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We show that the double-copy structure of gravity forbids divergences in pure half-maximal

(16 supercharge) supergravity at four and five points at one loop in D< 8 and at two loops in D< 6.

We link the cancellations that render these supergravity amplitudes finite to corresponding ones that

eliminate forbidden color factors from the divergences of pure nonsupersymmetric Yang-Mills theory.

The vanishing of the two-loop four-point divergence in D ¼ 5 half-maximal supergravity is an example

where a valid counterterm satisfying the known symmetries exists, yet is not present. We also give explicit

forms of divergences in half-maximal supergravity at one loop in D ¼ 8 and at two loops in D ¼ 6.
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I. INTRODUCTION

Recent years have made it clear that even at loop level
perturbative scattering amplitudes in gravity theories are
closely related to corresponding ones in gauge theories.
In particular, a recent conjecture holds that whenever a
duality between color and kinematics is made manifest,
the integrands of (super)gravity loop amplitudes can be
obtained immediately from corresponding gauge-theory
ones [1,2]. It has been clear since the original loop-level
double-copy construction that it would have important
implications for resolving long-standing questions on the
ultraviolet properties of gravity theories. An obvious ques-
tion is whether it can be used to show that N ¼ 8 [3] and
other supergravity theories have a tamer than expected
ultraviolet behavior. If each order of the perturbative
expansion were finite, it would imply a deep new structure
of the theory.

The double-copy structure has been used to simplify
new nontrivial calculations of the ultraviolet properties of
supergravity amplitudes, demonstrating behavior remark-
ably similar to corresponding gauge-theory amplitudes.
In explicit calculations of amplitudes one can, of course,
directly confirm that the conjectured duality and double-
copy properties hold. For example, through at least four
loops, the ultraviolet divergences of N ¼ 8 supergravity
in the critical dimension where they first occur are propor-
tional to divergences appearing in the subleading-color
terms of corresponding N ¼ 4 super-Yang-Mills ampli-
tudes [4–6]. The double-copy construction also played a
key role in a recent computation showing that all three-
loop four-point amplitudes in N ¼ 4 supergravity in
D ¼ 4 [7] are ultraviolet finite [8], contrary to expectations
based on the availability of an apparently supersymmetric
and duality invariant [9] R4 counterterm [10].

In this paper, we use the double-copy construction to
explain ultraviolet finiteness in a simpler example: the four-
and five-point two-loop potential divergences in D ¼ 5
half-maximal supergravity [11]. We directly link the finite-
ness of the half-maximal supergravity four- and five-point
amplitudes at one loop in D< 8 and at two loops in D< 6
to ultraviolet cancellations of forbidden color factors in
gauge-theory amplitudes. This can be understood in terms
of generalized gauge invariance [1,2,12,13], which links the
symmetries and cancellations of gauge theory to those of
gravity. We note that the absence of the potential D ¼ 5
two-loop four-point divergence has been seen from string-
theory calculations as well, so it offers a goodway to expose
cancellations in the theory [14].
At present there does not appear to be an argument

restricting counterterms using the conventional symme-
tries of the theory to rule out this divergence. Indeed as
shown in Ref. [15] the counterterm appears to be expres-
sible as a duality invariant full-superspace integral of a
density (which itself is not duality invariant). It would be
very important to fully understand the extent to which
duality symmetry and supersymmetry by themselves can
shed light on counterterm restrictions in half-maximal
supergravity at two loops in D ¼ 5.
Some cases we study here are especially simple to

analyze because the N ¼ 4 super-Yang-Mills amplitudes
used on one side of the double-copy construction have
diagrammatic numerators that are independent of loop
momenta. Because of this property, even after performing
the loop integration, the corresponding amplitudes in pure
supergravity theories with sixteen or more supercharges
are simple linear combinations of corresponding gauge-
theory amplitudes [16,17]. Indeed, using the double-copy
construction, in Ref. [18] one-loop four- and five-point and
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two-loop four-point gravity amplitudes were expressed
directly in terms of certain subleading-color amplitudes
of corresponding gauge theories. There the authors found
cancellations leading to the relatively mild infrared singu-
larities in gravity, similar to the way we find tamer ultra-
violet behavior in gravity than in the gauge-theory
amplitudes from which they are built.

Besides the double-copy relation between gravity and
gauge theory, there are other reasons to believe that
the ultraviolet behavior of gravity might be better than
expected from applying standard symmetry arguments.
Even pure Einstein gravity at one loop exhibits remarkable
cancellations as the number of external legs increases,
essentially scaling with the number of external legs in the
same way as gauge theory [19,20]. Through unitarity, such
cancellations feed into nontrivial ultraviolet cancellations
at all loop orders [21]. Very recently, resummations of
N � 4 supergravity amplitudes were shown to have sur-
prisingly good behavior in the high-energy Regge limit
[22], suggestive of a connection to the surprisingly good
ultraviolet behavior of loop amplitudes in these theories.

Whether the observed cancellations are sufficient to
render the theory ultraviolet finite remains an open ques-
tion. (For a recent optimistic opinion in favor of ultraviolet
finiteness of N ¼ 8 supergravity see Ref. [23]. For a
recent pessimistic opinion see Ref. [24].) In N ¼ 8 su-
pergravity inD ¼ 4, in particular, no divergence can occur
before seven loops, but a consensus holds that a validD8R4

counterterm exists at seven loops [25]. This may seem to
suggest that in D ¼ 4 the theory diverges at seven loops
[25]. Interestingly, the candidate full-superspace integral
for the counterterm turns out to vanish [9], leaving only a
BPS candidate counterterm represented by an integral over
7=8 of the superspace. The potential three-loop counter-
term of N ¼ 4 supergravity in D ¼ 4 [7] is analogous in
this regard, as it too is BPS. In a previous paper [8], we
proved by direct computation that the coefficient of the
expected three-loop counterterm in N ¼ 4 supergravity
vanishes. (See Ref. [14] for a string-theoretic argument of
this vanishing and Ref. [26] for a conjecture linking it to a
hidden superconformal invariance.) While no nonrenorm-
alization theorems are known for these cases, an important
open question remains whether the BPS nature of the
counterterm plays a role in explaining the finiteness. In
any case, based on the vanishing of divergences in explicit
calculations presented here and in Ref. [8], we see that
arguments based on applying the known symmetries of
supergravity theories can be misleading. It is therefore
important to carry out explicit computations to guide future
studies. In particular, the arguments suggesting a seven-
loop divergence in D ¼ 4 also suggest that in higher
dimensions, N ¼ 8 supergravity will be worse behaved
thanN ¼ 4 super-Yang-Mills theory starting at five loops
due to the availability of a D8R4 counterterm. It should be
possible to test this by direct computation [27].

Besides explaining the nontrivial cancellation of two-
loop four-point divergences in half-maximal supergravity
in D ¼ 5, we also present the explicit forms of one-loop
four- and five-point divergences in D ¼ 8 and two-loop
four-point divergences inD ¼ 6. We obtain these using the
same double-copy construction as used to demonstrate the
vanishing of all three-loop divergences of N ¼ 4 super-
gravity in D ¼ 4 [8]. In this construction, one copy is a
maximally supersymmetric Yang-Mills amplitude in a
form in which the duality between color and kinematics
holds manifestly [2], while the second copy uses ordinary
Feynman rules in Feynman gauge. The diagrams are
then expanded for large loop momenta (or equivalently
small external momenta) and integrated to extract the
ultraviolet divergences [28]. The explicit expressions for
divergences presented here should be useful in future
studies of the symmetries and structure of half-maximal
supergravity.
This paper is organized as follows. In Sec. II, we briefly

review some basic features of the duality between color
and kinematics and the double-copy construction of
gravity. In Sec. III, we show that at four and five points
the potential one-loop divergences in half-maximal super-
gravity cancel in D< 8 by linking them to forbidden
divergences in corresponding gauge-theory amplitudes.
We also present the explicit form of one-loop divergences
inD ¼ 8. Then in Sec. IV, we show that the two-loop four-
and five-point amplitudes of half-maximal supergravity do
not have divergences in D< 6. In addition, this section
contains an explicit expression for four-point D ¼ 6 diver-
gences. We give our conclusions and outlook in Sec. V. An
Appendix computing the two-loop four-point divergence
of pure Yang-Mills theory inD ¼ 5 is also included. These
results are used in Sec. IV to explicitly demonstrate ultra-
violet cancellations in the corresponding half-maximal
supergravity amplitude.

II. REVIEW OF BCJ DUALITY

In this section, we review the duality between color and
kinematics conjectured by Carrasco, Johansson and one of
the authors (BCJ) and the related double-copy construction
of gravity loop amplitudes [1,2]. These properties underlie
our ability to analyze the divergence structure of half-
maximal supergravity amplitudes. Recent applications to
the half-maximal theory of N ¼ 4 supergravity in D ¼ 4
can be found in Refs. [8,16–18].

A. Duality between color and kinematics

We can write any m-point L-loop gauge-theory ampli-
tude with all particles in the adjoint representation as

AL-loop
m ¼ iLgm�2þ2L

X
Sm

X
j

Z YL
l¼1

dDpl

ð2�ÞD
1

Sj

njcjQ
�j
p2
�j

: (2.1)
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The sum labeled by j runs over the set of distinct non-
isomorphic m-point L-loop graphs with only cubic (i.e.,
trivalent) vertices. Sj is the symmetry factor of graph j,

removing overcounts from the sum over m! permutations
of external legs indicated by Sm and from internal auto-
morphism symmetry. The product in the denominator runs
over all Feynman propagators of graph j. The integrals are
over L independent D-dimensional loop momenta. The cj
are the color factors obtained by dressing every three-
vertex with a group-theory structure constant,

~fabc ¼ i
ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ; (2.2)

and nj are kinematic numerators of graph j depending on

momenta, polarizations and spinors. For supersymmetric
amplitudes expressed in superspace, there will also be
Grassmann parameters in the numerators. Contact terms
in the amplitude are expressed in this form by multiplying
and dividing by appropriate propagators. We note that
there is enormous freedom in the choice of numerators,
due to generalized gauge invariance [1,2,12,13].

The conjectured duality of Refs. [1,2] states that to all
loop orders there should exist a form of the amplitude
where kinematic numerators satisfy the same algebraic
relations as color factors. For Yang-Mills theory this
amounts to imposing the same Jacobi identities on the
kinematic numerators as satisfied by the color factors,

ci ¼ cj � ck ) ni ¼ nj � nk; (2.3)

where the indices i, j, k denote the diagram to which
the color factors and numerators belong. Moreover, the
numerator factors are required to have the same antisym-
metry property as color factors under interchange of two
legs attaching to a cubic vertex,

ci ! �ci ) ni ! �ni: (2.4)

As explained in some detail in Refs. [6,29,30], the numera-
tor relations are functional equations. For four-point tree
amplitudes such relations were noticed long ago [31].
Beyond the four-point tree level, the relations are rather
nontrivial and work only after appropriate rearrangements
of the amplitudes.

