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In a Euclidean path integral formulation of gauge theory and quantum mechanics, the �-term induces

a sign problem, and relatedly, a complex phase for the fugacity of topological defects; whereas in

Minkowskian formulation, it induces a topological (geometric) phase multiplying ordinary path-

amplitudes. In an SUð2Þ Yang-Mills theory which admits a semi-classical limit, we show that the complex

fugacity generates interference between Euclidean path histories, i.e., monopole-instanton events, and

radically alters the vacuum structure. At � ¼ 0, a mass gap is due to the monopole-instanton plasma, and

the theory has a unique vacuum. At � ¼ �, the monopole induced mass gap vanishes, despite the fact that

monopole density is independent of �, due to destructive topological interference. The theory has two

options: to remain gapless or to be gapped with a two-fold degenerate vacua. We show the latter is realized

by the magnetic bion mechanism, and the two-vacua are realization of spontaneous CP-breaking. The

effect of the �-term in the circle-compactified gauge theory is a generalization of Aharonov-Bohm effect,

and the geometric (Berry) phase. As � varies from 0 to �, the gauge theory interpolates between even- and

odd-integer spin quantum anti-ferromagnets on two spatial dimensional bi-partite lattices, which have

ground state degeneracies one and two, respectively, as it is in gauge theory at � ¼ 0 and � ¼ �.
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I. TOPOLOGICAL TERMS

Topological terms in quantum field theories, such as �,
Chern-Simons, and Wess-Zumino-Witten, may affect the
low-energy theory in nontrivial ways. They also render
Euclidean action complex and introduce a sign problem
in numerical simulations based on the Euclidean-path
integral formulations. Questions about the dependence of
the mass gap and the spectrum on the � angle in Yang-Mills
(YM) theory are physical but also out of reach due to
strong coupling. A way to gain insight into a strongly
coupled and asymptotically free gauge theory is to move
to a simpler theory which resembles the target theory as
much as possible1 and which shares the same universality
properties as the original theory.

In this work, we report on a small step on �-angle
dependence of observables in SUð2Þ YM theory by using
continuity and deformed YM (dYM) theory [1,2]. The
deformed theory, on small R3 � S1, is continuously con-
nected to the pure YM theory on large R3 � S1 and R4 in
the sense that the only global symmetry of the compactified
theory, the center symmetry, is unbroken in both regimes.
Using this framework, we calculate the vacuum energy
density, mass gap, string tension, deconfinement tempera-
ture, and CP realization by using semiclassical field theory

at decidedly small values of the number of colors N, and
for all values of � 2 ½0; 2�Þ, in deformed theory on small
R3 � S1. Because of continuity, we expect all of our find-
ings to hold qualitatively for pure YM theory on R4.
Arbitrary � is problematic in lattice simulations due to
a sign problem, and N ¼ 2 is not easy to reach using
gauge/gravity correspondence. Even if these two obstacles
were not there (and we hope that in time they will be
surmounted), our results provide unique insights into the
nature of �-angle dependence.
The main virtue of our formulation is that it intercon-

nects seemingly unrelated topological phenomena in
diverse dimensions in deep and beautiful ways. We show
that the geometric (Berry) phase—induced [3] topological
term in the action of certain spin systems [4] and quantum
dimer models [5] is a discrete version of � angle in four-
dimensional gauge theory compactified on R3 � S1. This
connection can only be shown by using compactification
that respects center symmetry and continuity [1,2].2 A new
compactification of gauge theory on T3 � R, reducing the
theory to simple quantum mechanics, shows that � angle
in gauge theory can also be mapped to Aharonov-Bohm
flux [6], and the interference induced by � angle is the
Euclidean realization of the Aharonov-Bohm effect [7].
This provides a new perspective to theta dependence and
sign problem and will be discussed in a companion paper.

*unsal.mithat@gmail.com
1We demand that the simpler theory should be asymptotically

free and possess the same global symmetries and identical matter
content (for light or massless fields) as the original theory. If
possible, it should also be continuously connected to the original
theory, so that the maximum amount of data can be extracted
about the original theory.

2Using thermal compactification, the theory moves to a de-
confined phase in small S1, and is disconnected from the large-S1

theory. In this case, the connections we propose are invisible.
This ‘‘traditional’’ compactification is probably the reason why
the simple observations of this paper were not realized earlier.
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Our results suggest that � angle in four-dimensional
gauge theory is the parent of many topological terms in
lower dimensions. The corresponding topological terms
are interrelated, and the sign problems are physical, as
opposed to technical, problems.

A. General structure of � dependence

The structure of the � dependence for a subclass of
observables in YM theory in the large-N limit has been
conjectured in Ref. [8] using standard assumptions about
the infrared dynamics. Reference [8] argued, based on
(i) large-N ’t Hooft scaling applied to holomorphic
coupling � ¼ 4�i

g2
þ �

2� , and (ii) the assumption that the

vacuum energy density Eð�Þ must be a 2�-periodic func-
tion of � and that Eð�Þ must be a multibranched function:

Eð�Þ ¼ N2min
k
hðð2�kþ �Þ=NÞ large� N (1.1)

for some functionh, whichhas afiniteOðN0Þ limit asN ! 1.
The energy is an extensive observable which scales asOðN2Þ,
whereas the mass spectrum scales as OðN0Þ in large-N limit
and is nonextensive. This simple observation has strong im-
plications for the � dependence of observables at large-N,
which are not systematically explored in the literature.Wefirst
provide a streamlined field theoretic argument for general
observables and then comment on literature.

If we denote H ð�Þ as the Hilbert space of the pure YM
theory at �, the spectrum of the theory must obey

Spec½H ð�Þ� ¼ Spec½ðH ð0Þ� at N ¼ 1: (1.2)

We will refer to this property as ‘‘large-N theta indepen-
dence.’’ A simple way to argue for � independence follows.

By the assumption of a smooth large-N limit, the spec-
trum at � ¼ 0 is OðN0Þ. Consider the mass gap associated
with each branch,mkð�Þ, and letmk0ð�Þ denote themass gap

of the theory in the H k0ð�Þ, the Hilbert space associated

with the true vacuum sector. Each branch is 2�N periodic,
but the physics is 2� periodic. As � ! �þ c , for some
c ¼ OðN0Þ, the mass of any state inH k0ð�Þ changes by an
amount Oðc =N2Þ. However, if c ¼ 2�, H k0þ1ð�Þ takes
over as the new Hilbert space associated with the new true
vacuum. SinceOðc =N2Þ ! 0 asN ! 1, the mass gap and
the spectrum of the theory remains invariant under such
shifts, implying the � independence of nonextensive
observables (1.2). Although the mass gap associated with
each branch is � dependent and changes drastically over
the course of the full period of the particular branch, the
spectrum of the theory built upon the true ground state,
corresponding to the extremum (1.4), is theta independent.

Large-N � independence is a property of all observables
that have OðN0Þ limits and not a property of the extensive
observables. Specifically, the mass gap of the theory, at
large-N, ought to be

mð�Þ ¼ mð0Þmax
k

ð1� ð�þ 2�kÞ2OðN�2ÞÞ: (1.3)

This implies that the susceptibility of the mass spectrum to
� angle isN dependent and must scale asN�2 and vanish at
N ¼ 1. On the other hand, the topological susceptibility
associated with vacuum energy density is OðN0Þ. This
leads to the difference in � dependence as depicted in
Fig. 1. In the opposite limit, i.e., small-N, if Eq. (1.3)
approximately holds, the mass gap and spectrum must be
strongly � dependent.
By standard large-N counting, for an observable which

scales as Np, p � 2 in the large-N limit, we expect

Oð�Þ ¼ Npextþk hOðð2�kþ �Þ=NÞ large� N (1.4)

for some function hO, which has a finite OðN0Þ limit as
N ! 1. The extremum with superscript plus instructs us
to choose the branch associated with the global minimum
of energy.
The main message of this short description follows:

The N ¼ 1 limit is useful to extract the theta dependence
of the extensive observables. The same limit washes out
the � dependence of observables which are OðN0Þ.
There is already compelling lattice evidence backing up

the large-N theta (in)dependence; see, for example, the
structure of systematic large-N expansion in Refs. [9–12].
There is also evidence from gauge/gravity correspondence
supporting our arguments. Reference [13] shows the � de-
pendence of vacuum energy density in a bosonic gauge
theory (which is a pure YM theory plus extra particles that
appear at the scale of glueballmass). The theta independence
of the mass gap is shown in Ref. [14]. The combination of
these earlier results clearly anticipates the structure of �
dependence we outlined above.

