeyed. In the small external field

domain, the two dispersion curves [Eqs. (172) and (173)]
become

f2ðk2?ÞjF!0 ¼ k2?ð1� 2FLGGÞ; (175)

f3ðk2?ÞjF!0 ¼ k2?ð1� 2FLFFÞ: (176)

Therefore, in this domain, the nonbirefringence condition
[Eq. (174)] reduces to LGG ¼ LFFjF¼0 and to the disap-

pearance of the last (Weyl-like) term in Eq. (167), the same
as in Ref. [40]. This fact allows us to represent Eq. (167) in
the same form as in GLVE [40]:

ð�FÞ���� ¼ 1

2
ð������ � ������ � ������ þ ������Þ:

(177)

However, the symmetric tensor ��� contained in this
expression,

��� 
 ð�FÞ���� þ LF�
��

¼ 1

2
ð�LF þ 2FLFFÞ��� þ LFFF

��F�
�; (178)

where ð�FÞ���� is the trace of Eq. (167), is not traceless. Its
trace, ��

� ¼ �2LF, disappears only in the zero external

field limit, but otherwise, in the small-field regime, it
depends quadratically on the external field strength—the
same as other terms in Eq. (167) or in Eq. (178)—and

7Another example of the absence of birefringence is supplied
by noncommutative electrodynamics in an external field [43].
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forms the whole of the isotropic part of the dielectric and
magnetic permeability tensors in Eq. (39). In other words,
it determines the isotropic part of the vacuum polarization
in the external magnetic field. This is a physically mean-
ingful quantity that cannot be expelled from the Born-
Infeld model, the same as the double trace [Eq. (168)]
from QED.

The case under consideration is parameterized by two
quantities LF and LFF, with the external magnetic field B
driving LSB. There exists, however, an additional parame-
ter ~�tr ¼ 2

3FLFF � LF, whose definition is intrinsically

associated with the matrices that characterize the theory
[see Eq. (180) in the next subsection]. We combine the
latter expression with the convexity properties of the ef-
fective Lagrangian [Eq. (41)] to establish the condition8

~� tr � �1: (179)

Let us finally remark that the relation above must be
understood as a direct consequence of fulfilling the funda-
mental unitarity and causality principles.

E. Numerical estimates

We now estimate to what precision the coefficients
ð�FÞ���� should be measured in order that the Lorentz
violation caused by the magnetic field of a given magni-
tude might be detected in the vacuum, and confront it with
sensitivities attained in existing experiments aimed at
detecting the intrinsic Lorentz violations within GLVE,
as these are listed in Ref. [44]. To this end, we begin
with the matrix combinations ð~�eþÞij ¼ 1

2 ½ð�DEÞij þ
ð�HBÞij�, ð~�e�Þij¼ 1

2½ð�DEÞij�ð�HBÞij�� 1
3�

ijð�DEÞll, and

ð~�o�Þij ¼ 1
2 ½ð�DBÞij � ð�HEÞij�, which are frequently used

in determining the parameter space to which the experi-
ments on birefringence are sensitive. We find it convenient
to remark that these refer to the context of GLVE. The
substitution of Eq. (171) into the latter set of matrices
allows us to express ð~�o�Þij ¼ 0:

~�tr 
 1

3
ð�DEÞll ¼ 2

3
FLGG�LF< 10�14;

ð~�eþÞij ¼�LF�
ijþ 1

2
½LGG�LFF�BiBj < 10�32;

ð~�e�Þij ¼ ~�tr�
ijþ 1

2
½LGGþLFF�BiBj < 10�17:

(180)

Here the inequalities indicate the experimental sensitivity
related to the measurement of the corresponding coeffi-
cient combinations.

In considering a possible magnetic field-like Lorentz
symmetry violation, we must restrict ourselves to very
small magnetic fields. With QED in mind, we should then
refer to Eq. (169) in this case. Note that 2�

45� ¼ 1:03� 10�4.