At tree level, explicit forms of amplitudes satisfying the
duality have been found for an arbitrary number of external
legs [32]. An interesting consequence of the duality is that
color-ordered partial tree amplitudes satisfy nontrivial
relations [1]. These have been proven both in gauge theory
and in string theory [33]. The duality is natural to under-
stand using the heterotic string because of the parallel
treatment of color and kinematics [13]. Although we do
not yet have a satisfactory Lagrangian understanding, some
progress in this direction can be found in Refs. [12,34].
The duality (2.3) has also been expressed in terms of an
alternative trace-based representation [35], emphasizing
the underlying group-theoretic structure of the duality.

Indeed, progress has been made in understanding the
underlying infinite-dimensional Lie algebra [34,36].
Interestingly, the duality between color and kinematics
also appears to hold in more exotic three-dimensional
theories [37], as well as in certain cases with higher-
dimension operators [38]. Relations similar to tree-level
ones have also been shown to hold for the identical helicity
one-loop amplitudes of pure Yang-Mills theory [39].
At loop level, although the duality remains a conjecture,

a number of nontrivial checks have been carried out. The
duality has been confirmed to hold up to four loops for the
four-point amplitudes of N ¼ 4 super-Yang-Mills theory
[2,6], and for the five-point one- and two-loop amplitudes
of this theory [5]. It is also known to hold for the identical-
helicity one- and two-loop four-point amplitudes of pure
Yang-Mills theory [2].

B. Gravity as a double copy of gauge theory

Once the gauge-theory amplitudes have been arranged
into the form (2.1) where the numerators satisfy the duality
(2.3), the corresponding gravity loop integrands become
remarkably simple to obtain [1,2] via the replacement

ci ! ~ni: (2.5)

The ~ni are diagram numerators from a second gauge
theory. Making the substitution (2.5) in Eq. (2.1) gives us
the double-copy form of gravity amplitudes [1,2]:

ML-loop
m ¼ iLþ1

�
�

2

�
n�2þ2LX

Sm

X
j

Z YL
l¼1

dDpl

ð2�ÞD
1

Sj

nj~njQ
�j
p2
�j

;

(2.6)

where ML-loop
m are m-point L-loop gravity amplitudes. In

the double-copy formula (2.6), only one of the two sets of
numeratorsnj or ~nj needs to satisfy the duality relation (2.3).

Here we are interested in half-maximal supergravity
in D> 4 dimensions. This theory is obtained via the
double-copy formula by taking the direct product of pure
nonsupersymmetric Yang-Mills theory with maximally
supersymmetric Yang-Mills theory. This construction is
the same one used to construct one- and two-loop ampli-
tudes in N ¼ 4 supergravity in D ¼ 4 [8,16–18]. While
the maximally supersymmetric Yang-Mills theory has
exactly the same number of states as N ¼ 4 super-
Yang-Mills theory does in four dimensions, the pure
nonsupersymmetric Yang-Mills theory used in this con-
struction has additional states compared to theD ¼ 4 case.
At tree level, Eq. (2.6) encodes the Kawai-Lewellen-Tye

[40] relations between gravity and gauge theory [1]. The
double-copy formula has been proven at tree level when
the duality (2.3) holds in the corresponding gauge theories
[12]. It has also been studied in some detail in a number of
cases through four loops in N ¼ 8 supergravity [2,5,6],
and through three loops in N ¼ 4 supergravity [8,16,17].
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C. Supergravity with Qþ 16 supercharges
at one and two loops

A color-dressed four-point one-loop (super) Yang-Mills
amplitude can be expressed as [41]

A ð1Þ
Q ð1; 2; 3; 4Þ ¼ g4½cð1Þ1234A

ð1Þ
Q ð1; 2; 3; 4Þ

þ cð1Þ1342A
ð1Þ
Q ð1; 3; 4; 2Þ

þ cð1Þ1423A
ð1Þ
Q ð1; 4; 2; 3Þ�: (2.7)

The cð1Þ1234 are the color factors of a box diagram with

consecutive external legs (1, 2, 3, 4), illustrated in

Fig. 1(a), and dressed with structure constants ~fabc. Here,

Að1Þ
Q are one-loop color-ordered amplitudes [42]. The label

Q specifies the number of supercharges. For maximally
supersymmetric Yang-Mills (Q ¼ 16), the amplitude is
given by the one-loop scalar box integral, with the corre-
sponding diagram numerators given by [43]

n1234 ¼ n1342 ¼ n1423 ¼ stAtree
Q¼16ð1; 2; 3; 4Þ; (2.8)

where Atree
Q¼16ð1; 2; 3; 4Þ is the color-ordered tree amplitude

of maximal super-Yang-Mills theory in any dimension and
for any states of the theory. The Mandelstam invariants
are defined as s ¼ ðk1 þ k2Þ2, t ¼ ðk2 þ k3Þ2 and u ¼
ðk1 þ k3Þ2. It is straightforward to check that this form
satisfies the duality between color and kinematics.

To obtain pure supergravity amplitudes with Qþ 16
supercharges, we simply replace the color factors with
the corresponding numerators (2.8), yielding a rather sim-
ple formula:

Mð1Þ
Qþ16 ¼ i

�
�

2

�
4
stAtree

Q¼16ð1; 2; 3; 4Þ½Að1Þ
Q ð1; 2; 3; 4Þ

þ Að1Þ
Q ð1; 3; 4; 2Þ þ Að1Þ

Q ð1; 4; 2; 3Þ�: (2.9)

In four dimensions, the prefactor in Eq. (2.9) can be
written in a supersymmetric form [44]:

stAtree
Q¼16ð1; 2; 3; 4Þ ¼ �i�ð8ÞðQÞ ½12�½34�h12ih34i ; (2.10)

which makes half the supersymmetries manifest. Here h12i
and [12] are the usual four-dimensional spinor-inner
products for Weyl spinors (see e.g., Ref. [45]). In this
form all states of the N ¼ 4 super-Yang-Mills multiplet
are encoded in the Grassmann-valued delta function of the
supercharges Q. Simple superspace expressions also have
been constructed in six dimensions [46]. Here we do not
use any superspace properties, other than the fact that all
states are encoded in one simple prefactor.
The two-loop four-point case is also relatively simple.

The color-dressed two-loop four-point (super) Yang-Mills
amplitude can be conveniently written as [16,17]

Að2Þ
Q ð1;2;3;4Þ¼g6½cP1234AP

Qð1;2;3;4ÞþcP3421A
P
Qð3;4;2;1Þ

þcNP1234A
NP
Q ð1;2;3;4ÞþcNP3421A

NP
Q ð3;4;2;1Þ

þcyclicð2;3;4Þ�; (2.11)

where ‘‘cyclic(2,3,4)’’ indicates a sum over the remaining
two cyclic permutations of legs 2, 3 and 4. Here cP1234
and cNP1234 are the color factors obtained by dressing the

planar and nonplanar double-box diagrams in Fig. 2

with structure constants ~fabc. The AP
Q and ANP

Q are the

integrated planar and nonplanar kinematic parts of the
amplitudes, respectively. The form (2.11) matches the one
used in N ¼ 4 super-Yang-Mills theory [47]. This form
is valid for any theory with only adjoint representation
particles, as can be shown using color Jacobi-identity
rearrangements [41].
For maximal (Q ¼ 16) super-Yang-Mills theory in any

dimension, the standard loop-integral representation of the
two-loop four-point amplitude [2,48] satisfies the duality
between color and kinematics (2.3). An important simpli-
fying feature is that the numerator factors do not have
loop-momentum dependence and are

nP1234 ¼ s2tAtree
Q¼16ð1; 2; 3; 4Þ;

nNP1234 ¼ s2tAtree
Q¼16ð1; 2; 3; 4Þ;

(2.12)

corresponding to the two partial amplitudes AP
Q¼16ð1; 2; 3; 4Þ

and ANP
Q¼16ð1; 2; 3; 4Þ in Eq. (2.11). When constructing grav-

ity amplitudes via the replacement (2.5), the numerator of
the N ¼ 4 super-Yang-Mills copy comes outside the inte-
gral, and thus one can expressthe integrated supergravity
amplitude as a linear combination of integrated (super)

FIG. 1. Diagram (a) specifies the four-point color factor cð1Þ1234

used in Eq. (2.7), and diagram (b) specifies the color factor cð1Þ12345

in Eq. (2.14). Diagram (a) and its permutations appear in the
four-point amplitude of maximal super-Yang-Mills theory. At
five points both (b) and (c) and their permutations appear.

(a)

32

1 4 1 4

32

(b)

FIG. 2. The two-loop planar and nonplanar double-box
diagrams.
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Yang-Mills amplitudes [16]. Using this, the integrated four-
point two-loop supergravity amplitude is [17]

Mð2Þ
Qþ16ð1; 2; 3; 4Þ
¼ i

�
�

2

�
6
stAtree

Q¼16ð1; 2; 3; 4Þ½sðAP
Qð1; 2; 3; 4Þ

þ ANP
Q ð1; 2; 3; 4Þ þ AP

Qð3; 4; 2; 1Þ þ ANP
Q ð3; 4; 2; 1ÞÞ

þ cyclicð2; 3; 4Þ�; (2.13)

which holds in any dimension D � 10 and for pure super-
gravity theories with Qþ 16 supercharges.

Now consider the five-point case. At one loop, a
five-point gauge-theory amplitude with only adjoint repre-
sentation particles can be written in the form [41]

A ð1Þ
Q ð1; 2; 3; 4; 5Þ ¼ g5

X
S5=ðZ5�Z2Þ

cð1Þ12345A
ð1Þ
Q ð1; 2; 3; 4; 5Þ;

(2.14)

where the color factor cð1Þ12345 is that of the pentagon

diagram, displayed in Fig. 1(b). The sum runs over all
permutations with the five cyclic ones and reflections
removed, signified by S5=ðZ5 � Z2Þ. For the maximally
supersymmetric (Q ¼ 16) case, only pentagon and box
integrals contribute in the BCJ form [5], illustrated in
Figs. 1(b) and 1(c).

Using the substitution rule (2.5), together with the ob-
servation that at four and five points, the duality-satisfying
maximal super-Yang-Mills numerators with states re-
stricted to a four-dimensional subspace are independent
of loop momenta, we immediately obtain the simple
expression [16]

M ð1Þ
Qþ16ð1;2;3;4;5Þ¼ i

�
�

2

�
5 X
S5=ðZ5�Z2Þ

~n12345A
ð1Þ
Q ð1;2;3;4;5Þ:

(2.15)

For Q ¼ 0 the obtained amplitudes are those of half-
maximal pure supergravity theory.

In a four-dimensional external subspace, the maximal
super-Yang-Mills kinematic numerators appearing in
Eq. (2.15) for external gluons in a maximally helicity-
violating (MHV) configuration are given by [5]

~n12345 ¼ �12345 � hiji4 ½12�½23�½34�½45�½51�
4"ð1; 2; 3; 4Þ ; (2.16)

where i and j label the two negative-helicity legs and
"ð1; 2; 3; 4Þ � "���	k

�
1 k

�
2k

�
3k

	
4 ¼ Detðk�i Þ. The anti-MHV

case is given by the parity conjugate. Five-point amplitudes
with other states beside gluons have also been discussed in
Ref. [5], but we will not use them here. A conjectured
D-dimensional generalization of these numerator functions
may be found in Ref. [30].

