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We investigated chiral symmetry and UAð1Þ anomaly at finite temperature by applying the functional

renormalization group to the SUð3Þ linear sigma model. Expanding the local potential around the classical

fields, we derived the flow equations for the renormalization parameters. In the chiral limit, the flow

equation for the chiral condensate is decoupled from the others and can be analytically solved. The

Goldstone theorem is guaranteed in vacuum and at finite temperature, and the two phase transitions for the

chiral and UAð1Þ symmetry restoration happen at the same critical temperature. In the general case with

explicit chiral symmetry breaking, the two symmetries are partially and slowly restored, and the scalar and

pseudoscalar meson masses are controlled by the restoration in the limit of high temperature.
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I. INTRODUCTION

Chiral symmetry is one of the fundamental properties
of quantum chromodynamics (QCD). In the chiral limit
with zero current quark mass, the QCD Lagrangian density
respects the symmetry of ULð3Þ �URð3Þ ¼ UVð1Þ �
UAð1Þ � SUVð3Þ � SUAð3Þ at classical level. In vacuum,
the condensate of right-handed quark and left-handed an-
tiquark h �qLqRi breaks the SUAð3Þ symmetry, and theUAð1Þ
is broken by the anomaly due to the nontrivial topology of
the principal bundle of gauge field [1,2]. Chiral symmetry
breaking leads to a rich meson and baryon spectrum, and as
a supplement the UAð1Þ anomaly explains the nondegener-
acy of � and �0 mesons [3–5]. As a strong interacting
system should approach its classic limit at high tempera-
ture, chiral symmetry is believed to be restored in hot
medium. The relation between the two symmetries in
vacuum and at finite temperature has been studied for a
long time [6–8]. While the two symmetries are expected to
be restored [9] at high temperature, it is still an open
question whether the two phase transitions happen under
the same condition.

The lattice simulation is a powerful tool to study the
QCD symmetries in vacuum and at finite temperature. The
chiral condensate is observed to decrease with increasing
temperature, and the chiral susceptibility shows a peak at a
critical temperature Tc. By a proper definition, the topo-
logical charge and its susceptibility are used to describe the
UAð1Þ anomaly in the pure gauge field theory and the
unquenched theory [10,11]. In both cases, the susceptibil-
ity drops down above the critical temperature Tc of the
chiral restoration, and the charge keeps an obvious devia-
tion from zero at high temperature T > Tc. The simulation
for the instanton model shows such a partial restoration,
too [12]. On the other hand, the observation of the hadron
spectra provides an experimental way to test the restoration
of the two symmetries in hot medium created in relativistic
heavy ion collisions [13–15]. The mass shift due to the
chiral restoration enhances or reduces the hadron thermal

production, for instance, for the kaon yields and ratios
[16–18]. The partial restoration of the UAð1Þ symmetry is
closely related to the production of � meson and spin-
excited hadrons in hot medium [19,20].
Effective models [21,22] are often used to describe the

QCD phase structure, especially at finite baryon density,
where the lattice simulation meets the fermion sign prob-
lem and cannot yet present precise results. For the study of
chiral symmetry at low energy, effective models at hadron
level can include only scalar and pseudoscalar mesons. In
this work we choose the linear sigma model which has
been widely discussed in vacuum [23]. The simplest ver-
sion of this model is with the symmetry of SULð2Þ �
SURð2Þ or Oð4Þ, including only the Goldstone modes �
and their partner, the � meson. The linear sigma model is
considered as a good laboratory for various approximation
methods like mean-field and the Cornwall-Jackiw-
Tomboulis (CJT) approximation. In the framework of
this model, the � and � properties have been deeply
investigated in vacuum and hot medium [24–26]. The
model is also extended to include quarks in the fundamen-
tal representation coupled to the mesons in Yukawa form.
However, in the SUð2Þ version the UAð1Þ anomaly cannot
be properly studied, since there are not enough flavors
for � and �0 mesons which are related to the anomaly. In
order to study chiral symmetry and UAð1Þ symmetry at the
same time, the flavor symmetry group is chosen as
SULð3Þ � SURð3Þ in this work.
The pion, kaon, and eta mesons are the Goldstone modes