The accuracy of 10�32 would be enough to detect the

Lorentz violation produced by the magnetic field of the
Earth, Bearth ¼ 0:3–0:6 G; the accuracy of 10�14 would
allow one to fix a Lorentz violation equivalent to the pres-
ence of a magnetic field on the order of 109 G. This is an
unearthly large value, on the pulsar scale. However, an
increase in experimental accuracy—say, to 10�21—would
give us the possibility of detecting the electromagnetic
wave refraction due to an external magnetic field already
at the laboratory value of 105 G. That would be great,
because up to now no effect of birefringence of QED has
been seen in the vacuum in a direct experiment [45,46].
Unfortunately, as long as anymaterial strongly enhances the
effect of the magnetic field as compared to the vacuum, the
above considerations may only relate to experimental de-
vices that do not exploit matter as a medium for electro-
magnetic wave propagation. Apart from such devices,
electron-positron pair creation by a single photon, and the
photon splitting and merging are well-recognized, efficient
processes in pulsar magnetospheres at magnetic field
strengths above 1012 G. The exclusion of one-photon pair
creation at the accuracy level of 10�20 from an ultrahigh-
energy cosmic ray event in Ref. [40], if viewedwithinQED,
only implies that there is no magnetic field larger than
106 G in the space region where that event occurred any-
way, which is not unexpected.
The general conclusion of this subsection is that the

prospects of detecting Lorentz violations in the vacuum
by perfecting the existing experimental means might be
based only on the belief that these violations are for some
reason much larger than the ones induced via QED by
magnetic fields (presumably present in the Galactic
background).

VII. SUMMARYAND OUTLOOK

The main effort in this work has been to perform an
analysis of Lorentz symmetry breaking by an external field
in nonlinear electrodynamics, the gauge sector of QED
included. We defined how transformations from the resid-
ual symmetry space-time subgroup, left after the external
time- and space-independent magnetic field had been
imposed, act on coordinates and other vector entities via
the external field tensor. For small and steady electromag-
netic excitations over the magnetic field background, we
have developed the Hamiltonian formalism to serve the
linear electrodynamics of the equivalent anisotropic me-
dium, for which purpose a quadratic Lagrangian of these
excitations is written with the help of the polarization
operator in the external magnetic field. The electric and
magnetic permeability tensors in this linear electrodynam-
ics are shown to be those of an equivalent uniaxial medium
in any special Lorentz frame, where the external field is
purely magnetic or purely electric. Their principal values
are expressed in the paper in terms of the field derivatives
of the effective Lagrangian. The fields and inductions are
given the sense of canonical variables, the necessary8Inequalities [Eq. (41)] are fulfilled in the Born-Infeld model.
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primary and secondary constraints are determined, and the
Dirac brackets are defined on constrained physical phase
space in accordance with the Uð1Þ gauge invariance of the
theory. The conserved Noether currents, corresponding to
the residual symmetry transformations, as well as the non-
conserved Noether currents, corresponding to the Lorentz
transformations, the symmetry under which is violated
by the external field, are defined on the physical phase
subspace of the problem. Among the former, and of some
importance, is a nonsymmetric but gauge-invariant energy-
momentum tensor, used to form the Poynting vector
and the momentum density, which are not the same quan-
tities due to the antisymmetric part of the tensor. We have
calculated the Dirac bracket commutation relations
between all the generators of infinitesimal space-time
rotations and translations to see that the SOð3Þ algebra of
the photon angular momentum remains intact, despite the
violation of the rotation symmetry by the external field,
whereas the Poincaré algebra is distorted. We derived
the evolution equation for the photon angular momentum,
which is governed by the photon magnetic moment
depending on the antisymmetric part of the energy-
momentum tensor. The polarization effects entering the
equation of motion of the photon angular momentum
are closely associated with the existence of an optical
torque. This is a phenomenon inherent to conventional
electrodynamics in anisotropic media, which manifests
the breakdown of the rotational invariance. We argued
that a small-amplitude electromagnetic wave propagating
in a strong magnetic field behaves as a quasiparticle carry-
ing a gauge-invariant magnetic moment orthogonal to the
wave-vector. The corresponding analysis of the equation of
motion for the angular momentum of light in a weak
magnetic field was not developed here. This limiting case
seems to be very convenient for probing the nonlinear
behavior of the quantum vacuum. The latter could be
achieved by transferring the angular momentum from the
small waves to a microscopic absorptive object (e.g.,
tweezers). However, a detailed analysis of this issue will
be given in a forthcoming publication.

It would be also a challenge to find a closure to the
distorted Poincaré algebra for the present case—or, per-
haps, other, simpler, cases—of the Lorentz-symmetry
violations.