While only numerators corresponding to the pentagon
diagram in Fig. 1(b) are required for Eq. (2.15), in

Sec. III B we will use the expressions for the numerators
of the box diagrams, illustrated in Fig. 1(c), as well. Since
the maximal super-Yang-Mills numerators satisfy the dual-
ity (2.3), the box numerators can be written in terms of the
pentagon numerators by the kinematic Jacobi relations:
~n½12�345 ¼ ~n12345 � ~n21345, where ~n½12�345 is the numerator

for the box diagram in Fig. 1(c). This gives

~n½12�345¼
12�
12345�hiji4 ½12�
2½34�½45�½35�
4"ð1;2;3;4Þ : (2.17)

The 
’s are symmetric in their last three indices, so they
can be specified by the first two indices only. They also
satisfy the relations

X5
i¼1


ij ¼ 0; 
ij ¼ �
ji; (2.18)

from which we see that there are six linearly independent

’s. They are completely interchangeable with the �’s
because


12 ¼ �12345 � �21345;

�12345 ¼ 1

2
ð
12 þ 
13 þ 
14 þ 
23 þ 
24 þ 
34Þ;

(2.19)

so there are also six linearly independent �’s.

III. ULTRAVIOLET STRUCTURE OF
HALF-MAXIMAL SUPERGRAVITY

AT ONE LOOP

In this section, we illustrate how the double copy links
cancellations of supergravity divergences to those of for-
bidden color factors in gauge-theory divergences using
simple one-loop examples. In particular, we discuss the
divergence properties of the four- and five-point ampli-
tudes in higher dimensions from this vantage point. The
one-loop four- and five-point double-copy formulas (2.9)
and (2.15) give integrated supergravity amplitudes with 16
or more supercharges directly in terms of corresponding
integrated (super) Yang-Mills amplitudes. This allows us to
obtain the divergences of these supergravity amplitudes
simply by plugging in known Yang-Mills counterterm
amplitudes.
We note that in D ¼ 4 the one-loop amplitudes of

N < 8 supergravity theories have been extensively
studied recently in Refs. [20,49]. For the cases of four
and five points, a double-copy construction has been given
in Ref. [16]. Very recently the one-loop four-graviton
amplitude for N ¼ 4 supergravity coupled to N ¼ 4
vector multiplets has also been obtained by taking the
field-theory limit of string-theory results [50]. Here we
are mainly interested in higher dimensions.
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A. Four-point divergences at one loop

We now demonstrate that pure half-maximal supergrav-
ity does not have four-point divergences at one loop for
D< 8. In dimensional regularization at one loop, there can
be no divergences in any dimension other than even integer
dimensions. We will start with a warmup in D ¼ 4 before
turning to the more interesting cases of D ¼ 6 and D ¼ 8.

1. D¼ 4 warmup

We start by reproducing the well-known result that the
four-point amplitude of pure N ¼ 4 supergravity has no
divergence at one loop [51]. The renormalizability of
Yang-Mills theory in D ¼ 4 implies that the full one-
loop divergence must be proportional to the color-dressed
tree amplitude:

A ð1Þ
Q jD¼4 div ¼ �Q

0

�
Atree

Q : (3.1)

Here �Q
0 is a constant proportional to the one-loop beta

function of the theory. The only part of the renormaliz-
ability of the theory that we need is that it implies that the
color structure of the divergence must match exactly the
color structure of the tree amplitude. This holds for any
(super) Yang-Mills theory in four dimensions, though for
N ¼ 4 super-Yang-Mills theory the beta-function coeffi-
cient vanishes, since the theory is ultraviolet finite [52].
The color-ordered tree amplitudes satisfy Uð1Þ decoupling
relations

Atree
Q ð1; 2; 3; 4Þ þ Atree

Q ð1; 3; 4; 2Þ þ Atree
Q ð1; 4; 2; 3Þ ¼ 0;

(3.2)

which are a simple consequence of the color structure.
Finiteness of the four-point supergravity amplitude follows
immediately by applying Eqs. (3.1) and (3.2) to the super-
gravity amplitude (2.9):

Mð1Þ
Qþ16ð1;2;3;4ÞjD¼4div

¼ i

�
�

2

�
4
stAtree

Q¼16ð1;2;3;4Þ½Að1Þ
Q ð1;2;3;4Þ

þAð1Þ
Q ð1;3;4;2ÞþAð1Þ

Q ð1;4;2;3Þ�jD¼4div¼0: (3.3)

In six dimensions, Yang-Mills theory is not renormaliz-
able. However, the counterterm has a color structure simi-
lar to the D ¼ 4 one. For this reason, it is useful to slightly
rephrase the D ¼ 4 cancellation in terms of a basis of
independent color tensors. As we shall see in the following
section, this approach will also clarify the two-loop finite-
ness of four-point half-maximal supergravity in D ¼ 5.

We start with tree level, where there are two independent
color tensors corresponding to the color factors of s- and
t-channel diagrams:

bð0Þ1 � cð0Þ1234 ¼ ~fa1a2b ~fba3a4 ;

bð0Þ1 � cð0Þ1423 ¼ ~fa2a3b ~fba4a1 :
(3.4)

The remaining u-channel color factor cð0Þ1324 is given in

terms of the previous two by the color Jacobi equation

cð0Þ1324 ¼ �bð0Þ1 � bð0Þ2 . At one loop there is one additional

independent color tensor (see for example Appendix B of
Ref. [53]):

bð1Þ1 � cð1Þ1234 ¼ ~fa1b2b1 ~fa2b3b2 ~fa3b4b3 ~fa4b1b4 : (3.5)

The other color factors in the one-loop amplitude (2.7) are
given in terms of these color tensors after using the color
Jacobi identity and the ability to reduce the color factors
with triangle or bubble subdiagrams to tree color tensors.
For example, we have

cð1Þ1342 ¼ bð1Þ1 � 1

2
CAb

ð0Þ
1 ; cð1Þ1423 ¼ bð1Þ1 � 1

2
CAb

ð0Þ
2 ;

(3.6)

where CA is the adjoint representation quadratic Casimir.
For an SUðNcÞ group, CA ¼ 2Nc with our nonstandard
normalization.
Rewriting the gauge-theory amplitude (2.7) in terms of

these independent color tensors gives

Að1Þ
Q ð1;2;3;4Þ¼g4

�
bð1Þ1 ðAð1Þ

Q ð1;2;3;4ÞþAð1Þ
Q ð1;3;4;2Þ

þAð1Þ
Q ð1;4;2;3ÞÞ�1

2
CAb

ð0Þ
1 Að1Þ

Q ð1;3;4;2Þ

�1

2
CAb

ð0Þ
2 Að1Þ

Q ð1;4;2;3Þ
�
: (3.7)

Since the Yang-Mills divergence in D ¼ 4 contains only
the tree color tensors, it cannot contain the one-loop color

tensor bð1Þ1 , implying that

Að1Þ
Q ð1; 2; 3; 4Þ þ Að1Þ

Q ð1; 3; 4; 2Þ þ Að1Þ
Q ð1; 4; 2; 3Þj div ¼ 0:

(3.8)

This is equivalent to the tree-level decoupling relation
(3.2), except in Eq. (3.8) there is no explicit requirement
that the divergence of the color-ordered amplitude be
proportional to the tree amplitude, only that the one-loop

color tensor bð1Þ1 not appear in the divergence. Thus, we
obtain the vanishing of the supergravity divergence (3.3)
purely from group-theoretic properties of the correspond-
ing gauge theory.

2. D¼ 6 finiteness

In six dimensions, while the pure graviton R3 counter-
term is ruled out by supersymmetry, naively one might
worry about counterterms of the form �kR3. As we now
show, the same group-theoretic cancellations apply just as
well inD ¼ 6. Since the maximal super-Yang-Mills theory
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in six dimensions has N ¼ ð1; 1Þ supersymmetry, the
supergravity theory we are considering is the nonchiral
N ¼ ð1; 1Þ theory, in contrast to the chiral N ¼ ð2; 0Þ
theory.

From simple power-counting considerations, the one-
loop D ¼ 6 pure Yang-Mills counterterm operator is of
the form [54]

F3 � ~fabcFa�
�F

b�
�F

c�
�; (3.9)

because there are no other gauge-invariant operators of the
proper dimensions that give nonvanishing matrix elements.
(The gauge-invariant operator D2F2 is also allowed by
dimensional analysis, as noted in Ref. [54]. However, these
can be removed via field redefinitions.) The symmetric
color tensor dabc does not appear because the combination
of field strengths has an overall antisymmetry. The F3

counterterm is forbidden in super-Yang-Mills theories be-
cause, in a four-dimensional external subspace, it generates
a nonvanishing amplitude with helicities ð� þ þ þÞ
that is disallowed by supersymmetry Ward identities
[55]. However, in nonsupersymmetric pure Yang-Mills
theory in D ¼ 6, it is a perfectly valid counterterm with
a nonvanishing coefficient.

The key observation is that the counterterm diagrams
displayed in Fig. 3 cannot generate color tensors other than

the tree-level ones bð0Þ1 and bð0Þ2 , defined in Eq. (3.4). This

follows because the counterterm three-vertex has a single
~fabc and the four-vertex has a pair of these, so the diagrams

in Fig. 3 each have a pair of ~fabc’s. Since the one-loop

color tensor bð1Þ1 is built from four ~fabc’s, it cannot appear
in the Yang-Mills divergence. Thus, the situation is quite
similar to theD ¼ 4 case where only tree color tensors can
appear in the divergence.

Following the D ¼ 4 discussion, we demand that the

one-loop color tensor bð1Þ1 not appear in the divergence.