corresponding to the spontaneous SUAð3Þ symmetry break-
ing. These zero mass mesons are guaranteed by the
Nambu-Goldstone theorem in vacuum as well as at low
temperature T < Tc. However, in the mean-field approxi-
mation [24,25] and the CJT approximation [26,27], the
Nambu-Goldstone theorem is destroyed at low tempera-
ture. In this work we use the functional renormalization
group (FRG) method to study chiral symmetry and UAð1Þ
symmetry in the SUð3Þ linear sigma model at finite tem-
perature. As a nonperturbative method [28–30], the FRG
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has been used to study phase transitions in various systems
like cold atom gas [31], nucleon gas [32], and hadron gas
[33–38]. By solving the flow equation which connects
physics at different momentum scales, the FRG shows a
great power to describe the phase transitions and the cor-
responding critical phenomena, which are normally diffi-
cult to be controlled in the mean-field approximation
because of the absence of quantum fluctuations. Instead
of adding hot loops to the thermodynamic potential in the
usual ways of going beyond mean field, the FRG effective
potential at tree level of mean-field approximation includes
already quantum fluctuations through the mass and cou-
pling constant renormalization and can guarantee the
Nambu-Goldstone theorem in chiral symmetry breaking
phase.

We proceed as follows. In Sec. II, we briefly review the
SUð3Þ linear sigma model, following the notation in
Ref. [27], and apply the functional renormalization to the
model. The flow equations are derived, in the general case,
with explicit chiral breaking terms, and the one for the
chiral condensate can be solved analytically in the chiral
limit. In Sec. III we present the numerical results for the
light and strange quark condensates and the topological
susceptibility at finite temperature. Finally, in Sec. IV we
summarize our results.

II. APPLICATION OF FUNCTIONAL
RENORMALIZATION TO THE
SUð3Þ LINEAR SIGMA MODEL

The SULð3Þ � SURð3Þ linear sigma model has been
widely studied in mean-field and CJT approximation in
vacuum and at finite temperature [27,39,40]. Following the
notations in Ref. [27], the Lagrangian density of the model
is expressed as

L ¼ Trð@��y@���m2�y�Þ þ c½Detð�Þ þ Detð�yÞ�
� �1½Trð�y�Þ�2 � �2Trð�y�Þ2 þ Tr½Hð�þ�yÞ�;

(1)

where the meson matrix � ¼ Ta�a and the trace Tr are
defined in the flavor space, the meson field�a ¼ �a þ i�a

contains the scalar part �a, and the pseudoscalar part �a,
the 3� 3Gell-Mann matrices Ta ¼ �a=2 for a ¼ 1; � � � ; 8
and T0 ¼ 1=

ffiffiffi
6

p
for a ¼ 0 obey the relations TrðTaTbÞ ¼

�ab=2, ½Ta; Tb� ¼ ifabcTc, and fTa; Tbg ¼ dabcTc with the
structure constants fabc and dabc, m

2 as the mass parame-
ter, and c, �1, and �2 as the coupling constants.

The Lagrangian density (1) is invariant under the
SULð3Þ � SURð3Þ transformation, except the last term
which explicitly breaks chiral symmetry,

Tr ½Hð�þ�yÞ� ¼ ha�a; (2)

where the matrix H is defined as H ¼ haTa with nine
parameters ha.

The determinant term in (1) explicitly breaks the
UAð1Þ symmetry, which in QCD is violated by the
anomaly. If the coefficient c of the UAð1Þ anomaly term
vanishes, the symmetry group of the system is enlarged
to ULð3Þ �URð3Þ.
In vacuum and at finite temperature but zero density,

there are only scalar condensates

h�i ¼ Tah�ia; (3)

where hXi means the ensemble average of the operator X.
To simplify the notation, we use �� to replace h�i in the
following. Making a shift for the meson field � ! h�i þ
�� and substituting it into the Lagrangian density (1), the
effective potential of the system at classical level can be
written as

Uð ��Þ ¼ m2

2
��2
a �Gabc ��a ��b ��c

þ 1

3
Fabcd ��a ��b ��c ��d � ha ��a; (4)

and the dynamical masses generated by the condensates
can be extracted from the coefficients of the term ð��Þ2
and form two 9� 9matricesMS andMP for the scalar and
pseudoscalar mesons,

ðM2
SÞab ¼ m2�ab � 6Gabc ��c þ 4Fabcd ��c ��d;

ðM2
PÞab ¼ m2�ab þ 6Gabc ��c þ 4Habcd ��c ��d

(5)

with the coefficients defined as

Gabc¼c

6
½dabcþ9

2
d000�a0�b0�c0

�3

2
ð�a0d0bcþ�b0da0cþ�c0dab0Þ�;

