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We construct matrix models for the deconfining phase transition in SUðNÞ gauge theories, without

dynamical quarks, at a nonzero temperature T. We generalize models with zero and one free parameter to

study a model with two free parameters: besides perturbative terms �T4, we introduce terms �T2 and

�T0. The two N-dependent parameters are determined by fitting to data from numerical simulations on

the lattice for the pressure, including the latent heat. Good agreement is found for the pressure in the semi

quark gluon plasma, which is the region from Tc, the critical temperature, to about �4Tc. Above�1:2Tc,

the pressure is a sum of a perturbative term, �þ T4, and a simple nonperturbative term, essentially just a

constant times�� T2
cT

2. For the pressure, the details of the matrix model only enter within a very narrow

window, from Tc to �1:2Tc, whose width does not change significantly with N. Without further

adjustment, the model also agrees well with lattice data for the ’t Hooft loop. This is notable, because

in contrast to the pressure, the ’t Hooft loop is sensitive to the details of the matrix model over the entire

semi quark gluon plasma. For the (renormalized) Polyakov loop, though, our results disagree sharply with

those from the lattice. Matrix models provide a natural and generic explanation for why the deconfining

phase transition in SUðNÞ gauge theories is of first order not just for three, but also for four or more,

colors. Lastly, we consider gauge theories where there is no strict order parameter for deconfinement, such

as for a Gð2Þ gauge group. To agree with lattice measurements, in the Gð2Þ matrix model, it is essential to

add terms that generate complete eigenvalue repulsion in the confining phase.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a theory of great
beauty. Only a handful of input parameters uniquely define
its behavior at all distance scales. For the pure glue theory,
with no dynamical quarks, there is only a single parameter,
which sets the overall scale of length.

Conversely, with so few parameters, it is difficult to
compute from first principles. A useful technique is to
perform numerical simulations on the lattice. While at

present simulations with dynamical quarks are extremely
challenging, in the pure glue theory results close to the
continuum limit can be obtained.
The behavior of gauge theories at a nonzero tempera-

ture, T, is of particular interest. There are lattice results for
the thermodynamic behavior of pure SUðNÞ gauge theories
[1,2] for two [3], three [4–7], and four or more colors
[8–13]. They show that in the pure glue theory, the ther-
modynamics for smallN is like that for largeN. The lattice
results find a pressure, pðTÞ, which is small in the confined
phase, below the critical temperature, Tc. Scaled by the
pressure of an ideal gas of gluons, the ratio pðTÞ=pidealðTÞ
grows sharply in the range from Tc to about 4:0Tc

and is then approximately constant above T > 4Tc;
p=pideal � 0:85 at 4Tc. We term the region over which
the pressure grows markedly, from Tc to �4:0Tc, as the
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semi quark gluon plasma (semi-QGP) [14,15]; see, also
Refs. [16–19].

At large N, the sharp increase in the pressure at Tc is
elementary. In the confined phase there are only colorless
glueballs, so the pressure is small, �1. In the deconfined
phase, the pressure is proportional to the number of gluons,
¼ N2 � 1� N2, and so large. Lattice simulations for three
[4,5] and even two colors [3] also find that the pressure
below Tc is much smaller than that above.

The similarity between small and large N can be made
quantitative. To parametrize the deviations from ideality,
consider the conformal anomaly, which is the energy den-
sity, eðTÞ, minus three times the pressure. Dividing by the
number of gluons, lattice studies show that as a function of
T=Tc, the dimensionless ratio ðe� 3pÞ=ððN2 � 1ÞT4Þ is
similar for N ¼ 3, 4 and 6 [11,12]: above T > 1:2Tc, this
ratio falls with increasing T.

Since the order of the transition changes with N, this
similarity breaks down close to the transition, below 1:2Tc.
The deconfining transition is of second order for two colors
[3], weakly first order for three [4,5], and first order for all
N � 4 [9,11,12]. While the ratio of the latent heat to the
number of gluons is a number of order one as N ! 1, this
ratio increases significantly as N does [9,12].

In this paper we use these detailed results from the lattice
to develop an effective theory for deconfinement in the pure
glue theory. A commonmodel for deconfinement is to take a
term like that of an ideal gas minus a MIT bag constant, B:
pðTÞ � c1T

4 � B. If true, then above �1:2Tc, the confor-
mal anomaly/T4 would fall off as �B=T4.

To understand the falloff, consider the following quan-
tity [7,11,12,14,20–23]:

~�ðTÞ ¼ eðTÞ � 3pðTÞ
ðN2 � 1ÞT2

cT
2
: (1)

That is, we plot the conformal anomaly divided not by T4

but by T2 times T2
c to form something dimensionless. We

also divide by the number of perturbative gluons to be able
to compare different numbers of colors. If a bag constant
dominated, this quantity would fall off at large T as
~�ðTÞ � B=ðT2

cT
2Þ.

For three colors, there is precise data from the WHOT

Collaboration [6]. We show ~�ðTÞ, extracted from the
WHOT data, in Fig. 1. Between 1.2 and 2:0Tc, this ratio
is constant to �1%. This implies that in this range, the
pressure can be approximated as

pðTÞ � c1ðT4 � c2T
2
cT

2Þ;
c2 � 1:00� 0:01; T=Tc: 1:2 ! 2:0:

(2)

There is no data from Ref. [6] above 2:0Tc.
There are recent results over a broad range of tempera-

ture from Borsanyi et al. [7]. They find that from 1.3 to

4:0Tc,
~�ðTÞ is constant to within �5%, Fig. 6 of Ref. [7].

At much higher temperature, ~�ðTÞ grows because of the
running of the coupling constant, Fig. 10 of Ref. [7].
The same constancy is also seen for four and six colors,

albeit with larger error bars [11,12]. Notably, the width of

the window in which ~�ðTÞ is constant does not appear to
change significantly as the number of colors increases from
N ¼ 3 toN ¼ 4 or 6 [11,12]. This indicates that the narrow
width of the window is not a largeN effect, which vanishes
as N ! 1.
The fact that nonideal terms in the pressure are�T2 was

first noted in Ref. [20] and then later in Ref. [21]; see also
the discussions in Refs. [7,14,22,23]. One implication,
used previously by us in Ref. [14] and also here, is that
since the ideal gas term is T4, any nonperturbative terms
that we introduce are assumed to be proportional only to
even powers of T, such as �T2, �T0, etc.
Less obviously, with hindsight many features of our

model can be understood from Fig. 1. We use a SUðNÞ
matrix model, where the basic variables are the eigenvalues
of the thermal Wilson line. The vacuum at a temperature T
is given by varying an effective Lagrangian with respect to
these N matrix variables, the q’s; the pressure is (minus)
the value of the potential at this minimum. Even without
knowing what the q’s are, though, clearly the simplest way
of obtaining a constant term �T2 in the pressure is simply
to introduce a similar constant in the potential for the q’s.
This implies that over most of the semi-QGP, above 1.2,

to �4:0Tc, the decrease of the pressure, relative to that of
an ideal gluon gas, is dominated by a trivial term, a pure
number times �� T2

cT
2. In the deconfined phase, there is

a nontrivial minimum of the effective theory, in which the
q’s are nonzero, only in a surprisingly narrow window, for
T � 1:2Tc.
This is not generic to matrix models but is forced upon

us by the lattice data [4–6,9,11,12]. A matrix model for
deconfinement was first introduced by Meisinger et al.
[20]. This model has no free parameters and, as we show
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FIG. 1 (color online). Plot of the trace anomaly divided by T2,
ðe� 3pÞ=ð8T2T2

c Þ, from the data of Umeda et al., Ref. [6]; see
also Borsanyi et al., Ref. [7].
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later, a much broader result for ðe� 3pÞ=T4 than seen by
the lattice. In Ref. [14] we introduced a model with one
free parameter, which allowed us to fit the narrow result for
the conformal anomaly observed on the lattice. In the
present work we show that agreement with the lattice
data near Tc, in particular for the latent heat, requires a
two-parameter model.

Ignoring such details, the fundamental question
remains: what is the origin of this constant term in the
pressure, �� T2

cT
2, which dominates the corrections to

nonideality above �1:2Tc?
One natural guess is a gluon mass �Tc. Such a mass is

typical, for example, in solutions to the Schwinger-Dyson
equations of QCD [24]. After all, if we expand the pressure
of massive gas about the massless limit, when m � T the
leading correction is ��m2T2.

However, there is no simple form for the mass that will
give such a flat result for the rescaled conformal anomaly
of Eq. (1). If we take m� T, then it is not difficult to see
that the ideal pressure of such a massive gas is a pure
number times T4. If we take m to have a constant mass,
proportional to Tc, then numerically one can check that the
only way to obtain a correction �T2 is for small masses,
m � Tc; but the value of c2 in Eq. (2) requires that m is a
number of order one times Tc. The only way to fit the
pressure is if the gluon mass is an involved function of T.
This is what is done in quasiparticle models [25–28]; see,
e.g., Eq. (27) of Ref. [27], where their mðTÞ involves three
parameters. In contrast, in a matrix model we can fit the
pressure, with a similar accuracy, with one free parameter,
the constant �� T2

cT
2.

It is also useful to note that for SUðNÞ gauge theories in
2þ 1 dimensions [29,30], the pressure has a similar form
to that in Eq. (2). From Fig. 6 of Caselle et al. [30], above
temperatures of �1:25Tc the pressure is approximately
pðTÞ � T3 � TcT

2. That is, the nonideal term is again
�T2; this is not a mass term, since in 2þ 1 dimensions
this would be linear in the temperature, �m2T.

Thus the term�� T2
cT

2 in the pressure does not appear
to be just a gluon mass. Nor do we know why the window,
from Tc to 1:2Tc, is so narrow. One might guess that it is an
effect�1=N2, but to fit the lattice data, our model requires
that the window has about the same width for four and
six colors as it does for three. A term �T2 is like the free
energy of massless fields in two dimensions, such as
strings, but how can strings contribute to the free energy,
�N2, in the deconfined phase?

With our matrix model we also predict features which
are not usually addressed by other effective theories.
Taking the parameters from the fit to the pressure, we
compute the ’t Hooft loop in the semi-QGP and find
good agreement with lattice data. In contrast to the pres-
sure, for the ’t Hooft loop we find that the effects of
nonideal terms matter not just below 1:2Tc but over the
entire semi-QGP, from Tc to �4:0Tc. For this reason, the

computation of the ’t Hooft loop is a sensitive and crucial
test of our model.
There is one glaring discrepancy, though, between the

lattice data and our model. In our model the Polyakov loop
only differs from one when the matrix q’s are nonzero,
below 1:2Tc. This is very different from the behavior of
the renormalized Polyakov loop from the lattice [31,32],
which varies over the entire semi-QGP. Perhaps the renor-
malized Polyakov loop does not accurately reflect changes
in the eigenvalue distribution. The eigenvalues of the
Wilson line can be measured directly in lattice simulations
[33,34]. We comment on this further in the Conclusions,
Sec. IX.
Matrix models can help give further insight into decon-

finement. For SUðNÞ theories without dynamical quarks,
the existence a global ZðNÞ symmetry gives a rigorous
definition for the deconfining phase transition; it implies
that the confined phase is necessarily ZðNÞ symmetric. In a
SUðNÞ matrix model, the confined phase is uniquely char-
acterized by the complete repulsion of eigenvalues. The
structure of this point in the space of eigenvalues, which is
the Weyl group, is such that the ZðNÞ symmetry of the
confined phase is automatic.
Svetitsky and Yaffe showed that for three colors, the

deconfining transition is generally of first order [35]. This
is because for three colors, the Zð3Þ symmetry allows one
to form a cubic invariant of Polyakov loops. As is typical of
mean-field theory, such a cubic invariant ensures that the
transition is of first order. For four or more colors, though,
ZðNÞ-invariant terms are of quartic or higher order, and
there is no prediction. Note that this assumes that the
relevant variables are Polyakov loops, which are elements
of the Lie group.
As discussed above, though, lattice simulations show

that the deconfining transition is of first order not just for
three but for four or more colors. This is explained natu-
rally by matrix models. In expanding our matrix model
about the confining vacuum, we find a cubic invariant for
any N � 3. This result is not special to the parameters
of our model: we show how if we expand a general
matrix model about the point of complete eigenvalue re-
pulsion, then there is a cubic invariant. The presence of a
cubic invariant, now in terms of elements of the Lie alge-
bra, instead of the Lie group, implies that the deconfining
phase transition is of first order not just for N ¼ 3 but
for N � 4.
The details of the transition in our simple matrix model

appear to agree with results from the lattice. In particular,
while the latent heat (scaled appropriately by N2 � 1)
grows from N ¼ 3 to large N, the order-disorder interface
tension, at Tc, is rather small for all N. In our model this is
because there is a potential with a small barrier between
two vacua which are relatively far apart.
We also extend our analysis to include other gauge

groups. A particularly interesting example is provided by
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the exceptional group Gð2Þ [36–41]. This group has a
trivial center, so there is no order parameter for deconfine-
ment. Nevertheless, lattice simulations find that there is a
strongly first-order phase transition between a deconfined
phase at high temperature and a low-temperature phase in
which the expectation values of Polyakov loops are very
small. That is, although there is no center symmetry, the
low-temperature phase still appears to confine.

We do not find that the simplest matrix model reprodu-
ces the lattice data for a Gð2Þ gauge group. However, we
show how to add terms in the effective matrix model to
ensure that the expectation value of Polyakov loops is
small in the low-temperature phase. Given our experience
with SUðNÞ, for Gð2Þ we add terms that generate the
complete repulsion of eigenvalues in the low-temperature
phase. Thus, the expectation value of Polyakov loops is
small not because of a center symmetry but because of
eigenvalue repulsion. This is also reflected in their thermo-
dynamic behavior. With the simplest choice of parameters
in our model, we find that the sharp maximum in
ðe� 3pÞ=T4, found for SUðNÞ, does not appear for a
Gð2Þ gauge group.

Especially given the wealth of experimental results from
heavy ion collisions at ultrarelativistic energies, of course
we wish to generalize this model to theories with dynami-
cal quarks and, in particular, to QCD. Before doing so,
however, we feel it is necessary to understand the transition
in the pure glue theory with some care.

The outline of the paper is as follows. In Sec. II we give
an introduction to how our matrix model works for the
simplest case of two and three colors. We discuss the basic
justification for our approach, which is a type of large-N
expansion. We also discuss the quantities which the model
can compute. Besides familiar quantities, such as the pres-
sure and the Polyakov loop, this includes the ’t Hooft loop,
also known as the order-order interface tension. We also
compute the order-disorder interface tension at Tc in our
model.

There are, of course, other effective models that treat the
theory near Tc. Besides the quasiparticle models discussed
above [25,27], these include ZðNÞ effective theories [42];
solutions of the functional renormalization group [43]; and
Polyakov loop models [44,45]. Recent work on matrix
models includes Refs. [28,34,46–48].

We stress that we are not attempting to solve the theory
near the deconfining transition but only to develop an
effective theory. As such, we find it notable that our
model, with only two parameters, provides a good fit to
two functions of temperature: both to the pressure and to
the ’t Hooft loop. While our two parameters are N depen-
dent, allowing this provides a good fit to SUðNÞ for all N.

Analyses that study the deconfining phase transition
from the fundamental theory include monopoles [49],
dyons [50–52], and bions [53–55]. Dyons predict that the
deconfining transition is of first order for N > 3 and for

Gð2Þ, as we find [51]; they do not make detailed predictions
for the thermodynamic behavior near Tc, though. Bions are
especially useful in expanding about the supersymmetric
limit.
In Sec. III we discuss the types of matrix model that can

be constructed for arbitrary classical groups. We empha-
size the role that invariance play under the Weyl group and
the utility of understanding the concept of the Weyl
chamber.
In Sec. IV we discuss models relevant to SUðNÞ, up to

those with two free parameters. We introduce a technical
assumption, which we call the ansatz of uniform eigenval-
ues, which allows us to compute many quantities analyti-
cally for arbitrary N. We also compare to lattice results on
the interaction measure and, especially, the latent heat.
In Sec. V we compute some of the interface tensions

that arise. The order-disorder interface for arbitrary N is
computed analytically under the uniform eigenvalue
ansatz. For two colors, we evaluate the ’t Hooft loop
analytically. For three colors, the ’t Hooft loop is computed
numerically.
The numerical solution of the model for four to seven

colors is given in Sec. VI. We find that for the interaction
measure and the Polyakov loop, the uniform eigenvalue
ansatz works remarkably well for these values of N.
In Sec. VII we demonstrate that matrix models naturally

explain why the deconfining transition is of first order not
just for three colors [35] but for four or more. We consider
matrix models for the Gð2Þ group in Sec. VII. A summary
and conclusions are given in Sec. IX.

II. OUTLINE OF THE METHOD

In this section we give an elementary overview of how
our matrix model works for two and three colors. Because
we treat general gauge groups later, here we shall concen-
trate on the assumptions implicit in our approach and the
physical quantities that we can compute in our model.

A. Two colors

General results and lattice simulations show that the
expectation value of the Polyakov loop changes near Tc.
To model this, we take the simplest ansatz which will
generate such an expectation value, taking A0 to assume
a constant, nonzero value. By a gauge rotation we can take
the background field for A0. to be diagonal. For two colors
there is only one diagonal direction, along the Pauli
matrix �3,

A0 ¼ �T

g
q�3; �3 ¼ 1 0

0 �1

� �
: (3)

In this background field the Wilson line is

Lð ~xÞ¼Pexp

�
ig
Z 1=T

0
A0ð ~x;�Þd�

�
¼ ei�q 0

0 e�i�q

 !
; (4)
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and the Polyakov loop, in the fundamental representa-
tion, is

‘ ¼ 1

2
trL ¼ cosð�qÞ: (5)

The usual perturbative vacuum is q ¼ 0, L ¼ 1, and
‘ ¼ 1. The Zð2Þ transform of the usual vacuum is
q ¼ 1, L ¼ �1, and ‘ ¼ �1.

