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Orientifold daughter of N = 4 SYM theory and double-trace running
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We study the orientifold daughter of JN° = 4 super-Yang-Mills as a candidate nonsupersymmetric
large-N conformal field theory. In a theory with vanishing single-trace beta functions that contains scalars
in the adjoint representation, conformal invariance might still be broken by renormalization of double-
trace terms to leading order at large N. In this note we perform a diagrammatic analysis and argue that the
orientifold daughter does not suffer from double-trace running. This implies an exact large-N equivalence
between this theory and a subsector of N' = 4 super-Yang-Mills.
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L. INTRODUCTION

Conformal field theories (CFTs) play a prominent role in
theoretical physics. In four dimensions, it is easy to find
supersymmetric CFTs; however, constructing interacting
conformal field theories in the absence of supersymmetry
seems to be a harder task. An early attempt for the con-
struction of such theories was to use the AdS/CFT corre-
spondence [1-3] for orbifolds of IN" = 4 super-Yang-Mills
(SYM) [4,5]. These are constructed by placing a stack of N
D3-branes at an orbifold singularity R®/T", where T is a
discrete subgroup of the R symmetry. Inheritance prin-
ciples [6,7], then, guarantee that the beta functions of
marginal single-trace operators will vanish in the large-N
limit. If the orbifold group I' Z SU(3), supersymmetry is
completely broken and a potential conformal field theory
with reduced supersymmetry is obtained.

Now, whenever there are scalars in the adjoint or bifun-
damental representation, there is a logarithmic running of
double-trace operators present in the quantum effective
action [8-12]

88 = —f[d“x(o@. (1)

This is a leading effect at large N. While for supersym-
metric orbifolds one can always tune the double-trace
couplings to their conformal fixed points, for nonsuper-
symmetric orbifolds the double-trace beta functions have
complex zeros and conformal invariance is always broken
[11,12].

The authors of Ref. [12] also found a nontrivial one-to-
one correspondence between the breaking of conformal
invariance in the field theory and the presence of closed
string tachyons in the twisted sector of the dual string
theory. This result is somewhat surprising, because the
correspondence is between perturbative gauge theory
(dual to strongly curved AdS) and flat-space tachyons,
indicating that the breaking of conformal invariance may
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be read from string theory before taking the decoupling
limit. These results were revisited in Ref. [13], where it
was found that the double-trace beta functions are qua-
dratic in the coupling to all orders in planar perturbation
theory.

Here we will concentrate on the orientifold daughter of
N =4 SYM [14-16]. This theory arises as the low-
energy description of D3-branes in a nontachyonic orienti-
fold of Type 0B, in which the tachyon in the original string
theory has been projected out by a clever choice of the
parity operator [17-19].

In Refs. [16,20] it was argued that this theory is planar
equivalent to N = 4 SYM. In light of the results obtained
for orbifolds, the absence of a tachyon in the flat-space
string theory is a good indication that the orientifold
daughter should not suffer from double-trace running
and, therefore, should be an example of a nonsupersym-
metric conformal field theory.

In this note we perform a diagrammatic analysis to see if
this theory suffers from double-trace running or not. One
possible outcome is that perturbative renormalizability will
force us to add double-trace couplings of the form of
Eq. (1). If the double-trace beta functions have real zeros,
conformal invariance can be recovered if we tune the new
couplings to their fixed points. This would imply that we
have a fixed line passing through the origin of the coupling
constant space. On the other hand, if one or more zeros are
complex, conformal invariance is broken and the theory is
unstable.

Another possible outcome is that the are no leading
double-trace contributions in the effective action. If this
is the case, there will be no logarithmic running, and it
would imply an exact equivalence between the orientifold
and a subsector of N =4 SYM. Conformal invariance
will be preserved, but in a rather trivial sense. Our results
indicate that this last behavior is the one that characterizes
the orientifold daughter. In Sec. II we briefly review how
the orientifold theory is constructed. In Sec. III we perform
a diagrammatic analysis and show that for each double-
trace diagram in N = 4, there is an analogous diagram in
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the orientifold daughter, and vice versa. Finally, we present
our concluding remarks in Sec. I'V.

II. ORIENTIFOLD CONSTRUCTION

The field theory in which we are interested is a non-
supersymmetric SU(N) gauge theory that arises as the low-
energy description of D3-branes in a nontachyonic orienti-
fold of Type OB.

A. Nontachyonic ' projection

The Type OB modular invariant partition function is
given by the following string states:

(NS—,NS—) & (NS+,NS+)® (R—,R—) & (R+,R+).