Fabcd¼�1

4
ð�ab�cdþ�ad�bcþ�ac�bdÞ

þ�2

8
ðdabedecdþdadedebcþdacedebdÞ;

Habcd¼�1

4
�ab�cdþ�2

8
ðdabedecdþfadedebcþfacedebdÞ:

(6)

The physical condensates are determined by minimizing
the potential,

@Uð ��Þ
@ ��a

¼ 0; (7)

which leads to the gap equations

m2 ��a � 3Gabc ��b ��c þ 4

3
Fabcd ��b ��c ��d � ha ¼ 0: (8)

In different thermodynamic environments, the conden-
sate h�i can be further simplified. Since the isospin zero
mesons �0 and �8 or �� and ��0 can couple to the vacuum

without violating Lorentz invariance and parity, the
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classical field matrix h�i and the coefficient matrix H in
the chiral breaking term contain only two components,
h�i ¼ T0 ��0 þ T8 ��8 and H ¼ T0h0 þ T8h8. In order to
simplify the expressions, we make a rotation for the con-
densates ��0 and ��8 and the chiral breaking parameters h0
and h8,

��u ¼
ffiffiffi
2

3

s
��0 þ

ffiffiffi
1

3

s
��8; ��s ¼

ffiffiffi
1

3

s
��0 �

ffiffiffi
2

3

s
��8;

hu ¼
ffiffiffi
2

3

s
h0 þ

ffiffiffi
1

3

s
h8; hs ¼

ffiffiffi
1

3

s
h0 �

ffiffiffi
2

3

s
h8:

(9)

In terms of the rotated condensates ��u and ��s and the
rotated breaking parameters hu and hs, the classical poten-
tial and the gap equations can be explicitly expressed as

Uð ��u; ��sÞ ¼ m2

2
ð ��2

u þ ��2
sÞ � c

2
ffiffiffi
2

p ��2
u ��s þ �1

4
ð ��2

u þ ��2
sÞ2

þ �2

8
ð ��4

u þ 2 ��4
sÞ � hu ��u � hs ��s (10)

and

m2 ��u� 1ffiffiffi
2

p c ��u ��sþ�1ð ��2
uþ ��2

sÞ ��uþ1

2
�2 ��

3
u¼hu;

m2 ��s� 1

2
ffiffiffi
2

p c ��2
uþ�1ð ��2

uþ ��2
sÞ ��sþ�2 ��

3
s ¼hs:

(11)

For the meson mass matrices MS and MP, each has only
one independent off-diagonal elementM2

08 ¼ M2
80 and four

independent diagonal elements M2
00, M

2
88 and

m2
a0 ¼ ðM2

SÞ11 ¼ ðM2
SÞ22 ¼ ðM2

SÞ33;
m2

� ¼ ðM2
SÞ44 ¼ ðM2

SÞ55 ¼ ðM2
SÞ66 ¼ ðM2

SÞ77;
m2

� ¼ ðM2
PÞ11 ¼ ðM2

PÞ22 ¼ ðM2
PÞ33;

m2
K ¼ ðM2

PÞ44 ¼ ðM2
PÞ55 ¼ ðM2

PÞ66 ¼ ðM2
PÞ77;

(12)

and diagonalizing the meson subspace a ¼ 0, 8 generates
the pseudoscalar mesons � and �0 and the corresponding
scalar mesons. There are six parameters in the model, the
mass m, the three coupling constants c, �1, and �2 and the
two chiral breaking parameters hu and hs. They should be
determined by the experimental data in vacuum. Firstly, the
partial conservation of axial-vector current leads to a rela-
tion between the condensates and the pion and kaon decay
constants f� and fK,

�� u ¼ f�; ��s ¼ �f� þ 2fKffiffiffi
2

p ; (13)

then the gap equations (11) can be reexpressed by the
Goldstone modes � and K,

hu ¼ m2
�f�; hs ¼ �m2

�f� þ 5m2
KfKffiffiffi

2
p ; (14)

and the combination of the isospin zero pseudoscalar
mesons � and �0 determines the couplings �2 and c,

�2 ¼ 2

ffiffiffi
6

p
��sm

2
K � ffiffiffi

2
p

��0m
2
� þ ��8ðm2

� þm2
�0 Þ

ð ��2
u þ 4 ��2

sÞ�8

;

c ¼ m2
K �m2

�

fK � f�
� �2ð2fK � f�Þ:

(15)

Substituting the above-obtained parameters into any of the
two gap equations, one can get the relation between the
mass m and the coupling �1. By fitting a scalar meson
mass, for instance m�, one can then separately fix the two
parameters. In summary, the six parameters m, c, �1, �2,
hu, and hs are fitted by the experimental values ofm�, mK,
f�, fK, andm

2
� þm2

�0 and one of the scalar meson masses.