In Sec. VI, we confronted the structure of the polariza-
tion operator in the magnetic field with prescriptions of a
general Lorentz-violating electrodynamics, and discussed
the common features and differences.
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APPENDIX A: TWO IMPORTANT BRACKETS

1. The case of fJ ;P 0g�
The aim of this appendix is to compute the Dirac bracket

fJ ;P 0g�. In order to obtain the latter, we divide it into
three terms:

fJ i;P 0g� ¼I1þI2þI3; I i
1¼

Z
d3x

�J i

�al

�P 0

��l
;

I i
2¼

Z
d3x

�J i

��l

�P 0

�al
;

I3¼�
Z
d3yd3zfJ i;’�ðyÞgC�1

�
ðy;zÞf’
ðzÞ;P 0g:

(A1)

An explicit derivation of the expressions above requires us
to know the functional derivatives associated with the
photon angular momentum [Eq. (113)]. For further conve-
nience, we write the latter as

J ¼
Z

d3x½�ðx �bÞ�þðx ��Þbþðx�aÞr ���: (A2)

In correspondence, we obtain

�J j

��l
¼ �ðx � bÞ�lj þ bjxl �rlðx� aÞj;

�J i

�al
¼ �jlkrkðx � �Þ þ ðx� rÞl�j � �jlkxkr � �:

(A3)

The explicit structure of P 0 can be found in Eq. (65).
Because of Eq. (93), we will ignore the contribution pro-
portional to a0. Having this in mind, the respective deriva-
tives turn out to be

�P 0

��l
¼ �el;

�P 0

�al
¼ ðr� hÞl: (A4)

Substituting Eqs. (A3) and (A4) into I i
1;2, one finds

I i
1 ¼

Z
d3x½��ijkejrkðx � �Þ � ejðx� rÞj�i

þ �ijkxkejr � ��; (A5)

I i
2 ¼

Z
d3x½bixjðr� hÞj � ðr� hÞiðx � bÞ

� ðr� hÞlrlðx� aÞi�: (A6)

The last term in Eq. (A6) vanishes identically, provided an
integration by parts.
We expand the derivative in the first integrand of I i

1 and
use the vectorial identity
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u � ½ðx� rÞ � o� ¼ ulðx� rÞol � u � ðx� rÞo
¼ ��ijkujxkðr � oÞ þ �ijkujxmrkom:

(A7)

As a consequence,

I i
1 ¼

Z
d3xf�ðe� �Þi � elðx� rÞi�lg: (A8)

Let us turn our attention to I i
2. Note that an integration by

parts in the second term of the latter leads to

I i
2 ¼

Z
d3x½bixjðr� hÞj þ ðh� bÞi þ �ijkhkxlrjbl�:

(A9)

Adding to this expression a vanishing term,
�R

d3x�ijkhjxkr � b, and using Eq. (A7), we find

I i
2 ¼

Z
d3x½ðh� bÞi � hlðx� rÞibl�: (A10)

Now, we focus ourselves on I3. Expanding the sum over
� and 
 and taking into account Eq. (84), it reduces to

I3 ¼
Z

d3yd3zry
kfJ i; �kðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
m"mnfanðzÞ;P 0g

�
Z

d3yd3zry
m"mnfJ i; anðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
kf�kðzÞ;P 0g: (A11)

With the help of Eqs. (119) and (96), it is simple to obtain
the following identities:

ry
kfJ i; �kðyÞg ¼ 0; rz

kf�kðzÞ;P 0g ¼ 0: (A12)

In correspondence, I3 vanishes identically as well. We
then substitute Eqs. (A8) and (A10) into Eq. (A1). As a
matter of fact,

fJ i;P 0g�¼
Z
d3xfðx�rÞi�00þ��eþh�bg; (A13)

where the identity

ðx� rÞ�00 ¼ �elðx� rÞ�l þ hlðx� rÞbl (A14)

has been taken into account. Note that an integration by
parts carries out a change of sign in the integral

R
d3xðx�

rÞ�00 ¼ �R
d3xðx� rÞ�00. Therefore, the latter van-

ishes identically and can be ignored in Eq. (A13). This
operation leaves us with the terms which appear in
Eq. (126).

