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Noncommutativity in (2 + 1)-dimensions and the Lorentz group
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In this article we considered models of particles living in a three-dimensional space-time with a
nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of
a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct
product with the representation space, where we are able to construct operators which realize the algebra
of Lorentz transformations. We study the modified Landau problem for both Schrédinger and Dirac
particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp’s shift of the dynamical
variables from the ones of the usual problem in the normal space. The spectrum of these models are
considered in perturbation theory, both for small and large noncommutativity parameters. We find no
constraint between the parameters referring to noncommutativity in coordinates and momenta but they
rather play similar roles. Since the representation space of the unitary irreducible representations SL(2, R)
can be realized in terms of spaces of square-integrable functions, we conclude that these models are
equivalent to quantum mechanical models of particles living in a space with an additional compact

dimension.
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I. INTRODUCTION

Space-time noncommutativity is an old idea [1,2] which
has been revived in recent years within the context of string
theory [3] and has attracted much attention in diverse
areas such as mathematics [4,5], theoretical physics [6,7],
phenomenology [8], or condensed matter [9,10].

In the conventional version of noncommutative (NC)
space-time, the coordinate operators satisfy the algebra

[xH, x7] = 10+7, (D

where ##” is a real constant antisymmetric matrix, not a
tensor. This is the situation realized in string theory in the
presence of a background antisymmetric tensor field [6].
But, clearly, such #” define preferred directions in a given
Lorentz frame and, thus, the assumption in Eq. (1) pro-
duces a violation of Lorentz invariance [2,11-14].

In Ref. [15], a different class of noncommutative theo-
ries have been considered in order to recover Lorentz
invariance. In these models, the parameter #*” in the
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right-hand side of Eq. (1) is promoted to an operator that
transforms as a Lorentz tensor. This algebra can be inter-
preted as a contraction of the Lorentz-invariant algebra due
to Snyder [1], taking 6#” as proportional to the generators
of the Lorentz group.

These ideas have been put in practice in a series of
papers [16], employing in particular the Doplicher et al.
algebra [17], in which the operators 6#” are considered
as part of the ordinary coordinates of an enlarged ten-
dimensional space-time, with the assumptions that the
triple commutator of coordinate operators x* vanishes.
This algebra was later extended by Amorim [18] through
the introduction of momenta canonically conjugate to
these new coordinates.

Noncommutative quantum mechanics [19] is a simple
scenario to explore the properties of NC spaces. In addition
to the noncommutativity of the position operators previ-
ously referred to and the study of representations of the
algebra of the NC space-time coordinates [17,20], non-
commutativity in the momenta commutators algebra have
also been considered, in relation with the deformation
quantization of Poissonian structures [21] and as a kind
of magnetic quantization [22,23].

These researches have stimulated the construction of
new models in quantum mechanics [19], allowing to
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explore new ideas in several situations of interest. For
example, some models based on a kind of nonstandard
deformation of the Heisenberg algebra, which can be
realized by shifting the dynamical variables with spin
variables, have been studied in Refs. [24,25]. A similar
deformation in the commutators among momenta can be
interpreted as the introduction of constant non-Abelian
magnetic fields [26].

This kind of noncommutativity in the phase space,
where the number of degrees of freedom is enlarged by
shifting the usual dynamical variables by adding them
a generator in the Lie algebra of a non-Abelian group
[24,25], have been employed in the formulation of some
interesting quantum-mechanical models. For example,
these ideas have even found application in the description
of graphene, a new material recently experimentally
obtained which behaves as a two-dimensional system. In
Ref. [27] it has been studied a two-dimensional continuous
model which takes some elements of the tight-binding
model for this material and reproduces the anomalous
integer quantum Hall effect characteristic of graphene.

In the following we consider a model with this kind of
nonstandard noncommutativity, where both coordinates
and momenta get deformed commutators. These deforma-
tions are taken as proportional to the generators of the
Lorentz group in some irreducible representation (irrep)
rather than proportional to the generators of this group on
the space-time themselves, as in Ref. [15]. As we will see,
under these conditions fotal generators of the Lorentz
transformations can be constructed which correctly trans-
form all the operators, giving thus a realization of the Lie
algebra of this group on the Hilbert space of the quantum-
mechanical system.

These deformations of the Heisenberg algebra can be
effectively realized in a NC three-dimensional space-time
by simply shifting the ordinary (commutative) dynamical
variables by terms proportional to the generators in an irrep
of the Lorentz group on the 2 + 1-Minkowski space, iso-
morphic to SL(2, R)/Z, since in this case the dimension of
the group coincides with the dimension of the space-time.
A similar idea has recently been developed in a four-
dimensional NC space through shifts in the coordinates
proportional to the Pauli-Lubanski vector [28].

Let us mention that three-dimensional theories have
regained interest in recent years since it was found that
this is the only noncritical dimension where strings can be
quantized consistently [29-32]. Indeed, it was shown that
light-cone gauge quantization in the three-dimensional
space preserves Lorentz invariance without the need for
any longitudinal modes [29]. It was also found that some
states necessarily have irrational spin, i.e., the spectrum
contains anyons. This led to the consideration of infinite-
dimensional irreducible representations of the universal
cover of the Lorentz group on the three-dimensional
Minkowski space [31].
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In this article we consider the behavior of Schrodinger
and Dirac particles in a NC (2 + 1)-dimensional space, in
which the phase-space noncommutativity is induced by
shifting the usual dynamical variables by generators in an
irreducible representation of the (noncompact) Lie group
SL(2, R) [33-35]. This means that the Hilbert space has the
structure of a direct product, where one factor corresponds
to the component of the state vectors in the representation
space of the irrep considered.

Notice that if we demand the noncommuting phase
space variables to be Hermitian operators, we are con-
strained to consider unitary irrep’s of this group, which
are not of finite dimension. Moreover, since the represen-
tation space of the unitary irrep’s of SL(2,R) can be
explicitly realized in terms of spaces of functions defined
on the unit circle or analytic functions on the unit open
disk, as discussed in the Appendix (see Ref. [33]), the
models to be considered turn out to be equivalent to
quantum mechanical systems living in a space with an
additional (compact) dimension.