It is necessary to note that, in this way, one can fix a group
of parameters, but the obtained condensates may not
correspond to the minimum of the potential. One should
check the secondary derivative of the potential,
@2U=@ ��i@ ��j > 0.

We now apply the functional renormalization group to
the SUð3Þ linear sigma model. The core quantity in the
framework of FRG is the averaged effective action �k at a
momentum scale k in Euclidean space,

�k½h�i� ¼
Z

d4x½TrðZk@�h�iy@�h�iÞ þUkðh�iÞ þ � � ��;
(16)

where Zk is the wave function renormalization constant,
Ukðh�iÞ is the classical potential (10) but with renormal-
ized mass and coupling parametersmk, ck, �1k, and �2k and
scale dependent condensates ��uk and ��sk, and the symbol
� � � stands for the high-order terms of the field h�i. The
scale dependence of the averaged action is characterized
by the flow equation [28–30] in momentum representation,

@�k½h�i�
@k

¼ 1

2

Z d4p

ð2�Þ4 Tr

�
ð�ð2Þ

k ½h�i� þ RkÞ�1 @Rk

@k

�
;

(17)

where �ð2Þ
k is the second-order functional derivative of the

averaged action �ð2Þ
k ½h�i� ¼ �2�k=�h�i2, and the infrared

cutoff function Rk, which is used to suppress quantum
fluctuations at low momentum p < k, is chosen as the
optimized regulator function Rk ¼ ðk2 � p2Þ	ðk2 � p2Þ
[41]. From our numerical calculation shown in the next
section, the symmetry restoration and meson mass spectra
at finite temperature are not sensitive to the choice of the
cutoff function [42].
Following the effective action flow starting from the

ultraviolet momentum k ¼ �, the physics we are inter-
ested in could be obtained at k ¼ 0.
By assuming the space-time independence of the clas-

sical field h�i, the effective action to the lowest order is
determined by the classical potential only,

�k ¼
Z

d4xUkðh�iÞ: (18)
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With the known infrared cutoff function Rk, after doing the
three-momentum integration for the mesons at finite tem-
perature, the FRG flow equation can be simplified as

@kUk ¼ Z�1
Sk k

4

6�2

�
1� �Sk

6

�
T
X
n

TrDSk

þ Z�1
Pk k

4

6�2

�
1� �Pk

6

�
T
X
n

TrDPk; (19)

with the meson propagators D�1
Sk ¼ Z�1

Sk ð!2
n þ k2Þ þM2

S

and D�1
Pk ¼ Z�1

Pk ð!2
n þ k2Þ þM2

P and the definition �k ¼
�k@kZ

�1
k =Z�1

k , where !n ¼ 2n�T with n ¼ 0; 1; 2 � � � is
the meson Matsubara frequency in the imaginary time
formalism of finite-temperature field theory, and we have
considered different renormalization constants ZSk and ZPk

for the scalar and pseudoscalar fields. In order to complete
the set of flow equations, we need equations for the evo-
lution of ZSk and ZPk [30]. To the one-loop level they read

�@kZ
�1
Sk ¼ Z�2

Sk k
4

6�2
T
X
n

TrðD2
Sk�SSSD

2
Sk�SSSÞ

þ Z�2
Pk k

4

6�2
T
X
n

TrðD2
Pk�SPPD

2
Pk�SPPÞ;

�@kZ
�1
Pk ¼ Z�1

Sk Z
�1
Pk k

4

3�2
T
X
n

TrðD2
Pk�PSPD

2
Sk�PSPÞ; (20)

where ð�SSSÞabc ¼ @3Uk=@ ��a@ ��b@ ��c, ð�SPPÞabc ¼ @3Uk=
@ ��a@ ��b@ ��c, and ð�PSPÞabc ¼ @3Uk=@ ��a@ ��b@ ��c are

9� 9 matrices for the three-line vertexes with a fixed
external meson a. In the above discussion we have
assumed that the wave function renormalization constant
depends only on the Lorentz transformation property of the
mesons but is independent of the detailed meson types. In
the following numerical calculations related to the three-
line vertexes, we take the Goldstone mode a ¼ 4.