In what follows it is convenient to restrict the variable q
to lie in the region q: 0 ! 1. If we do so, a Zð2Þ trans-
formation is given by

q!1�q:L!ð�Þ e�i�q 0

0 ei�q

 !
; ‘!�‘: (6)

Notice that this Wilson line is only�1 times that in Eq. (4)
after allowing for permutation of the eigenvalues.

The confining vacuum is

qc ¼ 1

2
: Lc ¼ i 0

0 �i

� �
; ‘c ¼ 0: (7)

Given the known behavior of the Polyakov loop near Tc,
this ansatz must characterize, at least to some extent, the
deconfining phase transition. The essential question of
physics is the following. For example, in the confined
phase does ‘c vanish because it is dominated by qc or
because fluctuations, about various values of q, wash
it out?

For an infinite number of colors, at any temperature the
vacuum is dominated by a master field. At a nonzero
temperature, the matrix q represents the master field about
Tc, in the region where the value of the Polyakov loop
changes. As is typical of large N, fluctuations in discon-
nected quantities, such as the Polyakov loop, are sup-
pressed by powers of 1=N2. We stress that at a given
temperature T, we can only deduce what the value of q is
from measurements on the lattice. These measurements
also give us no insight into which effective theory deter-
mines this q.

We now make the egregious assumption that a large-N
expansion is a good approximation for all values ofN, even
for N ¼ 2. As discussed in the Introduction, Sec. I, there
are many similarities between the transitions for small and
large N. A standard large-N expansion would imply com-
puting at infinite N and then expanding in 1=N2. Instead,
we adopt a more expansive view and assume that we can
expand about q’s appropriate to a given value of N. This
can be considered as a type of generalized large-N expan-
sion. By expanding directly in the q’s appropriate to a
given N, we are directly incorporating some subset of
corrections in 1=N2 more directly than if we had followed
the standard approach. This is also natural, since for either
large or smallN, we can only construct our effective theory
with the input of lattice data.

This leaves open the question of how we could system-
atically develop a procedure for computing corrections to
our generalized large-N expansion. There will certainly be
corrections in both 1=N and in powers of the coupling
constant, g2. We defer this analysis for now and proceed
in developing an approximation to what is certainly lowest
order.
The simplest thing to do is to compute the free energy in

the presence of the background field in Eq. (3). This is a
standard computation; see, e.g., Sec. 2 of Ref. [56]. It will
be done for a general gauge group in Sec. III. The result is

V ptðqÞ ¼ �2T4

�
� 1

15
þ 4

3
q2ð1� qÞ2

�
: (8)

For q ¼ 0 this is the free energy of an ideal gas of three
massless gluons. This is degenerate with q ¼ 1, which
reflects the Zð2Þ symmetry of the pure glue theory.
This potential in q can be used to compute the ’t Hooft

loop or the order-order interface tension [56,57]. This is the
action for a state which tunnels from q ¼ 0 at one end of a
long spatial box to q ¼ 1 at the other. The computations
are typical of barrier penetration in one spatial dimension
and are given in Sec. V.
Perturbatively, the confined state at q ¼ 1=2 is an ex-

tremal point of the potential, but a maximum. To describe
the transition to a confined state, we have to add non-
perturbative terms to the effective Lagrangian to force
the vacuum to go from the perturbative vacua at q ¼ 0
and 1 to q ¼ 1=2. After a little experimentation, the nature
of these terms can be guessed.
Given the behavior of the interaction measure in Fig. 1,

we assume that any term is proportional to T2. It must also
be Zð2Þ symmetric. Thus, one such term is

V npt ¼ � 4�2

3
cT2T2

c

��������12 trL

��������
2

¼ � 4�2

3
cT2T2

c cosð�qÞ2: (9)

To make up the mass dimensions, we use the critical
temperature, Tc. Since Tc is a manifestly nonperturbative
quantity, so is this potential.
We then take the total potential as the sum of V pt and

V npt. At high T, where V pt dominates, the perturbative

vacuum is favored. Near Tc, where V npt becomes as

important as V pt, the confined vacuum, q ¼ 1=2, is. It is

easy to check that the deconfining transition occurs for
c ¼ �1=16.
The problem is that the transition is not of second order

but of first. That is, when c ¼ 1=16, the vacua at q ¼ 0
(or 1) is degenerate with the confined phase, q ¼ 1=2, but
there is a nonzero barrier between the two. Hence the
theory stays in the perturbative QGP until Tc, when it
goes directly into the confined phase with no semi-QGP
in between.
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This example illustrates a more general problem. For
static fields, A0 couples to the spatial degrees of freedom Ai

as an adjoint scalar. Thus, when q and A0 are nonzero, there
is an adjoint Higgs phase [21,53]. Thus, in principle there
could be two phase transitions. Besides the usual decon-
fining transition at Tc, there could be a second transition, at
a temperature above Tc, when the theory first enters the
adjoint Higgs phase. While possible, the lattice simulations
give no indication of such a second transition above Tc.

To avoid this, we add terms to the effective Lagrangian
to ensure that there is no chance of such a second transition
developing. This is easy. If we add a term that is linear in q
for small q, then such a term will act to generate an
expectation value for q for any temperature. That is, the
theory is always in an adjoint Higgs phase.

Any term that we add must respect the Zð2Þ symmetry.
Under Zð2Þ, q ! 1� q. This means that we cannot add a
term which is just �q, but we can add a term �qð1� qÞ,

V npt ¼ � 4�2

15
T2T2

cc1qð1� qÞ: (10)

This model was first proposed in Ref. [20]. Meisinger
and Ogilvie showed how it can arise from the expansion of
a massive field in a background field A0 � q [20,58]. Such
a term also arises in expanding about the limit of N ¼ 1
supersymmetry for essentially the same reason [55]. Here,
we emphasize that including such a term is not optional but
is essential to avoid an unwanted phase transition above Tc.

To fit to the lattice data, we find it necessary to add two
more terms to the nonperturbative potential,

V npt ¼ � 4�2

3
T2T2

c

�
1

5
c1qð1� qÞ þ c2q

2ð1� qÞ2 � c3

�
:

(11)

The term�c3 is trivial as it does not affect the expectation
value of q. The term �c2 is clearly allowed, as it is
identical to the perturbative potential in Eq. (8).

We end up with a model that appears to have three free
parameters. However, we need to adjust the parameters so
that the transition occurs at Tc. Secondly, we need a con-
straint to fix the pressure in the confined phase. At large N,
the pressure in the confined phase is �1, relative to that
�N2 in the deconfined phase. We adopt the simplest
possible convention and assume that the pressure vanishes
identically at T�

c . In practice, it would be better to fit the
pressure in the confined phase to some sort of hadronic
(that is, glueball) resonance gas. Because we don’t do that
here, we find that our model exhibits unphysical behavior
for the pressure below Tc. This is entirely an artifact of our
overly simplistic assumptions.

Two conditions on three parameters then leaves one free
parameter. Surprisingly, we show later that fits with one
free parameter do a remarkably good job of fitting the
pressure and the ’t Hooft loop, at least if one is not too
near Tc.

The terms in V npt are clearly not unique, as we can add

arbitrary powers of qð1� qÞ. Further, there is no reason
why we could not add terms which are not �T2, but T0,
etc. In fact, we shall have to add a fourth term, �T0c03,
later, in order to fit the region near Tc for N � 3. This is
then a model with two free parameters. With such a model,
we can then fit the region very near Tc, including the latent
heat.
Even so, we find it striking that such simple models, with

at most two free parameters, can fit several functions of
temperature. It satisfies one of the cardinal virtues of any
good mean-field theory, which is simplicity.
(For two colors, in our theory the energy density is

negative in a narrow interval, to approximately�1% about
Tc. This can be corrected by adding further terms to the
potential. However, we do not expect our model to describe
the critical region near Tc with precision).
Viewing the A0 as an adjoint Higgs theory yields the

following. When hqi � 0, there is a splitting of masses.
Since A0 � �3, the off-diagonal components develop a
mass �q, while the diagonal ones do not. All components
develop an equal mass from Debye screening. In our
model, with Eqs. (10) and (11), the theory is in an adjoint
Higgs phase for all T > Tc. In practice, for the parameters
of the model, this condensate is very small except near Tc;
above �1:2Tc, the condensate effectively vanishes.

B. Three or more colors

For three colors the background field can lie in one of
two directions,

A0 ¼ �T

3g
ðq3�3 þ q8�8Þ;

�3 ¼ diagð1;�1; 0Þ;
�8 ¼ diagð1; 1;�2Þ:

(12)

Except for overall constants, �3 and �8 are the usual
Gell-Mann matrices.
Unlike for two colors, the two directions now have

different effects. Moving along the �8 generates Zð3Þ trans-
formations: L ¼ 1 when q ¼ 0 and L ¼ expð2�i=3Þ1
when q ¼ 1. Moving along �3 takes one to the confining
vacuum, which is

L c ¼ diagðe2�i=3; e�2�i=3; 1Þ; ‘c ¼ 0: (13)

When hq3i � 1, then the ’t Hooft loop is determined
simply by the path along �8. As discussed in Sec. V,
though, near Tc, when hq3i is substantial, the path is along
both directions.
The generalization to arbitrary Lie groups is treated in

the next section. If we concentrate only upon the behavior
of the pressure, then we only need consider that path
to the confining vacuum, and the problem is relatively
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straightforward. If we were to consider arbitrary ’t Hooft
loops for SUðNÞ when N � 4, though, it would be a much
harder problem.

When the transition is of first order, as is generally true
for most gauge groups, then besides the order-order inter-
face tension, there is, at Tc, also an order-disorder interface
tension. This describes the barrier between the deconfined
and the confined phases at Tc.

III. THE EFFECTIVE POTENTIAL
FOR GENERAL GAUGE GROUPS

In this section we compute the perturbative effective
potential for a SUðNÞ gauge group and discuss the general
form which is consistent with the relevant symmetries. We
compute in sufficient generality that the result be general-
ized to other classical groups or to Gð2Þ, Sec. VII.

To lowest order, one computes about a constant back-
ground field,

A 0 ¼ 2�T

g
q: (14)

The basic variables of our matrix model are the eigenvalues
of the Wilson line, which are gauge invariant. To leading
order in the coupling constant g2, these are given by
expanding about the background field in Eq. (14). Since
in general A0 is gauge dependent, though, it is not surpris-
ing to find that the relationship between the background A0,
and the eigenvalues of the Wilson line, is more compli-
cated beyond leading order in �g2 [56,57,59,60].

For SUðNÞ the only constraint on the eigenvalues is
given by unimodularity:

q1 þ q2 þ � � � þ qN ¼ 0: (15)

The number of independent q’s in Eq. (16) is r, the rank of
the group; for SUðNÞ, r ¼ N � 1.

For SUðNÞ, q is a traceless, diagonal N 	 N matrix.
The Wilson line is

L ¼ expð2�iqÞ ¼

e2�iq1 0 � � � 0

0 e2�iq2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � e2�iqN

0
BBBBBB@

1
CCCCCCA: (16)

We wish to compute the effective potential V ðqÞ.
This can be done starting from the field theory path inte-
gral, keeping the eigenvalues of the Polyakov fixed to the
value expði2�qÞ. This can be done in a gauge-invariant
way by taking traces of powers of the Polyakov loop. We
need as many of these powers as there are independent
eigenvalues:

expð�V3V ðqÞ=TÞ
¼
Z
DA�r

n¼1�ðtre2�inq� trPðA0ÞnÞexpð�SðAÞÞ: (17)

The average over the spatial volume V3 is denoted by a bar.
This path integral is up to a normalization the probability
that a given configuration q of phases occurs in the system.
As is well known, this constrained path integral is in the
large-volume limit (V3 ! 1) the traditional free energy as
a function of the quantum average of the loop. In pertur-
bation theory, this path integral has been evaluated to
order g3.
What is the general form of the effective potentialV ðqÞ

which we can take? The trace of the Wilson line in an
arbitrary representation R, LR, is gauge invariant. By the
character expansion, in the sum we can take only single
traces, trLR, if arbitrary representations are included
[17–19].
In practice, we find it convenient to take traces of powers

of loops, as

V ðqÞ ¼ T4
X
R

X
n�1

wR
n ðtÞtrRðLn þ ðLyÞnÞ: (18)

The weights wR
n ðtÞ are taken real. As we see later, using

infinite sums, as in Eq. (18), allows us to write our (matrix)
mean-field theory in an especially simple manner.
At high temperature, to one loop order the potential is as

in Eq. (18), where only the adjoint representation appears,

w
adj
n � 1

n4
: (19)

The traces in Eq. (18) involve the identities

X1
n¼1

1

n2p
cosð2�nxÞ ¼ ð�Þp�1 ð2�Þ2p

2ð2pÞ!
~B2pðxÞ; (20)

where ~B2pðxÞ is a Bernoulli polynomial [61].

For p ¼ 1 and p ¼ 2 we define

B2ðxÞ ¼ xð1� jxjÞ;mod 1;

B4ðxÞ ¼ x2ð1� jxjÞ2;mod 1:
(21)

We make the unconventional choice of defining BkðxÞ ¼
~BkðxÞ � ~Bkð0Þ, so that our Bk’s vanish at the origin,
B2ð0Þ ¼ B4ð0Þ ¼ 0. Outside of the range jxj � 1, they
are defined to be periodic in x, modulo one. This reflects
the fact that the qi’s are periodic variables.
The quantities B2 and B4 are the building blocks of our

matrix model. Note that after the infinite summation over
loops, we have a quartic polynomial in the eigenvalues of
the Wilson line, the q’s. We then need to make a judicious

choice for the weights w
adj
n .

The SUðNÞ groups have an additional global symmetry,
the center group symmetry ZðNÞ. This means that the

potential is the same for L and for e2�ik=NL, k ¼
1; � � � ; N � 1. This symmetry limits the representations
R to those having N-ality zero, such as the adjoint.
There is no such requirement in the absence of a center-

group symmetry, as occurs for the group Gð2Þ. Thus, be-
sides the adjoint representation, which is a 14, we can also
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include the fundamental representation, which is a 7. This
is useful in Sec. VII.

A. General computation to one loop order

Our effective potential, V totðqÞ, is constructed from
two quantities: a perturbative potential, V ptðqÞ, in which

the only mass scale is the temperature, and a nonperturba-
tive term, V nonðqÞ, which involves both a nonperturbative
mass scale and the temperature.

The perturbative potential is computed to one loop
order order using the steepest descent method, applied
to Eq. (17):

V ptðqÞ ¼ T tr logð�D2ðqÞÞ=V3: (22)

The trace is over all momentum and color degrees of
freedom. Spin degrees of freedom are already summed
over. The gauge covariant d’Alembertian D2ðqÞ is

D�ðqÞ ¼ @� þ 2�i��;0½q; :
: (23)

The color algebra can be diagonalized by using the
Cartan basis. This is comprised of N � 1 diagonal matri-

ces, the Cartan generators, ~H ¼ H1; . . . . . . ::; Hr, and
N2 � N off-diagonal matrices, the E�. Their commutation
relations define the root vectors ~� in Cartan space:

½ ~H; E�
 ¼ ~�E�; (24)

½E�; E��
 ¼ ~� � ~H; (25)

½E�; E�
 ¼ ð ~�þ ~�ÞE�þ�; if ~�þ ~� is a root: (26)

We normalize all generators as

tr ðHiHjÞ ¼ 1

2
�ij; trðE�E�Þ ¼ 1

2
��;��: (27)

The roots have a length proportional to the normaliza-

tion of the matrices ~H. But the combination

H� ¼ ~� � ~H

~�2
(28)

does not depend on normalization. The commutation rela-

tions Eq. (26) tell us that the triplet Ê�� ¼ E��=j ~�j and
H� form a SUð2Þ-type algebra,

½H�; Ê��
 ¼ �Ê�; ½Ê�; Ê��
 ¼ H�; (29)

H� is like �3, and E�� like the ��. As a diagonal matrix,

the q can be rewritten in terms of the ~H, q ¼ ~q � ~H. In
contrast to the qi, the r components of ~q are independent
quantities.