The structure of the paper is as follows. In Sec. II we
set up the noncommutativity properties of the three-
dimensional space, realize the deformed Heisenberg
algebra though a kind of non-Abelian Bopp’s shift in the
dynamical variables and discuss the construction of the
generators of the Lorentz group on the Hilbert space. In
Sec. III we consider the Hamiltonian of a Schrodinger
particle in the presence of an external (U(1)) magnetic
field, both in the normal and the NC space. We explain
the characteristics of the spectrum in both the small and
large NC parameters limits and discuss the relation with a
system in a space-time with an additional dimension. In
Sec. IV we make the same analysis for the Hamiltonian of
a Dirac particle. In Sec. V we state our conclusions and, for
completeness, in the Appendix we briefly review the
Lorentz group in 2 + 1-dimensions and the unitary irrep’s
of SL(2, R).

II. SETTING OF THE PROBLEM

According to the ideas previously exposed, we consider
the modified Heisenberg algebra of the (Hermitian) dy-
namical variables given by

[, %,]1=—i6%€,,,s", [Py D)= —iK*€,,,s",
[t P ]=1(ny, — KOE,,,sP), (X, 5,]=—i0€,,,s",
[P s,]=—ike,,,s”, (5,8, ]=—i€,,,s",

(2)

where s, u =0, 1, 2 are the generators of an irrep of
SL(2, R) (see the Appendix) and # and « play the role of
ultraviolet and infrared scales, respectively.

This deformation can be realized through a kind of
non-Abelian Bopp’s shift given by
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Xy—x, + st

“ Pu— Pyt KSy, 3)

in terms of dynamical variables satisfying the usual
Heisenberg algebra and the generators of a unitary irrep
of SL(2, R), which satisfy the commutation relations

[x*,x"]=0, [x* p,]=16Y,
(PP ] =0, [x*5,]=0, 4)
[p,u,) SV] = O) [s’uy SV] = _lEMV)‘S/\.

Here, a) = n,,a”?, with 7 := diag(1, —1, —1), the metric
tensor in the (2 + 1)-dimensional Minkowski space.

Notice that we must consider a unitary representation of
SL(2, R) [non-Abelian Lie group isomorphic to SU(1, 1)],
in order to have Hermitian operators X and p, represent-
ing coordinates and momenta in the noncommutative
phase space. Since this is a noncompact Lie group, its
irreducible unitary representations are not of finite dimen-
sion. The irreducible representations of SL(2, R) are briefly
reviewed in the Appendix.

If we define L,,:=x,p, —x,p,
1er L), we get

and L* =

[L,u.’ pV] = _IE/J.VAP/\’
[L, s,]=0.

(L, x,]= —lew,,\x)‘,

5
[L,.L,]=—1€,,,L" )

Since the operators L, satisfy the same commutation
relations as the s, , we can define new generators of s/ 2, R),

M, ==L, +s,, for which we get [see Eq. (A7)]

[M,u,: pv] = _lé'/_“,/\p/\,
(M, M,]=—1€,,,M"

(M, x,]=—1€,,,x",
© u ©)

M. s,]=—1€,,,5",

Then, these operators are a realization on the Hilbert
space of the system of the generators of the Lorentz trans-
formations in the (2 + 1)-dimensional noncommutative
space we are considering. Indeed, it is easy to see that

[M,u,’ﬁll]z _IGMV/\]A)/\~ )

Now, our strategy to formulate a model in the noncom-
mutative space will be, given a Hamiltonian H(p, x) in the
usual (commutative) Minkowski space, to generalize it by
taking H (P, X). This problem will then be analyzed through
the replacements in Eq. (3).

Notice that the second commutator in Eq. (2) for the
two spatial momenta, which maps onto [p; + ks,
P2 + Ks,] = —1k?s, where s, is the generator of rotations
on the (spatial) plane in the irrep considered, can equiv-
alently be interpreted as a consequence of the presence
of a constant and uniform non-Abelian magnetic field.
Therefore, the models to be studied in the following are a
kind of generalizations of the non-Abelian Landau prob-
lem [26]. This point of view was employed in Ref. [27] to
construct a continuous model which incorporates next-to-
leading contributions from the dispersion relation of the

[M,M’X\.I/]: _lfl_“//\),e)\,
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tight-binding model for graphene. In the present approach
we also incorporate noncommutativity in the temporal
momentum component.

On the other hand, a commutation relation like the first
one in Eq. (2) among coordinate operators in the three-
dimensional Euclidean space, but with generators of SU(2)
in the right hand side, allows to simulate dipolar interac-
tions and lead to models with infinitely degenerate ground
state and spontaneous symmetry breaking [24] and find
application, for example, in the description of triplet super-
conductivity [36]. Contrary to that case, in the present
article we need to consider infinite-dimensional unitary
irrep’s of a noncompact group.

As previously mentioned, in the following we construct
models of Schrodinger and Dirac particles in the NC
extension of the (2 + 1)-dimensional Minkowski phase
space described by Eq. (2), and study the implications
this generalization may have. In particular, we will get a
space of state vectors which is the direct product of the
Hilbert space for the systems in the usual commutative
space with the representation space of a unitary irrep of
SL(2, R). Since these representation spaces can be realized
as spaces of square-integrable functions (functions on the
unit circle or analytic functions on the open unit disk
according to the particular irrep considered, as discussed
in the Appendix), these models can also be interpreted as
describing particles living in spaces with an additional
(compact) spatial dimension.