As is well known, there is a tachyonic state coming from
the (NS—, NS—) sector. This theory admits more than one
consistent orientifold projection characterized by different
definitions of the parity operator ) [17-19]. The parity
operator that gives a nontachyonic orientifold is usually
denoted by Q' = Q(—1)/r, where f is the right world-
sheet fermion number. The projected theory 0B/’ is
called 0'B. This theory has no tachyon and is similar to
the bosonic sector of Type IIB. At the massless level it has
a complete set of R-R fields, a graviton and a dilaton.

B. Orientifold daughter

If we T-dualize in six directions, we obtain the
Q(—1)/= I orientifold of Type OB [14,15], where I, is
an inversion operator (x; = —x;,i = 4, ..., 9). This theory
contains an orientifold O’3 plane at x4 = ... = xg = 0.
The gauge theory describing N D3-branes in the presence
of the O’3 plane is the orientifold daughter of N =4
SYM we want to study. Its field content is given by Table I.

This theory is very similar to N = 4 SYM; there are six
real scalars in the adjoint representation and four Dirac
fermions in the antisymmetric representation of the gauge
group. Its planar diagrams are the same as those in the
parent theory; using a double-line notation [21], it is clear
that the only difference is in the orientation of the color
arrows for diagrams involving fermions (see Fig. 1). This
suggests that the orientifold daughter and the parent theory
are equivalent in the large-N limit. However, we have to be
careful with potential double-trace terms, as they might
render the theory nonconformal.

TABLE I. Field content of the gauge theory describing
N D3-branes in the presence of the O3 plane.

SU(N)
Vector adj.
Scalars adj.
Weyl fermions E + E
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(a) N =4 SYM (b) Orientifold
FIG. 1. Fermionic contribution to the scalar self-energy. The
only difference is the orientation of the arrows.

We know that in geometric orbifolds of N = 4 SYM,
there is a one-to-one correspondence between the presence
of tachyons in the flat-space string theory and the breaking
of conformal invariance [12]. The absence of a tachyon in
the flat-space construction of the orientifold field theory is
then encouraging. Still, we feel an explicit analysis is
necessary in order to check whether this theory suffers
from double-trace running or not.

III. DIAGRAMMATIC ANALYSIS

Here we consider double-trace contributions to the ef-
fective action for the orientifold daughter. We will show
that they cancel by comparing them with the respective
diagrams in /N = 4, which we know does not suffer from
double-trace running.

A. One-loop diagrams
The Lagrangian of N = 4 SYM is well known:

1 g
L =N(—§FWF’“’ +ip*3* Dy, — D, X' DFX!
e —
+23/ACT g X, + 2 ACE, e XT +o1X xf]z).

2)

The orientifold daughter is obtained through the
replacement

o = L€ 3)
J k
) l
(a)
j k j k
" -

FIG. 2. Fermionic propagators in a double-line notation.
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FIG. 3. Bosonic (a) and fermionic (b, c) contributions to the double-trace potential.

where i, j are color indices [22]. Its Lagrangian is
1 Lo iz,
L=N —EFM,,F“ + 57 a*D,m, + 55 a*D, &,
— D, X'DrX! + 2JAC1 £, X,
- = A
+ 2/AC, 71X + DX, XJ]Z). )

The color structure of the fermion propagators is as fol-
lows:

(Wit ~ 816}, (5)
(éipdtD) ~ 516% — 648, (6)
(i 5) ~ 8164 — 8}.8). (7)

From Fig. 2 we see that the orientifold daughter has an
extra “nonplanar” term coming from the antisymmetry of
the color indices.

We are only interested in double-trace contributions. In
particular,

6L = a(A)OV OV + b(X)O? (8)
where
51]
0l = Tr(X’XJ — ?XKXK), 9
O = TrxXXxX, (10)

and a(A), b(A) are functions of the ’t Hooft coupling.

These terms are easy to identify using the double-line
notation; some sample contributions for N' = 4 SYM are
shown in Fig. 3. The bosonic diagrams are identical in both
theories, and we know that the N' = 4 SYM does not have
double-trace running. Then we only need to concentrate on
the fermions. There are two different sets of Wick contrac-
tions that give fermionic double-trace contributions in
N = 4, shown in Figs. 3(b) and 3(c).