2. The case of fK ;P 0g�
Let us consider the Dirac bracket involved in Eq. (128).

To determine the latter, we express the photon boost in
Eq. (114) in the following form:

K¼KP þK�00 ;

KP ¼�x0P; K�00 ¼
Z
d3xðx�00Þ;

(A15)

where P is the spatial translation generator and �00 is the
energy density [see Eq. (65)]. As before, we neglect the
contributions involving the Lagrangian multiplier a0.
Considering Eq. (A15), one finds

fKi;P 0g� ¼ fKi
P ;P

0g� þ fKi
�00 ;P 0g�: (A16)

The first bracket on the right-hand side can be computed by
applying Eq. (135). According to this equation, fP i;P 0g�
vanishes identically. Thus

fKi
P ;P

0g� ¼ �x0fP i;P 0g� ¼ 0: (A17)

In order to analyze the remaining terms on the right-
hand side of Eq. (A16), it is rather convenient to have at our
disposal the following set of derivatives:

Ki
�00

��l
¼ �xiel;

�Ki
�00

�al
¼ ��ilmhm þ xiðr � hÞl:

(A18)

With the above expressions in mind, one can undertake
the calculation of the second bracket in Eq. (A16). We
write the latter as

fKi
�00 ;P 0g� ¼ fKi

�00 ;P 0g þW ; (A19)

with

W 
 �
Z

d3yd3zfKi
�00 ; ’�ðyÞgC�1

�
ðy; zÞf’
ðzÞ;P 0g:
(A20)

From Eqs. (A18) and (A4), it is straightforward to get

fKi;P 0g ¼
Z

d3xðe� hÞi: (A21)

With the help of Eq. (84), we express W as

W ¼
Z

d3yd3zry
kfKi

�00 ; �kðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
m"mnfanðzÞ;P 0g

�
Z

d3yd3zry
m"mnfKi

�00 ; anðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
kf�kðzÞ;P 0g: (A22)

Observe that the last integral vanishes identically because
rz

kf�kðzÞ;P 0g ¼ 0 [see Eq. (A12)]. The first integral van-

ishes identically as well because

ry
kfKi

�00 ;�kðyÞg¼ry
k

�Ki
�00

�akðyÞ ¼xir�ðr�hÞ¼0: (A23)

We then conclude that W ¼ 0, and the Dirac bracket
fKi;P 0g� is just as it appears in Eq. (129).

QED WITH AN EXTERNAL FIELD: HAMILTONIAN . . . PHYSICAL REVIEW D 86, 105040 (2012)

105040-23



APPENDIX B: DERIVING THE ALTERATIONS TO
THE LORENTZ ALGEBRAIC RELATIONS

1. Dirac bracket between K and J

In order to determine the Dirac bracket fK ;J g� we
consider Eq. (A15). This allows us to express

fKi;J jg� ¼ fKi
P;J

jg� þ fKi
�00 ;J jg�: (B1)

The first bracket on the right-hand side can be computed by
applying Eq. (141). Indeed, according to this equation,
fP i;J jg� ¼ �ijkP k provided that the fields vanish at infin-
ity. Therefore,

fKi
P;J

jg� ¼ �ijk½�x0P k�: (B2)

Analogously to Eq. (A1), we split the second Dirac bracket
in Eq. (B1) into three different contributions:

fKi
�00 ;J jg� ¼ I1 � I2 þ I3; (B3)

with

I1 ¼
Z

d3x
�Ki

�00

�al

�J j

��l
;

I2 ¼
Z

d3x
�Ki

�00

��l

�J j

�al
;

I3 ¼ �
Z

d3yd3zfK ; ’�ðyÞgC�1
�
ðy;zÞf’
ðzÞ;J g:

(B4)

The explicit insertion of the derivatives involved in I1

allows us to write

I1 ¼
Z

d3x½�ijmhmðx � bÞ � �ilmhmbjxl � xiðr� hÞj

� ðx � bÞ þ xiðr� hÞlbjxl � xiðr� hÞlrl

� ðx� aÞj þ �ilmhmrlðx� aÞj�: (B5)

Thanks to the vectorial identity given in Eq. (A7), we are
able to express the integral of the first four terms in this
equation as

�
Z

d3x½xiðhlðx� rÞjbl þ ðh� bÞjÞ�: (B6)