The covariant derivative (23) acquires q dependence
by acting with the commutator term on gauge-field
fluctuations proportional to E�. For a fixed root �, the
d’Alembertian �D2ðqÞ becomes

�D2ðqÞE� ¼ ðð2�Tðnþ ~� � ~qÞÞ2 þ ~p2ÞE�; (30)

the Matsubara frequency is 2�Tn, where n is an integer.
Finally, integrating over the spatial momenta, and sum-

ming over the n’s and the �, gives the one-loop perturba-
tive potential

V ptðqÞ ¼ � ðN2 � 1Þ�2

45
T4 þ 2�2

3
T4
X
�

B4ð ~� � ~qÞ;

(31)

where B4 is given in Eq. (21).
The arguments ~� � ~q can be rewritten as ~� � ~q ¼

2 trð ~� � ~HqÞ. Below, we write this argument explicitly for
the four types of classical groups, using standard group

theory [62]. We split the ~� into ~� ! ~��, ~�þ and ~�.
Definitions of these quantities, and a detailed analysis,
will appear separately [58]; here, we simply present the
results.
For SUðNÞ the argument becomes

~��
ij � ~q¼2tr ~��

ij � ~Hq¼qi�qj; 1� i<j�N: (32)

For the orthogonal groups SOð2NÞ, these arguments in-
volve both differences and sums of the qi, 2NðN � 1Þ in
total, living in the Cartan algebra of N dimensions:

~��
ij � ~q ¼ qi � qj;

~�þ
ij � ~q ¼ qi þ qj; 1 � i < j � N;

(33)

together with roots of the opposite sign.
For SOð2N þ 1Þ groups, the dimension of the Cartan

subalgebra is the same as that of SOð2NÞ. Apart from
the 2NðN � 1Þ roots involving ��

ij � ~q ¼ qi � qj, as in

Eq. (33) there are also 2N short roots �i leading to

� ~�i � ~q ¼ �qi; 1 � i � N: (34)

For the symplectic groups Spð2NÞ [rank N and dimen-
sion equal to that of SOð2N þ 1Þ], the arguments are
obtained simply by leaving the 2NðN � 1Þ projections
��
ij � ~q ¼ qi � qj the same, but changing the 2N short

roots into long roots. This gives

� ~�i � ~q ¼ �2qi; 1 � i � N: (35)

Transforming the generic root ~r into its dual, ~r� ¼ r=~r2,

leaves the ~�� invariant, while the short roots ~� transform
into the long roots and vice versa. The root systems of
SUðNÞ and of SOð2NÞ are invariant under this transforma-
tion. The root systems of SOð2N þ 1Þ and of Spð2NÞ
transform into one another, Eqs. (34) and (35). The duality
between the roots of Spð2NÞ and SOð2N þ 1Þ implies a
duality between the potentials for q; see, also, the discus-
sion following Eq. (155) [58].
The root system of the exceptional group Gð2Þ is dealt

with in Sec. VII. There, we will use the projections in
Eqs. (32)–(34) for SUð7Þ and SOð7Þ.
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B. Weyl groups and Weyl chambers

An interesting aspect of Eq. (31) is that it is a sum over
all roots of the gauge group. This guarantees that the
potential is invariant under the symmetries of the roots,
which comprise the Weyl group. This invariance is espe-
cially useful in generalizing our potential to other gauge
groups, such as Gð2Þ in Sec. VII.

Weyl transformations are generated by the the reflection
of the simple root ~� into the mirror,M�, which is orthogo-

nal to the simple root ~	. This reflection produces another
root ~w	ð ~�Þ:

~w 	ð ~�Þ ¼ ~�� 2
~� � ~	

~	2
~	; (36)

where

2
~� � ~	

~	2
¼ m; (37)

and m is an integer. Equation (37) is invariant under the
interchange of � and 	, although the integer m may
change. Together these conditions imply that the the roots
lie on a lattice. The only possible angles between adjacent
roots are 30�, 45�, 60�, and 90�; the relative lengths

between j ~�j and j ~	j can be 1,
ffiffiffi
2

p
, or

ffiffiffi
3

p
.

To use representations other than the adjoint, we need
their weight vectors, ~v. Equation (37) is invariant if ~v is
replaced by ~�.

Classical groups have root systems with at most two
different lengths:

(i) SUðNÞ and SOð2NÞ: all roots ~�� are equal.

(ii) SOð2N þ 1Þ: 2N short roots ~� and Nð2N � 1Þ long
roots ~��,

ffiffiffi
2

p
longer.

(iii) Spð2NÞ: like that for SOð2N þ 1Þ, except that the
short and long roots are interchanged.

(iv) Gð2Þ: six short roots and six long roots, of relative

length
ffiffiffi
3

p
; see Sec. VII.

The Weyl group is a set of orthogonal transformations
and, therefore, leaves the length of the roots invariant. For
any classical group, by Eq. (37) there are at most two
lengths involved; for SUðNÞ and SOð2NÞ, there is only
one length.

For SUðNÞ there are N � 1 independent reflections.
These generate a finite group, which is the Weyl group W.
The Weyl group of SUðNÞ is the permutation group of the
N fundamental indices. Thus, the order of the Weyl group
is dW ¼ N!.

Lastly, we introduce the concept of the Weyl chamber,
W . The Weyl chamber has as its walls the mirrors M�,
which are perpendicular to the root �; here, � runs
through the r simple roots that span the Cartan algebra.
No element of the Weyl group leaves the Weyl chamber
invariant, as the resulting dW Weyl chambers fill all of the
Cartan space.

Let us return to Eq. (31), the perturbative potential for
the q’s. If we wish to consider more general potentials,
we need to require that they are invariant under the Weyl
group. This is constructed by exploiting the separate in-
variance of the roots �� and the roots �. Instead of giving
long and short roots the sameweight, we can take the linear
combination:

a
X
�

ðB4ð ~�� � ~qÞÞ þ a2B4ð2 ~�� � ~qÞ þ . . .Þ

þ b
X
�

ðB4ð ~� � ~qÞ þ b2B4ð2 ~� � ~qÞ þ . . .Þ: (38)

Each term in this sum is invariant under the Weyl group.
This is essential in using our approach in gauge theories
other than SUðNÞ, like Gð2Þ, in Sec. VII.
Once we know the potential Eq. (38) inside a Weyl

chamber, we can determine it everywhere in the Cartan
space by using Weyl transformations and the periodicity of
the Bernoulli polynomials. The Weyl symmetry is a prop-
erty of the Lie algebra. Additional symmetries, such as
ZðNÞ for a SUðNÞ gauge group, arise from global proper-
ties of the gauge group.

C. The Weyl chamber of SUðNÞ
For SUðNÞ, there is an alternate basis for the ~H’s that is

useful in what follows. Consider the diagonal matrices Yk,
where k ¼ 1; 2 . . .N � 1:

Y k ¼ 1

N
diagðk; . . . k; k� N; . . . ; k� NÞ: (39)

There are N � k entries k, and k entries k� N, so Yk has
zero trace; we call them hypercharges. The Yk are ortho-
gonal to the simple roots Hi;iþ1:

tr ðYkHi;iþ1Þ ¼ 1

2
�ik: (40)

They also obey

tr ðYkYlÞ ¼ 1

N
ðNminðk; lÞ � klÞ � 0: (41)

Consequently, the angle between two hypercharges is also
less than �=2.
The Yk are useful because they serve as generators of

elements of ZðNÞ:

expð2�iYkÞ ¼ exp

�
2�ik

N

�
1: (42)

Further, the Yk are the edges of the Weyl chamber of
SUðNÞ. To see this, take the set of N � 2 Yk matrices,
excluding Yi. Because of Eq. (40), this set forms the Weyl
mirror Mi;iþ1, which is orthogonal to the root �i;iþ1.

Now form a polyhedron whose N � 1 edges are given
by the Yk. The rest of the edges are given by drawing
edges between the endpoints of the hypercharges,
Eq. (39). Then the N � 1 Weyl mirrors Mi;iþ1 are the
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faces of this polyhedron. This polyhedron is the Weyl
chamber. Note that by Eq. (42), the vertices of the Weyl
chamber are the points corresponding to the N � 1 ele-
ments of the center group ZðNÞ.

Consider the average of all of the hypercharges; we call
this average the barycenter, Yc, of the Weyl chamber:

Y c 
 1

N
ðY1 þ Y2 þ � � �YN�1Þ: (43)

The corresponding element of the Lie group is

Lc ¼ expð2�iYcÞ

¼

e�iðN�1Þ=N 0 � � � 0

0 e�iðN�3Þ=N � � � 0

..

. ..
. . .

. ..
.

0 0 � � � e��iðN�1Þ=N

0
BBBBBB@

1
CCCCCCA:

(44)

The confining vacuum is precisely the barycenter Yc.
This is clear from the ZðNÞ symmetry: since by Eq. (42) the
hypercharges generate elements of ZðNÞ, the barycenter, as
the average of all of the hypercharges, is automatically
ZðNÞ invariant. This implies, and it can be checked, that the
appropriate traces of Lc vanish:

trLk
c ¼ 0; k ¼ 1 . . .N � 1; trLN

c ¼ 1: (45)

From the explicit form of Eq. (44), we also see that the
eigenvalues are equally distributed about the unit circle,
with a spacing 2�=N. That is, in the confined vacuum there
is a uniform repulsion of eigenvalues.

The Weyl chamber is illustrated in Fig. 2 for three and
four colors. This figure is useful later in Sec. VII in under-
standing why the deconfining transition is of first order for
four or more colors.

For three colors the Weyl chamber is an equilateral
triangle, with corners O, Y1, and Y2. Zð3Þ invariance
of the potential divides the Weyl chamber into three

equivalent triangles, with the invariant barycenter Yc in
common. Note that the loop L is real along the line OYc.
By a global Zð3Þ rotation, we can require that the minima
lie along this line for any temperature.
For four colors, the Weyl chamber is a tetrahedron, with

corners O, Y1, Y2, and Y3. The four faces of the tetrahe-
dron are congruent triangles: sides OY2 and Y1Y3 have

length 1, while the other four sides have length
ffiffiffi
3

p
=2.

The barycenter, Yc, is common to the four Zð4Þ equivalent
tetrahedrons defined by the four facesOY1Y2, etc.We also
indicate the path from the perturbative vacuum to the confi-

ning vacuum, OYc, and OS ¼ Y2S ¼ 1=
ffiffiffi
2

p
. For four

colors the loop trL is real in the plane OSY2, spanned by
OY13 and OY2, and the point S, S ¼ ð1=2ÞðY1 þ Y2Þ.
In Fig. 2 the hypercharges Yk are fixed numerical

matrices. The absolute length of the roots, however, is
convention dependent, and so we do not show them.

IV. ONE- AND TWO-PARAMETER
MODELS FOR SUðNÞ
A. Possible potentials

To model the transition, we assume that the total
potential is a sum of perturbative and nonperturbative
contributions,

V totðqÞ ¼ V ptðqÞ þV nonðqÞ: (46)

To one loop order, the perturbative potential for q was
computed in Eq. (31), and involves

V2ðqÞ ¼ 1

2

X
�

B4ð ~� � ~qÞ; (47)

with B4ðxÞ given in Eq. (21). Because of the sum over the
roots �, this potential is invariant under the Weyl group,
and we can require the q’s to lie in the Weyl chamber.
Given our experience with two colors in Sec. II, it is easy

to guess possible forms for the nonperturbative potential.
To avoid a second phase transition, above Tc, it is neces-
sary to add a term that is linear in the q’s for small q, as in
Eq. (10). The generalization of this term for SUðNÞ is

V1ðqÞ ¼ 1

2

X
�

B2ð ~� � ~qÞ; (48)

where B2 is given in Eq. (21). Summation over all roots
in Eq. (48) ensures that the result is invariant under the
Weyl group.
The simplest assumption is to assume that any nonper-

turbative term is proportional to �T2T2
c . Thus, we start by

taking the nonperturbative potential to be

V nonðqÞ¼�4�2

3
T2T2

c

	
�
1

5
c1V1ðqÞþc2V2ðqÞ�ðN2�1Þ

60
c3

�
: (49)

2

O
O

2

1

q

q

Y

q
1

1
Y

YcYc

Y
2

(a) (b)

Y
S

3
Y3

FIG. 2 (color online). The Weyl chamber for three (a) and four
(b) colors. See also Fig. 12.
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We shall show that with this model, we cannot explain the
latent heat. Thus, we generalize the model slightly and let
c3 be temperature dependent,

c3

�
T

Tc

�
¼ c3ð1Þ þ ðc3ð1Þ � c3ð1ÞÞ

�
Tc

T

�
2
: (50)

Given how c3ðtÞ enters the potential, this is equivalent to
introducing a MIT bag constant B, where

B ¼ þ�2ðN2 � 1Þ
45

ðc3ð1Þ � c3ð1ÞÞT4
c : (51)

In trying to fit to the lattice data, we also tried adding terms
�T4

c times both B2ðqÞ and B4ðqÞ. Surprisingly, we found
that the simplest possibility, Eq. (50), did the best job of
fitting the lattice data.

A SUðNÞ gauge group is invariant under charge conju-
gation symmetry. This is generated by A0 ! �A0 or
q ! �q. Requiring each qi to lie in the region between
0 and 1, this is equivalent to q ! 1� q. This is why the
powers of qð1� qÞ enter in the B2n.

We turn to parametrizing the path between the pertur-
bative vacuum, q ¼ 0, and the confining vacuum, Yc. By a
global ZðNÞ rotation, we can assume that the Wilson line
L ¼ 1 at high temperature and that the trace of the Wilson
line remains real for all temperatures.

For an even number of colors, we generalize the two
color solution of Eq. (3): for SUð2MÞ, we take M pairs of
eigenvalues, �qi, i ¼ 1 . . .M. For an odd number of
colors, N ¼ 2Mþ 1, we take one eigenvalue to vanish,
leaving againM pairs�qi. Thus, the stationary point of the
potential SUð2MÞ or SUð2Mþ 1Þ involves M-indepndent
variables.

The simplest possible path is a straight line from the
origin to Yc:

q ðsÞ ¼ sYc; 0 � s � 1; (52)

where

qjðsÞ ¼ N � 2jþ 1

2N
s: (53)

We stress that this is an ansatz. It applies for two or three
colors but is not a solution for four or more colors. This
ansatz assumes that theM eigenvalues have constant spac-
ing: for 2M colors, by reordering the eigenvalues, we have
qj ¼ jq1, j ¼ 1 . . .M, with the other M eigenvalues given

by �qj. In the limit of infinite N, this ansatz gives a

uniform eigenvalue density to some maximum. We thus
refer to Eq. (53) as the uniform eigenvalue ansatz.

The advantage of making the uniform eigenvalue an-
satz is that it is then easy to compute analytically for
arbitrary N. For finite 1>N > 3, the exact solution must
be determined numerically. We do so for four to seven
colors in Sec. VI. For these values of N, we find that the
difference between the uniform eigenvalue ansatz and
the exact solution is remarkably small. The differences

are naturally greatest at Tc. For N ¼ 4 to 7, for all
thermodynamic quantities and for the expectation value
of the Polyakov loop, even at Tc the difference between
the uniform eigenvalue ansatz and the exact solution is
less than �1%. This difference is within the width of the
curves in the figures given below. Thus, we do not present
these (coincident) curves and give results only for the
eigenvalues themselves in Sec. VI.
The difference between the constant eigenvalue ansatz

and the exact solution increases with the number of
colors. At infinite N, the model can be solved analytically
[47]. At the transition, the ansatz gives an opening angle
of �

4 , Eq. (72), and a loop ‘ðTþ
c Þ ¼ 2

� � 0:64, Eq. (74).

For the exact solution the eigenvalue density is 
ðqÞ ¼
1þ cosð2�qÞ at Tþ

c . This vanishes at the endpoint of q ¼
1
2 , with an opening angle of �

2 ; the loop is ‘ðTþ
c Þ ¼ 1

2 .

Rescaled as in Eq. (91), the latent heat is �0:16 with the
ansatz, Eq. (93), and 1

�2 � 0:10 from the exact solution.

Thus, the latent heat is even smaller with the exact
solution; this necessitates using the two-parameter model
developed below.
In particular, the exact solution for large N exhibits a

Gross-Witten-Wadia transition, with critical first-order be-
havior at Tc [47]. There is no sign of this with the uniform
eigenvalue ansatz. However, to see the putative critical
behavior of the specific heat, one must probe very large
values of N, N � 40, and look very close to the transition,
with �0:2% of Tc.
Thus, given that it can be solved so easily analytically, it

is instructive to study the uniform eigenvalue ansatz in
some detail. We now do so for the remainder of the section.

B. Evaluating the potential under the
uniform eigenvalue ansatz

From Eq. (32),

~��
ij � ~q ¼ qi � qj ¼ i� j

N
s: (54)

The perturbative vacuum is given by s ¼ 0, L ¼ 1, while
the confined vacuum is s ¼ 1, where L ¼ Lc, Eq. (44).
The variable s is also convenient because the effective
potential is �N2, times a potential of s. The coefficients
of this potential have a smooth limit at N ! 1.
We need to compute

VkðqÞ ¼
X

1�i<j�N

B2kðqi � qjÞ: (55)

These potentials involve the sums

Sn ¼ XN
j¼1

XN
k¼1

jj � kjn ¼ 2
XN
j¼1

Xj�1

k¼1

ðj � kÞn ¼ 2
XN
j¼1

Xj�1

k¼1

kn:

(56)

The last identity follows by relabeling j� k ! k.
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We need the first four sums,

S1 ¼ 1

3
NðN2 � 1Þ; S2 ¼ 1

6
N2ðN2 � 1Þ;

S3 ¼ 1

30
NðN2 � 1Þð3N2 � 2Þ;

S4 ¼ 1

30
N2ðN2 � 1Þð2N2 � 3Þ:

(57)

Since the only mass scale in our model is set by the
critical temperature Tc, we introduce the dimensionless
ratio

t ¼ T

Tc

: (58)

It is convenient to redefine the potential as

V totðs; tÞ ¼ �2ðN2 � 1Þ
45

T4
c t

2ðt2 � c2ÞW ðs; tÞ; (59)

where

W ðs; tÞ ¼ 1

t2 � c2

�
�t2 � 2c1

�
s� s2

2

�
þ c3ðtÞ

�
þ 5s2

� 6

�
1� 2

3N2

�
s3 þ 2

�
1� 3

2N2

�
s4: (60)

The first term, �t2=ðt2 � c2Þ, is the ideal gas term. That
�c1 is from B2ðqÞ in the nonperturbative potential, as is the
constant �c3. The quartic potential in s arises from B4ðqÞ,
in both perturbative and nonperturbative terms.