From Eq. (3.7) we see that the Uð1Þ decoupling equation
(3.8) holds for the D ¼ 6 divergences. Plugging this into
Eq. (2.9) immediately shows that the one-loop divergence
for D ¼ 6 pure supergravity with 16 or more supercharges
must vanish:

M ð1Þ
Qþ16ð1; 2; 3; 4ÞjD¼6 div ¼ 0: (3.10)

For Q> 0, the divergence not only vanishes because the
decoupling equation (3.8) holds, but also because F3 is not
a valid supersymmetric counterterm of the corresponding
gauge theory.
It is straightforward to confirm that the decoupling

identity (3.8) holds using the explicit forms of pure
Yang-Mills counterterm amplitudes generated by the dia-
grams in Fig. 3. For example, the all-plus helicity counter-
term amplitude in a four-dimensional subspace is [56]

Að1þ; 2þ; 3þ; 4þÞ ¼ �

�

stu

h12ih23ih34ih41i ; (3.11)

where � is a proportionality constant which can be fixed
by explicit computation, but its value is unimportant for
our discussion. This expression does indeed satisfy the
required Uð1Þ decoupling identity (3.8) because

1

h12ih23ih34ih41i þ
1

h13ih34ih42ih21i
þ 1

h14ih42ih23ih31i ¼ 0: (3.12)

The vanishing of the Q ¼ 16 counterterm can also be
understood using a color-trace basis. Using the double-copy
formula, Ref. [18] showed that the one-loop Q � 16
supergravity amplitudes can be written as the double-trace
Yang-Mills amplitudemultiplied by a kinematic-dependent
factor. This immediately leads us to conclude that six-
dimensional N � 4 supergravity must be one-loop ultra-
violet finite since counterterm amplitudes generated with
the F3 operator do not contain a double-trace contribution.
We have also computed the coefficient of the D ¼ 6

divergence of half-maximal supergravity using the proce-
dure of Ref. [8] and have confirmed that it vanishes. In this
construction, one copy is the maximally supersymmetric
Yang-Mills amplitude, while the second copy is based on
ordinary Feynman rules. As mentioned earlier, the pure
Yang-Mills numerators do not need to satisfy the duality
equation (2.3) since the maximal super-Yang-Mills side
already does. A key simplifying feature of this method
is that pure Yang-Mills numerators are required only for
the box diagram since four-point maximal super-Yang-
Mills numerators vanish for all other diagram topologies.
In addition, there are no subdivergences since we are deal-
ing here with one loop. We find the divergence cancels
completely, in complete agreement with the above much
simpler counterterm considerations.

3. D¼8 divergences

We now consider the D ¼ 8 case. From Ref. [57],
the pure nonsupersymmetric Yang-Mills divergence is
described by an F4 operator of the form

F4 ¼ cabcd½d1Fa��Fb
�	F

c	�Fd
��

þ d2F
a��Fb

��F
c�	Fd

	��; (3.13)

FIG. 3. The four-point diagrams generated by the F3 counter-
term in pure Yang-Mills at one loop D ¼ 6 or at two loops in
D ¼ 5. The large dot indicates an insertion of a counterterm
vertex, while a vertex without a dot represents an ordinary Yang-
Mills vertex. In (a) a three-point counterterm vertex appears
while in (b) a four-point counterterm vertex appears.
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where

cabcd � ~fae1e2 ~fbe2e3 ~fce3e4 ~fde4e1 (3.14)

is the box-diagram color factor using the normalization in
Eq. (2.2). Only the linearized part of the field strength
contributes to the divergent part of the four-point ampli-
tude, F�� � @½�A��. In D ¼ 8 at one loop the constants

appearing in the operator are

d1 ¼ g4

8

1

ð4�Þ4
1

�

238þDs

360
;

d2 ¼ g4

8

1

ð4�Þ4
1

�

Ds � 50

288
;

(3.15)

where Ds is a state-counting parameter. It comes from
contracting the metric �� from gluon propagators around

the loop. In pure Yang-Mills theory in eight dimensions,
we take the state-counting parameter to beDs ¼ 8. (This is
equivalent to the four-dimensional helicity regularization
scheme [58] but with the state count adjusted to match the
one of eight dimensions.) The divergence was first derived
in the trace basis in Ref. [54]. For the four-gluon amplitude
at one loop, ns ¼ Ds � 8 counts additional minimally
coupled scalars circulating in the loop. The key difference
between theD ¼ 8 case and the previousD ¼ 4, 6 cases is
that the gauge-theory divergence contains the independent

color tensor bð1Þ. Thus the Uð1Þ decoupling equation (3.8)
does not hold.

The amplitude is given by replacing the vector potential
with the polarization vector "j, giving a polarization field

strength for each leg j:

F
��
j � iðk�j "�j � k�j "

�
j Þ: (3.16)

For notational convenience, we define the contractions of
these polarization field strengths as

ðFiFjÞ � F��
i Fj��;

ðFiFjFkFlÞ � Fi
��Fj��Fk

�	Fl	�:
(3.17)

In terms of these, the nonvanishing divergence in the non-
supersymmetric pure Yang-Mills amplitude is

Að1Þ
Q¼0ð1; 2; 3; 4ÞjD¼8 div

¼ i

8�

1

ð4�Þ4 g
4ca1a2a3a4

�
8
238þDs

360
ðF1F2F3F4Þ

þ 4
Ds � 50

288
ððF1F2ÞðF3F4Þ þ ðF2F3ÞðF4F1ÞÞ

�

þ cyclicð2; 3; 4Þ; (3.18)

where, as before, ‘‘cyclic(2, 3, 4)’’ indicates that one should
include the two cyclic permutations of legs 2, 3 and 4 along
with their color indices. Matching Eq. (3.18) with Eq. (2.7)

and replacing color factors by the corresponding Q ¼ 16
super-Yang-Mills numerators immediately gives the ex-
plicit form of the Q ¼ 16 eight-dimensional supergravity
divergence:

Mð1Þ
Q¼16ð1;2;3;4ÞjD¼8div

¼�1

�

1

ð4�Þ4
�
�

2

�
4
stAtree

Q¼16ð1;2;3;4Þ

�
�
238þDs

360
ðF1F2F3F4ÞþDs�50

288
ðF1F2ÞðF3F4Þ

�

þcyclicð2;3;4Þ; (3.19)

where Ds ¼ 8 in the pure supergravity case. The factor
Atree
Q¼16ð1; 2; 3; 4Þ is just the maximally supersymmetric

four-point tree amplitude, for any of the states in the theory.
The corresponding states in theQ ¼ 16 supergravity theory
are just the tensor product of these states with gluon states
of the pure nonsupersymmetric Yang-Mills theory.
The explicit four-graviton R4 counterterm for half-

maximal supergravity in D ¼ 8 is given in Ref. [59]. It is
built from the seven linearly independent R4 forms in
D ¼ 8 [60] (in D< 8 these are no longer independent):

T1 ¼ ðR���	R
���	Þ2;

T2 ¼ R���	R
���

�R
��
	R
���;

T3 ¼ R���	R
��

�
R
�


��R
�	��;

T4 ¼ R���	R
��

�
R
��

��R
	
��;

T5 ¼ R���	R
��

�
R
�
�
�
�R

	�
�;

T6 ¼ R���	R
�
�
�

R

�
�


�R

��	�;

T7 ¼ R���	R
�
�
�

R

�
�
�
�R


�	�:

(3.20)

On shell the combination

� T1

16
þ T2 � T3

8
� T4 þ 2T5 � T6 þ 2T7 (3.21)

is a total derivative, so only six of the Ti are independent on
shell. This gives us some freedom in how we write the
explicit counterterm, which we give as [59]

1

�

1

ð4�Þ4
1

11520
½ð�126þ 3DsÞT1 þ ð1968� 24DsÞT2

þ ð�252þ 6DsÞT3 þ ð8� 4DsÞT4 þ 3840T5

� 1920T6 þ ð�3776� 32DsÞT7�; (3.22)

where there is a relative i between the operators and
amplitudes. The appropriate powers of the coupling are
generated by expanding the metric around flat space:
g�� ¼ �� þ �h��.
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Since the kinematic numerators for one-loop four-point
N ¼ 4 super-Yang-Mills theory are independent of loop
momenta, we can also write the counterterm in a manner
more suggestive of the double-copy structure. The four-
point numerators in Eq. (2.8) are given by an F4 operator:

F4¼�2

�
ðF1F2F3F4Þ�1

4
ðF1F2ÞðF3F4Þþcyclicð2;3;4Þ

�
:

(3.23)

Up to an overall constant including color factors, this is
the same F4 counterterm for four-point one-loop N ¼ 4
super-Yang-Mills in D ¼ 8. Using this operator as a re-
placement for the kinematic numerator in Eq. (3.19), we
build an R4 counterterm by making the association

Fi��Fi�	 ! �2Ri���	: (3.24)

At the linearized level, both terms in Eq. (3.24) give the
same contribution to the amplitude. On the gravity side, we
replace the graviton field h�� by the polarization tensor

���, which can itself be replaced by the symmetrization of

two polarization vectors ��� ! �ð���Þ. For the case of

gravitons, we treat the two polarization vectors as being
identical since the two possible replacements are �þþ

�� !
�þ��þ� and ���

�� ! ������ . We then have

R���	 ¼ ��ð@���
�	 � @	�

�
��Þ

¼ 1

2
ik�ðik	���� þ ik����	 � ik����	Þ

� 1

2
ik	ðik����� þ ik����� � ik�����Þ

¼ 1

2
ðk��� � k���Þðk��	 � k	��Þ: (3.25)

Comparing to the polarization field strength tensor in
Eq. (3.16) gives us the replacement rule (3.24). After taking
into account permutations, this replacement rule gives us
the following contributing R4 forms:

U1 ¼ R���
R
�
�


�R

�
	
�
�R

	���;

U2 ¼ R���
R
�
���R

�
	

�R	���;

U3 ¼ ðR���	R
���	Þ2;

U4 ¼ R���
R
��

��R�	
�
R�	��;

U5 ¼ R���
R
�
�
�
R�

	��R
	���;

U6 ¼ R���
R
�
���R

�
	
�
R	���;

(3.26)

and the counterterm is given by

1

�

1

ð4�Þ4
1

23040
½ð�3808�16DsÞU1þð�7616�32DsÞU2

þð�250þ5DsÞU3þð�500þ10DsÞU4

þð3904�32DsÞU5þð1952�16DsÞU6�: (3.27)

At the linearized level this is equivalent to Eq. (3.22), but
instead the index structure has been reorganized to expose
the double-copy structure of gravity.
In terms of spinor helicity in a four-dimensional external

subspace for the four-graviton case with external helicities
ð1þ; 2þ; 3�; 4�Þ, the divergence in D ¼ 8 is

M ð1Þ
Q¼16ð1þ; 2þ; 3�; 4�ÞjD¼8 div

¼ i

�

1

ð4�Þ4
�
�

2

�
4 58þDs

180
h34i4½12�4; (3.28)

where we have plugged in spinor helicity for the
ð1þ; 2þ; 3�; 4�Þ configuration on the right side of
Eq. (3.19). Similarly, any of the other helicity amplitudes
can be extracted from Eq. (3.19).
As in D ¼ 4, 6 dimensions, we have also used the

procedure described in Ref. [8] for explicitly computing
the divergences in half-maximal supergravity, finding
agreement with the divergence in Eq. (3.19).