B. � dependence in (deformed) Yang-Mills theory

We list the main outcomes of our semiclassical analysis
for SUð2Þ-deformed YM theory. Because of continuity, we
expect a smooth interpolation of all physical observables to
pure YM on R4.

m

E

4 2 0 2 4

FIG. 1. The � angle (in)dependence of observables in large-N
limit of gauge theory. For extensive observables, such as vacuum
energy density, the � dependence is present at N ¼ 1. The
Hilbert space and the mass gap exhibit � independence at
N ¼ 1. The figure is for N ¼ 5. At N ¼ 1, mð�Þ becomes a
straight horizontal line.
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(i) Mass gap, string tension, and vacuum energy density
are two-branched functions. These observables ex-
hibit two-fold degeneracy (and level crossing) at
exactly � ¼ �, where they are not smooth. The
theory breaks CP spontaneously at � ¼ �.

(ii) The � term induces a complex phase for the fugacity
of topological defects. In the Euclidean path histories
and sum-over configurations in the partition function,
these phases generate destructive or constructive
interference between topological defects. We refer
to this phenomenon as ‘‘topological interference.’’

(iii) Changing � radically influences the mechanism of
confinement and mass gap. The mass gap at � ¼ 0

is of order e�S0=2 and is due to monopole instantons

[1], where S0 ¼ 1
2 � 8�2

g2
is the action of monopole

instantons, which is half of the four-dimensional
instanton action. At � ¼ �, the mass gap is of
order e�S0 , and it is due to magnetic bions. The
behavior at � ¼ � or its close vicinity is doubly
surprising, especially considering that the density
of monopole-instantons �m is independent of �
angle, �mð�Þ ¼ �mð0Þ. Despite the fact that �m is
exponentially larger than the density of magnetic
bions �b for any value of �, the effect of the
monopole instantons dies off at � ¼ � as a result
of destructive topological interference. This is one
of the qualitative differences with respect to
Polyakov’s mechanism [15]. This important effect
was missed in the earlier work by the author and
Yaffe [1].

(iv) The� ¼ 0 theory is sign-problem free, and� � 0 is a
theory with a sign problem. The corresponding sign
problem is solvable by semiclassicalmeans. The sign
problem and the associated subtle cancellations may
be seen as a result of topological interference.

(v) A discrete version of the �-angle phase appears in
quantum antiferromagnets with bipartite lattices in
d ¼ 2 space dimensions [4] and in quantum dimers
[5] as the geometric (Berry) phases. The long-
distance description (a field theory on R2;1) of spin
system for 2S ¼ 0 mod 4 and 2S ¼ 2 mod 4 are
equivalent, respectively, to � ¼ 0 and � ¼ � of
deformed YM (dYM) on R3 � S1. The topological
� term in YM provides a continuous generalization
of the Berry phase—induced term in the spin sys-
tem. The existence of two vacua of the spin system
at 2S ¼ 2mod 4 may be seen as an evidence for CP
breaking at � ¼ � in YM.

(vi) The previous connection may seem quite implausible
on topological grounds. The Berry phase—induced
term in the spin system is proportional to the first
Chern number ch1ðBÞ associated with magnetic flux
of instanton events, whereas the topological term that
appears in theYMtheory is proportional to the second
Chern number, ch2ðFÞ, the topological charge in four

dimensions. To this end,we found a beautiful identity.
In the background of center-symmetric gauge holon-
omy, and for the topological defects pertinent to de-
formed YM theory on R3 � S1, we show that 3

exp½i�ch2ðFÞ� ¼ exp

�
i�

�

2
ch1ðBÞ

�
; (1.5)

where� ¼ �1 for the twodifferent types ofmagnetic

chargeþ1monopole-instanton events,M1 and
�M2,

in deformed YM.4 The opposite phases for the two
same magnetic- charge instanton events underlie the
topological interference, and its effects on physical
observables are elucidated in Sec. IV.

C. � angle as Aharonov-Bohm effect in
quantum mechanics

Some ingredients of our formalism, especially those
related to molecular instantons, which we also refer to as
topological molecules, are neither widely known nor, gen-
erally, correctly understood in the literature. To this end, we
decided to study a class of quantum mechanical toy models
as useful analogs of gauge theory. These models are simple
enough to be easily tractable, but they also have enough
structure to emulate some nontrivial features of the four-
dimensional counterpart. We chose to address some of the
hard issues first in this context.
As a simple generalization of the particle on a circle,

we discuss an infinite class of models: a particle on a circle
in the presence of a potential with N-degenerate minima
and a � term. For brevity, we refer to it as the TNð�Þmodel.
T1ð�Þ and T1ð0Þ are well studied textbook examples
[19,20]. Some aspects of the N � 2 model are parallel to
the SUðNÞ dYM theory on R3 � S1.
(i) TNð�Þ model has fractional instanton events with

fractional winding number. It also has instanton
events with integer winding number.

(ii) The physical observables are multibranched
(N-branched) functions.

(iii) There are topologicalmolecules, correlated instanton-
instanton or instanton–anti-instanton events,
topologically distinct from instantons.

(iv) The � angle acquires an interpretation as Aharonov-
Bohm flux. The TNð�Þ model can also be described
as anN-site lattice Hamiltonian with a magnetic flux
threading through the ring. The topological inter-
ference due to the � angle in the Euclidean context
is the analytic continuation of the Aharonov-Bohm
effect in Minkowski space.

3This relation is implicitly present in my work with Poppitz
[16] on index theorem on R3 � S1. The importance of this
relation for � dependence and dynamics is not discussed there.

4The existence of the second type of monopole was understood
in Refs. [17,18]. The role of these monopoles in semiclassical
dynamics on R3 � S1, and in the mass gap problem and �
dependence, was initiated in Ref. [1].
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II. PARTICLE ON A CIRCLE

Consider a particle on a circle in the presence of a
periodic potential and a topological � term. We first briefly
review the standard textbook discussion of the instantons
and the semiclassical dynamics of this theory and then move
to the lesser known, yet still semiclassically calculable,
physics of molecular instantons. The Euclidean action is

SE½g; �� ¼ S½g� � i�W

¼
Z

d�

�
1

2
_q2c þ g�1ð1� cosqc

ffiffiffi
g

p Þ
�

� i�

� ffiffiffi
g

p
2�

Z
d� _qc

�
(2.1)

¼
Z

d�
1

g

�
1

2
_q2 þ ð1� cosqÞ

�

� i�

�
1

2�

Z
d� _q

�
: (2.2)

g is the coupling constant, which permits a semiclassical
analysis for g � 1, and � is an angular variable. W 2 Z is
the winding number (topological term), which depends only
on the global aspects of the field configuration. The first
form of the action (2.1) has a canonically normalized kinetic
term for the field qc and is more suitable for perturbative
discussions. In a semiclassical analysis, it is more natural to
write the action as in (2.2).

The action S½g� given in (2.2) without any further speci-
fication is associated with infinitelymany physical systems.
In order to uniquely specify the physical system under
consideration, we have to state the configuration space of
the particle, i.e., the physical identification of the position.
For any fixed positive integer N 2 Zþ, we declare

q � qþ 2�N;N 2 Zþ;

as physically the same point: (2.3)

In this section, we study the N ¼ 1 case, for which the
potential has a unique minimum within the configuration
space S1q and the theory has a unique ground state. In this

case, W 2 Z is an integer and is valued in the first homo-
topy group �1ðS1qÞ ¼ Z.