Note that the fifth and sixth terms in Eq. (B5) cancel each
other, since an integration by parts leads to

Z
d3xxiðr� hÞlrlðx� aÞj ¼

Z
d3x�ilmhmrlðx� aÞj:

Once this fact is taken into account and Eq. (B6) is inserted
into Eq. (B5), its right-hand side acquires the following
structure:

I 1 ¼
Z

d3xf�xi½hlðx� rÞjbl þ ðh� bÞj�g: (B7)

Furthermore, the substitution of Eqs. (A3) and (A18) into
I2 yields

I 2 ¼
Z

d3xf�xi�jlkelrkðx � �Þ � xielðx� rÞl�j

þ xi�jlkelxkðr � �Þg: (B8)

Nevertheless, the desirable expression of I2 is obtained by
expanding the derivative present in the first term and using
the identity given in Eq. (A7). With these details in mind,
we find

I 2 ¼
Z

d3xf�xi½elðx� rÞj�l þ ðe� �Þj�g: (B9)

On the other hand, once I3 is expanded over � and 
,
one obtains

I3 ¼
Z

d3yd3zry
kfKi

�00 ; �kðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
m"mnfanðzÞ;J jg

�
Z

d3yd3zry
m"mnfKi

�00 ; anðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
kf�kðzÞ;J jg; (B10)

where the relevant elements of C�1
�
 [Eq. (84)] were

inserted. Thanks to Eq. (119), both integrals in I3 vanish
identically, and one ends up with I3 ¼ 0. Hence, by sub-
stituting Eqs. (B7) and (B9) into Eq. (B3), we get

fKi;J jg� ¼ �ijkKk �
Z

d3xfxi½ð� � eÞj þ ðh� bÞj�g;
(B11)

where Eq. (A15) is taken into account. We then use the
definition of 	�� [Eq. (132)] to write the second line of this
equation as it stands in Eq. (132).

2. Dirac bracket between J i and J j

We start off by expressing the Dirac bracket betweenJ i

and J j in terms of two elements:

fJ i;J jg� ¼ I1 þ I2;

I1 ¼
Z

d3x

�
�J i

�al
�J j

��l
� �J i

��l

�J j

�al

�
;

I2 ¼ �
Z

d3yd3zfJ ; ’�ðyÞgC�1
�
ðy; zÞf’
ðzÞ;J g:

(B12)

An explict substitution of Eq. (A3) into I1 allows us to
write
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I1 ¼
Z

d3xf2�ijk½�ðx � bÞrkðx � �Þ þ ðr � �Þxkðx � bÞ� þ �ilmbjxlrmðx � �Þ � �jlmbixlrmðx � �Þ
þ �ilmxmðr � �Þrlðx� aÞj � �jlmxmðr � �Þrlðx� aÞi � ðx � bÞðx� rÞj�i

� ðx � bÞðx� rÞi�j � �ilmrmðx � rÞrlðx� aÞj þ �jlmrmðx � �Þrlðx� aÞi
�rlðx� aÞjðx� rÞl�i þrlðx� aÞiða� rÞl�jg; (B13)

where the terms that vanish due to the antisymmetric
property of �ijk have been omitted. Note that the last four
terms of this expression vanish as well, provided an inte-
gration by parts. The remaining integrant can be written as

I1 ¼ �ijk
Z

d3xf2½�ðx � bÞrkðx � �Þ þ ðr � �Þxkðx � bÞ�
� ðx � �Þ½ðx� rÞ � b�k � ðr � �Þ½ðx� rÞ
� ðx� aÞ�k þ ðx � bÞ½ðx� rÞ � ��kg: (B14)

We then use the identity ðx� rÞ �A ¼ �xr �Aþ
xlrAl. As a consequence,

I1 ¼ �ijk
Z

d3xf�2ðx �bÞrkðx ��Þþ ðr ��Þxkðx �bÞ
� ðx ��Þxlrkbl�ðr ��Þxkðx �bÞ
� ðr ��Þðx �bÞxlrkðx�aÞþ ðx �bÞxlrk�lg: (B15)

Expanding the derivative of the first integrand and integrat-
ing by parts the third and fifth terms, we end up with

I1 ¼ �ijk
Z

d3xf�ðx � bÞ�k þ ðx � �Þbk

þ ðr � �Þðx� aÞkg; (B16)

where Eq. (A2) was inserted in order to obtain the second
line.