B. Five points at one loop

To make the vanishing of ultraviolet divergences of half-maximal supergravity in D ¼ 4 and D ¼ 6 manifest at
five-point one-loop, we write the one-loop supergravity amplitude (2.15) in terms of a basis of six independent�’s [defined
in Eq. (2.16)]:

M 1-loop
Qþ16 ð1; 2; 3; 4; 5Þ ¼ i

�
�

2

�
5ð�12345ðAð1Þ

Q ð1; 2; 3; 4; 5Þ þ Að1Þ
Q ð2; 1; 3; 4; 5Þ þ Að1Þ

Q ð2; 3; 1; 4; 5Þ þ Að1Þ
Q ð2; 3; 4; 1; 5ÞÞ

þ �12354ðAð1Þ
Q ð3; 1; 2; 5; 4Þ þ Að1Þ

Q ð1; 3; 2; 5; 4Þ þ Að1Þ
Q ð1; 2; 3; 5; 4Þ þ Að1Þ

Q ð1; 2; 5; 3; 4ÞÞ
þ �12435ðAð1Þ

Q ð2; 1; 4; 3; 5Þ þ Að1Þ
Q ð1; 2; 4; 3; 5Þ þ Að1Þ

Q ð1; 4; 2; 3; 5Þ þ Að1Þ
Q ð1; 4; 3; 2; 5ÞÞ

þ �12453ðAð1Þ
Q ð4; 1; 2; 5; 3Þ þ Að1Þ

Q ð1; 4; 2; 5; 3Þ þ Að1Þ
Q ð1; 2; 4; 5; 3Þ þ Að1Þ

Q ð1; 2; 5; 4; 3ÞÞ
þ �13245ðAð1Þ

Q ð5; 1; 3; 2; 4Þ þ Að1Þ
Q ð1; 5; 3; 2; 4Þ þ Að1Þ

Q ð1; 3; 5; 2; 4Þ þ Að1Þ
Q ð1; 3; 2; 5; 4ÞÞ

þ �13425ðAð1Þ
Q ð3; 1; 4; 2; 5Þ þ Að1Þ

Q ð1; 3; 4; 2; 5Þ þ Að1Þ
Q ð1; 4; 3; 2; 5Þ þ Að1Þ

Q ð1; 4; 2; 3; 5ÞÞÞ: (3.29)
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This expression is valid for all amplitudes where the ex-
ternal gluons on the super-Yang-Mills side of the double
copy are in an MHV configuration in a four-dimensional
subspace. The MHV result is just the parity conjugate.
From the form (3.29), it is clear that when the gauge-theory
divergences satisfy five-point Uð1Þ decoupling relations,

Að1Þ
Q ð1; 2; 3; 4; 5Þ þ Að1Þ

Q ð2; 1; 3; 4; 5Þ þ Að1Þ
Q ð2; 3; 1; 4; 5Þ

þ Að1Þ
Q ð2; 3; 4; 1; 5Þj div ¼ 0; (3.30)

and relabelings thereof, the supergravity amplitude (3.29)
is finite, in much the same way as at four points. At tree
level, these decoupling identities and their related Kleiss-
Kuijf relations [61] are purely a consequence of color
considerations [41]. Alternatively, as noted in Ref. [1],
they follow from the requirement that the color-ordered
amplitudes can be described by diagrams with antisym-
metric cubic vertices. As discussed above for the four-point
case, in both D ¼ 4 and D ¼ 6 the Yang-Mills counter-
terms generate exactly the same color structures as at tree
level, so the decoupling equation (3.30) indeed holds.
Therefore, we immediately conclude that

Mð1Þ
Qþ16ð1; 2; 3; 4; 5ÞjD¼4 div ¼ 0;

Mð1Þ
Qþ16ð1; 2; 3; 4; 5ÞjD¼6 div ¼ 0:

(3.31)

Had we used a different basis of �’s, there could have been
more terms multiplying a given �, but at the end the
divergences still cancel due to the Uð1Þ decoupling
identity.

We have also directly confirmed the vanishing of the
divergences in D ¼ 4, 6 and computed the nonvanishing
divergence of half-maximal supergravity in D ¼ 8, using
the procedure in Ref. [8]. In this procedure, we take one
copy to be maximal Q ¼ 16 super-Yang-Mills theory and
the other copy pure nonsupersymmetric Yang-Mills theory.
From the double-copy formula (2.15), we have

Mð1Þ
Q¼16ð1; 2; 3; 4; 5Þ

¼ �
�
�

2

�
5X
S5

 
1

10
�12345

Z dDp

ð2�ÞD
n12345Q
�j
p2
�j

þ 1

4

12

Z dDp

ð2�ÞD
n½12�345Q
�j
p2
�j

!
: (3.32)

Here n12345 and n½12�345 are numerators of pure Yang-Mills

pentagon [shown in Fig. 1(b)] and box diagrams [shown in
Fig. 1(c)], respectively, derived from Feynman diagrams in
Feynman gauge. As described in Ref. [8], the derived
numerators include ghost contributions and contributions
from four-point contact terms assigned according to their
color factors. The �12345 given in Eq. (2.16) and 
12 given
in Eq. (2.17) are the corresponding pentagon and box
numerators of maximal super-Yang-Mills theory. The
propagators are those of each graph. The sum S5 runs

over all 5! permutations of the external legs, with symme-
try factors included to adjust for the overcount. The
symmetry factors for Figs. 1(b) and 1(c) are 10 and 4,
respectively. The expression (3.32) is valid when the
external gluons on the super-Yang-Mills side of the double
copy are in an MHV configuration in the four-dimensional
external subspace. The MHV configuration is obtained
using parity.
Restricting the integrals to the divergent part, we find the

divergences in D ¼ 4, 6 to vanish, as was the case at four
points. In D ¼ 8 we find a nonvanishing divergence, the
explicit form of which we have included in an accompany-
ing MATHEMATICA attachment [62]. The first two terms of
this expression are

Mð1Þ
Q¼16ð1; 2; 3; 4; 5ÞjD¼8div

¼ 1

ð4�Þ4
�
�

2

�
5
�
238þDs

180
ffiffiffi
2

p
�


34"1 � "4k1 � "2k1 � "5k2 � "3

�Ds � 122

180
ffiffiffi
2

p
�


14

"1 � "2"4 � "5k1 � "3s23s24
s45

þ � � �
�
;

(3.33)

where the 
ij are the box numerators defined in Eq. (2.17)

and the "i are gluon polarization vectors. As always the
supergravity states are simply tensor products of the maxi-
mal super-Yang-Mills states with those of pure Yang-Mills
theory.
As a nontrivial check, we have reproduced the D ¼ 8

result in an additional way, which we briefly summarize.
We used the Yang-Mills F4 operator in Eq. (3.13) to obtain
the five-point pure Yang-Mills divergence using the
Feynman diagrams illustrated in Fig. 4. Plugging the
color-ordered Yang-Mills divergences into Eq. (2.15)
yields the gravity divergence:

Mð1Þ
Q¼16ð1; 2; 3; 4; 5ÞjD¼8 div

¼ i

�
�

2

�
5 X
S5=ðZ5�Z2Þ

�12345A
ð1Þ
Q¼0ð1; 2; 3; 4; 5ÞjD¼8 div:

(3.34)

Remarkably, this suggests that the entire five-loop diver-
gence inD ¼ 8 for half-maximal supergravity is contained

FIG. 4. The counterterm diagrams describing the one-loop
divergences of either pure Yang-Mills theory or half-maximal
supergravity in D ¼ 8. The large dots indicate an insertion of a
counterterm vertex generated by either an F4 operator in Yang-
Mills theory or an R4 operator in supergravity.
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in the operators that describe four-point divergences and
that no further independent operators should appear at five
points.

As a first test of this, we used the R4 counterterm as
determined at four points to compute the five-graviton
divergence, again using diagrams of the form shown
in Fig. 4. We used both forms of the counterterm
[Eq. (3.22) and (3.27)]; in both cases we find agreement
with Eq. (3.34) for four-dimensional external graviton
states. For cases with other external states, we suspect
again all two-loop supergravity divergences are locked to
the four-point divergences given that no new independent
five- or higher-point counterterms arise in pure Yang-Mills
theory (by simple gauge invariance and dimensional con-
siderations). It would be interesting to investigate this
further.

C. Comments on the four-point one-loop N ¼ 4
gravity-matter system

The above group-theoretic analysis can also be applied
to understand the divergence structure of Q � 16 super-
gravity with matter. A particularly interesting case is
N ¼ 4 supergravity in D ¼ 4 coupled to nv N ¼ 4
vector multiplets. These theories naturally arise from
dimensional reduction of half-maximal pure supergravity
models in higher dimensions. Over 30 years ago, Fischler
showed that this theory is ultraviolet divergent at one loop
[63]. This result can be simply understood from the double-
copy vantage point.

In the double-copy picture, N ¼ 4 supergravity ampli-
tudes with vector multiplets are constructed using N ¼ 4
super-Yang-Mills amplitudes for one copy and a Yang-
Mills theory with adjoint scalars that interact with gluons.
In the latter theory, the only allowed interactions of the
scalar are the standard minimal interactions with gluons or
self-interactions via a �4 operator for the second copy.
With either interaction, simple renormalizability con-
straints in D ¼ 4 show that the only gauge-theory opera-
tors that can act as counterterms are the form F2, ðD��Þ2
or �4. The first two operators generate amplitudes con-
taining only tree-level color tensors, so the divergences
satisfy Uð1Þ (3.8) decoupling relations. Hence from
Eq. (2.9), we immediately have that amplitudes with only
supergravity multiplet states on the external lines or with
two-graviton and two-vector multiplet states are finite
irrespective of the number of vector multiplets. However,
one-loop four-point amplitudes where all external legs
belong to the matter multiplet are different. In the scalar-
Yang-Mills system, the four-scalar counterterm operator
with a one-loop color tensor of the form

cabcd�a�b�c�d (3.35)

is allowed, where cabcd is defined in Eq. (3.14). Here the
generated divergence does not satisfy Uð1Þ decoupling,

and when fed through Eq. (2.9), the corresponding
supergravity amplitude diverges. Indeed this is consistent
with the divergence in the four-matter-multiplet amplitude
found long ago by Fischler [63]. The same conclusion was
also reached in Ref. [64] with a corrected overall constant.
The case of D ¼ 6 is a bit different. Here a divergence

for the two-matter two-gravity matrix element appears.
The presence of this supergravity divergence can be under-
stood from the double-copy viewpoint as originating from
a counterterm of the nonsupersymmetric scalar-Yang-Mills
system:

cabcdFa
��F

b���c�d: (3.36)

In the double-copy formula, when this is combined with
maximally supersymmetric Yang- Mills theory, we obtain
a nonvanishing two-graviphoton and two-matter-photon
counterterm of the form D2F4. This is related by super-
symmetry to the two-graviton two-matter-photon counter-
term R2F2. While we have not explicitly computed this
divergence, it would be an interesting exercise to do so.

IV. HALF-MAXIMAL SUPERGRAVITY
AT TWO LOOPS

We now turn to the main topic of this paper, which is the
divergence structure of half-maximal supergravity at two
loops. We follow similar reasoning as for the cases of
D ¼ 4, 6 at one loop. In particular, we demonstrate that
the same cancellations that prevent forbidden color struc-
tures from appearing in pure Yang-Mills divergences are
responsible for making the half-maximal pure supergravity
two-loop four-point amplitude finite in D ¼ 5. On dimen-
sional grounds, we expect the D ¼ 5 two-loop four-point
counterterm of supergravity to be a supersymmetric
completion of an R4 operator [11,15]. Nevertheless the
corresponding divergence vanishes. We also explicitly
demonstrate the ultraviolet finiteness of a subset of five-
point amplitudes with external states in a four-dimensional
subspace; specifically we look at those amplitudes where
the external supergravity states are those obtained as a
tensor product of gluon states in the four-dimensional
subspace. Besides explaining the lack of a two-loop diver-
gence in these amplitudes in D ¼ 5, we also obtain the
explicit value of the four-point divergence in D ¼ 6.