The general case, that we refer to as the TNð�Þ model,
will be discussed in Sec. III.

A. Brief review of instantons and dilute
gas approximation

We first review a few well-known results in N ¼ 1
theory with arbitrary �, T1ð�Þ model in our notation; see
standard textbooks [19,20]. This theory has a unique mini-
mum in the configuration space, q 2 ½0; 2��, and since q is
a periodic variable, tunneling events 0 ! �2�;�4�; . . .
are permitted and present. These instanton effects induce
a � dependence in the ground state energy

Eð�Þ ¼ 1

2
ð!þOðgÞÞ � 2ae�S0 cos�;

S0 ¼ 8

g
; aðgÞ ¼ 4ffiffiffiffiffiffiffi

�g
p ;

(2.4)

where S0 is the instanton action, and the frequency of small
oscillations is ! ¼ 1.
An intimately related model is a particle moving on an

infinite lattice 2�Z, in the absence of an a topological term.
This is the T1ð0Þmodel in our notation. In this model, there
is a q ! qþ 2� translation-symmetry T, which commutes
with Hamiltonian, ½H; T� ¼ 0. There is no physical iden-
tification between any two lattice points. This means,
perturbatively, that there are infinitely many degenerate
vacua. Nonperturbatively, this degeneracy is lifted due to
tunneling events. Then, Eð�Þ arises as the dispersion curve,
where � ¼ ka is identified as quasimomenta and takes all
values in the interval, � � ka 2 ½��;�Þ, the Brillouin
zone. The lattice spacing is labeled by a. Eð� ¼ kaÞ pa-
rametrizes how the infinite degeneracy of the perturbative
ground states is lifted as a function of quasimomentum:

EðkaÞ ¼ 1

2
ð!þOðgÞÞ � 2ae�S0 coska: (2.5)

In the T1ð�Þ model, � is fixed for a given theory. However,
we are free to think a class of theories with different theta
by externally tuning it. The ground-state energy of the
T1ð�Þ model corresponds to one of the infinitely many
points in the dispersion curve of the T1ð0Þ model, using
identification � ¼ ka.
Let us pause for a moment and ask a set of fairly simple,

interrelated question: For � ¼ �
2 (and

3�
2 ), (2.4) tells us that

the dilute instanton gas does not contribute to the ground-
state energy despite the fact that the instanton density is
independent of �. Why is this so? Should we have expected
this? What is so special about � ¼ �=2? Will this persist
at higher orders in semiclassical expansion?5

Consider first � ¼ 0, and the partition function
Zð�Þ ¼ tr½e��H� of the theory in the � ! 1 limit, where
Zð�Þ 	 e��E. In the Euclidean path integral formulation,
the ground- state energy receives contributions from small
perturbative fluctuations around the minimum of the po-
tential, say q ¼ 0, and from the dilute gas of instantons
corresponding to large-fluctuations:

e��E 	 e�!
2ð1þOðgÞÞ� X1

n¼0

X1
�n¼0

ð�IÞn
n!

ð� �IÞ �n
�n!

¼ e�ð!2ð1þOðgÞÞ�I� �IÞ�; (2.6)

where I ¼ ae�S0 is the instanton amplitude.

5The analogous situation in deformed YM is sufficient to
appreciate the importance of these simple questions. In that
context, the mass gap at leading order in semiclassical expansion
vanishes at � ¼ �! The similar question there is whether SUð2Þ
dYM and, by continuity the ordinary YM on R4, are gapless at
� ¼ �?
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In the presence of the � term, the instanton amplitude
(or fugacity) picks up a complex phase for each instanton
event which depends on the � angle as

I ¼ ae�S0þi�; �I ¼ ae�S0�i�: (2.7)

The phases are opposite for an instanton and an anti-
instanton. At � ¼ �=2, the sum-over leading instanton
events gives

I þ �I ¼ ðei�=2 þ e�i�=2Þ ¼ 0: (2.8)

This means, in the partition function or in their contribution

to the ground-state energy, I and �I interfere destructively.
In contrast, for example, at � ¼ 0, the interference is
constructive. This is the topological interference which
is the source of the �-dependent structure of observables.
Despite its simplicity, it leads to qualitatively new effects.
In gauge theory, we show that topological interference
effects even alter the mechanism of confinement.

B. Molecular instantons: classification

Within the dilute instanton approximation, the vacuum
energy does not receive any contribution at � ¼ �=2. We
may ask if it receives any other nonperturbative contribu-
tion, and if there are molecular (composite or correlated)
instanton events contributing to Eð�Þ. Clearly, we must
distinguish two uncorrelated instantons and a molecular
instanton.6

At second order in fugacity expansion, there are three

types of molecular events: ½I �I�, ½II�, and ½ �I �I�. In the
Euclidean space where instantons are viewed as classical
particles, the correlated instanton events may be viewed as
molecules. We refer to molecular instanton events with two
constituents as bi-instantons, following Coleman [20], and
examine their properties.Much like a dilute instanton gas,we
will also construct a dilute instanton, bi-instanton, etc., gas
(see Fig. 2).
The characteristic size of the bi-instanton molecule rbI

is much larger than instanton size rI but much smaller than
the interinstanton separation dI-I that, in turn, is much
smaller than the intermolecule separation dbI-bI . Namely,

rI � rbI � dI�I � dbI�bI

# # # #
1 � � log

�
g
32

�
� e8=g � e16=g:

(2.9)

This hierarchy means that the use of the semiclassical
method for instantons and molecular instantons is simul-
taneously justified.7 We derive the size of the bi-instantons
below after we briefly discuss their implications for the
physics of the system.
The bi-instantons in T1-model are of two types:

(i) W ¼ �2 bi-instantons: ½II� and ½ �I �I�, which carry
winding number W ¼ �2; and

(ii) W ¼ �0 bi-instantons: ½I �I� and ½ �II� which carry
zero net winding number W ¼ 0.

The amplitudes associated with ½II� and ½ �I �I� are given by

I

I

I

I

[II] I

I

I

[II]

I[II]

[II]

[II]

I

I

FIG. 2 (color online). Field configuration as a function of Euclidean time and the equivalent dilute gas of instantons and topological
molecules. In the textbook treatment, usually only instantons are accounted for. Topological molecules such as ½II�, ½II�, ½I �I�,
despite being rarer, are nonetheless present. There are some effects for which instantons do not contribute, and the leading
semiclassical contribution arise from molecular instantons. The topological molecules are also crucial in order to make sense of
the continuum theory in connection with large orders in perturbation theory.

6In the literature and textbooks, the word ‘‘multi-instantons’’
is used both for multiple uncorrelated instanton events as well as
correlated instanton events. In a Euclidean space, where instan-
tons are viewed as particles, correlated instanton events should
be viewed as molecules and carry different topological numbers
than instantons. The role of, say, two uncorrelated instantons vs a
molecular instanton composed of two instantons in the dynamics
of the theory are completely different. This is discussed in some
detail below.

7It is the hierarchy (2.9), not the presence or absence of the
molecular/correlated instanton events, which is crucial for the
validity dilute gas approximation. The presence of molecular
instantons does not mean that an instanton liquid picture needs to
be used. The instanton liquid is an interesting phenomenological
model, but, obviously, it has no semiclassical justification.
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½II� ¼ bðgÞe�2S0þ2i�; ½ �I �I� ¼ bðgÞe�2S0�2i�; (2.10)

where �2 reflects the winding number of these molecules,
and bðgÞ is a prefactor that will be calculated in connec-
tion with the bi-instanton size. The proliferation of ½II� and
½ �I �I� gives a �-dependent contribution to Eð�Þ, the ground-
state energy. Notice that at � ¼ �where instantons interfere
destructively, the bi-instanton effects are the leading non-
perturbative cause of the energy shift.