III. SCHRODINGER PARTICLES

To establish our notation, let us first consider the
Schrodinger Hamiltonian for the Landau problem. We
take the external electromagnetic field as given by
Ay = 0and A;(x) = — 5 €;;x/. Then, we have for a particle
of mass M

2
2MH = (p; — eA;(x))* = (Pi - %Gijxj) . (®)
operator which commutes with the generator of rotations
on the plane, L, = L, [see Eq. (5)].
As is known, this operator can be given the form of the
Hamiltonian of a harmonic oscillator through the canonical
transformation of variables

. P1 VEB 2 . P2 VeB 1
q = + X, p K - X, (9)
JeB 2 JeB 2
for which we have
lg, ] = [ LA eBx2 P _ eBxl:I =1 (10)
' JeB 2 " JeB 2 )

Indeed, we get

L o N
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where, as usual,

_qtip gt=4-1'r

V2 V2

We also introduce the independent set of canonical
variables

)22 JeB |

a

[a,at]=1. (12)

\VeB ,

D1

Q:=\/7_B+TX, P:=\/§_T)C, (13)
which satisfy
P,Ol=— P, pl=0, P,gl=0,
[P, Q] = —1 [P, p] [P, q] 14

Similarly, we define creation and destruction operators
as
Q0 +.P Q—1P
= . b= , 15)
N 7 (

b

which satisfy

[b,bT] =1, [b,a] =0, [b,at]=0. (16)

The Hamiltonian eigenvectors are then given by
_ (@) @t
\/m 1y !

, and the corresponding eigen-

|n, ) |0, 0), A7

with n, n, =0,1,2,---

values by
eB 1
E,=— +—=| 1
=Gl s

degenerate in the index n,. Here, |0,0) < (g, Q) =
_1 _$+0?
T 22

I, —
and (n', njln, ny) = 8,08, 1,
For L, we get

Ly=x'p, — x*p,
1 1
—_ _ 2+ 2 + — P2+ 2
2(p q°) 2( 0°)
= bth — ata, (19)

and for its eigenvalues the difference [ = n, — n € Z.

A. Extension to the noncommutative space

The generalization of this system to the noncommutative
space defined by Eq. (2) is

~ (. €eB _\?

2MH = pi_TEiij' +2MKSO

B 2
=[Pi + Kks; — %e,-j(xj + 0sj):| + 2M«ksy,  (20)

[where the last term in the right-hand side comes from
the shift applied to p, in Eq. (3)], which commutes with
My = L, + s as follows from Eq. (7).
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If we define 7r; := p; — % €;;%;, we get from (2)
B\2
[#, 7] = —1eB — z[K2 + (0%) ]so, @1)

which shows that the model we are considering can also be
interpreted as the introduction, besides the U(1) magnetic
field, of another constant non-Abelian magnetic field in the
time direction (spatial rotations) of the Lie algebra s/(2, R).
In terms of a' and a in Eq. (12) and the Hermitian
generators s, in Eq. (4), this Hamiltonian reads as

. B
OMHA =2MH + 2Mksy + \/2e3{[,< + 10%]a*s+

+ [K - 10%]“,} + [K2 + (0%)2](%2 —s?),
(22)

where

S+ =81 £ 15y, §2 = 502 — sl2 - s22. (23)
Notice that the parameter k appears as an energy scale
for the internal degrees of freedom while the pure number
% (for k # 0) is a measure of the relative strength of
noncommutativity in coordinates and momenta with
respect to the applied external magnetic field.
In the Appendix we give a brief review of the unitary
irreducible representations of s/(2, R). For a given unitary
irrep, the representation space is subtended by the basis of

eigenvectors of s, and s2,
s2|A, m) = A|A, m), solA, m)y = m|A\, m),  (24)

where A and m are real numbers.
The Hilbert space is then the linear span of the vectors of
the form

|n, np; A, m) :=|n, n,) ® |A, m), (25)

which are simultaneously eigenvectors of H, L, s> and s,
normalized so as to satisfy

(n,np; A, mln', njs A, m'y =6, Syt Smm- (26)
Let us recall that
atln, ny) = n + 1ln + 1, n,),
aln, ny) = \nln — 1, ny),
and [see Eq. (A14)]

selA,my=amm=1)— AlA, m £ 1). (28)

We also have that [H, My] =0, where My = L, + s,
has eigenvalues j = [ + m = n;, — n + m, integer or half-
integer according to the irrep of SL(2, R) considered [33].
Indeed, let us call z:= k + 19%; then, it is straight-
forward to get

(27)
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[2MH, Ly] = \2eB[(za's. + zas_), —a'a]
= 2eBlzats, — zas_}, (29)
and
[2MH, s,] = V2eB[(za' s, + zas_), s,]
= \2eB{—zals, + zas_}. (30)
Moreover, [H, bTb] = 0. Then, for given values of A, j

and n,, we can give the following development for the H’s
eigenvectors,

W)= D ComlnnzAmy. — (31)

n—m=n,—j

From Eq. (22), one straightforwardly gets the recursion
relation for the coefficients

(n, ny; A, mI2M(H — E)l g ,)
= {2¢B(n + 1/2) = 2M(E — xkm) + zz(m*> — A)}C,,,
+ 2v2eB/nvm(m — 1) = AC,i—y -
+2V2eBn + IW(m + Dm = ACpi e
=0, (32)

where m = j — n, + n.
Notice that, for z = 0, this recurrence gives immediately
the usual Landau levels,

ComleB(n+1/2)—ME]=0=E =%(n + %) (33)

It is not evident how to solve the recurrence in Eq. (32)

in the general case. This problem simplifies, for example,

for the case of a unitary irrep in the discrete series (see the

Appendix), with A = k(k — 1) and m = —k, where k is a

positive integer or half-integer, since in this case the right-
hand side of Eq. (31) reduces to a finite sum. Indeed,

m=j—n,+n=—-k=0=n=<n,—j—k (34)

which requires that j — n;, = —k in order to have a non-
trivial solution.
In this case we have

n,—k—j
g ) = Z Cppjmny+nln, nps k(k — 1), j — ny, + n),
n=0
(35)

and the eigenvalues problem reduces to a matricial one.
Notice that the eigenvalues depend on j and n, only
through the difference J := j — n,;,, which gives rise to
the infinite degeneracy characteristic of the Landau
problem.

On the contrary, for an irrep of the discrete series with
m=j—n,+n=k, then n =k — j+ n, and one must
determine a whole series.

PHYSICAL REVIEW D 86, 105035 (2012)

If, for example, we take j —n, = —1/2 and m = —k
for the irrep with k = 1/2, we have a unique nontrivial

solution with n = 0 and m = — %,

|¢Eo,"b*%,"b> = Cov*%

£ — eB (1 K Z
M <2) 2 AM’
with an infinite degeneracy in the index n, = 0,1,2,...In
this case, the noncommutativity of the phase space pro-
duces a negative shift in the energy of the fundamental
Landau level.