To simplify the expressions, we let c3 be independent of
temperature; in Sec. IVB 3 we show that it is trivial to
incorporate.

Fixing the parameters is done as for two colors. We start
with a model with three parameters, c1, c2, and c3. To
destabilize the perturbative vacuum, c1 must be positive.
As it stands, Tc is just a mass parameter. One of the
parameters, say c1, can be fixed by requiring that Tc is
the temperature for the phase transition.

We also need a condition to fix the value of the pressure
at Tc. We make the somewhat unphysical choice that the
pressure vanishes at the transition, which implies

V totðs ¼ 1; t ¼ 1Þ ¼ 0: (61)

This is used to determine c3.
That leaves c2 as one free parameter. We shall solve the

model for arbitrary values of c2 and determine its value by
comparison to the lattice data in the next section. The value
of c2 is tuned to ensure there is a sharp peak in the inter-
action measure, as seen in numerical simulations.

Given the s dependence of the potential, it is useful to
introduce the parameter

zðtÞ ¼ c1
t2 � c2

: (62)

We also introduce

r ¼ 1� s: (63)

In this variable, r ¼ 0 is the confining vacuum, and r ¼ 1
is the perturbative vacuum.
The value of the potential in the confined vacuum is

W ð0; tÞ ¼ 1

N2
þ ð�c1 � c2 þ c3Þ

t2 � c2
: (64)

The r-dependent terms in the potential are

W ðr;tÞ�W ð0;tÞ¼�
�
1þ 6

N2
�zðtÞ

�
r2

�2

�
1� 4

N2

�
r3þ

�
2� 3

N2

�
r4: (65)

Before proceeding to the details of the solution, we
make a general remark, which we expand upon later. In
Eq. (65) we have reduced our model to a standard mean-
field theory, with terms which are quadratic, cubic, and
quartic in r. The term linear in r vanishes because the
confining vacuum is necessarily extremal in r. This follows
because Yc is the barycenter of the Weyl chamber.
When N ¼ 2, the term cubic in r vanishes, and the

model has a second-order phase transition.
For three or more colors, though, the cubic term is

nonzero. By standard mean-field theory, this implies that
the deconfining transition is of first order for three or more
colors. Clearly, the coefficient of the r3 term in Eq. (65) is
special to our model. We argue in Sec. VII, though, that
generally the term cubic in r is nonzero. That is, the first-
order transition for N � 3 is not an accident of the par-
ticular form of our model.
The vacuum at a given temperature, r0ðtÞ, is given by

requiring that it is an extremum of the potential,

@

@r
V totðr; tÞ

��������r¼r0ðtÞ
¼ 0: (66)

The vacuum at a temperature T ¼ tTc is the minimum,
r0ðtÞ. Note that r0ðtÞ is temperature dependent solely
because zðtÞ is.
The pressure is minus the value of the potential at this

minimum,

pðTÞ ¼ �V totðr0ðtÞ; tÞ: (67)

The equation of motion gives a quadratic equation for r
which is easily solved. The solutions are r ¼ 0 and

r0�ðtÞ ¼ 1

8ð1� 3=ð2N2ÞÞ
�
3

�
1� 4

N2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16

�
1� 3

2N2

�
zðtÞ

s �
: (68)

As t ! 1, zðtÞ ! 0, and one can see that r0þ corre-
sponds to the minimum in the deconfined phase. We dis-
cuss the role which the other root, r0�, plays in Sec. IVB 4.
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1. Behavior at Tc

This gives us r0þðtÞ as a function of zðtÞ, but it does
not determine the value of zðtÞ at some temperature, such
as zð1Þ.

To determine this, we first compute the value of r at the
critical temperature, rc ¼ r0ð1þÞ. This can be done by a
trick. Remember that we require that the pressure vanishes
in the confined phase, Eq. (61). Consequently, whether the
transition is of first or second order, at Tc the pressure of
the deconfined phase must then equal that in the confined
phase and so vanish. This gives two conditions:

W ð0; 1Þ ¼ 0; W ðrc; 1Þ ¼ 0: (69)

By manipulating these two conditions, the terms involving
zð1Þ can be eliminated. Doing so immediately gives the
value of rc,

rc ¼ N2 � 4

2N2 � 3
: (70)

At the critical temperature, the potential has a simple
form,

W ðr; 1Þ ¼
�
2� 3

N2

�
r2ðr� rcÞ2: (71)

This is the standard potential expected in mean-field the-
ory. For two colors, rc ¼ 0, and at Tc there is a purely
quartic potential, �r4. For three or more colors, rc � 0,
and the potential has two degenerate minima, at r ¼ 0 and
r ¼ rc, as is typical of a first-order transition.

The value of rc increases with N,

rcð3Þ ¼ 1

3
; rcð4Þ ¼ 12

29
;

rcð6Þ ¼ 32

69
; rcð1Þ ¼ 1

2
:

(72)

The value of the Polyakov loop at Tþ
c equals

‘c ¼ 1

N

sinðN�Þ
sinð�Þ ; � ¼ ðN2 þ 1Þ�

Nð2N2 � 3Þ : (73)

Explicitly,

‘cð3Þ ¼ :449 . . . ; ‘cð4Þ ¼ :542 . . . ;

‘cð6Þ ¼ :597 . . . ; ‘cð1Þ ¼ 2

�
¼ :637 . . . :

(74)

Since the Polyakov loop vanishes at T�
c , these values are

the discontinuity in the loop at Tc.
The value of rc and ‘c for an infinite number of colors

has a simple interpretation in terms of the eigenvalue
density, which is a function of an angle � ¼ 2�j=N. At
infinite N, � is a continuous variable, from�� to �. In the
perturbative vacuum, the eigenvalue density is a delta
function at � ¼ 0. In the confining vacuum, the eigenvalue
density is constant, over the entire circle, from�� toþ�.
Under the uniform eigenvalue ansatz, at Tþ

c , the eigenvalue

density is nonzero only over half the unit circle, from
��=2 to þ�=2. The eigenvalue density for the exact
solution at infinite N is not constant [47].
The value of zc ¼ zð1Þ is found to be

zc ¼ ðN2 þ 1Þð3N2 � 2Þ
N2ð2N2 � 3Þ : (75)

As a function of the number of colors,

zcð2Þ ¼ 5

2
; zcð3Þ ¼ 50

27
; zcð4Þ ¼ 391

232
;

zcð6Þ ¼ 1; 961

1; 242
; zcð1Þ ¼ 3

2
:

(76)

Note that both rc, Eq. (70), and zc, Eq. (75), are indepen-
dent of the parameter c2. It can be shown that this is not
special to the uniform eigenvalue ansatz but is also a
property of the exact solution of our model for any N.
Given the definition of zðtÞ, Eq. (62), this determines c1,

c1 ¼ zcð1� c2Þ: (77)

Lastly, we can use the condition W ð0; 1Þ ¼ 0 to
determine c3,

c3 ¼ 1þ
�
zc � 1� 1

N2

�
ð1� c2Þ: (78)

Using this value,

W ð0; tÞ ¼ 1

N2

�
t2 � 1

t2 � c2

�
: (79)

The behavior of the pressure in the confined phase is
deserving of comment. From Eq. (59) the pressure of the
confined phase, where s ¼ 1 and r ¼ 0, is

pðTÞ ¼ �V totð1; tÞ ¼ ��2

45

�
1� 1

N2

�
ðT4 � T2

cT
2Þ: (80)

At large N, the pressure in the deconfined phase is�N2,
while that in the confined phase is �1. This is satisfied by
Eq. (80), but as discussed following Eq. (11), below Tc we
should match to a hadronic resonance gas. This is a gas of
massive glueballs and so will be a series of Boltzmann
factors. If there are many massive glueballs, such as from a
Hagedorn spectrum, the temperature dependence can be
more involved, involving powers of TH � T, where TH is
the Hagedorn temperature.
This is not what Eq. (80) represents, though. Rather, it

reflects the limitations of an incomplete large-N appro-
ximation, where such a matching to a hadronic resonance
gas has not been done. Equation (80) includes a negative
pressure from two massless degrees of freedom, �T4, and
a positive term �þ T2T2

c . In the confined phase, these
contributions are manifestly unphysical; for example,
while the pressure is positive below Tc, the entropy is
negative.

EFFECTIVE MATRIX MODEL FOR DECONFINEMENT IN . . . PHYSICAL REVIEW D 86, 105017 (2012)

105017-13



This shows that our model is applicable only in the
deconfined phase, for T � Tc. Since it is explicitly moti-
vated by an expansion in large N, using it in the confined
phase, which involves corrections �1=N2, is dubious.

2. Latent heat

In this subsection we derive the interaction measure and
so the latent heat. The interaction measure is related to the
energy density, eðTÞ, and the pressure, pðTÞ, as

�ðTÞ ¼ e� 3p

T4
¼ T

@

@T

�
p

T4

�
¼ �T

@

@T

V totðr0ðtÞ; tÞ
T4

:

(81)

The temperature derivative acts both upon explicit and
implicit temperature dependence. The explicit T depen-
dence is from the overall factor of T4 in the perturbative
potential and T2 in the nonperturbative potential. Clearly,
only the latter contributes. There is also the implicit de-
pendence of the solution, r0, with temperature. Since r0 is a
solution of the equation of motion, Eq. (66), this contribu-
tion vanishes. Thus, the interaction measure depends only
upon the nonperturbative potential at the minimum,

�ðTÞ ¼ 2
V nonðr0ðtÞ; tÞ

T2
¼ �2

�
pðTÞ þV ptðr0ðtÞ; tÞ

T4

�
:

(82)

The latent heat is the jump in the energy density at
Tc. By construction, we assume that both the pressure
and the energy density vanish in the confined phase. The
latent heat is then�2 times the perturbative potential at Tc.
This equals

eðTcÞ
T4
c

¼ �2

15
ðN2 � 1ÞfðNÞ; (83)

where

fðNÞ ¼ zcr
2
c � 1

N2

¼ ð3N8 � 31N6 þ 74N4 � 22N2 � 5Þ
N2ð2N2 � 3Þ3 : (84)

As for other quantities at Tc, in our model the latent heat is
independent of the parameter c2.

Note that while there is an overall factor of N2 � 1 in the
latent heat, the function fðNÞ increases markedly asN does.
Its value is 5=54� :09 for three colors and 3=8� :375 for
an infinite number of colors. We comment upon this later
when we compare to the lattice data in Sec. IVC2.

3. Nonzero ‘‘bag’’ constant

The effective potential can be generalized to include
terms other than those �T2. The simplest is to include
terms �T0, as in Eq. (50). In the previous section, we
found it convenient to consider c2 as the single free pa-
rameter, with c1 determined by Eq. (77) and c3 by Eq. (78).

Note that both are determined by the behavior of the
potential at the critical temperature, t ¼ 1.
Since the term proportional to c3 is independent of r, we

can generalize the previous solution immediately. Again,
c1 is fixed by Eq. (77). The quantity c3ð1Þ is fixed by
Eq. (78). This leaves c3ð1Þ as a free parameter, which
along with c2, gives a model with two free parameters.
When c3ð1Þ � c3ð1Þ, there is an additional contribution

to the interaction measure,

4
B

T4
¼ 4�2ðN2 � 1Þ

45
ðc3ð1Þ � c3ð1ÞÞ Tc

T

� �
4
: (85)

We comment that in order to fit the thermodynamics of
SUðNÞ, we need c3ð1Þ> c3ð1Þ. By Eq. (51), this corre-
sponds to a positive sign for the MIT bag model, B> 0.
This is physical, as the confining vacuum has negative
pressure. Given the other terms in our model�T2, though,
probably not too much should be made of this.

4. Over and under heating

We can also use the potential to compute the temperature
for over- and underheating. This is related to the behavior
of the other root, r0�ðtÞ, in Eq. (68).
Overheating is the following. Suppose one increases

the temperature from Tc. If the theory is originally in the
confined vacuum, r ¼ 0, then in thermal equilibrium, it
tunnels to the deconfined phase at rc. If we raise the
temperature sufficiently quickly, however, it will stay at
r ¼ 0 until the quadratic term in r, about r ¼ 0, vanishes;
at this point, it must roll down the potential to r0 � 0.
This is the temperature for overheating, toh. From Eq. (65),
the mass squared for r vanishes at a temperature

zoh ¼ zðtohÞ ¼ 1þ 6

N2
: (86)

Using the value of zc, we can then compute the ratio of the
overheating temperature to Tc,

t2oh ¼
�
Toh

Tc

�
2 ¼ zcðNÞ

zohðNÞ ð1� c2Þ þ c2: (87)

The ratio zc=zoh ¼ 1 for N ¼ 2; zc=zoh ¼ 10=9 when
N ¼ 3, and increases monotonically with N, and ¼ 3=2
at N ¼ 1.
For two colors, Toh ¼ Tc: as a second-order phase tran-

sition it cannot overheat.
For three or more colors, Toh > Tc. Unlike other quan-

tities in our model at Tc, however, this ratio does depend
upon the parameter c2. When c2 vanishes, ðToh=TcÞ2 ¼
zoh=zc. For three colors, for example, Toh=Tc ¼

ffiffiffiffiffiffiffiffiffiffiffi
10=9

p
.

As we make c2 ! 1 (remember it must be less than one),
we find that Toh ! Tc, independent of N.
That is, when c2 is near one, the width of the transition

region is narrower than for c2 ¼ 0. We shall see in the
next section that the behavior of the interaction measure
is even steeper than the behavior of Toh=Tc indicates.
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Nevertheless, it gives us some intuition as to why we find it
necessary to choose a value of c2 near one, at least for
small N.

At very high temperature, one can check that the other
root of Eq. (68), r0�, is negative. As the temperature
decreases, r0�ðtÞ moves toward the origin. At the tempera-
ture for overheating, this root coincides with the origin,
r0�ðtohÞ ¼ 0. This is why the mass squared for r vanishes
at r ¼ 0 at toh.

As the temperature decreases below toh, r0�ðtÞ repre-
sents a maximum in the potential, between r ¼ 0 and r0þ.
This is true at the critical temperature, where by Eq. (71),
r0�ð1Þ ¼ rc=2.

As the temperature is lowered below Tc, the point for
r0þðtÞ represents a relative minimum, which is unstable to
tunneling to the absolute minimum at r ¼ 0. At the tem-
perature for undercooling, the two minima coincide,
r0þðtuhÞ ¼ r0�ðtuhÞ. This gives

zuc ¼ 25N2

8ð2N2 � 3Þ (88)

or

t2uh ¼
�
Tuc

Tc

�
2 ¼ zcðNÞ

zucðNÞ ð1� c2Þ þ c2: (89)

At the temperature for underheating, there is no barrier for
the theory at r0 to roll down to the absolute minimum at
r ¼ 0. The qualitative behavior is the same as for over-
heating, except that the variation with N is much weaker.

C. Comparison between lattice data and the
uniform eigenvalue ansatz

1. One-parameter model

In this section we review the results for the zero-
parameter model of Meisinger et al. [20] and the one-
parameter model which we analyzed before [14]. This is
done for completeness and to make clear why it is neces-
sary to generalize the model further.

We remark that in this paper the constants ci differ from
those in Ref. [14]. If we denote ~ci by those in Ref. [14],
then they are related to those in the present work by

~c1 ¼ � 2�2

15
c1;

~c2 ¼ � 2�2

3
c2;

~c3 ¼ �2ðN2 � 1Þ
45N2

c3:

(90)

The change in notation was made to make the results more
transparent. In particular, the point where c2 ¼ 1 is special.
There are terms �V 2ðqÞ both in the nonperturbative po-
tential, �� c2T

2T2
cV 2ðqÞ, Eq. (49), and in the perturba-

tive potential, �T4V 2ðqÞ, Eq. (31). When c2 ¼ 1, these

terms cancel identically at Tc. Because of the lattice data,
at least for smallN we are driven to a point close to c2 ¼ 1.
In Fig. 3 we show the results for the interaction measure,

�ðTÞ ¼ ðe� 3pÞ=ð8T4Þ, for the zero-parameter model,
c2 ¼ 0, and our optimal fit for the one-parameter model,
c2 ¼ 0:8297. Note that here and henceforth, we rescale
the interaction measure by the number of perturbative
gluons, N2 � 1.
As is clear from the figure, there is sharp discrepancy

between the model with c2 ¼ 0 and c2 ¼ 0:8297. With the
zero-parameter model, the peak in the interaction measure
is off by about�50%. By introducing c2, we can fit this to
within a few percent. To do so, we have to take a value very
near one.
The difference between the models is only clear once

one plots the interaction measure. If one were to plot
the pressure or energy density, scaled by T4, it would be
difficult to see the difference between the two models.
We remark, however, that this behavior is similar to what

is seen in an analysis of the Schwinger-Dyson equations by
Braun et al., Ref. [43]. The numerical values for, e.g., hri
do not agree, but in both cases, the region in which the
condensate is nonzero is unexpectedly small.

2. Latent heat

Nevertheless, the one-parameter model has serious
problems near the critical temperature. For three or more
colors, the transition is of first order, which is parametrized
by the latent heat. We introduce a dimensionless measure
of the latent heat, rescaling it by both T4

c and the number of
perturbative gluons [12]:

LðNÞ ¼ eðTþ
c Þ

ðN2 � 1ÞT4
c

: (91)

On the lattice, LðNÞ has been measured for N ¼ 3 by
Refs. [5,12] and N ¼ 4, 6, and 8 [9,12]. Datta and Gupta
[12] give a simple analytic form,
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FIG. 3 (color online). A comparison of the interaction measure
ðe� 3pÞ=ð8T4Þ for three colors in the models with zero [20], one
[14], and two parameters, versus lattice measurements.
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LðNÞ ¼ 0:388� 1:61

N2
: (92)

We summarize these results in a Table,

N Ref: ½5
 Ref: ½9
 Ref: ½12
 Model

3 :175 :209 :041

4 :311 :287 :099

6 :349 :342 :137

8 :321 :363 :149

1 :344 :388 :165

(93)

The model results are those for the one-parameter theory of
the previous subsection, Eqs. (83) and (84). Remember that
these values are independent of c2.