As we will see from the numerical calculation in the
next section, the contribution from the wave function
renormalization to the thermodynamics of the system is
very small and can be safely neglected as a first-order
approximation. In this case, by taking ZSk ¼ ZPk ¼ 1,
the flow equation (19) is further simplified as

@kUk ¼ k4

6�2
T
X
n

TrðDSk þDPkÞ: (21)

Note that the parameters hu and hs (or h0 and h8), which
explicitly break chiral symmetry, are scale independent,
and only the condensates ��u and ��s (or ��0 and ��8), which
spontaneously break chiral symmetry, depend on the scale
k. In the treatment of the flow equation with classical
potential, the mass and coupling constant renormalization
leads to four k-dependent parameters mk, ck, �1k, and �2k

controlled by the flow equation (21), and the condensates
��uk and ��sk are determined by the gap equations (11).

Considering the partially degenerated diagonal elements
and the simple off-diagonal structure of the mass matrices
MS andMP, the trace Tr in (21) can be easily done, and the
flow equation becomes

@kUk ¼ k4

6�2
T
X
n

½TrðDSk þDPkÞ þ 3Da0k

þ 4D�k þ 3D�k þ 4DKk� (22)

with two 2� 2 mixed matrices

MS ¼
ðM2

SÞ00 ðM2
SÞ08

ðM2
SÞ80 ðM2

SÞ88

 !
;

MP ¼ ðM2
PÞ00 ðM2

PÞ08
ðM2

PÞ80 ðM2
PÞ88

 ! (23)

and the corresponding propagators D�1
Sk ¼!2

nþk2þM2
S

andD�1
Pk ¼!2

nþk2þM2
P. Different from the Oð4Þ model

[34], while Trð�y�Þ, Trð�y�Þ2, and Detð�Þ þ Detð�yÞ
are invariant under the SULð3Þ � SURð3Þ transformation,
not all the meson masses can be expressed with the eigen-
values of these operator composites.
We now expand the potential around the minimum

��uk and ��sk. Shifting the field �u ¼ ��uk þ ��uk and
�s ¼ ��sk þ ��sk, the derivative of the potential on the
left-hand side of the flow equation could be expressed as
powers of ��uk and ��sk,

_Ukð ��uk þ ��uk; ��sk þ ��skÞ

¼ _Uk þ @ _Uk

@��uk

��uk þ @ _Uk

@��sk

��sk

þ 1

2

@2 _Uk

@��2
uk

��2
uk þ

1

2

@2 _Uk

@��2
sk

��2
sk

þ 1

2

@2 _Uk

@��uk@��sk

��uk��sk (24)

with the definition _Uk ¼ @kUk. By comparing the coeffi-
cients of ��uk, ��sk, ��

2
uk, ��

2
sk, and ��uk��sk on the

left- and right-hand sides of the flow equation (22), one
obtains four independent differential equations for the six
parameters m2

k, ck, �1k, �2k, ��uk, and ��sk. Together with

the two gap equations, their k dependence is fully deter-
mined. Note that in deriving the four flow equations,
we have used the relations @k��uk ¼ �@k�uk and
@k��sk ¼ �@k�sk.
Before numerically solving the flow equations which

will be done in the next section, we first discuss the chiral
limit analytically. From the relation between h8 and ��8,

h8 ¼ m2
� ��8; (25)

since there is no reason for the � meson to be massless in
the chiral limit, the condensate ��8 should vanish in the case
of h0 ¼ h8 ¼ 0. In this limit, there remains only one gap
equation for the condensate ��0,
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m2 � cffiffiffi
6

p ��0 þ
�
�1 þ �2

3

�
��2
0 ¼ 0; (26)

and the off-diagonal elements in the mass matrices MS;P

disappear. In the phase of spontaneous chiral symmetry
breaking, there are eight pseudoscalar Goldstone modes �,
K, and �, which dominate the thermodynamics of the
system. From the flow equation (22), the heavy modes do
not contribute much to the flow, and we can keep only the
terms with the Goldstone modes. In this approximation the
flow equation for the chiral condensate ��0k is decoupled
from the others,

@k ��
2
0k ¼

8k4

3�2
T
X
n

1

ð!2
n þ k2Þ2

¼ 2k

3�2

�
1þ 2nk þ 2

k

T
nk þ 2

k

T
n2k=T

�
(27)

with the Fermi-Dirac distribution nk ¼ 1=ðek=T � 1Þ.
It is easy to see that the right-hand side of the flow

equation (27) is always positive, which leads to a mono-
tonically increasing ��0k with the momentum scale k at any
temperature. Therefore, when we start at an ultraviolet
momentum �, the physical condensate at k ¼ 0 is guaran-
teed to be finite from the evolution of the flow equation. On
the other hand, from the meson frequencies !n ¼ 2n�T,
the condensate drops down with increasing temperature at
any momentum scale k, which may lead to a phase tran-
sition of chiral symmetry restoration at a critical tempera-
ture Tc. In fact, the flow equation can be analytically
integrated out with the solution