For the same irrep and with j — n, = — %, the solutions
belong to a two-dimensional subspace (for each n,) con-
taining the independent eigenvectors

(36)

Mk 5 1 3
|l/’E|,nb—%n,,> = (1 + eiB + O(z )) 0, ny; Z’ - §>
Z 1 1
- +022} 1, ny; _,—_>
{\/ZeB @) by 2
. Z 5 L 1 _ 3
|¢E’l,nh—%,nb> - {\/ﬁ + O(Z )} 0) nbv Z: §>

(140 | 1y —1> 37)

4’ 2

corresponding to eigenvalues which are more involved
functions of the noncommutativity parameters and up to
quadratic order in |z| reduce to

Be (1 3 3z
E1=_€(_)__K+£+0(Z3),
M\2 2 4M
B 1 3z (38)
e K 2z
Ei=—(1+=)—z+="4+ 0,
! M( 2) > o T 09

again degenerated in the index n,;. Then, here we also find
an O(z?) shift from the first Landau levels in the normal
commutative plane.

Similarly, for j — n, = — % the eigenvalues (degenerate
in n,,) up to quadratic order in |z| are

Be (1 5« 57z
=_ |- )-—+=24+0 3,

2 M(2> > T T O

Be 1 3k 97z
Ei=—(1+2)-=+=2+ 0, 3
2 M( 2) > T TO (9

Be 1 Kk 57z
El=—(2+2)—-+>+ 0.
2 M( 2) > Tam o)

B. The spectrum in perturbation theory
1. Small |z|

In order to explain the structure of this spectrum we will
use perturbation theory for small values of the noncommu-
tativity parameters. For convenience, we take as unper-
turbed Hamiltonian H, and perturbation V' the operators
given by

105035-5
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1
2MH, = 2eB|:ana + E:I + 2M ks + Zz(sy> — 82),
(40)
2MV = \2eB{zals, + Zas_}.

Since H, commutes with L, s, and btb, the unper-
turbed eigenvectors and eigenvalues are given by

0
\Pn,nl,,m = |I’l, nb> ® |)" m>’ H()\Pn,n,,,m = El(l,zrlq,n,nh,nv

1 1
O = w{ZeB(n + 5) + 2Mkm + 7z(m?* — )\)},
41)

degenerated in the index n,,.
Since V commutes with b1 b, the first order corrections

to the eigenvalues in perturbation theory are simply
given by

ESn =W V¥, ) =0, (42)

and are all vanishing.
The second order corrections are given by

5[2’)11 — Z’ qun’,m’,nb’ V\Pn,m,nb)lz

! !
n,m n',m

: (43)

where the term with n’ = n'y m’ = m is excluded from the
series. From (40), we get

(\pn’,n,,,m” 2MV\Pn,n,,,m)
=2eBzvn+ Im(m+1) = X8, 418 s

+ v ZeBZ\/va(m - 1) - A8n’,n—16m’,m—1’ (44)

from which it follows that

—1zPP(n+ Dlm(m +1) = A]

MMy EE (o +1)

N 1 |z|n[m(m—1)—A]
s

2M | 4+ Me g L0 — 1)

__leP
M

Eqin =

{2nm +[m(m+1) = AL} + 0(lz]).  45)

Then, up to second order in |z|, we get for the
eigenvalues

B 1 2
E,.= e—(n + —) + km + 2 (m?> = A)

M 2 M
2
- %{211”1 +[m(m + 1) = AL + O(12F)
L2
_ W(ﬂ + %) + km + 0(|z]), (46)

for any unitary irrep of SL(2, R). Notice that, at this
order and for each m, these are the Landau levels for an
effective magnetic field linearly dependent on m, rigidly

PHYSICAL REVIEW D 86, 105035 (2012)

shifted by the xm term. Notice also that the dominant
term in the € parameter is quadratic.

For example, considering again the unitary irrep of the
discrete series with k =1 and m = —k we get (up to

P
O(|z|?) terms)

©

eB+|ZT<1) K
E()_l: P
' M \2) 2
eB + 3L (1) 3k
E()_i: =1 >
2 M \2) 2
E .- eB + 5|§|2<1) _ Sk
0% M \2) 27
B+
B =22 (143) -5,
72 M 2] 2
eB + 3L 1\ 3«
E, = oy SR LY (47)
L= M ( 2) 2
eB + 3 1\ 5«
E1,5= <1+—)——,
M 2
eB + 14 1 K
E, 1= 2(2+2) -
271 M ( 2) 2
eB+3EL oy 3k
E, = 2(2+-)-—,
273 M ( 2) 2
B+5|Z|
E2,§=€ 2<2+l)—5—K,'
: M 2] 2

in complete agreement with Egs. (38) and (39).

2. Large |z|

We will also consider the large NC parameters limit in
perturbation theory. So, we now take as unperturbed
Hamiltonian the operator

2z
Hy:= m(so2 —s?) (48)
and as perturbation

V2eB B 1
Aed (zats, zas_ ) + %(a*a + 5) (49)

V= kso +

The eigenvectors and eigenfunctions of FH , are given by
2z

2 _
A

(50)

. 0
Xnngm == |n, nb> ® |/\: m), 551,211 =

which depend only on m and are degenerate in n and n,,.
Since both H , and V commute with btb, we can refer
to the subspace with definite n,, and consider only the
degeneracy in n. The first order correction to the eigenval-
ues in perturbation theory are given by the matrix elements

105035-6



NONCOMMUTATIVITY IN (2 + 1)-DIMENSIONS AND THE ...

eB 1
(Xn/,n[,,m’ VXn,nb,m) = 6}1’,n{Km + M(” + 5)}: (51)

which are already diagonal in n.

The (O(|z])) second term in the right-hand side of
Eq. (49) contributes at second order of perturbation theory
with an O(48) correction. Then,

zz eB
gn,m = m(mz - /\) + km + 0(&) (52)
Then, one sees that the noncommutativity parameters
appear as a typical energy scale for the separation of
successive series of Landau levels. For |z|/M > 1, only

the states with the minimum value of m? will manifest at
low energies.