½I �I� and ½ �II� correspond to the amplitudes

½ �II� ¼ ½I �I� ¼ cðgÞe�2S0 : (2.11)

cðgÞwill be calculated below. The proliferation of these bi-
instantons gives a �-independent shift to the ground-state
energy because these molecules carry zero net winding
number. There is, in fact, a deep reason behind the �
independence of the W ¼ 0 bi-instanton contribution.
The perturbation theory in this simple model, despite hav-
ing a unique vacuum, is not even Borel summable, see
Sec. II F. If one attempts to give a meaning to perturbation
theory through Borel procedure, there is an ambiguity
associated with the would-be Borel sum, hence, nonsumm-
ability. The W ¼ 0 bi-instanton amplitude, most impor-
tantly and as will be described below, is also ambiguous in
a way to precisely cancel the ambiguity that arises from
perturbation theory. Perturbation theory is independent of
� by its construction and, hence, cannot mix with W � 0
sectors. By this, we mean that a contribution, say, from
the W � 0 sector cannot cure an ambiguity that arises in
perturbation theory around the perturbative vacuum.
However, perturbation theory around the perturbative vac-
uum can, and in fact does, mix with nonperturbative phys-
ics in the W ¼ 0 sector. This is the intrinsic difference
between the two types of bi-instanton events. This will
be discussed in slightly more detail in Sec. II F and more
fully in a separate publication.

C. W ¼ � 2 bi-instantons

The way to derive the size of a molecule is as follows.
The action of a pair of instantons is

SðzÞ ¼ 2S0 þ 32�1�2
g

e�z; (2.12)

where we associate � ¼ 1 to instantons and � ¼ �1 to
anti-instatons, and z is the separation between two instan-
ton events. The interaction is short range and repulsive for
�1�2 ¼ þ1 and attractive for �1�2 ¼ �1.

If the two instantons were noninteracting, each would
have an exact translational zero mode of its own. However,
instantons do interact. In this case, it is useful to split the
coordinates into a relative coordinate z ¼ z1 � z2 and
center coordinate � ¼ ðz1 þ z2Þ=2. The center coordinate
is still an exact zero mode (as the potential between two
instantons only depends on the relative coordinate) and,

importantly, the separation between two instantons is a
quasizero mode, and it needs to be treated exactly.
W ¼ �2 bi-instantons: For the �1�2 ¼ þ1, the inte-

gral IþðgÞ over the quasizero mode reduces to (see
Bogomolny [21])

bðgÞ¼aðgÞ2IþðgÞ; IþðgÞ¼
Z 1

0
dz½e�32

g e
�z �1�: (2.13)

The (� 1) factor subtracts uncorrelated instanton events,
which are already taken into account in the dilute instan-
ton approximation at the leading order. In other words,
this term is there to prevent the double-counting of the
uncorrelated instanton events. Following Bogomolny
[21], the interaction integral is suppressed in the jzj �
� logð g32Þ domain due to repulsion. However, the (� 1)

term, which accounts for the prevention of the double-
counting, corresponds to the dilute gas of instantons and
does not ‘‘know’’ the repulsion. Integration by parts takes
care of this problem and yields

IþðgÞ ¼ 32

g

Z 1

0
dz½e�ð32g e�zþz�logzÞ� ¼ ��þ log

�
g

32

�
;

(2.14)

where � is Euler constant. Hence, the amplitude for the
bi-instanton event is

½II� ¼ aðgÞ2
�
��þ log

�
g

32

��
e�2S0þ2i�: (2.15)

The saddle point of the integral over the quasizero mode
is the characteristic size of the molecular instanton event
(see Fig. 3). It is given by rbI 	� logð g32Þ. Clearly, the size
obeys the hierarchy (2.9). rb is much larger than instanton

log
32

g

z

V z

FIG. 3. The plot of the integrand over the quasizero mode
(separation between two instanton events) for g � 1. The saddle
point of the integral is located at rbI ¼ logð32g Þ. Since the separation
between these two (correlated) instanton events rbI is much larger
than the instanton size, each instanton is individually sensible.Since
rbI is exponentially smaller than the typical interinstanton separa-
tion, these pairs cannot be viewed as two uncorrelated single
instanton events. Due to this reason, we interpret the resulting
structure as a topological molecule, with size rbI .

MITHAT ÜNSAL PHYSICAL REVIEW D 86, 105012 (2012)

105012-6



size so that each individual instanton actually makes sense,
and it is much smaller than interinstanton separation, so that
it should be carefully distinguished from two uncorrelated
instanton events. This characterization is the definition of
an instanton molecule. The existence of such molecules
does not invalidate the dilute gas approximation; rather,
they should be accounted for.

Alternative way of evaluating the quasizero mode
integral: Another way to calculate the integral over the
quasizero mode, which has the merit of being straightfor-
wardly generalizable to quantum field theory, follows.
Consider the theory with f fermions. When f > 0, the
fermion zero-mode exchange cuts off the integral over
the quasizero mode. This effect is familiar from the stabil-
ity of magnetic bions on R3 � S1 [22,23] and molecular
instanton events in supersymmetric quantum mechanics
[24]. We obtain, as the counterpart of (2.13),

Iþðf; gÞ ¼
Z 1

0
dze�ð32g e�zþfzÞ: (2.16)

Substituting u ¼ e�z and using 32
g 
 1, we map this

integral to

Iþðf; gÞ ¼
Z 1

0
duuf�1e�

32
g u �

Z 1

0
duuf�1e�

32
g u

¼
�
g

32

�
f
�ðfÞ: (2.17)

We need Iþð�; gÞ as � ! 0. The gamma function �ðfÞ has a
pole at f ¼ 0 zero. This divergence stems from the double-
counting of the uncorrelated instanton events, as described
above. Expanding the result around � ¼ 0, we obtain

Iþð�; gÞ ¼
�
g

32

�
�
�ð�Þ

¼
�
1þ � log

�
g

32

�
þOð�2Þ

��
1

�
� �þOð�2Þ

�

¼ 1

�
þ

�
log

�
g

32

�
� �

�
þOð�Þ: (2.18)

Our subtraction scheme, which gets rid of double-counting
of uncorrelated instanton events, is to drop the 1

� -pole term.

The result is equal to (2.14), obtained earlier by Bogomolny.

D. W ¼ 0 bi-instantons and
Bogomolny-Zinn-Justin prescription

For �1�2 ¼ �1, the integral I�ðgÞ over the quasizero
mode is, naively,

cnaiveðgÞ ¼ aðgÞ2I�ðgÞ; I�ðgÞ ¼
Z 1

0
dz½eþ32

g e
�z � 1�:

(2.19)

Now, the interaction between the instanton and anti-
instanton is attractive, and the integral (2.19), as it stands,
is dominated by the regime jzj � � logð g32Þ, where the two

are close. If this is indeed the case, then neither the
individual instanton nor a molecular instanton are mean-
ingful notions in the attractive case. In the literature, this
characteristic is sometimes regarded as unfortunate! To the
contrary, this behavior is a very positive feature, and not a
bug, as described below. Otherwise, there would be an
inconsistency in the full theory, as will be briefly described
in Sec. II F.
The physics of this problem is explained in two com-

plementary papers by Bogomolny and Zinn-Justin [21,25]
in quantum mechanics. Their (combined) proposal is
clever and deep but as yet unappreciated in the literature.
Hence, we will refer to it as the ‘‘Bogomolny–Zinn-Justin
prescription,’’ or the ‘‘BZJ prescription’’ for short. The
BZJ prescription may be viewed as a recipe to obtain
topological molecules with vanishing topological numbers
(just like perturbative vacuum), which in the older
literature are also called ‘‘quasisolutions’’. Zinn-Justin, in
Ref. [19] (Sec. 43, p. 1020), states that the generalization of
quasisolutions, i.e., topological molecules, to field theory
is nontrivial and has still to be worked out. The present
author undertook his step in collaboration with Poppitz
and Argyres. The generalization of the BZJ prescription
to nonsupersymmetric quantum field theories on R3 � S1