�� 2
0kðTÞ ¼ ��2

0�ðTÞ þ fð�; TÞ � fðk; TÞ (28)

with the definition

fðk; TÞ ¼ T2

3�2

�
5

�
k

T

�
2 þ 4

�
k

T

�
2
nk

þ 12
k

T
lnð�nkÞ � 12Li2ðek=TÞ

�
; (29)

where Li2ðxÞ ¼ P1
l¼1 x

l=l2 is the polylogarithm function.

At very high momentum, the temperature effect on the
system becomes weak, and we can reasonably take the
boundary condition of the flow equation ��0�ðTÞ at finite
temperature as the one ��0�ð0Þ at zero temperature.
The condensate ��0�ð0Þ is determined by reproducing the
vacuum value ��00ð0Þ,

�� 2
0�ð0Þ ¼ ��2

00ð0Þ þ fð0; 0Þ � fð�; 0Þ: (30)

The critical temperature Tc for the chiral phase transition is
then determined by

�� 2
0�ð0Þ þ fð�; TcÞ � fð0; TcÞ ¼ 0: (31)

In the symmetry restoration phase with T > Tc, the
potential expansion should be around the zero condensate
��0 ¼ 0. In this case, all the mesons become degenerate

with mass m2, and their contributions to the flow equation
are the same. The procedure for the SUð2Þ model is dis-
cussed in Refs. [35,38].

III. NUMERICAL RESULTS

In this section we show our numerical results for chiral
symmetry and UAð1Þ symmetry restoration at finite tem-
perature. In the case with explicit chiral symmetry break-
ing, one has to solve the coupled four flow equations, if the
wave function renormalization is neglected, together with
the two gap equations. The initial conditions for the four
differential equations at a fixed temperature are the values
of the six parameters at the ultraviolet momentum �,
namely m�ðTÞ, c�ðTÞ, �1�ðTÞ, �2�ðTÞ, ��u�ðTÞ, and
��s�ðTÞ. Considering the fact that the system at high-
enough momentum is dominated by the dynamics and
not affected remarkably by the temperature, the tempera-
ture dependence of the parameters at the ultraviolet mo-
mentum can be safely neglected. Therefore, we take the
temperature-independent initial values m�ðTÞ ¼ m�ð0Þ,
c�ðTÞ ¼ c�ð0Þ, �1�ðTÞ ¼ �1�ð0Þ, �2�ðTÞ ¼ �2�ð0Þ,
��u�ðTÞ ¼ ��u�ð0Þ, and ��s�ðTÞ ¼ ��s�ð0Þ, and they are so
chosen to reproduce their vacuum values at k ¼ 0, dis-
cussed in Sec. II, by solving the flow equations and gap
equations at zero temperature.
Figure 1 shows the evolution of the condensates ��uk,

��sk, and ��8k at zero temperature. With increasing momen-
tum scale k, the condensate ��8k drops down fast and
becomes only 30% of its vacuum value at k� 1 GeV.
From the relation h8 ¼ m2

�k ��8k, the k independence of

the chiral breaking parameter h8 leads to a large meson
mass m�k at k� 1 GeV. Therefore, we take 1 GeV as the
ultraviolet momentum� for the evolution of the renormal-
ization parameters. We have checked that the numerical
results are insensitive to the value of the momentum cut�.
Both the light and strange quark condensates ��uk and ��sk

go up with increasing scale k, as we analyzed in the end of
Sec. II, in the chiral limit.

FIG. 1 (color online). The evolution of the condensates ��uk,
��sk, and ��8k at T ¼ 0, scaled by their vacuum values at k ¼ 0.
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The temperature dependence of the light and strange
quark condensates at k ¼ 0 is shown in Fig. 2. While both
condensates are almost constants at low temperature
T < 50 MeV, they monotonically decrease at high-enough
temperature, as we expected from the analysis in the chiral
limit. Since strange quarks are much heavier than light
quarks, which is reflected in the values of the explicit
symmetry breaking parameters hu and hs, the SUð2Þ sym-
metry restoration should be much faster than the SUð3Þ
symmetry restoration. This is the reason why the light
quark condensate drops more rapidly than the strange
quark condensate. The qualitative behavior of the
condensates shown here is similar to what is obtained in
the framework of mean-field and CJT approximation
[25,27].