IV. DIRAC PARTICLES

The Dirac equation in 2 + 1-dimensions is

(ty*a,, — M)¥ =0, (53)

where we take
Y = o3, Yy =0y, Y =10, (54
which  satisfy [y, y”] = 2¢g#”  with (gt") =

diag(1, —1, —1). From (53) we get the Hamiltonian H =
a;p; + MB, where oy = —0, ay = —0, and 8 = o3.

In the presence of an external electromagnetic field,
minimal coupling requires to change p, — p, — eA,.
So, the Hamiltonian becomes

H=a,p; — eA;) — eAy + MB. (55)

We consider again a constant magnetic field perpendicu-
lar to the plane of the system. Then, we take again A, = 0
and A;(x) = — 5 €;;x/, obtaining

H = a;VeBg + ayveBp + M

B M —2eBat
—+/2¢eBa '

-M
in terms of the operators defined in Egs. (9) and (12).
Taking into account that

(56)

.
[H, L] = [H, b*b—afa]=\/2e3<0 g ) (57)
a

and
[H, 03] = —V2eBlato, + ao_, 03]

1.
=2\/2eB< 0 a )
—d

0 (58)

we conclude that H commutes with Jy:= Ly + 3.
Consequently, we can write the eigenvectors of H and J, as
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Ciln,n
Uony = e ) (59)
Cyln — 1, np)
with n = 1. Indeed, we have
CI(LO + %)ln, nb>
JO lpn,nb = = jO ¢t1,nb! (60)

C2<L0 - %>|n - 1, I’lb>

with eigenvalue jo = n, — n + 1.
On the other hand, (H — E),,, = 0 implies that

( M—E  —\2¢Bn ><C1> =<0) 61
—v2eBn —(M + E))\C, 0/)

Nontrivial solutions require that

E>— M?—2¢Bn = 0= E., = =VM> + 2¢Bn,

and

(62)

E+ - M
C,=—2_—¢,
2 \2eBn !

both independent of n,. Then, the eigenvectors are

, :< \2eBnln, ny) ) (64)
1m0 =\ [y = VAT 2eBalln — 1 ny))

with n = 1, degenerate in the index n,.
There is another solution for n = 0, given by

0,
¢O,nb = (l (;lb>>’

with jo = n;, + 1/2 and E, = M, also degenerate in n,,.

(63)

(65)

A. Extension to the noncommutative space

We adopt as Hamiltonian of this system the Hermitian
operator

ﬁ = ai(ﬁi - eAl(ﬁ)) + KSq + MB
=H®1+K(a,~®si+12®s0)—6’e—
(66)

where the term (1, ® s5) comes from the shift of p, in
Eq. (3). This Hamiltonian can also be written as

H=H®1+ kKl®sy—zo0_®s, —Zo,®s_, (67)
where o+ = @, s+ =5, = 15, [see Eq. (A10)].
This Hamiltonian has a symmetry generated by
1
J = (L0+§(T3)®1+12®S0. (68)

Indeed [see Eq. (A11)],
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. A= ~Zloy o les, — [y 0.]@s
—z0_®[sp, 51— Zo, ®[sp,5_]=0. (69)

Moreover, [b1bh, H] = 0. Then, the energy eigenvalues
are also degenerate in n,,.

Given a unitary irrep of SL(2,R), we can choose a
complete system of orthogonal vectors in the subspace of
the Hilbert space characterized by given values of n;, y j
(the eigenvalue of J) as

|",”b> .
lpn,Tz( O ®|/\!J_nb_%+n>y

0
o = ®I/\,j—nb+%+n>.
' |n, ny)

Indeed, in both cases, the eigenvalue of J is
(nb—nt%)-i-(j—nb 1%+n)=j.
Let us point out that

[(H—E) @1+ kl, ®slih,

(70)

=|:M—E+K<]—nb—%+n)i|l,bni
— 2eBnip,_, ), 1)

PHYSICAL REVIEW D 86, 105035 (2012)

Moreover,

1
og_®5s, wn,T = J(J - ny + n)2 - ()‘ + Z)¢n,l: (73)

and

1
o, Q5 'wbn,l = \/(] — Ny + I’l)2 - (A + Z)'wbn,T’ (74)

while
0.®s_ i, =0=0_®s, 1, (75)

If we propose the following development for the
Hamiltonian eigenvectors,

v = Z(Cnlpn,I + Dn lpn,l)
n=0

and . 1
_ i Culn,ny)®|A, j—n, —5+n) 6
[(H—E)®1+ kl, ® solif,, Z\ Do) @A)y + Lt my)
1
= [—M— E+ K(j —ny, +§~I— n)ilgbn,l
the condition (H — E)¥ = 0 straightforwardly leads to the
—V2eB(n + D)ihy . (72) recurrence relations
|
CH[M -E+ K(j —np—3+ n)] —D,_\/2eBn — DnZ\/(j —n, +n)? — </\ + ;{) =0,
(717)
Dn[—M —E+ K(j —n,+3+ n)] — C,i14/2eB(n + 1) — an\/(j —n, +n)? — </\ + i) =0,
for n = 0 and where D_; := 0. Notice that the solution K .
depends on j and n, only through the difference j — n,. CO<_E 2 + M) =0 (78)
It is easy to verify that the limit «, § — 0 reproduces the _ ;
results in Egs. (62), (64), and (65). Then, B =M — 5 and W~ oy,
The problem of getting the Hamiltonian eigenvectors For]. — np = —1, the eigenvalues are the zeroes of the
appears to be more difficult than in the case of Schrodinger determinant
particles. But, as before, for certain unitary irrep’s of —37K +M-—E 0 -z
SL(2, R) it reduces to a matricial eigenvalue problem. B _
Indeed, if we consider again an irrep of SL(2, R) in 0 —;tTM-E —V2Be =0,
the discrete series, characterized by A = k(k — 1) and —z —/2Be ~5-M-E
m = —k, one can see that m = j —n, + n — 5= —k = 79

OSnSnb—j—k-i-%.
For example, taking k =
get

1 with j — n, = 0 we simply

which have a rather involved expression as roots of a
polynomial of degree 3.
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B. The spectrum in perturbation theory
1. Small |z|

In order to explain the structure of the spectrum for
small noncommutative parameters we will use again per-
turbation theory. We take Hy := H® 1 + k1 ® s as the
unperturbed Hamiltonian and Vi=—z0_®s, — 7o ®s_
as the perturbation.