will be given in a detailed manner in an upcoming
work with Argyres [26]. In Ref. [27], it is shown that
the BZJ prescription produces the correct bosonic poten-
tial in a supersymmetric theory without any recourse to
superpotential.
Let us now describe the BZJ prescription. Bogomolny

proposes the following prescription in order to make sense
out of attractive instanton–anti-instanton pairs. Continue
the coupling to negative values g ! �g, where the inter-

actions between I and I becomes repulsive, perform the
integral exactly, and continue back to the positive coupling.
The final result is Iþð�gÞ, or

cðgÞ¼aðgÞ2Iþð�gÞ¼aðgÞ2
�
��þ log

��g

32

��

¼a2
�
��þ log

�
g

32

�
� i�

�
¼bðgÞ� i�aðgÞ2; (2.20)

whose real part is equal to bðgÞ given in (2.13). This
prescription certainly sounds ad hoc at first. Moreover,
(2.20) has an (naively) unexpected imaginary part propor-
tional to the two-instanton effect, which is ambiguous
depending on whether we approach the positive real axis
from above or below! This results in a two-fold ambiguous
W ¼ 0 bi-instanton amplitude:

½I �I� ¼ ðbðgÞ � i�aðgÞ2Þe�2S0 : (2.21)

The connection of the ambiguity in the molecular ampli-
tude with the ambiguity that arises in large orders in
perturbation theory is explained below.
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The physical meaning of this prescription is explained
by Zinn-Justin. Reference [25] observes that ordinary per-
turbation theory in quantum mechanics is divergent for

(i) theories with multiple-degenerate minima. For
example, VðqÞ ¼ 1

2q
2ð1� qÞ2, q2R which has

two minima, and VðqÞ ¼ 1
2 ð1� cosqÞ, q 2 R

which has infinitely many, or VðqÞ¼1
2ð1�cosqÞ,

q � qþ 2�N, N�2, which has N minima.
We may add to this list

(ii) theories with a unique minimum and a periodic
identification of the fields, such as VðqÞ ¼
1
2 ð1� cosqÞ, q � qþ 2� 2 R=2�Z.

In this class of theories, for g > 0, perturbation theory is
not even Borel summable. There are cases in which pertur-
bation theory becomes Borel summable if we take g < 0.
As usual, we then define the perturbative sum as the analytic
continuation of the Borel sum from the negative g < 0 to
jgj � i	. The Borel sum is well defined on the cut plane, the
exclusion is the branch cut along g > 0. Along the branch
cut, Borel sum develops an imaginary part, which is non-
unique, and depends on how one approaches the positive
axis, from below or above, jgj � i	. The corresponding
ambiguity in the analytic continuation of Borel sum is
proportional to �i�a2e�2S0 . Compare this with (2.20).

Since the ground-state energy is real, the sum of
perturbative and nonperturbative contributions must be
real. This suggests that the imaginary part coming from
the Bogomolny prescription applied to winding number
zero molecules must cancel with the imaginary part of the
Borel sum continued to the positive real axis when the two
(interconnected) procedures are performed consistently
[25]. Also see Ref. [28].

In other words, neither the perturbation theory on its
own nor the topologically neutral topological molecule
amplitudes are unambiguous notions; still, the combination
of the two must be ambiguity free.

E. Validity of dilute gas approximation
for instantons and bi-instantons

Let T ¼ fI ; �I ; ½II�; ½ �I �I�; ½I �I�; ½ �II�; ½III�; . . .g de-
note the set of instantons and molecular instantons. The
ordering is according to fugacity—the leading ones are
rare and subleading ones are rarer—but nevertheless all
are present. As should be clear by now, there is also a
hierarchy (2.9) of length scales. This hierarchy implies that
the use of dilute gas approximation which involves both
instantons and bi-instantons is justified. As asserted in
footnote, [7] the presence of molecular instantons does
not mean that an instanton liquid picture (for which there
is no semiclassical justification) should be used, much like
the presence of atoms and molecules in a gas does not
imply that one should use a liquid description.

The shift in the ground-state energy is due to the prolif-
eration (or the grand canonical ensemble) of all defects in
set T :

e�E� 	 e�!
2ð1þOðgÞÞ�Y

T

0
@X

nT

ð�T ÞnT
nT !

1
A

¼ e�!
2ð1þOðgÞÞ�

0
@X

nI

ð�IÞnI
nI !

1
A
0
@X

n
I

ð� �IÞn �I

n �I !

1
A

�
0
@X

n½II�

ð�½II�Þn½II�
n½II�!

1
A . . .

¼ e�ð!2ð1þOðgÞÞ�I� �I�½II��½ �I �I��½I �I�þ...Þ�: (2.22)

Therefore, the shift in the ground-state energy at second
order in the fugacity expansion reads

�Eð�Þ ¼ �2ae�S0 cos�� 2be�2S0 cos2�� 2be�2S0 :

(2.23)

At � ¼ �=2, the instanton effects vanish due to destructive
topological interference and do not contribute to ground-
state energy. There, the topological molecules are the
leading nonperturbative contribution to �Eð�Þ.

F. The relation between perturbative
and nonperturbative physics

The ground-state energy8 and eigenspectrum of the
quantum mechanical system is what is measured in an
experiment and is a set of finite numbers. On the other
hand, the perturbative expansion of ground-state energy,
also called Rayleigh-Schrödinger perturbation theory, in g
is of the form

Eð0ÞðgÞ ¼ X1
q¼0

Eð0Þ
q gq (2.24)

and is a divergent expansion, regardless of how small g is.
(Here, zero denotes that the calculation does not take
into account any instantons or topological molecules.)
Equation (2.24), in our current example and many other
cases, is an asymptotic series. By the Poincaré prescription,
the series is truncated at a fixed order, and one obtains
finite, reasonable results, with an error determined by the
last term kept. However, the issue at hand is like sweeping
an elephant under the rug, and it does not change the fact
that the series (2.24) is actually divergent. Therefore, if one
takes (2.24) literally, the perturbative expansion clashes
with the finiteness of the ground-state energy or other
observables, meaning that a purely perturbative expansion
to all orders is not sensible.

8This section does not aim to be complete; rather, it aims to
provide the basic intuition behind the interconnectedness of
perturbation theory and nonperturbative effects on simple physi-
cal grounds. The mathematical theory behind the types of series
given in (2.26) and related works in mathematics and physics
literature will be covered elsewhere, both for quantum mechan-
ics and quantum field theory in various dimensions, including
four-dimensional YM theory.
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A (still schematic) version of the expansion for the
ground-state energy or other observables—that may
actually be given a meaning—follows:

EðgÞ ¼ Eð0ÞðgÞ þ Eð1ÞðgÞ þ Eð2ÞðgÞ þ Eð3ÞðgÞ þ . . .

¼ X1
q¼0

a0;qg
q þ e�

8
g

X1
q¼0

a1;qg
q þ e�

16
g

X1
q¼0

a2;qg
q

þ e�
24
g

X1
q¼0

a3;qg
q þ . . . ; (2.25)

where S0 ¼ 8
g is the instanton action. Eð1ÞðgÞ is the contri-

bution of the dilute gas of instantons times the sum which

accounts for the perturbative fluctuations around it, Eð2ÞðgÞ
is the contribution of the dilute gas of bi-instantons times
corresponding perturbative fluctuations around it, and so
on and so forth. This expression is still slightly incorrect,
but we will correct and refine it momentarily.