A. Four-point divergence cancellations at two loops

1. Group theory considerations

Ordinary nonsupersymmetric Yang-Mills theory in
D ¼ 5 is, of course, divergent. At two loops in D ¼ 5,
the available counterterm in this theory is of the same F3

form (3.9) as at one loop in D ¼ 6. In D ¼ 5 there are no
one-loop divergences in dimensional regularization, so we
do not need to concern ourselves with subdivergences.
Following the same logic as at one loop, we impose the

constraint that the F3 operator generates only the tree-level
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color structures. Using the color basis described in
Appendix B of Ref. [53] (see also Ref. [65]), we express
the color factors in Eq. (2.11) in terms of the independent
tree and one-loop color tensors given in Eqs. (3.4) and (3.5),

as well as two additional two-loop color tensors, bð2Þ1 and

bð2Þ2 . For the planar color factors we have

cP1234 ¼ bð2Þ1 ; cP3214 ¼ bð2Þ2 ;

cP3421 ¼ bð2Þ1 � 1

4
C2
Ab

ð0Þ
1 ; cP1423 ¼ bð2Þ2 � 1

4
C2
Ab

ð0Þ
2 ;

cP1342 ¼ �bð2Þ1 � bð2Þ2 þ 3

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
1 ;

cP3142 ¼ �bð2Þ1 � bð2Þ2 þ 3

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
2 :

(4.1)

Similarly for the nonplanar color factors we have

cNP1234 ¼ cP1234 �
1

2
CAb

ð1Þ
1 ; cNP3214 ¼ cP3214 �

1

2
CAb

ð1Þ
1 ;

cNP3421 ¼ cP3421 �
1

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
1 ;

cNP1423 ¼ cP1423 �
1

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
2 ;

cNP1342 ¼ cP1342 �
1

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
1 ;

cNP3142 ¼ cP3142 �
1

2
CAb

ð1Þ
1 � 1

4
C2
Ab

ð0Þ
2 :

(4.2)

Inserting these into the gauge-theory amplitude (2.11) and
demanding that the divergent parts cannot have the two-

loop tensor structures bð2Þ1 and bð2Þ2 , we find constraints that
must be satisfied by the divergent parts:

0 ¼ tðAP
Qð1; 3; 4; 2Þ þ AP

Qð1; 4; 2; 3Þ þ AP
Qð3; 1; 4; 2Þ þ AP

Qð3; 2; 1; 4Þ þ ANP
Q ð1; 3; 4; 2Þ þ ANP

Q ð1; 4; 2; 3Þ þ ANP
Q ð3; 1; 4; 2Þ

þ ANP
Q ð3; 2; 1; 4ÞÞ þ sðAP

Qð1; 3; 4; 2Þ þ AP
Qð3; 1; 4; 2Þ þ ANP

Q ð1; 3; 4; 2Þ þ ANP
Q ð3; 1; 4; 2ÞÞjD¼5 div;

0 ¼ sðAP
Qð1; 2; 3; 4Þ þ AP

Qð1; 3; 4; 2Þ þ AP
Qð3; 1; 4; 2Þ þ AP

Qð3; 4; 2; 1Þ þ ANP
Q ð1; 2; 3; 4Þ þ ANP

Q ð1; 3; 4; 2Þ þ ANP
Q ð3; 1; 4; 2Þ

þ ANP
Q ð3; 4; 2; 1ÞÞ þ tðAP

Qð1; 3; 4; 2Þ þ AP
Qð3; 1; 4; 2Þ þ ANP

Q ð1; 3; 4; 2Þ þ ANP
Q ð3; 1; 4; 2ÞÞjD¼5 div: (4.3)

Solving this system for the divergent parts of two of the
partial amplitudes and plugging the solution into the
supergravity expression (2.13), we immediately find that
the corresponding two-loop supergravity divergence in
D ¼ 5 vanishes:

M ð2Þ
16þQð1; 2; 3; 4ÞjD¼5 div ¼ 0: (4.4)

It is interesting that there is no need to impose the vanish-
ing of the contribution proportional to the one-loop color
tensor bð1Þ1 to deduce this. This demonstrates that the
cancellations that eliminate the D ¼ 5 divergence in the
two-loop four-point amplitude of half-maximal pure
supergravity are identical to the ones that eliminate forbid-
den color tensors from the corresponding nonsuper-
symmetric pure Yang-Mills divergences. For supergravity
theories with more than 16 supercharges, not only does the
divergence vanish for this reason, but it also vanishes
because the F3 operator (3.9) in the corresponding super-
Yang-Mills theory is no longer a valid counterterm.

In D ¼ 6, pure Yang-Mills has a two-loop divergence
described by an F4 operator containing color factors not
appearing at tree level. [See Eq. (3.13), but also containing
a two-loop color tensor.] Feeding the F4 counterterm of
pure Yang-Mills theory into the double-copy formula
(2.13) immediately shows that half-maximal supergravity
diverges inD ¼ 6. Below we compute the explicit value of
this divergence.

2. Explicit cancellations in D¼ 5

We can see the two-loop supergravity divergence can-
cellation more directly in a four-dimensional external sub-
space starting with the explicit values of the D ¼ 5 pure
Yang-Mills divergences computed in the Appendix for
identical external helicity states. For Yang-Mills this ex-
ternal helicity configuration is sufficient because it detects
the divergence generated by the F3 operator. We note that
the ð� þþþÞ external helicity configuration is also di-
vergent, but not the ð� �þþÞ case. This is because the
allowed F3 counterterm cannot generate the latter helicity
configuration. The fact that the D ¼ 5 pure Yang-Mills
amplitude with helicities ð� �þþÞ in the four-
dimensional subspace does not diverge at two loops
immediately tells us that four-graviton amplitudes in
the four-dimensional subspace must also be finite: the
ð� þþþÞ graviton amplitude vanishes due to supersym-
metric Ward identities [55], while the ð� �þþÞ graviton
amplitude is finite due to the lack of the corresponding
Yang-Mills divergence. On the other hand, the presence of
ð� þþþÞ or ðþ þþþÞ pure Yang-Mills divergences
implies possible divergences in the supergravity theory
with one or two external scalars unless there are additional
cancellations beyond these helicity arguments, which, in
fact, are present, as described above.
To explicitly see these additional cancellations in the

four-dimensional external subspace, we use the results for
the planar and nonplanar contributions to the divergence
given in the Appendix:
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APð1þ; 2þ; 3þ; 4þÞjD¼5 div

¼ �i
½12�½34�
h12ih34i sðDs � 2Þ �

70�

1

ð4�Þ5 ;
ANPð1þ; 2þ; 3þ; 4þÞjD¼5 div

¼ i
½12�½34�
h12ih34i sðDs � 2Þ �

70�

1

ð4�Þ5 ;

(4.5)

where we take the state-counting parameter to be Ds ¼ 5
for the pure Yang-Mills theory.

Plugging the above result back into the two-loop gravity
amplitude (2.13), we immediately see that the divergences
in the nonplanar contributions cancel with those in the
planar contributions:

Mð2Þð1þ; 2þ; 3þ; 4þÞjD¼5 div

¼ ðDs � 2Þ �

70�

1

ð4�Þ5
�
�

2

�
6
stAtree

Q¼16ð1; 2; 3; 4Þ

�
�
s2

½12�½34�
h12ih34i ð1� 1þ 1� 1Þ þ cyclicð2; 3; 4Þ

�

¼ 0; (4.6)

valid for any external states in the graviton multiplet that
are a tensor product of the states of the N ¼ 4 super-
Yang-Mills multiplet and identical-helicity gluons. This
explicit cancellation highlights the fact that supergravity
can be less divergent than the component gauge-theory
amplitudes because of cancellations between planar and
nonplanar contributions.

B. Two loops and four points in D¼6

In D ¼ 6, on dimensional grounds one expects an F4

counterterm in pure Yang-Mills theory of the form in
Eq. (3.13), but with two-loop color tensors. As for the
one-loop D ¼ 8 case, the appearance of multiloop color
tensors in the gauge-theory divergence implies that the
corresponding supergravity divergences will not cancel.
In order to obtain the explicit value of the divergences,

we follow the same procedure as carried out in Ref. [8] for
three-loop N ¼ 4 supergravity in D ¼ 4. The ultraviolet
divergences are then extracted by expanding in external
momenta and integrating, while all subdivergences are
subtracted integral by integral.
This construction yields the explicit form of the two-

loop four-point divergence for any external states in the
graviton multiplet:

Mð2Þð1; 2; 3; 4ÞjD¼6 div ¼ 1

ð4�Þ6
�
�

2

�
6
stAtree

Q¼16ð1; 2; 3; 4Þ
��ðDs � 6Þð26�DsÞ

576�2
þ ð19Ds � 734Þ

864�

�

� ½sðF1F2ÞðF3F4Þ þ tðF1F4ÞðF2F3Þ þ uðF1F3ÞðF2F4Þ�

þ ð48Ds � 1248Þ
864�

½uðF1F2F3F4Þ þ tðF1F3F4F2Þ þ sðF1F4F2F3Þ�
�
; (4.7)

including the subtraction of one-loop subdivergences that
appear for Ds � 6. These subdivergences come from extra
states that circulate in the loop whenDs � 6. For pure half-
maximal supergravity (where the state-counting parameter
is Ds ¼ 6), the 1=�2 divergence vanishes as expected
since, as discussed in Sec. III, there are no one-loop sub-
divergences in pure half-maximal supergravity.

We can simplify the expression for the divergences in a
four-dimensional external subspace using spinor helicity.
For example, for four external gravitons with helicity
configuration ð� �þþÞ we have

Mð2Þð1�; 2�; 3þ; 4þÞ

¼ � i

ð4�Þ6
�
�

2

�
6
�ðDs � 6Þð26�DsÞ

576�2

þ 19Ds � 734

864�

�
sh12i4½34�4; (4.8)

for the one-loop-subtracted result. Among the ðFiFjÞ�
ðFkFlÞ terms on the pure Yang-Mills side, only ðF1F2Þ�
ðF3F4Þ gives a nonvanishing contribution, while the

contributions of the ðFiFjFkFlÞ terms cancel among them-

selves. We note that the expression (4.8) has the helicity
structure and dimensions of a D2R4 counterterm.

C. Two loops and five points in D¼ 5

We now turn our attention to five points. While the
previous discussion rules out an R4 divergence in D ¼ 5,
one may worry about a counterterm of the form�R4 and its
supersymmetric completion, which would lead to a diver-
gence at five points. However, from the SOð1; 1Þ duality
symmetry obeyed by half-maximal supergravity in D ¼ 5
[66], we know that �R4 is not a valid counterterm because
it is not invariant under the � ! �þ v shift symmetry.
Nevertheless, it is interesting to see how the potential
divergence cancels from the double-copy vantage point.
For the two-loop five-point amplitudes, the numerators

of maximal super-Yang-Mills theory depend on loop
momenta [5]. This complicates the analysis of the corre-
sponding half-maximal supergravity theory, though it is
straightforward to work out the divergences in D ¼ 5
following the procedure of Ref. [8].