Since Hy commutes with (Lo + 3 03) and with s, we
can take as unperturbed normalized eigenvectors and
eigenvalues

0,n
\PO,nh,m:(l 0b>>®|)‘)m>, Eg),)n:M+ Km,

V2eBn|n,n,)

\I}“' nn,,m = Ct,n
o ([Mi VM? +2eBn]ln—1,n,)

)@l/\,m),

PHYSICAL REVIEW D 86, 105035 (2012)

81)

Since [bTh, V] = 0, we can refer to the subspace with a
given n,,. Then, the first order corrections to the energies in
perturbation theory are all vanishing. Indeed, they are
simply given by

C., ={2(M?>+2eBn) ¥ 2M\/MZ+72eBn}’%,

Yonpm V¥00,m) =0= (Wi nym VVsnnpm)-  (82)
On the other hand,
(‘I’s',n',nb,m'; V‘I’o,n,,,m) = _5n’,1 5m',m+1ZCs/,n’
X [M - s'm]
Xm(m+1)— A,

Eg’)zn—E((,)), =M — s'NM?*+2eBn’ + k(m—m')

s',n',m

EQ,  =*VM?+2¢Bn+ xm, (80) (83)
degenerate in n, € N U {0}, with and
|
(\I’s’,n’,nb,m" V\Ps,n,nl,,m) = —er,anS,,,{SnrynHBm/,mﬂz[M - S/JI‘42 + ZeB(n + 1)]\/ZeBn\/m(m + ]) —A
+ 8y 1O m_1ZN2eB(n — D)[M — sNM? + 2eBnWm(m — 1) — A},
EQ ., — Ei(,),)n,’m, — sWM? + 2eBn — s'NM? + 2eBn' + k(m — m'). (84)

From Egs. (83) and (84) one can easily compute the (O(|z|?)) second order corrections to the energies.
Therefore, for any irrep of SL(2, R) and to first order in |z|, the energy eigenvalues are given in Eq. (80). Notice that, as
in the the case of Schrodinger particles, they show a shift linear in m and they do not depend on 6 at first order. This is also

in agreement with Egs. (78) and (79), up to O(|z|?) terms.

2. Large |z|
In the large |z| limit, we take as unperturbed Hamiltonian the operator
Hy=kl®s)g—z0_®s5, —Z0, ®s_ (85)
and as the perturbation
YV =H®1=Mo;®1—+2¢Blato, +tac_]®1. (86)
Since [H ,, % o3 + so] = 0, one can see that the normalized eigenvectors of JH , are given by
a2 |4 -4
q)n,m,,j,i = |n) nb) ® . . | > (87)
c(j, *) I A+ §>
where j is the eigenvalue of (} o3 + s50) and
. V2z [ =+ 9]
C](J, i) =T — ’
\/1 +4y[P - A+ D] = \/1 +4y[j2 = (A + )]
0 (88)
. 269 + k(1 - 2j)
e, ) = =

ﬁx\/l 4902 — A+ D121+ 492 — A+ D]
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with y 1= 7z/«* and 55?; the corresponding eigenvalues,

1 1
) ._ ; 2 _
Eivi=xlJ iz\/l + 4)/[] (A + Z):I , (89)

degenerate in the indices n and n,,.

The corrections to the energies at first order in perturba-
tion theory get contributions from the first term in the right-
hand side of Eq. (86) only and are determined by the matrix
elements

n —
Ej,i - ((I)n’,n’b,j,t’ VCDn,nb,j,i)
= Mﬁn’,nan;,,nh{lcl(j’ i)lz - |C2(j; i)lz}
. +M
Y1402 — (A + D]

which are already diagonal.

It can be easily seen that the the second order corrections
in perturbation theory get an O(M?/|z|) contribution from
the first term in the right-hand side of Eq. (86) and
O(eB/|z|) contributions from the second term in the right
hand side of that equation.

Then, also in this model the noncommutativity parame-
ters appear as a typical energy scale for the separation of
successive series of Landau levels and, at low energies, only
the states with the minimum value of j would manifest.

511/,n6n;7,nb’ (90)

V. CONCLUSIONS

In this article we have considered models of Schrodinger
and Dirac particles living in a space-time with a nonstan-
dard noncommutativity, both in coordinates and momenta.
This noncommutativity was induced by deforming the
canonical commutators by terms proportional to the gen-
erators in a unitary irreducible representation of the
Lorentz group in the (2 + 1)-dimensional Minkowski
space, isomorphic to SL(2, R)/Z,. Since this is a non-
compact Lie group, its unitary irrep’s are not of finite
dimension.

Taking into account that SL(2, R) is a three-dimensional
Lie group, we have realized this deformation of the
Heisenberg algebra by shifting canonical coordinates and
momenta with terms proportional to the generators in the
unitary irrep considered, a kind of non-Abelian Bopp’s
shift. In particular, the shift in momenta can also be inter-
preted as the introduction of a non-Abelian magnetic field.

Consequently, the number of dynamical variables is
enlarged and the Hilbert space gets the structure of a direct
product, one factor for the state vectors of the ordinary
system in the normal space and the other for the component
of the state vectors in the representation space of this irrep
of SL(2, R).

We have shown that total generators of the Lorentz
transformations can be constructed which correctly trans-
form all the operators, thus realizing the Lie algebra

PHYSICAL REVIEW D 86, 105035 (2012)

s1(2, R) on the Hilbert space of the quantum-mechanical
system.

In this framework, we have considered modified
Hamiltonians obtained through this non-Abelian Bopp’s
shift of the dynamical variables from the Hamiltonians of
the Landau problem for both Schrodinger and Dirac parti-
cles. We have analyzed these models for both discrete and
continuous classes of irrep’s of sl(2, R). In general, the
eigenvalue problem leads to an infinite recursion relation
for the coefficients in the development of the eigenvectors
in terms of a conveniently chosen bases of the Hilbert
space, although for certain irrep’s it reduces to a matricial
problem. The spectrum of these models have been studied
also in perturbation theory, both for small and large non-
commutativity parameters z = k + 10%.