Thus, the lattice data shows that L, while a quantity of
order one, does increase from �0:2 for three colors to
�0:36 for an infinite number. Our model exhibits a similar
increase, but the latent heat is too small by about a factor of
five for three colors and a factor of two for an infinite
number. To describe the latent heat, we have to generalize
the model further.

3. Two-parameter model

To ameliorate this problem, we let the parameter c3 be
temperature dependent, Eq. (50). This is equivalent to
adding a MIT bag constant to the model, Eq. (51). Since
only c3 is temperature dependent, the r dependence of the
potential is the same, and many results are unchanged,
including the value of rþc , Eq. (70); the corresponding
value of the Polyakov loop at Tþ

c , Eq. (73); and the form
of the potential in r at Tc, Eq. (71).

With two parameters, there is some freedom in how
they can be chosen. For three colors, Fig. 1 shows that

the rescaled conformal anomaly, ~�ðTÞ in Eq. (1), is nearly
constant from 1.2, to 2:0Tc. Although the data for N ¼ 4
and 6 [12] is much noisier than that for N ¼ 3 [6,7], again
~�ðTÞ appears to be constant over a similar range in tempe-

rature. This data also shows that the value that ~�ðTÞ attains
for T > 1:2Tc is approximately independent of N.

From our solution, hri � 0 in a narrow region, below

1:2Tc. Above this temperature, the behavior of ~�ðTÞ is
controlled entirely by the constant c3ð1Þ. Thus, we take
the same value of c3ð1Þ for all N. For three colors, the best
value of this parameter is

c3ð1Þ ¼ 0:95: (94)

We then determined the remaining parameter, c2, by
fitting to the latent heat. To be definite, we used Eq. (92)
of Ref. [12]. The results follow:

N c2 c1 c3ð1Þ B1=4ðMeVÞ
3 0:552 0:830 1:332 244

4 0:391 1:026 1:379 294

6 0:236 1:205 1:421 372

64 0:081 1:379 1:460 1; 249

(95)

Note that for three colors, the value of c2 in the two-
parameter model, 0.5517, is significantly smaller than for
the one-parameter model, c2 � 0:8297, Sec. IVC 1 [14].
While a relatively large change in parameters, this change
is not that surprising since they were determined in rather
different ways.
Fitting to the latent heat, c2 becomes small as N in-

creases. For infinite N, the value of c2 is very close to zero.
We have no insight as to why this is true, but it is certainly
indicated by the lattice data and the form of the model.
We find that in all cases, c3ð1Þ> c3ð1Þ, so that the MIT

bag constant, B, as computed from Eq. (51), is positive.
The numerical value of B was determined by taking Tc ¼
270 MeV. The B constant increases with N; since c3ð1Þ is
relatively insensitive to N, this mainly reflects the defini-
tion, B� N2 in Eq. (51).
A positive sign for the bag constant is in contrast to

alternate models of the semi-QGP, such as that of Begun
et al. [23]. In their model, the pressure is a power series in
T4, T2, and T0, with fixed coefficients and no dynamical
fields. They find that in order to fit interaction measure, the
bag constant must be negative. Their model is equivalent
to ours above �1:2Tc, where hri � 0, but not closer to Tc,
where hri � 0. Indeed, having fixed c3ð1Þ, by Eq. (51) the
bag constant follows from c3ð1Þ. Fitting to the latent heat
gives c3ð1Þ> c2ð1Þ and, thus, B> 0. We do not have a
general argument as to why the lattice data requires
c3ð1Þ> c3ð1Þ and, so, B> 0.
The value of the bag constant appears sensible, although

this is for the pure glue theory. We stress again, however,
that since we have terms�T2 in the potential, not too much
should be made of the value of the coefficient �T0 or the
sign of the bag constant, B. See, in particular, our com-
ments at the end of Sec. IVB1.
We show the results for thermodynamic quantities in the

following figures: Fig. 4 for three colors, Fig. 5 for four
colors, and Fig. 6 for six colors. Remember that for four
and six colors, we assume that the uniform eigenvalue
ansatz is valid. However, a detailed comparison to the exact
solution in Sec. VI shows that the difference between the
uniform eigenvalue ansatz and the exact solution is small,
less than �1%.
In each figure, we show the pressure, p=T4, one third

the energy density, e=ð3T4Þ, and one third the interac-

tion measure rescaled by T2=T2
c ,

~�ðTÞ in Eq. (1). All
quantities are also scaled by the number of perturbative
gluons, N2 � 1.
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Figure 7 shows the interaction measure of SUðNÞ for
various N. Overall, the model appears to reproduce the
lattice data reasonably well, especially near the transition.
The panel on the left zooms into the region near Tc, from
Tc to 1:2Tc. Because of the increase in the latent heat with

N, ~�ðTÞ increases slightly with N. Since we fit one para-
meter in our model to the latent heat, our model agrees
well in this region. The panel on the right shows the region
from 1.2 to 3:0Tc, where the agreement between the model
and the data is not quite as good. We discuss in the con-
clusions, Sec. IX, how this might be improved. We stress,
however, that by multiplying the interaction measure by

T2=T2
c , to form

~�ðTÞ, we are greatly magnifying the errors
in any possible fit.

As discussed before, choosing c2 to be near one makes
the width of the transition region narrower. In Fig. 8 we

show the result for the Polyakov loop between the models
with zero, one, and two parameters. The width of the
transition is broadest for zero parameters, with c2 ¼ 0,
followed by that with two parameters, where c2 ¼
0:5517, and then by that with one parameter, c2 ¼ 0:8297.
We also plot the results for the renormalized loop from

lattice simulations. The results for the Polyakov loop in our
model differ sharply from those obtained from the lattice.
We do not understand the reason for this discrepancy and
discuss this further in Sec. IX.
Lastly, in Fig. 9 we show the results for the Polyakov

loop in the fundamental representation for different values
of N ¼ 3, 4, 6, and 64, under the uniform eigenvalue
ansatz. At Tþ

c , the expectation values agree with Eq. (74).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. ∆~/3

∆~/3

FIG. 4 (color online). Thermodynamics of SU(3): pressure
p=T4, energy density e=ð3T4Þ, and the interaction measure times
T2=T2

c ,
~� in Eq. (1). All quantities are also scaled by 1=8.
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FIG. 5 (color online). Thermodynamics of SU(4) assuming the
uniform eigenvalue ansatz: pressure p=T4, energy density
e=ð3T4Þ, and the interaction measure times T2=T2

c ,
~� in

Eq. (1). All quantities are also scaled by 1=15.
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FIG. 6 (color online). Thermodynamics of SU(6) assuming the
uniform eigenvalue ansatz: pressure p=T4, energy density
e=ð3T4Þ, and the interaction measure times T2=T2

c ,
~� in

Eq. (1). All quantities are also scaled by 1=35.

FIG. 7 (color online). Rescaled interaction measure,
~� ¼ ðe� 3pÞ=ððN2 � 1ÞT2T2

c Þ, Eq. (1), for different values of
N from our model, and the lattice. For N ¼ 4, 6, and 64, we
assume the uniform eigenvalue ansatz. We plot the regions Tc !
1:2Tc and 1:2Tc ! 3:0Tc on different abscissa scales; thus, all
curves, and their derivatives, are smooth across 1:2Tc.
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They differ below �1:05Tc, but are all rather close to one
another above this temperature. This is what one expects
from the conformal anomaly, which up to an overall factor
of N2 � 1, scales similarly for all N.

V. INTERFACE TENSIONS

An interface tension is computed as follows. Put the
system in a box which is long in one spatial direction,
say the z direction. Let the system be in one vacuum at
one end of the box and in a degenerate but inequivalent
vacuum at the other end of the box. The theory is in a
vacuum state at both ends, but not in between, so forming
this interface costs action. This action is proportional to the
transverse volume, Vtr, with the coefficient defined to be
the interface tension.

Above Tc, one can have the theory in one ZðNÞ vacua at
one end of the box and a different ZðNÞ vacua at the other.
This is known as the order-order interface tension. It is

equivalent to a ’t Hooft loop in the deconfined phase [63].
We only compute here for two and three colors, where
there is only one ’t Hooft loop. For four or more colors,
there is more than one ’t Hooft loop, which we comment
upon in the Conclusions, Sec. IX.
If the transition is of first order, as it is for N � 3, then

precisely at Tc, the confined vacuum, with r ¼ 0, is degen-
erate with the deconfined state, at r ¼ rc. This can then be
used to define the order-disorder interface tension.
The computation of interface tensions in the semi-QGP

is close, but not identical, to that in the perturbative QGP
[56,57]. In the effective action S, in addition to the poten-
tial V totðqÞ, we need a kinetic term,

S ¼
Z

d�d3xðT kinðqÞ þV totðqÞÞ: (96)

In general, the kinetic term can be of the form

T kinðqÞ ¼ 1

2

XN
a;b¼1

GabðqÞ@iqaðxÞ@iqbðxÞ; (97)

where GabðqÞ is a metric depending on q. Such a nontrivial
metric arises in computing interface tensions at next-to-
leading order in the coupling constant [56,57].
At leading order, however, we can use the form of the

kinetic term at tree level,

T kinðqÞ ¼ 1

2
trF2

�� ¼ 4�2T2

g2

XN
a¼1

�
dqa
dz

�
2
: (98)

We have assumed that qa is a function only of the long
spatial direction, z, of the interface.
Assume that the vacua at the two ends of the box, z ¼

�L and z ¼ þL, are 
i and 
f. These correspond to the

two minima, �qi and �qf. We take the spatial length L ! 1.

The interface tension is related to the shortest path between
�qi and �qf. This path obeys the equation of motion

8�2T2

g2
d2qa
dz2

¼ dV tot

dqa
; (99)

with the boundary condition qð�LÞ ¼ �qi and qðLÞ ¼ �qf.

Multiplying dqa=dz, and integrating over z, we obtain an
energy density,

E ¼ 4�2T2

g2

XN
a¼1

�
dqa
dz

�
2 �V totðqÞ: (100)

This quantity is independent of z, so its value can be taken
from either end. The kinetic term does not contribute at
z ¼ �L, so the energy is given by the potential in the
vacuum, Evac ¼ �V totð �qiÞ.
Using the conservation of energy, we define

�V tot 
 V totðqÞ þ Evac ¼ 4�2T2

g2
XN
a¼1

�
dqa
dz

�
2
: (101)
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FIG. 8 (color online). A comparison of the Polyakov loop for
three colors in models with zero, one, and two parameters and
from lattice measurements.
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FIG. 9 (color online). Expectation values of the fundamental
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make the uniform eigenvalue ansatz.
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The effective action becomes

S ¼ Vtr

Z
dzðT kinðqÞ þV totðqÞÞ

¼ S0 þ 2Vtr

Z
dz�V totðqÞ; (102)

where S0 ¼ �2VtrLEvac. The interface tension is then

� ¼ 1

Vtr

S� S0
T

¼ 2

T

Z
dz�V tot: (103)

This is a general form of the interface tension. The poten-
tial depends upon the problem at hand.

A. The order-disorder interface tension under
the uniform eigenvalue ansatz

The order-disorder interface is the simplest to consider.
We work at the critical temperature, so we are tunneling
from the deconfined state, at rc, to the confined vacuum, at
r ¼ 0, and compute under the uniform eigenvalue ansatz.

From Eqs. (14) and (53), the kinetic term becomes

tr

�
@A0

@z

�
2 ¼ �2ðN2 � 1ÞT2

3g2N

�
drðzÞ
dz

�
2
; (104)

where we now allow r to be a function of the spatial
direction z.

At the critical temperature, the potential is

V totðr; 1Þ ¼ �2ðN2 � 1ÞT4
c

45
ð1� c2ÞW ðr; 1Þ; (105)

where the potential W ðr; 1Þ is given by Eq. (71). We now
rescale the coordinate z as

~z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2Þg2N

15

s
Tcz; (106)

so the action becomes

S¼Vtr

T3
cffiffiffiffiffiffiffiffiffi

g2N
p �2ðN2�1Þ

3
ffiffiffiffiffiffi
15

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

p Z
d~z

��
dr

d~z

�
2þW ðr;1Þ

�
:

(107)

Using the conservation of energy, the integral becomes

2
Z

d~zW ðr; 1Þ ¼ 2
Z rc

0
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W ðr; 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2 � 3

p

3N
r3c;

(108)

where rc is given in Eq. (70). Using this value, the order-
disorder interface tension is given by

�o�d ¼ T2
cffiffiffiffiffiffiffiffiffi

g2N
p �2

35=251=2
ðN2 � 1ÞðN2 � 4Þ3
Nð2N2 � 3Þ5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
:

(109)

As for the order-order interface tension, this is proportional

not to �1=g2 but to �1=
ffiffiffiffiffi
g2

p
, because the potential for r

is generated at one loop order. It is proportional to N2 at
large N, which is typical of the free energy in the decon-
fined phase.
To compare to the lattice, we need to assume a value for

the coupling. We take �sðTcÞ ¼ 0:3, simply to get an idea
of the numbers and, in particular, of the N dependence.
On the lattice, there are results for three colors by

Beinlich et al. [5] and by Lucini et al. [9]. For four or
more colors, there are results from Ref. [9].
We summarize the results for the order-disorder inter-

face tension, �o�d=T
2
c , in the following Table:

N Ref ½5
 Ref ½9
 1-parameter model 2-parameter model

3 :0155 :0194 :014 :022

4 :121 :049 :093

6 :394 :167 :35

1 :0138N2 :006N2 :0139N2

(110)

Taken at face value, the values of the order-disorder inter-
face tension computed in the two- parameter model agree
remarkably well with those from the lattice.

This agreement could well be fortuitous. We have only
included the result to leading order in the coupling con-
stant, g2. For the order-disorder interface tension, it is
known that including at least corrections to �g2 [56] and
to �g3 [57] are essential to obtain agreement with lattice
results, even at temperatures �10Tc, well into the pertur-
bative QGP [64].

Even so, the fit to the latent heat indicates a lower value
of c2 in the two-parameter model than in the one-parameter

model, Eq. (95). Because of the overall factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
in the order-disorder interface tension, Eq. (110), the re-
sults do support a value of c2 that decreases as N increases.
We conclude this section with a general comment.

While the order-disorder interface tension is of order N2

at large N, in fact the coefficient, from either lattice simu-
lations or our two-parameter model, is extremely small,
�o�d=ðN2T2

c Þ � 0:014.
This is in sharp contrast to the latent heat, which is,

properly normalized, a number of order one. For an ideal
gas of N2 � 1 gluons, the energy density is ðN2 � 1ÞT4

times a pure number, �2=15� :66. At infinite N, by
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Eq. (92) the energy density at Tc is N2T4
c times �:39;

thus, the latent heat is almost 60% the energy density of
an ideal gas. This is well known from three colors: the
energy density very quickly approaches that of an ideal
gas, close to Tc.

Our model provides a qualitative explanation for why
the latent heat is large, but the order-disorder interface
tension is small. The latent heat is given by the jump in
the order parameter, essentially by rc. For any N � 3, this
is not a small number; at infinite N, rc ¼ 1

2 , Eq. (72). Note

that since r is a number between 0 and 1, we can speak of
its magnitude without qualification.

In contrast, the order-disorder interface tension is
given by the probability for tunneling through the barrier
at Tc. Even if the jump in r is large, the probability not to
tunnel through the barrier can be small if the height of the
barrier is very small. That is, it is a shallow potential.

Such a shallow potential is exhibited by our model. For
simplicity, consider the potential at infinite N. At the
critical temperature, by Eq. (71) the potential is

W ðr; 1ÞN¼1 ¼ 2r2
�
r� 1

2

�
2
: (111)

The confined vacuum is at r ¼ 0, while at Tc, the decon-
fined vacuum is at r ¼ 1=2. Between r ¼ 0 and r ¼ 1=2,
the maximum occurs at r ¼ 1=4. At this maximum, the
value of the potential is W ðr ¼ 1=4; 1ÞN¼1 ¼ 1=128.
This is certainly a barrier, but to gauge its height, consider
the value of the potential at the perturbative vacuum, r ¼ 1,
which is W ðr ¼ 1; 1ÞN¼1 ¼ 1=2. That is, the potential at
the maximum of the barrier is smaller by a factor of 64
than what might have been expected. This is why the
order-disorder interface tension is so much smaller than
expected, because it is a broad, but very shallow, potential
in r.

The above discussion holds in the uniform eigenvalue
ansatz. The exact solution at infinite N is unusual and
exhibits a Gross-Witten-Wadia (GWW) transition [47].
The theory appears to be a standard first-order transition,
with a nonzero latent heat �N2; see the discussion at
the end of Sec. IVA. Also, for the exact solution the
Polyakov loop is 1

2 at Tþ
c versus 2

� with the uniform

ansatz. Nevertheless, as T ! Tþ
c , the loop approaches

1
2 as �ðT � TcÞ2=5, like a second-order transition. This

happens because at Tc, the potential of trL is completely
flat between the confined vacuum, at ‘ðT�

c Þ ¼ 0, and the
deconfined phase, at ‘ðTþ

c Þ ¼ 1
2 . The expectation of other

loops, trLj for j � 2, vanish at T�
c .