Now, it is rather clear that I2 reduces to

I2 ¼
Z

d3yd3zry
kfJ i; �kðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
m"mnfanðzÞ;J jg

�
Z

d3yd3zry
m"mnfJ i; anðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
kf�kðzÞ;J jg; (B17)

where Eq. (84) is used. Since ry
kfJ i; �kðyÞg vanishes

identically [see Eq. (119)], I2 does not contribute to the
Dirac bracket between J i and J j. Equipped with this
result and substituting Eq. (B16) into Eq. (B12), we end
up with the bracket written in Eq. (142).

3. Dirac bracket between K i and Kj

Let us conclude the derivation of the modified Lorentz
algebra by obtaining the Dirac bracket fK i;K jg�. A
straightforward substitution of Eq. (A15) leads us to write
this as

fKi;Kjg� ¼ fKi
PK

j
P g� þ fKi

P ;K
j

�00g�
þ fKi

�00 ;K
j
P g� þ fKi

�00 ;K
j

�00g�: (B18)

The first three brackets are easy to compute. For
instance,

fKi
P ;K

i
P g� ¼ x02fP i;P jg� ¼ 0; (B19)

where Eq. (137) is used. Also, by considering Eq. (95) and
using integration by parts, we find that

fKi
P ;K

j

�00g� ¼ x0P 0�ij: (B20)

As a consequence,

fKi
P ;K

j

�00g� þ fKi
�00 ;K

j
P g� ¼ 0: (B21)

All that remains is to compute the last bracket on the
right-hand side of Eq. (B18); i.e., the Dirac bracket

between Ki
�00 and Kj

�00 . To compute this, we write

fKi
�00 ;K

j

�00g� ¼ �1 þ �2;

�1 ¼
Z

d3x

�
�Ki

�00

�al
�Kj

�00

��l
� �Ki

�00

��l

�Kj

�00

�al

�
;

�2 ¼ �
Z

d3yd3zfK�00 ; ’�ðyÞgC�1
�
ðy; zÞf’
ðzÞ;K�00g:

Inserting Eq. (A18) into �1, one finds

�1 ¼ �ijk
Z

d3xf�½x� ðe� hÞ�kg: (B22)

This bracket can be written in a more appropriate form by
using the relation

ðe� hÞi þ ð� � bÞi � air � � ¼ 	i0; (B23)

where a term proportional to a0 has been ignored. Indeed,
the substitution of the expression above into Eq. (B22)
allows us to get

�1 ¼ ��ijkJ k �
Z

d3xðxi	j0 � xj	i0Þ: (B24)

Thanks to Eq. (84), �2 reduces to
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�2 ¼
Z

d3yd3zry
kfKi; �kðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
m"mnfanðzÞ;Kjg

�
Z

d3yd3zry
m"mnfKi; anðyÞg 1

ry"ry �
ð3Þ

� ðy� zÞrz
kf�kðzÞ;Kjg: (B25)

But, since ry
kfKi; �kðyÞg vanishes identically [see

Eq. (120)], we can assert that �2 does not contribute to
the Dirac bracket of Ki and Kj Due to this fact,

fKi;Kjg� ¼ ��ijkJ k �
Z

d3xðxi	j0 � xj	i0Þ: (B26)

APPENDIX C: THE MOMENTUM AND PHASE
VELOCITY OF THE EIGENWAVES

We find it convenient to determine a connection between
the translational generator associated with each degree of
freedom and its respective phase velocity. In order to do
this, we express the electric field of each eigenmode as it is
given in Eq. (159). Likewise, the magnetic field of each
eigenwave turns out to be

b ð�Þðx; x0Þ ¼ Eð�Þ
0

bð�ÞðkÞ
jbð�ÞðkÞj cos½!�x

0 � k � x�: (C1)

As in Sec. V, Eð�Þ
0 and !�ðkÞ are the amplitude and fre-

quency of mode �, respectively. Besides, whatever the
nature of the external field, the unit vectors