Formally, each power series multiplying the relevant in-
stanton factor is actually divergent and needs to be defined in
someway.Wewill return to this issue inmore detail later, but
in order to get a better handle on it for now, let us reintroduce
the � parameter into the expansion. This is useful because
perturbation theory, by its construction, is independent of
� term. More precisely, perturbation theory around any
background, either the perturbative vacuum or any given
topological configuration, is independent of � term. This
helps us to restructure and refine the above expansion as:

EðgÞ¼X1
q¼0

a½0;0�;qgq

þ
2
4ae�

8
gþi�

X1
q¼0

a½1;1�;qgqþae�
8
g�i�

X1
q¼0

a½1;�1�;qgq
3
5

þ
2
4a2

�
��þ log

�
g

32

��
e�

16
gþ2i�

X1
q¼0

a½2;2�;qgq

þa2
�
��þ log

�
� g

32

��
e�

16
g

X1
q¼0

a½2;0�;qgq

þa2
�
��þ log

�
g

32

��
e�

16
g�2i�

X1
q¼0

a½2;�2�;qgq
3
5

þ ... : (2.26)

The notation a½n;k�;q means the following: n labels the action

of the sector, k labels the �-angle dependence, or thewinding
number of the sector, and q is a variable accounting for the
perturbative expansion around a given background. Note that
the action and winding number are not necessarily propor-
tional, and this will be crucial in order to make sense out of
such sums. We can also define the following abbreviations
for the series:

EðgÞ � X1
n¼0

Xn
k¼�n
k!kþ2

E½n;k� �
Xn
k¼�n
k!kþ2

�
Q½n;k�ðgÞe�

8n
gþik�

�
S½n;k�;

S½n;k� �
X1
q¼0

a½n;k�;qgq: (2.27)

Here, ðQ½n;k�ðgÞe�
n
gþik�Þ is the amplitude of the instanton

event for n ¼ 1 and molecular instanton event for n � 2.
Q½n;k�ðgÞ is the prefactor of the associated instanton or

molecular instanton amplitude. We have calculated these
amplitudes for n � 2.
At least in lower-dimensional theories, there is a way

to get a finite number out of this combined expansion,
which is presumably the physical answer: Consider the

divergent (non-Borel summable) series, Eð0Þ ¼ S½0;0� ¼P1
q¼0 a½0;0�;qgq. Continue g to negative g in the sum. The

resulting series is Borel summable at negative g. Call the
sum B½0;0�. B½0;0� is analytic function on the cut plane with

the real positive axis excluded. There, the function B½0;0�
has an imaginary discontinuity when passing from jgj � i�
to jgj þ i�. B½0;0�ðgÞ ¼ ReB½0;0�ðgÞ� � iImB½0;0�ðgÞ, where
�iImB½0;0�ðgÞ 	 �i�e�2S0 . This means that the Borel pre-

scription for perturbation theory, as it stands, also produces
a two-fold ambiguous result and, therefore, by itself is
meaningless, because the observable we are aiming to
calculate is actually real.
However, the disturbing fact that B½0;0�ðgÞ produces a

two-fold ambiguous result is in reality, not in the super-
ficial world of perturbation theory, as good as it can be.
Actually, without it, we would run into an inconsistency in
the whole theory. To see this, recall our discussion of the
proliferation of bi-instantons with W ¼ 0, i.e., the two-
instanton sector associated with zero winding number, and
the BZJ prescription. The BZJ prescription also produces
an amplitude which is two-fold ambiguous, as in (2.20).
Presumably, what must happen is that

ImB½0;0�ðgÞ þ ImE½2;0�ðgÞ ¼ 0 up to e�
4
g ambiguities;

(2.28)

leading to a cancellation of the imaginary parts between
the contributions coming from the [0, 0] sector and the

contributions coming from [2, 0] sectors at order e�
2
g. To

get a finite, sensible answer for the ground-state energy,
such cancellations between the perturbative and nonper-
turbative physics must be omnipresent in the description of
quantummechanics or field theory. It should also be under-
stood that the cancellation is between the e�2S0 effects, the
e�2S0 discontinuity of the Borel function, and the e�2S0

imaginary part of the neutral bi-instanton. Needless to say,
there are e�4S0 and lower-order imaginary contributions to
the discontinuity of ImB½0;0�ðgÞ. This may potentially be

cured by a molecule of the type ½IIII�, etc. Hence, we
may expect
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ImB½0;0�ðgÞþ ImE½2;0�ðgÞþ ImE½4;0�ðgÞþ . . .¼ 0: (2.29)

We conjecture that, analogously, the same result also
holds in sectors with nonzero winding number, i.e., the
�-angle dependence must also be unambiguous:

ImB½1;1�ðgÞþ ImE½3;1�ðgÞþ ImE½5;1�ðgÞþ . . .¼ 0: (2.30)

In general, this suggests a recursive structure between
perturbative and nonperturbative effects in quantum
mechanics, which can be written as

ImB½n;k�ðgÞ þ ImE½nþ2;k�ðgÞ þ ImE½nþ4;k�ðgÞ þ . . . ¼ 0:

(2.31)

Intrinsic to this cancellation is the � independence of
perturbation theory or, equivalently, the splitting of the
sectors according to winding number k. Recall that per-
turbation theory in the background of any (topological)
configuration is unable to produce any extra � dependence.
This means that although sectors with different action
backgrounds can mix, the sectors with different � depen-
dence never mix. This provides a sectorial dynamics to the
whole theory.

We aim to discuss the interrelation of perturbative and
nonperturbative physics in quantum mechanics and quan-
tum field theory more systematically in the future. Clearly,
this is a problem of outstanding importance.

III. TN MODEL AND FRACTIONAL
WINDING NUMBER

For N ¼ 1, recall that the field qð�Þ is a mapping from
the circle along the Euclidean time direction (with circum-
ference �) to the target space in which the particle lives:

q: S1� ! S1q � ! qð�Þ: (3.1)

Such mappings are assigned a winding number, the number
of times qð�Þ traverses around the S1q as � makes a circuit

in S1�:

W ¼ 1

2�

Z �

0
d� _q ¼ 1

2�
ðqð�Þ � qð0ÞÞ 2 Z: (3.2)

This number depends only on the global aspects of the
field configuration and is valued in first homotopy group
�1ðS1qÞ ¼ Z. The amplitude associated with the instanton

events with unit winding number is e�S0ei�.
Assume N � 2, and recall the physical identification

(2.3). Our assertions about the maps from the circle S1� to

the target space S1q are still valid. The instanton interpolat-

ing from qð0Þ ¼ 0 to qð�Þ ¼ 2�N is assigned winding
number þ1, because q � qþ 2�N are physically the
same point.

For convenience, let us normalize the circumference
of the circle to 2�. Take the q � qþ 2� identification,
but modify the potential into VðqÞ ¼ 1� cosðNqÞ.

This potential has N minima within the configuration
space, and a q ! qþ 2�

N discrete shift symmetry. Let us

recall the Euclidean action:

SE½g;��¼
Z
d�

1

g

�
1

2
_q2þð1�cosNqÞ�� i�

�
1

2�

Z
d� _q

�
:

(3.3)

We may rewrite the action in a form more suitable for
instanton calculus. LetV denote an auxiliary potential and

V 0 ¼ @V
@q such that the bosonic potential can be expressed

as VðqÞ ¼ ðV 0Þ2. The auxiliary potential is the counterpart
of the superpotential in supersymmetric theories. Then, the
action at � ¼ 0 can be written as

SE½g; 0� ¼
Z

d�
1

g

�
1

2
_q2 þ 1

2
ðV 0Þ2

�

¼
Z

d�
1

2g
½ð _q�V 0Þ2 � 2 _qV 0� �

��������1

g

Z
dV

��������;
(3.4)

where the auxiliary potential is

V ¼ 4

N
cos

Nq

2
: (3.5)

The (anti)instantons obey _q�V 0 ¼ 0 and saturate the
bound. Now, there are more possibilities for instanton
events. Since there are N degenerate minima within con-
figuration space S1q, located at qi ¼ 2�

N i, we may view an

instanton event as a tunneling event from the ðiÞth mini-
mum to the ðiþ 1Þth minimum. Let us refer to this in-
stanton as I i. The action and phase associated with this
event is the integral of two total divergences, dV and dq:

S0 � i�W ¼
��������1

g

Z iþ1

i
dV

���������i�
Z iþ1

i
dq

¼ 4

gN
j cosði þ 1Þ� � cosi�j

� i�

�
2�ði þ 1Þ

N
� 2�i

N

�

¼ 8

gN
� i

�

N
: (3.6)

This is obviously a finite action topological configuration
whose properties depend on global aspects of the field. It
cannot be smoothly deformed to a vacuum configuration.
Such an instanton carries a fraction of the winding number,
given by 1

N . However, this is not valued in �1ðS1qÞ, which is
strictly an integer. This means that we have to relax the
condition that the winding number associated with an
instanton event should be an integer or refine the homo-
topic considerations accordingly. The amplitude associated

with the fractional winding instanton is I i 	 e�S0ei�=N.
The discussion of molecular instanton events follows very

closely Secs. II B and II C with essentially one difference.
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Because of the ordering of the classical vacua, the interac-
tion between instantons is modified. It is given by

SðzÞði;jÞ � 2S0 ¼
8<
:
þ 32

g 	
i;j�1e�z instanton-instanton

� 32
g 	

i;je�z instanton-anti-instanton
:

(3.7)

By the same analysis as in Sec. IIC, there are two types
of bi-instanton events: W ¼ 2

N and W ¼ 0. These are

½I iI iþ1� 	 e�2S0ei2�=N and ½I i
�I i� 	 e�2S0 . The first one

of these leads to correlated next-to-nearest-neighbor tunnel-
ing and has a � dependence. The second one is an event
which tunnels to the nearest-neighbor vacuum and then
immediately tunnels back to the original vacuum.
‘‘Immediately’’ here means that the whole process takes a
Euclidean time � � logð g32Þ, which is much larger than the

instanton size but exponentially smaller than the separation
between uncorrelated instanton events.

Note that the winding number W ¼ 1 instanton event
may be thought of as an ordered concatenation of
N-fractional instantons. The amplitudes and the fractional
winding numbers for I i obey

IW¼1 ¼
YN
i¼1

I i; W ¼ XN
i¼1

Wi ¼
XN
i¼1

1

N
¼ 1: (3.8)

The W ¼ 1 instanton in the TN model may be viewed as
the analog of the Belavin-Polyakov-Schwarz-Tyupkin
(BPST) instanton and the N types of the W ¼ 1=N frac-
tional instantons are the counterparts of the N types of
monopole instantons on R3 � S1.

We can find the � dependence of the ground-state energy
by using standard instanton methods. Instead, we will
follow a slightly different method. We map the TNð�Þ
model to a N-site lattice ring with a magnetic flux passing
through the ring.

A. �-angle dependence as Aharonov-Bohm effect

Consider the Minkowski space Lagrangian:

L½g; �� ¼ 1

g

�
1

2
_q2 � ð1� cosNqÞ

�
þ �

2�
_q (3.9)

The canonical momentum conjugate to the position q is

p ¼ @L
@ð _qÞ ¼ _q

g þ �
2� . Thus, the Hamiltonian can be found by

the Legendre transform, H½p; q� ¼ ext _q½p _q� L½q; _q��.
H½g; �� ¼ g

2

�
p� �

2�

�
2 þ 1

g
ð1� cosNqÞ: (3.10)

Therefore, the particle on a circle in the presence of the �
angle, given in (3.9) and (3.10), is the same as a charged
particle on a circle in the presence of a flux � treading the
circle. The Aharonov-Bohm flux (in units of flux quantum
�0) is identified with theta angle (divided by 2�):

�

2�
� �

�0

; �0 � 2�ℏc
jej : (3.11)

This gives an experimental setup to study the � dependence
of certain quantum mechanical systems.
The model can possibly be studied at arbitrary coupling, g;

however, this is not essential for our purpose.9 Here, our
interest is the weak-coupling asymptotics. At g ¼ 0, the
Hamiltonian reduces to thepotential term.Thismaybeviewed
as an infinitely heavy particle with no dynamics, localized at
one of the minima. At weak coupling, g � 1, the potential
term dominates, and semiclassical methods usefully apply.
Below, wewill solve this problem at weak coupling and study
the effect of the � term or the magnetic flux.

B. Tight-binding Hamiltonian with
Aharonov-Bohm flux

The TNð�Þ model at � ¼ 0 may be approximated by a
one-dimensional tight-binding Hamiltonian H on an N-site
lattice. The N-degenerate minima on the ring S1q may be

considered as the N lattice sites. The simplest tunneling
(instanton) effects correspond to nearest-neighbor hopping
terms in H. Turning on � angle, as described above, is
equivalent to a magnetic flux through the ring, as shown
in Fig. 4

Let aj, a
y
j denote annihilation and creation operators on

site j obeying the canonical anticommutation relation

½aj; ayj0 � ¼ 	jj0 . The tight-binding Hamiltonian reads

H ¼ XN
j¼1

�ayj aj � t½1;1�
XN
j¼1

ðei�=Nayjþ1aj þ e�i�=Nayj�1ajÞ;

(3.12)

where t½1;1�ei�=N is the of forward-hopping amplitude and

t½1;�1�e�i�=N is the backward-hopping amplitude. The

modulus of the amplitudes are equal, t½1;1� ¼ t½1;�1�, and
the phase factor that the particle picks up is due to the
existence of Aharonov-Bohm flux.
In a Euclidean-path integral formulation, t½1;1� may be

seen due to a simplest instanton event with positivewinding

Β     0

  Φ=θ  

Β     0

  Φ=θ  

W=1/N

W=0

N=8N=2

W=2/N

FIG. 4 (color online). The � angle in the TNð�Þ model is the
equivalent of Aharonov-Bohm flux � in units of the flux
quantum �0, with identification �

2� � �
�0

.

9The wave equation reduces to Mathieu or Hill’s equations, for
which there are known analytic solutions.
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number (in units of 1=N), and t½1;�1� comes from the anti-

instanton event with the same action but opposite winding.
There is a directionality associated with an instanton.

The Hamiltonian commutes with discrete translation

symmetry, T N . The eigenstates obey T Njki¼e2�ik=Njki.
Using the canonical transformation

ayk ¼ 1ffiffiffiffi
N

p XN
j¼1

e2�jk=Nayj ; (3.13)

we may diagonalize the Hamiltonian as

H ¼ XN
k¼1

Ekð�Þayk ak; where

Ekð�Þ ¼ �� 2t½1;1� cos
�
�þ 2�k

N

�
:

(3.14)

Ekð�Þ is the eigenenergy of the state j�ki with quasimo-
mentum k. Clearly, the eigenstates j�ki are independent
of �. However, the ordering of energies depends on �.
For the angular range � 2 ½��;��, the ground state is
k ¼ 0, which is a translation-invariant state. In the range
� 2 ½�; 3��, the ground state is k ¼ 1, which is nonsinglet
under the translation symmetry. At � ¼ �, the two states
which transform differently under translation symmetry
become degenerate and their ordering switches. This is a
simple example of a quantum phase transition, where
symmetry of the ground state changes as a function of an
external parameter [29]. More generally, we have

�2½ð2k�1Þ�;ð2kþ1Þ��modð2�NÞ! j�groundi¼ j�ki:
(3.15)

Following Ref. [30], we may refer to the set of states as
the ‘‘vacuum family.’’ Every state in the vacuum family
does eventually become the true ground state as � is varied.
At � ¼ ð2kþ 1Þ�, there is a two-fold degeneracy. The
ground-state energy (as well as the spectrum) is a 2�
periodic function of � and is given by

Egð�Þ ¼ min
k

�
�� 2t½1;1�Þ cos

�
�þ 2�k

N

��
(3.16)

to first order in the hopping-parameter expansion.
The second order terms in the hopping parameter can be

viewed as sourced by the molecular instantons. There are
two types of terms at this order, one of which has fractional
winding �2=N and � dependence, and the other is the
molecular instanton event with zero winding number,
W ¼ 0, and no � dependence. We may write the second-
order terms in the Hamiltonian as

Hð2Þ ¼ �t½2;2�
XN
j¼1

ðei2�=Nayjþ2aj þ e�i2�=Nayj�2ajÞ

� t½2;0�
XN
j¼1

ayj aj: (3.17)

Diagonalizing the Hamiltonian, we obtain the eigenener-
gies of the states in the vacuum family as

Ekð�Þ ¼ ð�� t½2;0�Þ � 2t½1;1� cos
�
�þ 2�k

N

�

� 2t½2;2� cos2
�
�þ 2�k

N

�
: (3.18)

As before, there are N branches in the vacuum family,
and for a given �, the ground-state energy is the branch
with the lowest energy.