A flat potential for the GWW transition is similar to the
shallow potential found above in Eq. (111). If the potential
is completely flat, then to�N2, the order-disorder interface
tension vanishes. The GWW transition is special to infinite
N, so there will still be a term �1.

This assumes that there is a GWW transition at infinite
N. In Ref. [47] it was suggested to look for signs of the

GWW transition at finite N by looking at the increase of
the specific heat. This only happens at very largeN, though
N � 40, and only very near Tc, within �1%.
Perhaps another way of testing if there is a GWW

transition at N ¼ 1 is to see if the order-disorder interface
tension is not �N2 but only �1. Note that the value of
Ref. [9] in Eq. (110) is anomalously small,�:01 times N2.
Perhaps the order-disorder interface tension might show
signs of a GWW transition at values ofN which are smaller
than those for the specific heat.

B. The order-order interface tension for two colors

We next turn to the order-order interface tension, or ’t
Hooft loop, for two colors. This is simple because there is
only one direction in the Weyl chamber, along the Pauli
matrix �3. Thus moving to a confining phase, or tunneling
from one Zð2Þ vacua to another, occurs along the same
direction. This greatly simplifies the computation and al-
lows us to compute analytically, as in the previous section.
For two colors, one can show from Eq. (65) that the

potential for r has a simple form,

W ðr; tÞ �W ð0; tÞ ¼ 5

�
�mðtÞ2

2
r2 þ 1

4
r4
�
;

mðtÞ2 ¼ t2 � 1

t2 � c2
:

(112)

The value of the potential at r ¼ 0, W ð0; tÞ, enters only
into the vacuum energy, Evac, and can be ignored.
This potential behaves as expected: the mass for r

vanishes at t ¼ 1, so the transition is of second order. In
the deconfined phase, t > 1, there are two degenerate
vacua, at rðtÞ ¼ �mðtÞ. The � represents the two degen-
erate Zð2Þ vacua in the theory. At a given t > 1, we want
to determine the tunneling probability between the r ¼
�mðtÞ and r ¼ þmðtÞ.
The kinetic term is as in Eq. (104). We rescale the

position as

~z ¼
ffiffiffiffiffiffiffiffi
2g2

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � c2

q
Tcz; (113)

so that the action becomes

1ffiffiffiffiffi
g2

p �2T2Tcffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�c2

q Z
d~z

��
dr

d~z

�
2þ1

5
ðW ðr;tÞ�W ð0; tÞÞ

�
:

(114)

By changing r ! r�mðtÞ, the potential, and the related
integral, is precisely that of the previous section. The result
for the order-order interface tension is

�o�o ¼ 4�2

3
ffiffiffiffiffiffiffiffi
6g2

p T2 ðt2 � 1Þ3=2
tðt2 � c2Þ

; (115)

remember t ¼ T=Tc.
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As T ! Tc, the order-order interface tension vanishes,

as �o�o � ðT � TcÞ3=2. By universality, this interface ten-
sion should vanish as �o�o � ðT � TcÞ2�, where 2��
1:26; lattice results by de Forcrand et al. [65] find 2��
1:32. Our result is a type of mean-field theory, though, and
so we certainly do not expect our result to correctly de-
scribe the critical region, which is very near Tc.

C. The order-order interface tension for three colors

For three colors, the path to the confined vacuum is
along the Yc direction, while that for the ’t Hooft loop is
along the Y1 direction in Fig. 10. Thus, we have to deter-
mine a path in two dimensions. We could not do so analyti-
cally but found a solution numerically.

We choose a vacuum in the semi-QGP as �qi,

�q i ¼ ð �qi; 0;� �qiÞ; �qi ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 80

81

�
1� c2
t2 � c2

�s �
:

(116)

We wish to find a path that tunnels from this point to a Zð3Þ
transform of this point, �qf,

�q f ¼
�
2

3
� �qi;� 1

3
þ �qi;� 1

3

�
: (117)

We parametrize this path as

q ¼ �qi þ
�
2q�
3

; q� � q�
3
;�q� � q�

3

�
: (118)

The potential which governs this tunneling is

�V totðq1; q2; q3Þ ¼ N V 3
V normðq�; q�Þ; (119)

where

N V 3
¼ 8�2

3
T4
c t

2ðt2 � c2Þ: (120)

Without loss of generality, we can choose the variables to
satisfy 0 � q� < 1, 0 � q� < q� and q� < 1� q�. The

potential becomes

V normðq�;q�Þ ¼ q2�ðq� � �qfÞ2 þ 2q�ðq� � �qfÞð1� �qfÞq�
þð6q�ðq� � �qfÞþ �qfð2þ �qfÞÞq2�
� 2ð1þ 3 �qfÞq3� þ 9q4�; (121)

where ðq�; q�Þ ¼ ð0; �qfÞ 
 ð0; 1� 3 �qiÞ corresponds to �qf.

The kinetic term is

T kin ¼ N cl3

��
dq�
dz

�
2 þ 3

�
dq�
dz

�
2
�
; (122)

where N cl3 ¼ 8�2T2=ð3g2Þ. The interface tension
becomes

�o�o ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N V 3

N cl3

q Z
d~zV normðq�; q�Þ

¼ 16

3g
�2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~c2t

�2
q Z

d~zV normðq�; q�Þ; (123)

where ~z ¼ gTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � c2

p
z.

For two colors, the path is in one direction, and so we
can use energy conservation to determine the action to
tunnel, even without an explicit form of the solution. For
three colors, the path is in two directions, and so energy
conservation alone does not determine either the solution
or its action. Thus, we need to explicitly determine the path
that tunnels between the two degenerate vacua. This sat-
isfies the equation of motion,

d2q�
d~z2

¼ 1

2

dV norm

dq�
;

d2q�

d~z2
¼ 1

6

dV norm

dq�
(124)

with the boundary conditions

q�ð�1Þ ¼ 0; q�ð1Þ ¼ �qf;

q�ð�1Þ ¼ 0; q�ð1Þ ¼ 0:
(125)

These boundary conditions do not uniquely determine the
solution, because we need to specify the turning point. We
require that the turning point occurs at the middle of the
interface, ~z ¼ 0, so that

q�ð0Þ ¼
�qf
2
: (126)

This is natural, since the potential is symmetric under
q� $ ð �qf � q�Þ. This also implies that at the turning point,

dq�ð0Þ
d~z

¼ 0: (127)

At this point, the derivative of q� is obtained by energy
conservation, Eq. (101):

dq�ð0Þ
d~z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V normðq�ð0Þ; q�ð0ÞÞ

q
: (128)

In the numerical computations we use Eq. (128) instead of
Eq. (125) as a boundary condition.
In the perturbative QGP, �qf ¼ 1 is the vacuum, so that as

t ! 1, the derivative dV tot=dq� ¼ 0 vanishes at q� ¼ 0.

In this case, a straight line path, along Y1, is a solution of
the equations of motion [56].
In the semi-QGP, a straight path is not a solution to the

equations of motion, and the path lies in both directions,Y1

and Y2. A solution to the equations of motion was found
numerically. In Fig. 10 we show paths ðq�ðzÞ; q�ðzÞÞ in the
plane of q� and q�. The path at Tþ

c is that which comes

closest to the SUð3Þ confining vacuum, Yc. Since both trL
and trL2 vanish at Yc, these values are small for the point
on the path closest to Yc, at T

þ
c . That these loops are small
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in the middle of the interface has been observed previously
in a Polyakov loop model [45]. We also note that the
interface tension has been analyzed in linear models [42].

In Fig. 11, we give the result for the order-order interface
tension, �o�o. We remark that while, in principle, hqi � 0
for all temperatures, in practice this is very small except
close to Tc. This means that to a good approximation, we
can take a path along Y1 when T > 1:2Tc. We also note
that in plotting the interface tension in our model, versus
that from the lattice [66], we have included a perturbative
correction �g2. This correction was computed in the per-
turbative QGP and so should be recomputed for the semi-
QGP. Except for T < 1:2Tc, however, it can be shown that
this correction is correct [67].

We conclude by discussing the problem of order-order
interface tensions for four or more colors. In the complete
QGP, the path for order-order interface tension is along one

of the hypercharge directions, the Yk of Eq. (39) [57]. The
example of three colors shows, however, that near Tc the
path lies in the full space of N � 1 dimensions. This is an
interesting but nontrivial exercise in minimization, which
we defer for now. We comment further about these inter-
face tensions in the Conclusions, Sec. IX.

VI. NUMERICAL SOLUTION OF THE MODEL
FOR FOUR TO SEVEN COLORS

Before describing our numerical results, we first make
an elementary but useful remark. As discussed preceding
Eq. (52), by a global ZðNÞ rotation we can require that the
expectation value of the Polyakov loop is real. If N ¼ 2M
or 2Mþ 1, this means that the solution involves M
degrees of freedom. At infinitely high temperature all
q’s vanish. As the temperature decreases, the q’s move
along a curve in this M-dimensional space until, at the
critical temperature, they end up at a point qþ

c . At this
point, the value of the potential equals that in the confined
vacuum, where q�

c ¼ Yc, Eq. (43). This assumes that the
transition is of first order, so that qþ

c � q�
c ; we justify this

later in Sec. VII.
For finite N > 3, the path in the M-dimensional space

can be determined numerically. The total potential in our
model is given by

V totðqÞ ¼ f0ðTÞ þ f1ðTÞV1ðqÞ þ f2ðTÞV2ðqÞ: (129)

We have chosen very specific forms for the functions
f0ðTÞ, f1ðTÞ, and f2ðTÞ, but the following conclusion is
independent of their specific form.
The solution of the model at a given temperature, q0ðTÞ,

is given by requiring that the total potential is stationary
with respect to the q’s,

@V totðqÞ
@q

��������q¼q0ðTÞ
¼f1ðTÞ @@q

�
V1ðqÞþf2ðTÞ

f1ðTÞV2ðqÞ
�
q¼q0ðTÞ

¼0; (130)

which is the generalization of Eq. (66).
Because the q dependence only enters through two

functions, V1ðqÞ and V2ðqÞ, trivially this equation involves
only the ratio f2ðTÞ=f1ðTÞ. Whatever the specific form of
these two functions, at a given temperature this is a pure
number.
This implies that in the M-dimensional space of the q’s,

the path is independent of the choice of these two func-
tions. Further, it follows immediately that the endpoint of
the path, qþ

c , is also independent of this choice of these two
functions.
That the endpoint is independent of these functions was

observed previously for the uniform eigenvalue ansatz. We
found there that at Tc the solution is independent of the one
free parameter, c2.

FIG. 10 (color online). Classical paths for the interface tension
in a pure SUð3Þ gauge theory. The paths curve more as the
temperature decreases, as the path at Tþ

c approaches closest to
the confined vacuum, Yc.
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FIG. 11 (color online). The interface tension for SUð3Þ pure
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Needless to say, different choices of the fiðTÞ functions
do give different physics. While the path in q space is
independent of the fi’s, thermodynamic quantities also
involve derivatives with respect to temperature, and these
change as f1ðTÞ and f2ðTÞ do. That is, the temperature
dependence of how one proceeds along this fixed path
depends upon the choice of these functions. In the uni-
form eigenvalue ansatz, this is what changing the parame-
ter c2 does: it shifts the overall scale of T=Tc in a
nonlinear fashion.

A. Four and five colors

We now turn to the case of four colors. In Fig. 12 we
illustrate the region of the Weyl chamber in which the
expectation value of the Polyakov loop is real. This is

the plane spanned by the hypercharge Y2 and by Y13 ¼
ðY1 þ Y3Þ=2.
The confining vacuum is given by the barycenter, Yc.

The curves where trLp vanish, for p ¼ 1, 2, and 3, are also
indicated. The uniform eigenvalue ansatz is the line OYc.
In this ansatz, the point qþ

c is given by a blue point; for the
exact solution, it is given by a magenta cross.
Under a Zð2Þ transformation, the triangle OY2Y13 maps

onto itself: O and Y2 interchange with one another, while
the lines where trL ¼ trL3 vanish are left invariant.
The numerical solution for the trajectory of SUð4Þ is

plotted in Fig. 13. There are two positive eigenvalues, q1
and q2. In the uniform eigenvalue ansatz, q2 ¼ 3q1. The
left panel shows the path in the plane of q1 and q2; visually,
this is obviously very close to a straight line. The right
panel shows the values of q1 and q2=3; the amount by
which q1 � q2=3 indicates the deviation from the uniform
eigenvalue ansatz. Even at Tc, this deviation is very small.
As discussed previously, for thermodynamic quantities,
and the expectation value of the Polyakov loop, the results
are within the width of the curves in Figs. 5 and 9,
respectively.
In Zð4Þ spin systems it is possible to have mixed

phases between ordered and disordered phases where
Zð4Þ is broken but Zð2Þ is unbroken. For SUð4Þ such a
Zð2Þ-invariant phase would have trL ¼ trL3 ¼ 0 and
trL2 � 0. For example, the point along this line where
trL2 ¼ 1 is indicated by the point MZ2. We find no evi-
dence for such a Zð2Þ phase at any temperature. This agrees
with numerical simulations on the lattice [68].
For five colors the plane where the Polyakov loop is

real is shown in Fig. 14; it is spanned by the line Y14 ¼
ðY1 þ Y4Þ=2 and Y23 ¼ ðY2 þ Y3Þ=2. In this plane trL is
real, and we expect the trajectory of the minima to again
nearly coincide with the straight line ansatz from the origin
to Yc, as for four colors. This is indeed the case as is
evident from Fig. 15. Only near Tc do the eigenvalues of
the Wilson line deviate from the straight line. Here, too, we
found that the thermodynamic functions agree with those
obtained above with the straight line ansatz.

Tr L=Tr L   =  0
3
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c
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QW

Z
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3V
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13
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2
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FIG. 12 (color online). For four colors, the region of the Weyl
chamber where the expectation value of the Polyakov loop is
real.
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There is one feature of the uniform eigenvalue ansatz
which is shared by the exact solution at infinite N [47].
This is illustrated for four colors in Figs. 12 and 13, and for
five colors, by Figs. 14 and 15. For both four and five
colors, trL2 and trL3 vanishes once at T > Tc; for five
colors, trL4 does so twice. At infiniteN, trL2 and trL3 also
vanish once for T > Tc, and trL

4, twice. For infinite N, the
number of zeroes of trLn, with n < N, increases as n
does [47].

B. Six and seven colors

In this case the space where the Polyakov loop is real is
three dimensional, see Fig. 16.

For six colors we find again that the exact solution is
close to that of the uniform eigenvalue ansatz. It is also
possible to have intermediate phases in which there is a
global Zð2Þ or Zð3Þ symmetry. We find no evidence of such
partially deconfined phases.

We comment that the symplectic group Spð6Þ is the
pseudoreal part of SUð6Þ; by exchanging the short and

long roots of SOð7Þ, this is the dual of Spð6Þ [69]. As
already remarked in Sec. III, to one-loop order the pertur-
bative potentialsV pertðqÞ are, therefore, related by duality.
If the nonperturbative potentials are assumed to be dual as
well, then the deconfining phase transitions are the same
[58]. This can be tested through numerical simulations on
the lattice.
In Fig. 17 we show the path for the exact solution. In the

uniform eigenvalue ansatz, q1=2 ¼ q2=3 ¼ q3=4. We find
that the deviation from this is small except close to Tc. The
results for seven colors are interesting because of their
relevance for the confining states in SOð7Þ and Gð2Þ
groups, discussed in Sec. VII.

VII. WHY THE DECONFINING PHASE
TRANSITION IS OF FIRST ORDER
FOR FOUR OR MORE COLORS

In this section we discuss why a first-order transition is
expected generically in matrix models when N � 3.
We first review the standard argument for why the

transition is of first order for three colors [35]. If ‘ is the
loop in the fundamental representation, we consider a
general potential invariant under ZðNÞ transformations,

‘ ! e2�i=N‘: (131)

The corresponding potential includes two terms. First,
there is

VOð2Þð‘Þ ¼ m2j‘j2 þ �Oð2Þðj‘j2Þ2; (132)

which is invariant under Oð2Þ transformations. Second,
there is

VZðNÞð‘Þ ¼ �ZðNÞð‘N þ ð‘�ÞNÞ; (133)

which is invariant only under ZðNÞ.
For three colors, Eq. (133) is a cubic invariant and is, in

the sense of the renormalization group, a relevant operator.
By standard mean-field analysis, the transition is of first
order. We note that there is a qualification: if the coupling
�ZðNÞ vanishes, then the transition could be of second order
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(if �Oð2Þ > 0). There is no symmetry reason why �ZðNÞ
should vanish, though, so one expects a first-order
transition.

For four colors, Eq. (133) is a quartic term and, thus,
marginal. For five or more colors, it is of fifth or higher
order and so an irrelevant operator. Then the deconfining
transition is of second order when �Oð2Þ > 0, and of first

order when �Oð2Þ < 0. In the latter case, a positive term

�ðj‘j2Þ3 stabilizes the potential.
Why, then, is the deconfining transition of first order for

any N � 3? This follows in mean-field theory from a
matrix model. From Eq. (65) of Sec. III, in our particular
model there is a cubic term in r about the confining
vacuum, r ¼ 0. As discussed there, in mean- field theory
this implies that the deconfining transition is of first order.