ULTRAVIOLET CANCELLATIONS IN HALF-MAXIMAL . . . PHYSICAL REVIEW D 86, 105014 (2012)

105014-13



Once again we employ the double-copy construction
(2.6) to obtain the results for pure half-maximal supergrav-
ity. In Ref. [5], a form of the maximal super-Yang-Mills
amplitude that satisfies BCJ duality was found for any
internal dimension with the external states restricted to a
four-dimensional subspace. We employ this here for pure
gluon amplitudes. In the double copy this gives us access to
all states obtained by tensoring two gluon states in the
subspace. The graphs with nonvanishing numerators for
maximal super-Yang-Mills are shown in Fig. 5, and the
corresponding numerators are in Table I [5]. Since there is
no need to have a BCJ form in the second copy, we follow
Ref. [8] and use ordinary Feynman-gauge Feynman dia-
grams on the pure Yang-Mills side to generate a set of
suitable numerators. (See Ref. [8] for a description of this
procedure.) While using Feynman diagrams as a starting
point is not efficient, enormous simplifications arise from
the fact that we do not need contributions corresponding
to those with vanishing numerators on the maximal super-
Yang-Mills side. Unlike the cases covered earlier, the
maximal (Q ¼ 16) super-Yang-Mills two-loop five-point
numerators contain loop momenta and therefore cannot be
pulled out of the integral.

A generic integral for a graph in Fig. 5 is of the form

IðxÞ ¼
Z dDp

ð2�ÞD
dDq

ð2�ÞD

� nðxÞQ¼16ð1; 2; 3; 4; 5;p; qÞnðxÞQ¼0ð1; 2; 3; 4; 5;p; qÞQ
�ðxÞ l

2
�ðxÞ

;

(4.9)

where nQ¼16 denotes the maximal super-Yang-Mills

numerators specified in Table I and nQ¼0 the pure Yang-

Mills numerator found via Feynman rules. Including the
symmetry factors, the gravity amplitude is then given by

Mð2Þ
Qþ16ð1; 2; 3; 4; 5Þ ¼ �i

�
�

2

�
7X
S5

�
1

2
IðaÞ þ 1

4
IðbÞ þ 1

4
IðcÞ

þ 1

2
IðdÞ þ 1

4
IðeÞ þ 1

4
IðfÞ
�
; (4.10)

where the sum S5 is over all permutations of external legs.
We carry out the extraction of the potential ultraviolet

divergences exactly as in Ref. [8], to which we refer the
reader. In brief, we extract the ultraviolet divergences by

FIG. 5. Diagrams contributing to the five-point two-loop amplitude of maximal super-Yang-Mills theory. From Ref. [5].

TABLE I. The numerator factors of the graphs in Fig. 5. The first column indicates the integral, and the second column the numerator
factor for maximal N ¼ 4 super-Yang-Mills five-gluon MHV amplitudes, where the external momenta and states live in a four-
dimensional subspace. From Ref. [5].

I ðxÞ Maximal super-Yang-Mills numerator

(a), (b) 1
4 ð
12ð2s45 � s12 þ �2p � �1pÞ þ 
23ðs45 þ 2s12 � �2p þ �3pÞ þ 2
45ð�5p � �4pÞ þ 
13ðs12 þ s45 � �1p þ �3pÞÞ

(c) 1
4 ð
15ð�5p � �1pÞ þ 
25ðs12 � �2p þ �5pÞ þ 
12ðs34 þ �2p � �1p þ 2s15 þ 2�1q � 2�2qÞ þ 
45ð�4q � �5qÞ

� 
35ðs34 � �3q þ �5qÞ þ 
34ðs12 þ �3q � �4q þ 2s45 þ 2�4p � 2�3pÞÞ
(d)–(f) 
12s45 � 1

4 ð2
12 þ 
13 � 
23Þs12
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expanding the external momenta [28], as has been recen-
tly carried out in various determinations of ultraviolet
divergences in super-Yang-Mills theory and supergravity
[4,6,8,27,53,67,68]. The resulting vacuum integrals are
reduced to a basis using FIRE [69], giving integrals that
are straightforward to evaluate. In D ¼ 5, there are no
subdivergences to subtract, simplifying the construction
compared to Ref. [8].

As was the case at four points, we find the divergence to
vanish:

Mð2Þ
Q¼16ð1; 2; 3; 4; 5ÞjD¼5 div ¼ 0: (4.11)

This result is valid for any states obtained by tensoring a
pair of gluon states restricted to a four-dimensional sub-
space. The cancellation of the divergence between graphs
for one independent term is shown in Table II. Each row
gives the divergent coefficient of the term i
12"1 � "3�
"4 � "5k1 � "2s12=ð4�Þ5 from the indicated graph in Fig. 5.
This includes the sum over permutations of external legs.
We have applied momentum conservation as well as taken
a basis of six 
ij. Our choice is to eliminate k5 via

k5 � "i ¼ �ðk1 þ k2 þ k3 þ k4Þ � "i;
k4 � �5 ¼ �ðk1 þ k2 þ k3Þ � �5; ki � "i ¼ 0:

(4.12)

We use the five independent Mandelstam invariants s12,
s13, s14, s23 and s24. The six independent numerator factors
are 
12, 
13, 
14, 
23, 
24 and 
34. This gives a total of
thirty monomials 
ijskl; however, as explained in Ref. [5],

there are actually only twenty-five independent ones due to
nontrivial additional relations among them. We have used
this fact to eliminate the following monomials from our
graph-by-graph results:


12s14; 
12s23; 
13s12; 
13s13; 
34s24:

(4.13)

After reducing to this basis (or any similar one), all diver-
gences completely cancel in a manner similar to the
cancellation obtained by summing the contributions in
Table II. It is interesting that this cancellation is indepen-
dent of the state-counting parameter Ds.

V. CONCLUSIONS AND OUTLOOK

In a previous paper [8], we proved that at three loops in
N ¼ 4 supergravity an R4 counterterm—valid under all
currently known supersymmetry and duality constraints
[9]—has a vanishing coefficient. In the present paper, we
analyzed the simpler two-loop case of pure half-maximal
supergravity in D ¼ 5, which is believed to have a valid
counterterm under all known supersymmetry and duality
constraints. However, using the double-copy structure, we
showed that the corresponding divergences completely can-
cel. Indeedwe found that there are no four-point divergences
in D< 8 at one loop and in D< 6 at two loops, and we
linked these cancellations to similar ones occurring in cor-
responding pure Yang-Mills amplitudes that prevent forbid-
den color structures from appearing in divergences. We also
reached the same conclusions for the five-point amplitudes
thatwe analyzed at one and two loops. This link is consistent
with previous explicit calculations showing that ultraviolet
divergences of supergravity theories can bear a strong re-
semblance to those of corresponding gauge theories, not
only in their general structure but in their details [6,53].
For the half-maximal supergravity one- and two-loop

four- and five-point cases studied here, when divergences
of the corresponding pure-Yang-Mills amplitudes contain
color structures other than the tree ones, then the super-
gravity amplitudes also diverge. InD ¼ 8 and at two loops
in D ¼ 6 the pure Yang-Mills divergences have such color
factors so the half-maximal supergravity amplitudes also
diverge. In lower dimensions, only tree color tensors

TABLE II. The graph-by-graph divergent coefficients of the term containing the factor
i
12�1 � �3�4 � �5k1 � �2s12=ð4�Þ5 for the two-loop five-point half-maximal supergravity ampli-
tude in D ¼ 5. As discussed in the text we have reduced each expression to a set of terms
independent under momentum conservation and spinor identities. Each expression in the table
includes a permutation sum over external legs, with the symmetry factor appropriate to the
indicated graph. The sum of contributions over all graphs vanishes for any value of the state-
counting parameter Ds; all other divergent terms amplitude similarly cancel.

Graph ðdivergenceÞ=ði
12"1 � "3"4 � "5k1 � "2s12=ð4�Þ5Þ
(a) �64497þ925Ds

362880
ffiffi
2

p 1
�

(b) 820641�149788Ds

1451520
ffiffi
2

p 1
�

(c) �27555þ8116Ds

80640
ffiffi
2

p 1
�

(d)
�
20605þ912Ds

53760
ffiffi
2

p þ �38þDs

240
ffiffi
2

p s14
s13

þ 655�161Ds

1680
ffiffi
2

p s23
s13

þ �5171�148Ds

6720
ffiffi
2

p s24
s13

	
1
�

(e)
��71986þ4511Ds

241920
ffiffi
2

p þ 935þ6Ds

6720
ffiffi
2

p s14
s13

þ �907þ342Ds

6720
ffiffi
2

p s23
s13

þ 27859þ844Ds

60480
ffiffi
2

p s24
s13

	
1
�

(f)
��31847�8615Ds

241920
ffiffi
2

p þ 129�34Ds

6720
ffiffi
2

p s14
s13

þ �1713þ302Ds

6720
ffiffi
2

p s23
s13

þ 2335þ61Ds

7560
ffiffi
2

p s24
s13

	
1
�
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appear, so the corresponding supergravity amplitudes are
finite. Using the double-copy formula we also presented
explicit expressions for the valid supergravity divergences
in terms of Yang-Mills ones.

The above results are suggestive of a strong link between
the divergences of the two theories when the number of
loops or legs increases. With larger numbers of loops or
legs, loop momenta can appear in both gauge-theory
numerator factors of certain diagrams in the double-copy
formula. This makes it more difficult to directly tie the
integrated divergence properties of supergravity theories to
gauge theories. Nevertheless, it is rather striking that the
finiteness of the three-loop four-pointN ¼ 4 supergravity
amplitude [8] is correlated with the lack of multiloop color
tensors in the corresponding pure Yang-Mills divergences,
suggesting a general pattern. Similarly, we found nontrivial
cancellations in D ¼ 5 five-point two-loop amplitudes of
half-maximal supergravity, even though both gauge-theory
copies have loop momenta in their numerators. An obvious
conjecture is that the pattern continues to higher loops,
with divergences possible in (Qþ 16)-supercharge super-
gravity only when the divergences of corresponding
Q-supercharge gauge theory contain independent color
tensors other than tree ones. In D ¼ 4 this would suggest
ultraviolet finiteness of pure N � 4 supergravity.

In order to test this and to guide future studies, it is, of
course, crucially important to carry out further explicit
studies of divergences with larger numbers of loops or
legs. In particular, a computation of the five-loop four-
point divergence in N ¼ 8 supergravity should be within
reach [27], now that the corresponding N ¼ 4 super-
Yang-Mills integrand has been obtained [27] (although
not in a BCJ format). The calculation of the four-loop
four-point divergence of N ¼ 4 supergravity in D ¼ 4
is also doable with the procedure of Ref. [8] since the BCJ
form of the corresponding N ¼ 4 super-Yang-Mills am-
plitude required by the double-copy formula is known [6].