What is the effect of the wave function renormalization
on the condensates? Solving the flow equations (24) for the
renormalized mass and coupling constantsm2

k, ck, �1k, and

�2k and (20) for the renormalized wave functions ZSk and
ZPk and the gap equations (11) for the condensates ��uk

and ��sk, and taking the vacuum values ZS0 ¼ ZP0 ¼ 1 at
T ¼ k ¼ 0, the momentum scale dependence of Z�1

Sk

and Z�1
Pk at zero temperature is shown in Fig. 3. While

the scalar part varies strongly with the scale k, the renor-
malization for the pseudoscalar mesons, among which the
Goldstone modes dominate the thermodynamics of the
system, is a very smooth function in the whole region
0< k<�. Considering the fact of �k / @kZ

�1
k in the

flow equation (19), the contribution from the wave function
renormalization to the averaged action is expected to be
slight. From Fig. 4, the temperature dependence of the light
and strange quark condensates, including the contribution
from thewave function renormalization, is almost the same
as the one shown in Fig. 2. Therefore, for the following
numerical calculations, we will omit the wave function
renormalization as a first-order approximation.

The UAð1Þ anomaly is described by the topological
susceptibility [10]


 ¼
Z

d4xh0jTðQðxÞQð0ÞÞj0i (32)

with QðxÞ being the topological charge determined by the
QCD coupling constant g and the gauge field tensor Fa

��,

QðxÞ ¼ g2

64�2
���
�Fa

��ðxÞFa

�ðxÞ; (33)

where ���
� is the antisymmetric tensor. By introducing

the anomaly, the ninth Goldstone mode �0 is no longer
massless. The topological susceptibility can be related to
the pseudoscalar meson masses in the linear sigma model
by the Witten-Veneziano relation [3,4],


 ¼ f2�
6
ðm2

� þm2
�0 � 2m2

KÞ ¼
�2

u

12
ð ffiffiffi

6
p

c�0 � 3�2�
2
8Þ:
(34)

It is determined not only by the three-line coupling c but
also by the four-line coupling �2, although the UAð1Þ

FIG. 2 (color online). The temperature dependence of the light
and strange quark condensates ��u0, ��s0, scaled by their vacuum
values at T ¼ 0.

FIG. 3 (color online). The momentum scale dependence of the
wave function renormalization constants at zero temperature.

FIG. 4 (color online). The temperature dependence of the light
and strange quark condensates, including the wave function
renormalization.
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symmetry is broken only by the determinant term which is
irrelevant to �2.

The temperature dependence of the topological suscepti-
bility is shown in Fig. 5. It decreases with temperature in the
region of T � 100 MeV, indicating a continuous restoration
ofUAð1Þ symmetry. Different from the lattice simulation for
the SUð3Þ Yang-Mills theory [10], where the susceptibility
drops down rapidly, the susceptibility remains still 30%of its
vacuumvalue at high temperatureT ¼ 250 MeV. Unlike the
condensates that never increase with temperature, the sus-
ceptibility shows a slight increase in the low-temperature
region of T < 100 MeV, which is observed also in simula-
tions in the interacting instanton liquid model [12].

Chiral symmetry andUAð1Þ symmetry restoration shown
above control the meson masses in hot medium. The
temperature dependence of the meson masses is shown in
Figs. 6 and 7. There are four different mesons for each
species, the triplet a0, quartet �, and the mixed� and f0 for
the scalar mesons, and the triplet �, quartet K, and the
mixed � and �0 for the pseudoscalar mesons. As tempera-
ture increases, the scalar meson masses mf0 , m�, and ma0

drop down monotonically, but f0 and � are heavier than
a0 at T < 200 MeV and become lighter than a0 at
T > 200 MeV. The Goldstone modes � and their chiral
partner � become degenerate at high temperature, due to
chiral symmetry restoration. A similar behavior is seen
for the mesons a0 and �0. At T ¼ 250 MeV, there are
m� ’ m� ’ 200 MeV and ma0 ’ m�0 ’ 900 MeV. The

mixed mode � behaves similarly to the other seven
Goldstone modes � and K. While the mass of the other
mixed meson �0 slightly goes up at low temperature and
drops down at high temperature, the difference between �
and �0 decreases with increasing temperature, due to the
partial restoration of the UAð1Þ symmetry.
The main difference between the FRG and the mean-