To see that this is not an accident, consider the general
form of an effective potential. We express our matrix
model in terms of the qi, and then r, but in general we
can construct any function of the qi as a series in powers of
trL, trL2, and so on, up to trLN�1. Each term must be
invariant under ZðNÞ transformations, so the simplest pos-
sible terms include

jtrLj2; jtrL2j2; jtrL3j2; ðtrLÞðtrL3Þþc:c:þ . . . :

(134)

There is clearly an infinite series of such terms. The first
three terms are invariant under Oð2Þ; the last, under Zð4Þ.
This multiplicity of terms is in contrast to a loop model,
which only involves powers of the loop in the fundamental
representation, trL.

Now we perform an elementary computation. Take the
basic ansatz for A0, Eq. (14). We do not assume the
uniform eigenvalue ansatz, Eq. (52), but consider a general
path, parametrized as

q ¼ ðq1; q2;�q2;�q1Þ;
q1 ¼ 1

8
ð1� ~xþ ~yÞ;

q2 ¼ 1

8
ð3� ~x� ~yÞ:

(135)

The confined vacuum is ~x ¼ ~y ¼ 0. For the straight line
path, ~x ¼ 2~y, but this parametrization is convenient, so that
the expansion in Eq. (136) has a simple form.

We can then easily compute the expansion of these
quantities about the confining vacuum. We introduce x ¼
�~x and y ¼ �~y,��������14 trL

��������
2 ¼ 1

2
x2 þ 1

4
x2yþ . . . ;

��������14 trL2

��������
2 ¼ 4y2 � x2y2 � 1

3
y4 þ . . . ;

��������14 trL3

��������
2 ¼ 9

2
x2 � 27

4
x2yþ . . . :

(136)

All of these loops vanish in the confined vacuum, x ¼
y ¼ 0; as the confined vacuum is the barycenter of the
Weyl chamber, the terms linear in x and y do as well,
Sec. III C. These loops then begin with terms quadratic in
x and y. What is of relevance here is the existence of terms
cubic in x and y, which are always �x2y.
The general pattern is clear. Most terms, such

as jtrL2j2 and jtrL3j2, etc., have terms which are cubic in
x and y. This is true for any term which involves trLn, for
odd n. Thus, if there are any such terms in the effective
potential, then in mean-field theory the transition is of first
order. Note that having two fields doesn’t alter the con-
clusion: the point is that one cannot obtain a flat potential,
typical of a second-order transition. The variables x
and y are useful because then the quadratic terms are
diagonal.
Note that in a loop model, terms such as j‘j2 � jtrLj2

are even in ‘ and do not give a first-order transition.
A first-order transition only follows in a matrix model,
where one expands about the barycenter of the Weyl
chamber.
As illustrated by Eq. (136), if a term only involves trLn,

for even n, then there is no term cubic in x and y, and the

transition can be of second order. This does not invalidate

the expectation of a first-order transition. If the effective

Lagrangian involves only even powers of trLn, then the

global symmetry of the theory is not Zð4Þ but Zð2Þ. The
global symmetry is then not like that expected for four

colors, but like that for two colors, where the transition is

of second order. However, as for the analysis of three

colors in a loop model, there is no reason to expect such

an accidental Zð2Þ symmetry to occur. Indeed, for this to

happen in a matrix model, an infinite number of terms

would have to vanish.
The above analysis can be generalized for anyN � 3. In

general, there are cubic terms in the expansion of jtrLnj2,
except for those n and N where there may be a residual
ZðnÞ symmetry in ZðNÞ, as for n ¼ 2 and N ¼ 4.
Why the deconfining phase transition is of first order for

N � 3 can also be understood geometrically from theWeyl
chamber for three and four colors in Fig. 2.
For three colors the Weyl chamber is an equilateral

triangle, bounded by the vectors Y1 and Y2. The confined
vacuum, Yc, is the barycenter of this triangle. The path
from the perturbative vacuum, to the confined vacuum, is a
straight line, OYc.
Consider expanding an effective potential about Yc,

along this straight line. Even without computation, it is
evident that the region to the right is smaller than that to the
left. Thus, if we expand in r, where r ¼ 0 is the confined
vacuum, we would expect terms of cubic order and so a
first-order transition.
For four colors, instead of considering the full three-

dimensional space of the Weyl chamber, we can limit
ourselves to the plane where the Polyakov loop is real,
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Fig. 12. Now the path from the perturbative vacuum to the
confined vacuum is not a straight line, OYc, but slightly
bent. This is irrelevant, though: the point is that if we
expand any effective potential about Yc, simply from the
shape of the Weyl chamber, it is clearly not symmetric.
Thus, we expect the expansion of an effective potential,
about Yc, to reflect the lack of such symmetry. This is the
reason for the cubic terms in Eq. (136).

The same argument applies for higher N. When
N ¼ 2M, the part of the Weyl chamber in which the
Polyakov loop is real is M dimensional, and so it becomes
more difficult to draw. Even so, the lack of symmetry about
the confined vacuum for six colors can also be seen from
Fig. 16.

VIII. A Gð2Þ GAUGE GROUP AND THE LAW OF
MAXIMAL EIGENVALUE REPULSION

A. Motivation

For SUðNÞ groups the Polyakov loop vanishes below
Tc and there is a strict definition of the deconfining
transition temperature. That the Polyakov loop vanishes
is a consequence of the center of SUðNÞ and the associ-
ated global ZðNÞ symmetry. The confined vacuum, Yc, is
also the point where there is maximal repulsion of the
eigenvalues, Eq. (44). We shall see in this section that it
may be more useful to think of confinement as arising not
from the center symmetry per se but from eigenvalue
repulsion.
To this end, we consider groups without a center. Such

groups have been considered before, starting with SOð3Þ
[70–72]. The group SOð3Þ ¼ SUð2Þ=Zð2Þ and it has SUð2Þ
as a two-fold covering group. Consequently, the first ho-
motopy group is nontrivial, �1ðSOð3ÞÞ ¼ Zð2Þ. This is
true for all SOð2N þ 1Þ groups: they have a two-fold
covering representation, Spinð2N þ 1Þ, which has a center
of Zð2Þ, and are doubly connected.
Like the odd dimensional rotation groups, Gð2Þ has a

trivial center. Unlike SOð2N þ 1Þ groups, though, Gð2Þ is
simply connected, and for this reason it is especially inter-
esting to consider [36–38,69–72]. In fact, Gð2Þ is a sub-
group of SOð7Þ. This means that the eight-dimensional
spin representation of SOð7Þ has no subgroup that corre-
sponds to a two-fold covering of Gð2Þ.
Because there is no center, in SOð3Þ and Gð2Þ Polyakov

loops in the fundamental representation can be screened
dynamically. In SOð3Þ, two fundamentals screen each
other, 3 � 3 ¼ 1þ 3þ 5. In Gð2Þ, the fundamental 7 field
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can be screened by three adjoint 14 fields, 14 � 14 � 14 ¼
1þ 7þ . . . . This is unlike SUðNÞ, where ZðNÞ symmetry
prevents the fundamental field from being screened. Thus
the SOð3Þ and Gð2Þ groups are similar to QCD with
dynamical quarks. Consequently, one might expect that
there is no deconfining phase transition but just a smooth
crossover from low-to high-temperature phases.

Nevertheless, lattice simulations for the Gð2Þ group find
strong evidence for a first-order transition [36–41]. Even
more strikingly, the expectation value of the Polyakov loop
in the fundamental representation appears to be very small
in the low-temperature phase: to a good approximation, the
low temperature phase is confining. We thus need to con-
struct effective potentials that give confinement, and a
deconfining phase transition, in the absence of any center
symmetry.

The simplest approach was suggested following
Eq. (18). For SUðNÞ, the perturbative potential is a power
series in the adjoint loop. The ZðNÞ symmetry allows
arbitrary powers of the ZðNÞ neutral adjoint loop to appear
but forbids terms which are charged under ZðNÞ, such as
odd powers of the fundamental loop. Since Gð2Þ has no
center symmetry, though, in the nonperturbative potential
there is nothing to prevent us from adding arbitrary powers
of the fundamental loop in Eq. (18). If the coefficients of
such terms are large and of the right sign, they drive the
theory into the confined phase at low temperatures.

Another approach is to observe that SUð7Þ � SOð7Þ �
Gð2Þ. This implies that we can construct a nonperturbative
potential from both SUð7Þ and Gð2Þ potentials. Of course,
we must restrict the SUð7Þ potentials to the two-
dimensional Cartan space of Gð2Þ. An easy exercise shows
the confining vacuum for SUð7Þ, Ycð7Þ, lies in the Cartan
space of Gð2Þ. Thus, by carefully adjusting the parameters
of the potential, we can ensure that the system lies in the
SUð7Þ confining vacuum below Tc. Confinement in SUð7Þ
then drives the fundamental loop to vanish as well.

In both cases, we add terms to the nonperturbative po-
tential which give an expectation value for the fundamental
loop that is either small or zero in the low-temperature
phase. Confinement is thus driven not by the center sym-
metry, but through the complete repulsion of eigenvalues.

The crucial question is whether the Weyl invariance of
Gð2Þ is respected by such SUð7Þ potentials. The following
simple argument is suggestive. TheWeyl group of SUð7Þ is
the permutation group S7. The Weyl group of SOð7Þ is Oh,
the group of rotations and reflections that leave the three-
dimensional cube invariant and is of order 48. The Weyl
group of Gð2Þ is D6, the dihedral group of order 12. Now
the latter two can be written as semidirect products of S2
with S4 and S3, respectively. This shows that they are
subgroups of S7. So, Weyl invariance is respected if one
neglects the fact that S7 acts in the six-dimensional Cartan
space of SUð7Þ, whereas D6 acts in the two-dimensional
Cartan space of Gð2Þ.

In Sec. VIII B we discuss the three-dimensional Cartan
space of SOð7Þ, the embedded Cartan space of Gð2Þ, and
their roots. Section VIII C constructs confining potentials
for both Gð2Þ and SOð7Þ. In Sec. VIII D we give a simple
proof that the SUð7Þ-type potential respects the necessary
Weyl symmetry. Finally, in Sec. VIII E we give results for
the possible thermodynamic behavior of Gð2Þ on the basis
of some possible models.

B. The root systems of SUð7Þ, SOð7Þ, and Gð2Þ
We start with some basic facts and notation. The

Polyakov loop for SUð7Þ is L ¼ expð2�iqSU7Þ, where
q SU7 ¼ diagðq1; q2; q3; q4; q5; q6; q7Þ: (137)

As an element of SUð7Þ, this is a traceless matrix,

q1 þ � � � þ q7 ¼ 0; (138)

and defines the six-dimensional Cartan space of SUð7Þ.
The group SUð7Þ has the subgroup SOð7Þ. The Cartan

space of SOð7Þ is three dimensional, where the q’s obey
three extra constraints,

q7 ¼ q1 þ q4 ¼ q2 þ q5 ¼ 0: (139)

Note that these constraints are identical to those which
ensure that the trace of the fundamental loop in SUð7Þ is
real, as illustrated in Fig. 16.
The group Gð2Þ is a subgroup of SOð7Þ. Its Cartan sub-

space obeys one more constraint:

q1 þ q2 þ q3 ¼ 0: (140)

We write the corresponding matrix as qG2, which has two
degrees of freedom.
In Fig. 18 we show the three-dimensional root system

of SOð7Þ and its Gð2Þ subgroup. Here the basis vector
corresponding to ðq1; q2; q3Þ are ~e1;2;3. This figure also

illustrated the restriction to the Gð2Þ plane, where q1 þ
q2 þ q3 ¼ 0. From this figure and standard group theory
[62], the roots are given by

~��
ij ¼ ~ei � ~ej; ; ~�i ¼ ~ei; ; i: 1 . . . 3; (141)

together with the six roots with opposite sign.
The twelve roots ~�� lie on the edges of the cube, and the

six roots ~� on the vertices of the octahedron. TheWeyl group
of this system isOh, the group of rotations and reflections that
leave the cube and the octahedron invariant, and is of order
48. The group of rotations is identical to the permutation
group, S4, of the four-diagonal body axes of the cube.
The plane defined by q1 þ q2 þ q3 ¼ 0 contains the six

SUð3Þ-like roots ~��
ij :

~��
12 ¼ ~e1 � ~e2; ~��

23 ¼ ~e2 � ~e3; ~��
31 ¼ ~e3 � ~e1:

(142)

These are part of the SOð7Þ root system. Then there are the

six orthogonal projections of the short roots ~�i in SOð7Þ
onto the plane q1 þ q2 þ q3 ¼ 0. The resulting projections
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are denoted by �i in Fig. 18. Below, we write them as
~̂�i to

avoid confusion with the corresponding SOð7Þ roots
~�i ¼ ~ei:

~̂�1 ¼ 1

3
ffiffiffi
2

p ð2 ~e1 � ~e2 � ~e3Þ;

~̂�2 ¼ 1

3
ffiffiffi
2

p ð� ~e1 þ 2 ~e2 � ~e3Þ;

~̂�2 ¼ 1

3
ffiffiffi
2

p ð� ~e1 � ~e2 þ 2 ~e3Þ:

(143)

The
~̂� roots are indeed 1=

ffiffiffi
3

p
shorter then the SUð3Þ-like

roots ~��, as behooves the root system of Gð2Þ. Note that
the SUð3Þ hypercharge matrices Y1 � diagð1; 1;�2Þ and
their permutations are generating the �̂ roots in the same
way as the SUð2Þ matrices diagð1;�1Þ generate the ~��
roots.
As in Eq. (32) we define

q G2 ¼ ~qG2 � ~H: (144)

In the perturbative effective potential, Eq. (31), the short

and long roots of Gð2Þ appear as ~̂�i � ~qG2 and ~��
ij � ~qG2.

These arguments are easily found from Eqs. (142) and
(143). They are, with the condition q1 þ q2 þ q3 ¼ 0:

~��
12 � ~qG2 ¼ q1 � q2;

~��
23 � ~qG2 ¼ q2 � q3; ~��

31 � ~qG2 ¼ q3 � q1:
(145)

~̂� 1 � ~qG2 ¼ q1;
~̂�2 � ~qG2 ¼ q2;

~̂�3 � ~qG2 ¼ q3:

(146)

The root lattice of Gð2Þ and its Weyl chamber are
illustrated in Fig. 19. The left panel is the root lattice,
with six long and six short roots. The Weyl group is
generated by the two mirrors indicated in the left panel,
at an angle of 2�=12. The product of the two reflections is
a rotation over 2�=6. The group is generated by this six-
fold rotation and by one of the reflections. This gives the
dihedral group of order 12, and so 12 Weyl chambers.
These are shown in the right-hand panel. We pick the
Weyl chamber as defined by the points O, and
ð1;�2; 1Þ=3, and ð1;�1; 0Þ=2. This is the upper half of
the Weyl chamber of SUð3Þ in Fig. 2. We also indicate the
confining vacuum for SUð3Þ, Ycð3Þ ¼ ð1;�1; 0Þ=3; the
confining vacuum for SUð7Þ, Ycð7Þ ¼ ð2;�3; 1Þ=7, and
by a black curve, the path where trace of the fundamental

FIG. 18 (color online). The root system of SOð7Þ and its Gð2Þ
subgroup. Also shown are the confining SUð7Þ vacuum, Ycð7Þ,
and rcð7Þ, the solution for the SUð7Þ potential at Tþ

c .

(1,−1,0)

Msl
M

α

α

α

12

(1,1,−2)
3

1

3

Y 3
c

Y(7)
c

cr

1

( )

23

31

β
2

β
3

β 1

q
3

q
2

q
1

(1, −2, 1)

1

2

FIG. 19 (color online). Left: the root lattice of Gð2Þ. Right: the twelve Weyl chambers of Gð2Þ. Ycð3Þ is the SUð3Þ confined vacuum;
Ycð7Þ, that for SUð7Þ.
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loop in Gð2Þ vanishes. The Weyl chamber for Gð2Þ is
precisely half that of SUð3Þ, Fig. 2.

C. Confining potentials for Gð2Þ and SOð7Þ
We drop an overall factor of T4 from the potential and

split it into perturbative and nonperturbative parts,

VtotðqG2Þ ¼ VGð2Þ
pt ðqG2Þ þ VnpðqG2Þ: (147)

As discussed in Sec. III the perturbative Gð2Þ potential is

VGð2Þ
pt ðqG2Þ ¼ � 14

45
�2 þ 4�2

3
VGð2Þ
2 ðqG2Þ; (148)

where t ¼ T=Tc, and

2VGð2Þ
k ðqG2Þ ¼

X
�

B2kð ~� � ~qG2Þ þ
X
�

B2kð ~� � ~qG2Þ;

k ¼ 1; 2; (149)

with the roots � and � those of Gð2Þ.
We now consider the types of nonperturbative potentials

that can produce a confined phase at low temperature.

Certainly we can add terms �VGð2Þ
k ðqG2Þ, as we did for

SUðNÞ. Generically, though, these do not give low-
temperature phases that are confining.

The first method is to take a sum as in Eq. (18), but sum
over powers of the Wilson line in the fundamental repre-
sentation, the 7. The weights of the 7 are precisely the six

� ~̂�i, i ¼ 1, 2, 3 from Eq. (146). This gives a potential

V7
2 ðqG2Þ ¼ B4ðq1Þ þ B4ðq2Þ þ B4ðq3Þ: (150)

The second method is to add potentials from SUð7Þ. This
will give terms VSUð7Þ

k ðqG2Þ, where these potentials are

defined by summing the corresponding Bernoulli polyno-
mials B2k over the roots ~��

ij , 1 � i < j � 7 of SUð7Þ:
VSUð7Þ
k ðqG2Þ ¼

X
1�i<j�7

B2kð ~��
ij � ~qG2Þ: (151)

By appropriately adjusting the coefficients in the
nonperturbative potential, we show that we can ensure
that at the critical temperature, the system goes into the
SUð7Þ-confining confining vacuum Ycð7Þ. We stress there
is no elegance in our approach: we are manifestly con-
structing a confined vacuum by hand. Nevertheless, our
model gives testable predictions, as shown in Sec. VIII E.