To prove cancellation of double-trace terms in the ori-
entifold, we need to find equivalent fermionic diagrams;
these are shown in Fig. 4. These two diagrams will give
identical contributions to those of the parent theory, and the
cancellation of double-trace terms is then guaranteed. We
see that the nonplanarities in the N° = 4 diagrams are here
implemented by the nonplanar component of the fermion
propagator. The extra minus sign in the nonplanar part
could have presented a problem; however, both diagrams
have an even number of them. This simple analysis con-
firms that the orientifold theory has no double-trace con-
tributions at one loop.

B. Two-loop example

At two loops, we should have one power of N coming
from a closed color loop; if not, the diagram is subleading.
As before, we only need to concentrate on the diagrams
with fermions. Because we will proceed with an all-loop
analysis in the next section, we only consider one two-loop
example, shown in Fig. 5.

From the color flows, it is clear that we have a factor of
N coming from a closed color loop. Also, for the orienti-
fold, we have an even number of nonplanar propagators,
and so there is no extra minus sign.

ﬂ\%él/f e,
\ d

3

=
=

N
%
/

(a) (b)

FIG. 4. Fermionic one-loop contributions from the orientifold
daughter.
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FIG. 5. Two-loop diagram in N =4 SYM (a); orientifold
counterpart (b).

C. All-loop analysis

Here we will argue for the cancellation of double-trace
terms at all loops. At € loops, the leading single and
double-trace contributions are of the form

8Lgr ~ NATTrX* and 8 Lpp ~ AT TrX? TrX>.

Y

The key thing to notice is that a leading double-trace
diagram should have N¢~! from closed color loops.' If
we compare this with the N of a leading single-trace
diagram, it is clear that the double-trace contributions we
are interested in are almost planar. The unique topology is
shown in Fig. 6(a). It is not hard to see that the double-trace
diagrams of the previous sections are of this form.

To prove that the orientifold daughter does not suffer
from double-trace running, we will proceed as before. For
each double-trace contribution in N = 4 SYM, we will
show that there is an equivalent diagram in the orientifold,
and vice versa.

Consider an arbitrary leading double-trace diagram like
the one shown in Fig. 6(a). Topologically, we have an inner
and an outer boundary where the external bosonic legs sit
and a number of color loops between them. Now, we con-
nect the external legs belonging to the inner boundary using
an ‘“auxiliary” bosonic propagator, as shown in Fig. 7.

After this contraction, we have a planar diagram (the
new topology consists of a single boundary with two
external legs), but we know that there is a one-to-one
correspondence between the planar diagrams of these
two theories [16]. We also know that the bosonic fields
are identical in both theories, and the only difference
between Figs. 6(a) and 7 is a bosonic contraction. This
implies that if there is a one-to-one correspondence
between the diagrams of the form depicted in Fig. 7, then
there is also a one-to-one correspondence between the
class of diagrams depicted in Fig. 6(a). Let us rephrase
this last statement: If we have a one-to-one correspondence
between planar diagrams in N =4 SYM and its

'In our normalization we have an overall factor of N multi-
plying the Lagrangian; this implies that each propagator goes
1
as ~ .
N

FIG. 6. Leading ¢-loop double-trace diagram with N¢~! com-
ing from closed color loops (a); subleading diagram (b).

FIG. 7. Leading €¢-loop double-trace diagram with an auxiliary
bosonic propagator (dashed lines) contracting two external legs;
compare with Fig. 6(a).

orientifold daughter, then we also have a one-to-one cor-
respondence between the leading double-trace contribu-
tions to the scalar four-point function. This concludes our
analysis and confirms that both theories have identical
leading double-trace contributions at all loops.

IV. DISCUSSION

In this note we have shown by an explicit diagrammatic
analysis that the orientifold daughter of N" = 4 SYM does
not suffer from double-trace running. This is in agreement
with the results of Refs. [12,20], where a one-to-one cor-
respondence was found between the breaking of conformal
invariance and the presence of tachyons in the flat-space
string theory. Our calculation is yet another example that
confirms this observation, namely that the flat-space theory
seems to know about the stability of the field theory.

In the full OB string theory, the calculation of
Refs. [8,11] implies that there is a string state becoming
tachyonic in the dual AdS background for sufficiently
small A (large curvature). The results of this paper confirm
that the orientifold daughter is stable, and hence the AdS
dual contains no tachyon. It would be interesting to under-
stand more directly how the tachyon is projected out.
Sadly, the AdS background dual to the orientifold daughter
is not known. In Ref. [23] an outline was given of the main
characteristics the dual theory should have. However, an
explicit solution is yet to be found.
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