In the case of a Schrodinger particle, Eq. (46) shows that
for small |z| and for any irrep of SL(2, R) there is a series
of Landau levels, one for each eigenvalue m of s, rigidly
shifted by a term proportional to m and with a second order
correction to the effective magnetic field. On the other
hand, in the limit of large |z| Eqgs. (52) and (51) show
that the noncommutativity parameters appear as a typical
energy scale for the separation of successive series of
Landau levels and that, at low energies, only the Landau
levels with the minimum value of m? manifest. Similar
conclusions have been obtained for the model of a Dirac
particle.

Let us mention that, contrary to the case of conventional
NC quantum mechanics, we have found no constraint
between the parameters referring to noncommutativity in
coordinates and momenta. Rather, with a nonvanishing
magnetic field B, both « and 6 play a similar role (although
there are no linear in 6 contributions to the eigenvalues).

Notice that the structure of the Hilbert space as a direct
product leads, in the |z| — 0 limit, to an infinite degeneracy
additional to the usual degeneracy of the Landau problem.
In this sense, the noncommutative models here considered
do not reduce to the original ones in this limit. Indeed, the
modified Hamiltonian A takes the form H ® 1;,.p in this
limit, being then diagonal in the factor space of the repre-
sentation of the group. Therefore, these models do not
correspond to just a smooth deformation of the commuta-
tive ones. On the other hand, as previously mentioned, in
the |z| — co limit only the lowest excitations in this addi-
tional factor of the Hilbert space would be detected in the
low energy limit, with no evidence of the higher levels.

It is worthwhile to remark that the representation space
of the unitary irrep’s of SL(2, R) can be explicitly realized
in terms of spaces of square-integrable functions: functions
defined on the unit circle for the continuous classes of
irrep’s and analytic functions on the unit open disk for
the discrete classes of irrep’s, as discussed in the
Appendix. Therefore, the examples studied in this article
can also be considered as equivalent to models of quantum
mechanical particles living in a space with an additional
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compact dimension, with the parameter « playing the role
of the inverse of a typical length. Indeed, the non-Abelian
Bopp’s shift in Eq. (3) leads to a description of these
systems in terms of the usual phase-space variables of a
(commutative) (2 + 1)-dimensional space plus the gener-
ators of an irrep of SL(2, R), which are the dynamical
variables adequate to describe its behavior in this addi-
tional dimension.
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APPENDIX: THE LORENTZ GROUP
IN 1 + 2-DIMENSIONS

The Lorentz group in (1 + 2)-dimensional Minkowski
space [33-35], M3, can be defined as the set of real linear
transformations of x = (x9, x!, x?), X’ = Lx, which leaves
invariant the interval

s = x'px = x'L'nLx, (A1)
for all x, where the metric (7,,) = diag(+1, —1, —1).
This means that

L'nL=mn=(detL)* =1 and m,gL*,LF, =7,
(A2)

Then,

detL =*1 and L°% =1 or L’ =-1. (A3

The connected part of the Lorentz group (the one
containing the identity 13), LL, corresponds to the sub-
group of transformations with detL = 1 and L°; = 1. The
other cosets of the group are obtained from £T+ through the
multiplication by the parity (P := diag(+1, —1, +1))
and/or time-reversal (T := diag(—1, +1, +1))
transformations.

It is easy to see that L1, =~ SL(2, R)/Z,. Indeed, one can
establish a one-to-one correspondence between M; and
the space of real symmetric 2 X 2 matrices through the
relation
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o(x) :=x1, + x'oy + x?0,

xO + Xl x2
x2 .XO — 5l

=o(x),

(A4)

where 0| and o5 are the two real Pauli matrices.

Within this representation of Minkowski space, the in-
terval is expressed as deto(x) = (x°)? — (x1)> — (x?)? = 52.
Then, the Lorentz transformations are realized as o(x) —
Ao(x)A" with real matrices A such that detA = *1.
These conditions define a Lie group whose connected
part containing the identity 1, is SL(2, R) [isomorphic to
SU(1, 1)].

Moreover, since the elements in the center of the group,
{1,, —=1,} = Z,, correspond to the same Lorentz transfor-
mation, we conclude that there exists a homomorphism
¢: SL(2, R) — L' which apply {+U, —U} — L.

The elements in SL(2, R) can be written as

A atc b+d h
= , Wi
-b+d a-c (A5)
a+b=1+c2+d*=1.
These elements can be parametrized as
¢ = sinha cosp, d = sinha sing,
(A6)

a = cosha cosy, b = cosha sinvy,

with @« € R and B, v € [0, 27). Therefore, SL(2, R) is a
noncompact multiply connected three-dimensional Lie
group. As a consequence, the unitary irreducible represen-
tations of SL(2, R) are not of finite dimension.

Writing the elements of SL(2, R) as A = ¢'4, one can
see that a basis of the Lie algebra sI(2, R) can be chosen as
the set of matrices {X, := — 10y, X, := 40, X, =L 03},
which satisfy the commutation relations

[X,. X,]= —1€,,, X", (A7)

where X# = n#”X,, and €,,, totally antisymmetric with
€012 = 1. X, generates the rotations on the plane while X ,
correspond to the boosts in the spatial axis. The quadratic
Casimir invariant is given by

X2:=n"X, X, =X?2—X?>—X,%,  (A8)

which commutes with the generators X, .

1. Finite dimensional irrep’s of sl(2, R)

Since SL(2, R) is noncompact, its finite dimensional
irrep’s are not unitary. They can be constructed from the
unitary irrep’s of SU(2) in the following way. The genera-
tor of rotations, X;, is Hermitian in any irrep and can be
chosen as X; — J5. Then, the other two generators are anti-
Hermitian and can be taken as X; — —iJ, y X, — iJy,
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where the J;, i = 1, 2, 3 are the generators of the unitary
Jj-irrep of su(2).

The (2j + 1)-dimensional space representation is
generated by the basis of vectors {|j, m),m = —},
—j+1,---,j—1,}, and the Casimir operator reduces
to X2 =J;2 — (=1Jy)? — (J})* = J* = j(j + 1)1, where
jG+1)=0.