�eð�ÞðkÞ=jeð�ÞðkÞj in Eq. (159) and �bð�ÞðkÞ=jbð�ÞðkÞj in
Eq. (C1) must be understood as the respective electric and
magnetic polarizations.9 We remark that the plane wave
decomposition for the induction vectors d and h follows
from Eqs. (159), (C1), and (15). With these details in mind,
the Maxwell equations (72), (96), and (97) read

k � dð�Þðx; x0Þ ¼ 0; k� eð�Þðx; x0Þ ¼ !�b
ð�Þðx; x0Þ;

k � bð�Þðx; x0Þ ¼ 0; k� hð�Þðx; x0Þ ¼ �!�d
ð�Þðx; x0Þ:

(C2)

Thanks to the Faraday equation, the momentum associated
with each propagation mode

P ð�Þ ¼
Z

d3xðdð�Þ � bð�ÞÞ (C3)

can be written as

Pð�Þ ¼
Z

d3x
1

!�ðkÞ ½d
ð�Þ � ðk� eð�ÞÞ�

¼
Z

d3x
dð�Þ � eð�Þ
u�ðkÞ n; (C4)

where u� ¼ !�=jkj is the phase velocity and n ¼ k=jkj
denotes the wave vector.
Now, the Ampere law allows us to obtain the following

relation: hð�Þ ¼ u�ðn� dð�ÞÞ þ ðn � hð�ÞÞn. Multiplying
the latter by b, we end up with

hð�Þ � bð�Þ ¼ u�ðn� dð�ÞÞ � bð�Þ
¼ u�n � ðdð�Þ � bð�ÞÞ ¼ dð�Þ � eð�Þ: (C5)

Its substitution into the energy [Eq. (58)] yields P 0ð�Þ ¼R
d3x½dð�Þ � eð�Þ�. We use this identity to express

Eq. (C4) in the following form:

P ð�Þ ¼ P 0ð�Þ

u�ðkÞn: (C6)

Thus, the translation generator associated with each ���

eigenmode turns out to be parallel to the wave vector.
Observe, in addition, that Eq. (C6) allows to write the

phase velocity as u� ¼ P 0ð�Þ=jP ð�Þjn.

APPENDIX D: THE POYNTING VECTOR AND
GROUP VELOCITY OF THE EIGENWAVES

Let us turn our attention to the Poynting vector given in
Eq. (54). In order to simplify our exposition, we will
confine ourselves to the case in which the external back-
ground is a magneticlike field (F> 0,G ¼ 0). The results,
however, are easily extensible to the case of an electriclike
vector (F< 0,G ¼ 0). To establish a comparison with the
previously discussed translation generator, it is rather con-
venient to work with the spatial integral of Eq. (54):

P̂ ¼
Z

d3x�i0ðx; x0Þ: (D1)

It is also advantageous to express the Poynting
vector in terms of � and b. This is carried out by

inserting the relations e ¼ ��="? þ LGG

"?"k
ð� � BÞB and

h ¼ "?b� LFFðb � BÞB into Eq. (54). Considering these

details, we obtain

P̂ ¼ P þN � B; (D2)

where Eq. (61) has been used, and

N ¼
Z

d3x

�
LFF

"?
ðb � BÞ� � LGG

"k
ð� �BÞbg: (D3)

We remark that the last term in Eq. (D2) does not point in
the same direction of k. Of course, each mode has a spatial

integral of the Poynting vector given by P̂ ð�Þ ¼ Pð�Þ þ
N ð�Þ �B, with

N ð1Þ ¼ 0; (D4)

N ð2Þ ¼ �LGG

"k

Z
d3xð�ð2Þ � BÞbð2Þ; (D5)

9When the external background is a magneticlike field tensor,
i.e., F> 0 andG ¼ 0, the behavior of eð�ÞðkÞ and bð�ÞðkÞ can be
found below Eq. (13).
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N ð3Þ ¼ LFF

"?