field [25] and CJT [27] approximations is that the quantum
fluctuations included in the FRG slow down the chiral
symmetry and UAð1Þ symmetry restoration. The light
quark condensate drops down fast around T � 150 MeV
and approaches zero at T � 300 MeV in the CJT [27] but
still keeps 60% of its vacuum value at T � 250 MeV in the
FRG, see Fig. 2. The fast symmetry restoration makes the
mesons become degenerate at high temperature [27], and
the slow restoration leads to a still remarkable separation of
meson masses, see Figs. 6 and 7. In Fig. 8, we showed the
K and � meson masses calculated in the FRG and CJT.
The two kinds of mesons become almost degenerate at
T � 250 MeV in the CJT but still separate from each other
at this temperature in the FRG. Note that one needs a scalar
meson mass to fix the model parameters. In our calculation
we took m� ¼ 400 MeV [25], and it was taken as
600 MeV in the CJT [27]. While this difference changes
the f0 meson mass, the � and a0 in the vacuum are the
same in the two approaches, since they are decoupled from
� in the model.
In the chiral limit, the condensate ��8 disappears and the

flow equation for the condensate ��0 is decoupled from
the others and can be analytically solved as in (28).
The evolutions of ��0k at different temperature are shown
in Fig. 9. While the temperature dependence at low

FIG. 5. The temperature dependence of the topological sus-
ceptibility 
, scaled by its vacuum value at T ¼ 0.

FIG. 6 (color online). The temperature dependence of the
scalar meson masses.

FIG. 7 (color online). The temperature dependence of the
pseudoscalar meson masses.
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momentum scale k is remarkable, the condensate is
almost T independent when the scale is large enough. This
supports our choice of T-independent initial condition
at k ¼ �. With increasing temperature, the solution at
k ¼ 0 approaches zero continuously, indicating the phase
transition of chiral symmetry restoration. The temperature
dependence of the physical condensate and topological
susceptibility at k ¼ 0 is shown in Fig. 10. The condensate
drops down much faster than that in the general case with
explicit chiral symmetry breaking, see Fig. 2. The critical
temperature for the chiral phase transition determined by
��00ðTcÞ ¼ 0 is Tc ¼ 130 MeV.
The topological susceptibility (34) for the UAð1Þ

anomaly is simplified as


 ¼ 1

3
ffiffiffi
6

p c�3
0 (35)

in the chiral limit. After a rapid decrease in the vicinity of
vacuum, it becomes very smooth and finally vanishes at
the same critical temperature for the SUAð3Þ symmetry
restoration.

IV. CONCLUSION

We investigated in this paper chiral symmetry andUAð1Þ
symmetry restoration at finite temperature by applying the
functional renormalization group to the SUð3Þ linear sigma
model. We derived the flow equations for the mass, cou-
pling, and wave function renormalization parameters in the
local potential approximation and the two gap equations
for the light and strange quark condensates.
In the chiral limit, we analytically solved the decoupled

flow equation for the chiral condensate and analyzed
its momentum scale and temperature dependence. The
eight Goldstone modes are guaranteed in vacuum and at
finite temperature before the chiral restoration, and the two
phase transitions for chiral symmetry and UAð1Þ symmetry
restoration take place at the same critical temperature
Tc ¼ 130 MeV.
In the general case with explicit chiral symmetry break-

ing, we numerically solved the coupled flow and gap
equations at finite temperature, starting from the classical
potential at the ultraviolet momentum k ¼ �� 1 GeV
and extracting physics including quantum fluctuations at
k ¼ 0. In this case, a partial restoration of the SUAð3Þ and
UAð1Þ symmetries is observed. Different from the results
obtained in other approximations, like the CJT method, the
light and strange quark condensates drop down with tem-
perature slowly. As a result of the partial restoration of the
two symmetries, the pseudoscalar triplet � and its chiral
partner � (the scalar triplet a0 and �0) become degenerate
at high temperature, and the difference between the mixed
modes � and �0 gradually disappears in the limit of high
temperature.
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FIG. 8 (color online). The comparison of K and � meson
masses between the FRG (solid lines) and CJT [27] (dashed
lines) calculations.

FIG. 9 (color online). The evolutions of the condensate ��0k at
different temperature in the chiral limit.

FIG. 10 (color online). The temperature dependence of the
chiral condensate ��0 and topological susceptibility 
 in chiral
limit, scaled by their vacuum values.
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