There are a number of other obvious directions for future
research. A key issue is to find the extent to which super-
symmetry and duality symmetries by themselves can be
used to place restrictions on counterterms corresponding to
the results described here. Very interestingly, the potential
two-loop four-point D ¼ 5 counterterm does appear to
be a duality satisfying full-superspace integral of a density
(which itself is not duality invariant) so such an explana-
tion would be nontrivial [15]. It would be interesting to see
if any of the recent developments in tree-level gravity

amplitudes [70] can shed any light on the nontrivial ultra-
violet cancellations we see at loop level.
In summary, in this paper, we linked the divergences of

half-maximal supergravity to those of pure Yang-Mills
theory. In particular, for the D ¼ 5 two-loop four-point
amplitudes of half-maximal supergravity, the divergences
vanish via the same cancellations that remove forbidden
color factors from the divergences of corresponding pure
Yang-Mills amplitudes. This case was particularly simple
to analyze because the maximal super-Yang-Mills numer-
ators used in the double-copy construction are independent
of loop momenta. The next challenge is to fully unravel the
ultraviolet cancellations implied by the double-copy struc-
ture at higher-loop orders.
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APPENDIX: TWO-LOOP PURE YANG-MILLS
DIVERGENCE IN D¼ 5

In this Appendix, we explicitly compute the D ¼ 5 di-
vergence of the two-loop pure Yang-Mills four-point ampli-
tude. The counterterm in this case is the F3 operator (3.9).
To simplify the analysis we restrict ourselves to a

four-dimensional external subspace. In this subspace, the
operator generates nonvanishing contributions to the
ðþ þþþÞ helicity states. The all-plus helicity two-loop
integrand in Yang-Mills was given in Ref. [71] in a form
valid for arbitrary internal dimensions. Here we integrate
this expression in D ¼ 5� 2� to obtain the explicit form
of the ultraviolet divergence. We then use this expression
to explicitly confirm our more general discussion of the
cancellations of the divergences in D ¼ 5 half-maximal
supergravity.
The unintegrated form of the pure Yang-Mills amplitude

with identical external helicities is [71]

APð1þ; 2þ; 3þ; 4þÞ ¼ i
½12�½34�
h12ih34i

�
sIP

4ðs; tÞ þ 4ðDs � 2ÞIbow-tie
4 ½ð�2

p þ �2
qÞð�p � �qÞ�ðsÞ

þ ðDs � 2Þ2
s

Ibow-tie
4 ½�2

p�
2
qððpþ qÞ2 þ sÞ�ðs; tÞ

�
;

ANPð1þ; 2þ; 3þ; 4þÞ ¼ i
½12�½34�
h12ih34i sI

NP
4 ðs; tÞ; (A1)
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where Ds is the state-counting parameter [58]. In pure half-maximal supergravity we take Ds ¼ 5. Here, the external
kinematics are four-dimensional, while the loop momenta are in D ¼ 5� 2�, and ð�p; �qÞ are the (D� 4)-dimensional
components of the two loop momenta. The planar and nonplanar double-box integrals are defined as

IP
4ðs; tÞ �

Z dDp

ð2�ÞD
dDq

ð2�ÞD
ðDs � 2Þð�2

p�
2
q þ �2

p�
2
pþq þ �2

q�
2
pþqÞ þ 16½ð�p � �qÞ2 � �2

p�
2
q�

p2q2ðpþ qÞ2ðp� k1Þ2ðp� k1 � k2Þ2ðq� k4Þ2ðq� k3 � k4Þ2
;

INP
4 ðs; tÞ �

Z dDp

ð2�ÞD
dDq

ð2�ÞD
ðDs � 2Þð�2

p�
2
q þ �2

p�
2
pþq þ �2

q�
2
pþqÞ þ 16½ð�p � �qÞ2 � �2

p�
2
q�

p2q2ðpþ qÞ2ðp� k1Þ2ðq� k2Þ2ðpþ qþ k3Þ2ðpþ qþ k3 þ k4Þ2
;

(A2)

with corresponding diagrams shown in Fig. 2. The ‘‘bow-tie’’ double-triangle integrals, displayed in Fig. 6, are defined as

I bow-tie
4 ½P ð�i; p; q; kiÞ�ðsÞ �

Z dDp

ð2�ÞD
dDq

ð2�ÞD
P ð�i; p; q; kiÞ

p2q2ðp� k1Þ2ðp� k1 � k2Þ2ðq� k4Þ2ðq� k3 � k4Þ2
: (A3)

We now compute the divergent parts of the integrals. In
five dimensions, there are no infrared divergences so all
divergences are ultraviolet in nature.

The bow-tie integrals are finite in five dimensions:

Ibow-tie
4 ½�2

p�
2
q�ðsÞ ¼ �3s

576

1

ð4�Þ5 ;

Ibow-tie
4 ½�2

p�
2
qðpþ qÞ2�ðs; tÞ ¼ �3sð2t� 15sÞ

18432

1

ð4�Þ5 ;
Ibow-tie
4 ½�2

pð�p � �qÞ�ðsÞ ¼ 0; (A4)

thus the ultraviolet divergence comes solely from the
double-box integrals.

Using Schwinger parameters, we write the planar
double-box integral in Eq. (A2) with a constant numerator
as

I P
4½1�ðs; tÞ ¼

Y7
i¼1

Z 1

0
dti½�PðTÞ��D

2 exp

�
�QPðs; t; tiÞ

�PðTÞ
�
;

(A5)

where

�PðTÞ ¼ ðTpTq þ TpTpq þ TqTpqÞ; (A6)

with

Tp ¼ t3 þ t4 þ t5; Tq ¼ t1 þ t2 þ t7; Tpq ¼ t6:

(A7)

As the subscripts indicate, Tp, Tq and Tpq are the sum of

Schwinger parameters whose corresponding propagators
contain loop momenta p, q and pþ q, respectively.
Finally, we also have

QPðs; t; tiÞ ¼ �sðt1t2Tp þ t3t4Tq þ t6ðt1 þ t3Þðt2 þ t4ÞÞ
� tt5t6t7: (A8)

The effects of �2
p, �

2
q and �2

pþq in the numerators are

derived by taking derivatives onZ
d�1�2�

p d�1�2�
q exp½�Tp�

2
p � Tq�

2
q � Tpq�

2
pþq�

/ ½�PðTÞ��1
2þ�; (A9)

with respect to Tp, Tq and Tpq. This leads to the following

extra factors, for example, to be inserted in the integrand of
Eq. (A5):

�4
p !

�
�� 1

2

��
�� 3

2

� ðTpq þ TqÞ2
�2

PðTÞ
;

�2
p�

2
pþq !

ð�� 1
2Þ2

�PðTÞ þ ð�� 1
2Þð�� 3

2ÞT2
q

�2
PðTÞ

:

(A10)

We account for the extra factors of �a
PðTÞ by shifting the

dimension D ! D� 2a. We now change six of the
Schwinger parameters to Feynman parameters such that
the delta-function constraint on the Feynman parameters isP

i�6�i ¼ 1. We then have

IP
4½P ð�p; �qÞ�ðs; tÞ
¼ �½7�Dþ 
�

Z 1

0
d�6

Y
i�6

Z 1

0
d�i�

�
1�X

i�6

�i

�

� ½�PðTÞ�7�3D
2 þ


½QPðs; t; �iÞ�7�Dþ

Dð�iÞ; (A11)

where Dð�iÞ are the extra factors in Eq. (A10), with ti !
�i. If the extra factors in Eq. (A10) depend on Tp, Tq and

Tpq, then 
 ¼ 2; otherwise, we have 
 ¼ 0. Following

3

41

2

FIG. 6. The bow-tie integral.
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Smirnov [72], we perform a change of variables that
imposes the delta-function constraint:

�1 ¼ �1�3; �2 ¼ ð1� �5Þð1� �4Þ;
�3 ¼ �2�1; �4 ¼ �5ð1� �2Þ;
�5 ¼ �2ð1� �1Þ; �7 ¼ �1ð1� �3Þ;
�1 ¼ ð1� �5Þ�4; �2 ¼ �5�2:

(A12)

The parameters can then be straightforwardly integrated to
obtain a Mellin-Barnes representation, and explicit inte-
gration gives

IP
4½�2

p�
2
q� ¼ �

70�

1

ð4�Þ5 þOð�0Þ;

IP
4½�2

p�
2
pþq� ¼ � �

70�

1

ð4�Þ5 þOð�0Þ;

IP
4½�4

p� ¼ � �

70�

1

ð4�Þ5 þOð�0Þ;
IP
4½�4

pþq� ¼ Oð�0Þ:

(A13)

Inserting these results into Eq. (A1), the all-plus helicity
planar amplitude is

APð1þ;2þ;3þ;4þÞ

¼ i
½12�½34�
h12ih34i

�
�sðDs�2Þ �

70�

1

ð4�Þ5þOð�0Þ
�
: (A14)

The evaluation of the nonplanar double-box integrals
follows the same steps as the planar ones, with �NPðTÞ
taking the same form as �PðTÞ, but now identifying

Tp ¼ t1 þ t2; Tq ¼ t3 þ t4; Tpq ¼ t5 þ t6 þ t7:

(A15)

Similarly, we also have

QNPðs; t; u; tiÞ ¼ �sðt1t3t5 þ t2t4t7 þ t5t7ðTp þ TqÞÞ
� tt2t3t6 � ut1t4t6: (A16)

However, here we find it advantageous to change only four
Schwinger parameters to Feynman parameters. Performing
this change gives

INP
4 ½P ð�p; �qÞ�

¼ �½7�Dþ 
�Y7
i¼5

Z 1

0
d�i

Y4
j¼1

Z 1

0
d�j�

�
1�X4

i¼1

�i

�

� ½�NPðTÞ�7�3D
2 þ


½QNPðs; t; u; �iÞ�7�Dþ

Dð�iÞ: (A17)

The delta-function constraint can be imposed via further
redefinition:

�1 ¼ �3ð1� �1Þ; �2 ¼ �3�1;

�3 ¼ ð1� �3Þð1� �2Þ; �4 ¼ ð1� �3Þ�2:
(A18)

The parameters can once again be straightforwardly inte-
grated, and we arrive at

INP
4 ½�2

p�
2
q� ¼ � �

42�

1

ð4�Þ5 þOð�0Þ;

INP
4 ½�2

p�
2
pþq� ¼

2�

105�

1

ð4�Þ5 þOð�0Þ;
INP
4 ½�4

p� ¼ Oð�0Þ;
INP
4 ½�4

pþq� ¼
�

35�

1

ð4�Þ5 þOð�0Þ:

(A19)

Inserting these results into Eq. (A1), the all-plus helicity
nonplanar amplitude is given by

ANPð1þ; 2þ; 3þ; 4þÞ

¼ i
½12�½34�
h12ih34i

�
sðDs � 2Þ �

70�

1

ð4�Þ5 þOð�0Þ
�
: (A20)

We use the results for the two-loop divergences in
Eqs. (A14) and (A20) in Sec. IV to explicitly demonstrate
the cancellation of the corresponding divergence of D ¼ 5
half-maximal supergravity.
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