But, as previously discussed, we need the unitary repre-
sentations of SL(2, R), which are considered in the next
section.

2. Unitary irrep’s of sl(2, R)

The unitary irrep’s of sl(2, R) are infinite-dimensional
[33]. They are generated by Hermitian operators X, = X #T
satisfying the commutation relations in Eq. (A7). In this
case, the Casimir invariant can also take negative values.

Since [X,,, X?] = 0, let us consider a simultaneous nor-
malized eigenvector of X2 and X,

X 2|A, m) = A\, m), XolA, m) = m|A, m), (A9)

where A € R and m takes integer or half-integer values.
If we define

X=X, £1X,, with X.T=X (A10)
we get
[X(), X.]=*X.,

[X,, X_]=—2X,  (All)

Then,
Xo(X+|A, m)) = X (Xog = DX, m) = (m = 1)(X+|A, m)),

X*(X<|h m) = AMX< A m).  (A12)
Taking into account that
X X+ =X(XoF 1) — X2, (A13)

we conclude that

| X< A m) P= (A, mIX XA, m)=m(m+1)— A =0.
(A14)

Therefore, (m * %)2 =)+ %. Two cases should be con-
sidered [33]: A + 1 =0 and A + 1 <0, which give rise to
the so-called discrete and continuous classes of unitary
irrep’s, respectively.

a. Discrete classes: A+ % =0
Let us write A = k(k — 1) with' k = 1. Then, A +1 =
(k —1)* = 0. Then, we have either m = k or m =< —k.
From (A14) it follows that the existence of a vector with,

respectively, a minimum or a maximum eigenvalue m,
requires that

'"The case 0 < k <% can be mapped onto the one considered
through the change k' = 1 — k > 3, since k'(k' — 1) = k(k — 1).

PHYSICAL REVIEW D 86, 105035 (2012)
mo(my ¥ 1) —k(k — 1) = (mg T k)(my £ (k—1)) =0

= my = *k, respectively. (A15)

Therefore, in these irrep’s also k takes integer or half-

integer values, k = 1, % -+ -+ (which justifies the name

2
of discrete assigned to these two classes).

The subsequent application on these vectors of X, and
X_, respectively, generates an infinite sequence of eigen-
vectors of X, corresponding to the eigenvalues m = k + n
or m = —k — n, respectively, with n € N U {0}.

These irrep’s can be explicitly realized on a space of
analytic functions of a complex variable which are regular
on the open unit circle [33,35]. Indeed, let us consider the
Hilbert space defined by the set of functions f(3) analytic
on the open disk M := {3 € C: |3| < 1} with the scalar
product

2k — 1

) g =2 [ B - 5P s)g)

_ 2k —1 [277 ié [1 dr2[1 3 r2]2(k—1)
27 Jo 0
X f(re'®) g(re'?),
with k > . This definition can be extended to k = 1 as [33]
% —1 [ d3di
T M 2

(A16)

(£3). 8(3))1y2 = lim

X [1 =335V f(3)*g(3).

An orthonormal and complete basis of this space can be
constructed as

(A17)

{h,(g) = (F(g&’i(;ri)l))al 1=0,1,2 } (A18)

and it can be shown that, for any square-integrable function
in this space, the series f(3) = >7°,c;h(3) also con-
verges in a pointwise sense and f(3) is regular on the
open disk M [33].

It can be straightforwardly verified that the differential
operators [33]

Xo:=30,+k X,:=-3%,—2k3 X_:1=-0,

(A19)
are a realization of the generators of s/(2, R) in Eq. (A11)
and their Hermitian conjugates in this space satisfy
X! =Xy and X1 = X..

Moreover,

Xoh)(3) = mh;(3) with m=1+k 1=0,1,2,...
(A20)

and
X2= Al with A=k(k—1), (A21)

which corresponds to a unitary irrep with a minimal

eigenvalue for Xo, my = k, with k =1,1,3, ...
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A unitary irrep with a maximal eigenvalue for the
rotations generator is obtained by taking on the same
space [33]

Xy:=—Xo=—30,—k  X,:=-X_=29
X' = —X, = 3%, + 2k3,

Y (A22)

with A =k(k—1)andm = -k, —k—1,—k—2,...

b. Continuous classes: A+ % <0

In this case we write A = k(k — 1) with k =1 + 1y and
y €R. Then, A +1= —9><0 and the condition in
Eq. (Al14) reduces to (m ¥ J)* = 0> —v?, satisfied for
any integer or half-integer value of m. We take y > 0,
which justifies the name of continuous given to these
classes of irrep’s.

In such a way, m is not bounded and takes either all the
integer or all the half-integer values. Moreover, in these
irrep’s the Casimir invariant takes only negative values,
X2 =—(y2+ }1)1.

The unitary representations corresponding to these two
continuous classes can be explicitly realized as a function
space over the unit circle, as discussed in Ref. [33]. Indeed,
let us consider the Hilbert space of function f(¢) defined
on the closed interval [0, 2] with the scalar product
defined with the usual Lebesgue measure

(o). 8@) = [ dof@red). a2
On this space we define [33]
1
Xo = — 10y, X, = e’¢(18¢ 5 ly),
(A24)

1
X_ = e_’¢(18¢ + 3 + 17),
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with real +y. It is a straightforward exercise to verify that
these operators satisfy the commutation relations in
Eq. (All) and its Hermitian conjugate are given by
Xg = X, and Xi = X; if defined on a domain of
periodic or antiperiodic functions on the interval [0, 27].
Moreover,

1
X2 = —(— + 'y2>1.

1 (A25)

Therefore, for any y > 0 and adopting periodic bound-
ary conditions, f(27) = f(0), we can take the complete
orthonormal basis

1
h,, = emd m e Z} A26
(@)= (A26)
and have for these vectors
Xohy(p) = mh,(¢), with m=0,*1,*2, ...
(A27)

On the other hand, if we adopt antiperiodic boundary
conditions, f(27) = —f(0), we can take the complete
orthonormal basis

1 1
T e
(@)= = ! (A28)
having for these vectors
Xoh!,(d) = mhl,(p), with m= tl,i:i:.
" " )
(A29)
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