Z
d3xðbð3Þ �BÞ�ð3Þ: (D6)

To derive these expressions, we have considered Eq. (D3)
and the equations below Eq. (13). One must note that,
for the second and third propagation modes, the fol-

lowing relations hold: ð�ð2Þ �BÞbð2Þ¼�B�ð�ð2Þ�bð2ÞÞ
and ðbð3Þ �BÞ�ð3Þ ¼ B� ð�ð3Þ � bð3ÞÞ, respectively. This
allows us to express Eqs. (D4)–(D6) as

N ð1Þ ¼ 0; N ð2Þ ¼ �LGG

"k
B�Pð2Þ;

N ð3Þ ¼ �LFF

"?
B�Pð3Þ;

(D7)

with P ð�Þ given in Eq. (C6). As a consequence, the spatial
integral of the Poynting vector associated with each eigen-
mode reads

P̂ð1Þ ¼ Pð1Þ; P̂ ð2Þ ¼ P ð2Þ � 2FLGG

"k
P ð2Þ

? ;

P̂ð3Þ ¼ Pð3Þ � 2FLFF

"?
Pð3Þ

? :
(D8)

In accordance with the expression above, we can conclude
that as long as k? � 0, the direction of the energy propa-
gation in each physical mode differs from its respective
momentum.

To proceed in our analysis, we consider the center-of-
mass energy associated with the electromagnetic wave.
The latter can be defined by

xcm ¼ 1

P 0

Z
d3xx�00; (D9)

where �00 and P 0 are given in Eqs. (52) and (58), respec-
tively. Note that the derivative with respect to time allows
us to define the velocity of energy transport

v cm ¼ dxcm
dx0

¼ 1

P 0

Z
d3xx

d�00

dx0
; (D10)

where the energy conservation ðdP 0=dx0 ¼ 0Þ is taken
into account. Making use of the continuity [Eq. (51)] and
integrating by parts, one obtains

v cm ¼ P̂
P 0

¼ 1

u
nþN �B

P 0
; (D11)

where Eq. (D2) has been considered as well, and u ¼
!ðkÞ=jkj denotes the phase velocity of the small electro-
magnetic wave. Obviously, the velocity of energy transport
associated with each eigenwave follows from this expres-
sion and Eqs. (D7) and (D8). In this context,

vcm1 ¼ 1

u1
n; vcm2 ¼ 1

u2
n� 2FLGG

"ku2?
n?;

vcm3 ¼ 1

u3
n� 2FLFF

"?u3?
n?;

(D12)

with u�? ¼ P 0ð�Þ=jPð�Þ
? j.

Now, we consider the dispersion equation [Eq. (11)]
with the infrared approximation of the vacuum polarization
tensor given in Eq. (38). The corresponding solutions are
given by

!1 ¼ jkj; !2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2?

��1
?
"k

vuut ;

!3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2?

��1
?
"k

vuut :

(D13)

With these expressions in mind, it is a straightforward
calculation to show that the group velocity v� ¼
@!�=@k of each eigenwave coincides with the respective
velocity of energy transport [Eq. (D12)].
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[25] S. V. Chávez, Phys. Rev. D 81, 105019 (2010).
[26] S. Weinberg, The Quantum Theory of Fields (Cambridge

University Press, Cambridge, England, 2001).
[27] A. E. Shabad, Polarization of the Vacuum and Quantum

Relativistic Gas in an External Field (Nova Science
Publishers, New York, 1991); P. N. Lebedeva, in Trudy
Fiz. Inst. im. P. N. Lebedeva, Ross. Akad. Nauk. 192, 5
(1988)

[28] A. E. Shabad and V.V. Usov, Phys. Rev. D 83, 105006
(2011); A. E. Shabad and V.V. Usov, arXiv:0911.0640.

[29] The corresponding equations relating to the most general
case (F � 0, G � 0) are written in Refs. [1,5,27].

[30] A. Di Piazza and G. Calucci, Phys. Rev. D 66, 123006
(2002).

[31] H. Bacry, P. Combe, and J. L. Richard, Nuovo Cimento A
67, 267 (1970).

[32] A. E. Shabad, Sov. Phys. JETP 98, 186 (2004).
[33] I. B. Birula and Z. B. Birula, Quantum Electrodynamics

(Pergamon, Oxford, 1975); J. D. Jackson, Classical
Electrodynamics (John Wiley, New York, 1999).

[34] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
[35] J. Schwinger, Phys. Rev. 82, 664 (1951).
[36] W. Dittrich and M. Reuter, Effective Lagrangians in

Quantum Electrodynamics (Springer, New York, 1985);
V. I. Ritus, Sov. Phys. JETP 42, 774 (1976); in
Proceedings of Workshop on Frontier Tests of Quantum
Electrodynamics and Physics of the Vacuum, Sandansky,
Bulgaria, 1998 (Heron Press, Sofia, 1998).
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