Along these same lines we can also construct a potential
that generates confinement in SOð7Þ: the perturbative
potential is that for SOð7Þ, while in the SUð7Þ-like poten-
tial, Eq. (151), we change the argument to qSOð7Þ. Doing
this gives:

VtotðqSOð7ÞÞ ¼ VSOð7Þ
pt ðqSOð7ÞÞ þ VnpðqSOð7ÞÞ; (152)

where

VSOð7Þ
pt ðqSOð7ÞÞ ¼ � 21

45
�2 þ 4�2

3
VSOð7Þ
2 ðqSOð7ÞÞ; (153)

and

2VSOð7Þ
k ðqSOð7ÞÞ ¼

X
�

B2kð ~� � ~qSOð7ÞÞ þ
X
�

B2kð ~� � ~qSOð7ÞÞ;

k ¼ 1; 2; (154)

with the roots � and � those of SOð7Þ. The SUð7Þ-like
potentials are

VSUð7Þ
k ðqSOð7ÞÞ ¼

X
1�i<j�7

B2kð ~��
ij � ~qSOð7ÞÞ: (155)

As discussed following Eq. (35), perturbatively the q
potentials for SOð7Þ and Spð6Þ are related by duality. If one
generates maximal eigenvalue repulsion for Spð6Þ, how-
ever, one obtains confinement appropriate to SUð6Þ, while
Eq. (155) for SOð7Þ gives confinement like that of SUð7Þ. If
the law of maximal eigenvalue repulsion holds, then the
nonperturbative potentials are not related by duality [58].

D. Weyl symmetry of SUð7Þ-like potentials
In this subsection we show that the nonperturbative

potentials introduced above are invariant under the Weyl
symmetries of Gð2Þ and SOð7Þ. First, observe that the only
terms which are not manifestly Weyl invariant are those in
Eqs. (151) and (155).
In the case of Gð2Þ we use Eq. (32) to write the

potential as:

VSUð7Þ
k ðqG2Þ
¼1

2

X
1�i;j�N

B2ðqi�qjÞ

¼2ðB2kðq1�q2ÞþB2kðq2�q3ÞþB2kðq3�q1ÞÞ
þ4ðB2kðq1ÞþB2kðq2ÞþB2kðq3ÞÞþB2kð2q1Þ
þB2kð2q2ÞþB2kð2q3Þ; (156)

with q1 þ q2 þ q3 ¼ 0.
Now, use Eq. (146) to rewrite this in terms of the roots of

Gð2Þ roots. This gives:

2VSUð7Þ
k ðqG2Þ ¼ 4

X
�

B2kð ~� � ~qG2Þ

þX
�

ð2B2kð ~� � ~qG2Þ þ B2kð2 ~� � ~qG2ÞÞ;

(157)

which is manifestly invariant under the Weyl symmetry
of Gð2Þ.
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Applying the same method to SOð7Þ gives

VSUð7Þ
k ðqSOð7ÞÞ ¼ B2kð2q1Þ þ B2kð2q2Þ þ B2kð2q3Þ

þ 2ðB2kðq1Þ þ B2kðq2Þ þ B2kðq3ÞÞ
þ 2ðB2kðq1 � q2Þ þ B2kðq2 � q3Þ
þ B2kðq3 � q1Þ þ B2kðq1 þ q2Þ
þ B2kðq2 þ q3Þ þ B2kðq3 þ q1ÞÞ: (158)

Note that the constraint q1 þ q2 þ q3 ¼ 0 is absent for
SOð7Þ. Imposing it gives the Gð2Þ result, Eq. (156).
Using Eqs. (33) and (34), this can be rewritten as

2VSUð7Þ
k ðqSOð7ÞÞ¼2

X
�

B2kð ~� � ~qSOð7ÞÞ

þX
�

ð2B2kð ~� � ~qSOð7ÞÞþB2kð2 ~� � ~qSOð7ÞÞÞ:

(159)

This result is manifestly Weyl invariant as the sums are
separately invariant: the Weyl transformations are orthogo-
nal and so cannot transform � roots into � roots.

E. Results for Gð2Þ
In this section, we give results for the thermodynamics,

assuming parameters which give a confined low-
temperature phase. The total potential is

V Gð2Þ
tot ðqG2Þ ¼ T4ðVGð2Þ

pt ðqG2Þ þ VnptðqG2; tÞÞ; (160)

where the perturbative potential is

VGð2Þ
pt ðqG2Þ ¼ � 14�2

45
þ 4�2

3
VGð2Þ
2 ðqG2Þ: (161)

For clarity, we write all functions in terms of the two
independent q’s for Gð2Þ, q1 and q2. The Gð2Þ potentials
are

VGð2Þ
n ðqG2Þ ¼ B2nðq1Þ þ B2nðq2Þ þ B2nðq1 þ q2Þ

þ B2nðq1 � q2Þ þ B2nð2q1 þ q2Þ
þ B2nðq1 þ 2q2Þ: (162)

We consider a nonperturbative potential

VnpðqG2Þ ¼ � 4�2

3t2
ðcGð2Þ

1 VGð2Þ
1 ðqG2Þ þ cSUð7Þ

1 VSUð7Þ
1 ðqG2Þ

þ cGð2Þ
2 VGð2Þ

2 ðqG2Þ þ cSUð7Þ
2 VSUð7Þ

2 ðqG2Þ
þ dGð2Þ

2 V7
2 ðqG2Þ þ c3Þ: (163)

The SUð7Þ potentials are

VSUð7Þ
n ðq1; q2Þ ¼ B2nð2q1Þ þ B2nð2q2Þ þ B2nð2q1 þ 2q2Þ

þ 2ðB2nðq1 � q2Þ þ B2nð2q1 þ q2Þ
þ B2nðq1 þ 2q2ÞÞ þ 4ðB2nðq1Þ þ B2nðq2Þ
þ B2nðq1 þ q2ÞÞ; (164)

while the potential from summing over Eq. (18) using the
fundamental representation, the 7, is

V7
2 ðqG2Þ ¼ B4ðq1Þ þ B4ðq2Þ þ B4ðq1 þ q2Þ: (165)

Besides thermodynamic quantities, such as the pressure
and the interaction measure, it is also possible to measure
loops. In Gð2Þ, the fundamental representation is related to
the SUð3Þ embedding as 7 ¼ 1þ 3þ �3 [36], so that the
fundamental loop is given by [40]

‘7 ¼ 1

7
ð1þ 2 cosð2�q1Þ þ 2 cosð2�q1Þ

þ 2 cosð2�ðq1 þ q2ÞÞÞ: (166)

The adjoint representation is related to the SUð3Þ embed-
ding as 14 ¼ 3þ �3þ 8, so that [40]

‘14 ¼ 1

7
ð1þ cosð2�q1Þ þ cosð2�q1Þ þ cosð2�ðq1 þ q2ÞÞ

þ cosð2�ðq1 � q2ÞÞ þ cosð2�ð2q1 þ q2ÞÞ
þ cosð2�ðq1 þ 2q2ÞÞ: (167)

In Eq. (163) we have a model with six parameters. Even
imposing two conditions—that the transition occur at Tc

and that the pressure vanishes there—we are left with four
free parameters. Instead of investigating the entire four-
dimensional space, we consider the behavior in some
representative models.
The first is a minimal Gð2Þ model,

cGð2Þ
1 ; c3 � 0; cGð2Þ

2 ¼ cSUð7Þ
1 ¼ cSUð7Þ

2 ¼ dGð2Þ
2 ¼ 0:

(168)

This is the Gð2Þ analogy of the analogue of the zero-
parameter SUðNÞ model of Ref. [20]. We introduce terms

�cGð2Þ
1 B2ðqG2Þ to drive the theory to a Higgs phase. We

could also introduce a term �cGð2Þ
2 B4ðqG2Þ, which would

be like our one parameter SUðNÞ model [14]. We have
done so and find that the results are similar to the minimal
model of Eq. (168).
The next is a model with a single fundamental loop,

dGð2Þ2 ; cGð2Þ
1 ; cGð2Þ

2 ; c3 � 0; cSUð7Þ
1 ¼ cSUð7Þ

2 ¼ 0:

(169)

The specific parameters chosen were dGð2Þ
2 ¼ �0:210 and

cGð2Þ
2 ¼ 0:3; the values of cGð2Þ

1 and c3 follow as for SUðNÞ,
Sec. IV, and are cGð2Þ1 ¼ 0:278 and c3 ¼ �0:364.
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Finally, we consider a SUð7Þ-type model,

cGð2Þ
2 ¼1; cSUð7Þ

1 ; cSUð7Þ
2 ; c3�0; cGð2Þ1 ¼dGð2Þ

2 ¼0:

(170)

Notice that we have fixed the parameter cGð2Þ
2 ¼ 1; with

this value, the Gð2Þ part of the nonperturbative potential
cancels, identically, the perturbative Gð2Þ potential
at Tc. This ensures that the confining effects of the
SUð7Þ potential are maximized at Tc. We then considered

two representative values of cSUð7Þ
2 : cSUð7Þ

2 ¼ 2:0, for which

cSUð7Þ
1 ¼ 0:623, and c3 ¼ �1:093; and cSUð7Þ

2 ¼ 4:0, for

which cSUð7Þ
1 ¼ 1:246 and c3 ¼ �1:952.

In Fig. 20 we show the expectation value of the Polyakov
loops in the fundamental representations. At present, there
is only data on histograms for the expectation value for the
bare, fundamental loop [36–41]. This shows the expecta-
tion value of the bare loop is very small in the low-
temperature phase. Including renormalization should not
alter this conclusion. Presumably, more careful lattice
studies will show that the expectation value is small, but
nonzero, as is true for the adjoint loop in SUð3Þ below
Tc [31].

Nevertheless, the minimal Gð2Þ model appears to be
excluded. The fundamental loop is negative at T�

c , with a
value �� 0:2. In Fig. 21 we illustrate the Weyl chamber
for Gð2Þ, indicating both the vacua at Tþ

c and T�
c . The low-

temperature phase at T�
c is close but not coincident with

Ycð7Þ, the confining vacuum for SUð7Þ.
The other models give fundamental loops which are

small in the low-temperature phase. In the fundamental
loop model, this expectation value is �þ 0:05 at T�

c ,
which may be compatible with the lattice results. Lastly,
the SUð7Þ models automatically give zero fundamental
loop below Tc.

In Fig. 22 we give the expectation value of the adjoint
loop. This also provides a way of distinguishing between
different models. On the lattice, the bare adjoint loop is
strongly suppressed but with effort can be measured. In the
minimalGð2Þmodel, it is positive at T�

c , but then becomes
negative. It is negative in the low-temperature phase for the
fundamental loop model and zero in the SUð7Þ model.
Figure 23 shows the evolution of the eigenvalues

of the fundamental Polyakov loop with temperature for
the minimal Gð2Þ model, Eq. (168), and for the SUð7Þ
model, Eq. (169), with cSUð7Þ

2 ¼ �2. We find that they

remain close to, although not exactly on, the SU(7) path
jq1=q2j ¼ 2.
In Fig. 24 we show the pressure obtained from the four

Gð2Þ models, Eqs. (168)–(170). This shows that the pres-
sure itself is not very useful for differentiating between
models. The pressure of the minimal Gð2Þ model is nega-
tive below Tc, but this is a limitation of our assumption that
the pressure vanishes at Tc.
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FIG. 20 (color online). Expectation value of the Polyakov loop
in the fundamental representation of Gð2Þ for the minimal Gð2Þ
model, Eq. (168); the fundamental loop model, Eq. (169); and
the two SUð7Þ models, Eq. (170).

Y(7)
c

Y(3)
c

c
r(7)

(2,−1,−1)
1
3

6
1

(1,−1,0)

(1,1,−2)

Tr L=0

2
1

qq

q
3

12

y

x
O
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minimal Gð2Þ model; Ycð7Þ is the confining SUð7Þ vacuum.
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FIG. 22 (color online). Expectation value of the Polyakov loop
in the adjoint representation of Gð2Þ for the minimalGð2Þmodel,
Eq. (168); the fundamental loop model, Eq. (169); and two
SUð7Þ models, Eq. (170).

EFFECTIVE MATRIX MODEL FOR DECONFINEMENT IN . . . PHYSICAL REVIEW D 86, 105017 (2012)

105017-31



In Fig. 25 we show the interaction measure ðe� 3pÞ=T4

obtained from theGð2Þmodels. All of the transitions are of
first order. The minimalGð2Þmodel looks most like that of
SUðNÞ, with a large latent heat and a sharp peak in
ðe� 3pÞ=T4 near Tc. The fundamental loop model also
has a sharp peak in ðe� 3pÞ=T4, but its latent heat is small.
Notice also that for the fundamental loop model, the ex-
pectation of the fundamental and adjoint loops, Figs. 20
and 22, is much smaller than the other models. This
suggests that the fundamental loop model may be near a
critical endpoint.

For the two SUð7Þ models, the interaction measure
ðe� 3pÞ=T4 does not exhibit a peak near Tc, but instead
drops rather slowly as the temperature increases.

Lastly, in Fig. 26 we show the rescaled interaction
measure, ðe� 3pÞ=T2T2

c , for the four different models.
For the minimal Gð2Þ and the fundamental loop models it
is flat, while for the SUð7Þ model it is not.

We await the results of more detailed numerical simu-
lations in a lattice [41], which will enable us to fix the
parameters of our effective model, Eq. (163).

IX. CONCLUSIONS

In this paper we generalized the model of Refs. [14,20]
to a theory with two parameters. Their values were chosen
by comparing to the interaction measure. We then obtain
results for the ’t Hooft loop above Tc and for the order-
disorder interface tension at Tc. For most quantities the
agreement is good, within 10% or so.
There is one glaring problem with the model: the results

for the Polyakov loop, Figs. 3 and 8, look nothing like the
lattice results, Refs. [31,32]. The discrepancy is not minor:
on the lattice, the renormalized loop indicates a broad
semi-QGP, from Tc to at least 3Tc. In our model, the width
is extremely narrow, to only 1:2Tc. Further, the lattice
measurements of Ref. [32] compute the renormalized
loop by explicit subtraction of the zero-point energy at
zero temperature, which is theoretically an unambiguous
procedure.
Can corrections to our model change this? These are of

two types. One is corrections in the coupling constant.
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FIG. 23 (color online). Eigenvalues of the Polyakov loop for
the minimal Gð2Þ model (dotted and dashed-dotted lines) and for
one SUð7Þ model (solid and dashed lines).
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For example, there are corrections to �g2 to the perturba-
tive potential. It is also possible to compute corrections
�g2 to our potential, which includes both perturbative and
nonperturbative terms [67]. (We ignore obvious questions
of principle, namely, to what extent does the nonperturba-
tive potential include perturbative corrections?) At next-to-
leading order, it is known that the q’s shift by an amount
�g2, [56], and the same happens in our effective model
[67]. Such a shift is �g2 and should be relatively small.
More to the point, however, in our model the width of the
transition region in the q’s is tied intimately to the width of
the interaction measure, and it seems unavoidable that a
broad width in the q’s gives a broad peak in the interaction
measure.

Other corrections are those �1=N. From lattice mea-
surements, though, the behavior found for three colors [31]
is very similar for four and five colors [32]. While the value
of the Polyakov loop at the critical temperature changes
modestly with N, in all cases the transition region, as seen
from the renormalized Polyakov loop, remains broad.

This discrepancy must be considered the outstanding
problem in the model. We can only suggest that the renor-
malized Polyakov loop does not directly reflect changes in
the eigenvalue distribution of the Wilson line. For three
[31,73] and four or five colors [32], there are terms�1=T2

in the logarithm of the Polyakov loop. It is conceivable that
a nonperturbative mechanism broadens the (renormalized)
Polyakov loop but not the distribution for the eigenvalues
of the Wilson line. We suggest directly measuring how the
distribution of the eigenvalues of the Wilson line changes
with temperature [33,34].

We conclude by pointing out that there are two others
ways in which the width of the transition region can be
measured, although indirectly. One was discussed previ-
ously [14]. When the q’s develop an expectation value, the
theory is an adjoint Higgs phase. In our model, in principle
this happens for all T, but in practice it is only numerically
large below 1:2Tc. While there is no order parameter to
distinguish such an adjoint Higgs phase, it generates a
characteristic splitting of masses. One may have to work
very close to Tc to see this, but it is a necessary conse-
quence of our model.

The ’t Hooft loop provides another way of testing a
narrow transition region. In Sec. V we gave results for
the ’t Hooft loop in the semi-QGP. Better measurements of
these quantities should provide a stringent test of our
model.
For four or more colors, there are further tests. For four

colors, besides the simplest ’t Hooft loop, between a
Polyakov loop with phase 1 and i, there is also a loop
between 1 and�1. To�g3, the ratio of these ’t Hooft loops
satisfies Casimir scaling [57]. This Casimir scaling is
observed to a very good precision over a wide range in
temperature [66]. We have not computed the ratio of these
’t Hooft loops in our model, but suggest that it will produce
small but measurable deviations from Casimir scaling in
the ratio of such ’t Hooft loops when T < 1:2Tc.
In conclusion, we suggest that detailed measurements of

the pure glue theory, especially near Tc, can help illuminate
how the law of maximal eigenvalue repulsion acts to gen-
erate confinement.
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