IV. DEFORMED YANG-MILLS ON
R3 � S1 ATARBITRARY �

Consider YM theory on R3 � S1 with action

S½g; �� ¼ S� i�QT ¼
Z 1

2g2
trF2


�ðxÞ

� i�
1

16�2

Z
trF
�

~F
�; (4.1)

where F
� ¼ Fa

�t

a is non-Abelian field strength, ~F
� ¼
1
2 �


���F��, g is four-dimensional gauge coupling, and

trðtatbÞ ¼ 1
2	

ab.

The YM theory possess a large-S1 confined phase
and small-S1 deconfined phase, distinguished according
to the center-symmetry realization and the behavior of
the Polyakov order parameter. There exists a simple one-
parameter family of deformation of the pure YM theory
such that the deformed theory has no phase transition as
the radius is reduced. The action of the deformed YM
theory is

SdYM¼S� i�QTþSd:t:; Sd:t:¼ a1
L4

Z
jtr�j2; (4.2)

where a1 is a judiciously chosen deformation parameter
[1]. The small-S1 regime of the deformed theory may be
seen as the analytic continuation of the confined phase to
weak coupling.10

At small S1, the SUð2Þ theory is Higgsed down to Uð1Þ
by a center-symmetric vev � ¼ diagðei�=2; e�i�=2Þ and is
amenable to semiclassical treatment. For details, see
Ref. [1]. Due to the ‘‘breaking’’ SUð2Þ ! Uð1Þ by Wilson
line, a compact adjoint Higgs field, there are two types
of monopole instantons—the regular three-dimensional
one and the twisted one, which is there due to compact
topology of adjoint Higgs or, equivalently, due to the
locally four-dimensional nature of the theory [17,18].

10The double-trace deformation by the line operator is only
needed when S1 size is smaller than the strong scale of gauge
theory. In this regime, this operator may be induced by introduc-
ing a heavy adjoint fermion endowed with periodic (not anti-
periodic) boundary condition. The one-loop potential of massive
fermion induces the deformation term, see Refs. [31,32]. Since
the fermion is much heavier than the strong scale, the infrared
dynamics is essentially that of YM or, equivalently, that of dYM.
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These defects carry two types of quantum numbers, mag-
netic and topological charge, ðQm;QTÞ, given by

M1:

�
þ1;þ 1

2

�
; M2:

�
�1;þ 1

2

�
;

�M1:

�
�1;� 1

2

�
; �M2:

�
�1;� 1

2

�
:

(4.3)

The action is half of the four-dimensional instanton

action, S0 ¼ 1
2 � SI ¼ 4�2

g2
. Note that the quantum number

of M1M2 is the one of the four-dimensional instanton.
The � ¼ 0 theory at small-S1 � R3 realizes confinement
due to the monopole-instanton mechanism [1].

Introducing � term in the action, the action of a four-
dimensional instanton is shifted as SI ! SI � i�.
Since M1 and M2 carry fractional topological charge
(in a center-symmetric background), and by (1.5), their
action is shifted as S0 ! S0 � i �2 , whereas the shift for

their conjugates is reversed, S0 ! S0 þ i �2 . This is to say,

fugacities acquire complex phases, and the amplitudes are

M1 ¼ ae�S0þi�2eþi� M2 ¼ ae�S0þi�2e�i�

�M1 ¼ ae�S0�i�2e�i� �M2 ¼ ae�S0�i�2eþi�:
(4.4)

Here, � denotes the dual photon defined through Abelian
duality relation, �
�@� ¼ 4�L

g2
F
�. The form of the

amplitudes account for long-range Coulomb interactions
between monopole instantons.

The dilute gas of monopoles with complex fugacity
generates the dual Lagrangian

Ldð�Þ ¼ 1

2L

�
g

4�

�
2ðr�Þ2 � 4ae�S0 cos

�
�

2

�
cos�; (4.5)

where Vð1Þð�; �Þ ¼ �4ae�S0 cosð�2Þ cos� is the potential

induced by the proliferation of monopole-instanton events.
For later convenience, in order to make the comparison

to the quantum spin system easier, we introduce a second
(equivalent) form of the dual Lagrangian, by using the field
redefinition � ! �� �

2 � ~�. As a result, the monopole

operators are modified as

M 1 ¼ ae�S0ei~�; �M2 ¼ ae�S0þi�ei ~�; (4.6)

and their conjugates. The phase differences between the
two types of monopole-instanton events remain the same
upon field redefinition and are a crucial element in our
discussion. The Lagrangian, in this second form, is

Ldð~�Þ ¼ 1

2L

�
g

4�

�
2ðr~�Þ2 � 2ae�S0ðcos ~�þ cosð~�þ �ÞÞ:

(4.7)

The advantage of (4.7) is its manifest 2� periodicity. In
(4.5), to show the 2� periodicity, one needs to use a field
redefinition �0 ¼ �þ � upon the shift � ! �þ 2�.

At � ¼ 0, confinement and the mass gap for gauge
fluctuations are due to the monopole instantons.
Reference [1] showed that a simple generalization of
Polyakov’s model, which takes into account two types of
monopole-instanton events, is operative in dYM theory at
� ¼ 0. As we will see, this conclusion does not hold
for general � due to the important topological phase (4.4).
This is how the confinement mechanism presented here
differs qualitatively from Polyakov’s monopole-instanton
mechanism [15]
A striking phenomenon occurs at � ¼ �. The monopole

instanton-induced potential vanishes identically:

Vð1Þð�; � ¼ �Þ ¼ 0; (4.8)

which means that the dilute gas of monopole instantons
no longer generates a mass gap, despite the fact that their
density is independent of � angle.

In a Euclidean volume V3, there are, roughly, N3¼V3
e�S0

L3

monopole events, where L is the monopole size. The

monopole density is �m ¼ N3=V3 	 e�S0

L3 , from which we

can extract the mean separation between monopoles as

dm-m ¼ ��1=3
m ¼ LeS0=3. Despite the fact that density of

monopole does not change with �, the mass gap at leading
order in semiclassical expansion disappears. This impor-
tant effect was missed in the earlier work of the author
and Yaffe [1] and in a later work [33] discussing the theta
dependence of dYM.
Experienced with the quantum mechanical example, we

may guess that topological interference may be taking place.
This is indeed true, but there are some differences. One may
at first think that Mi must be interfering destructively with
�Mi, for i ¼ 1, 2. This is actually not the case. Since the
monopole-instanton interactions are long-ranged—unlike
instanton interactions in quantum mechanics—the interfer-

ence cannot occur between M1 and �M1, which carry
opposite magnetic quantum numbers. On the other hand,

M1 and �M2 have the same magnetic quantum numbers,
and opposite topological charge, see (4.4). At � ¼ �,

the sum over the M1 instanton and �M2 anti-instanton
yields

M1j�¼� þ �M2j�¼� ¼ e�S0eþi�ðei�=2 þ e�i�=2Þ ¼ 0;

(4.9)

a destructive topological interference, giving (4.8).
In order to see the two-branched structure of the observ-

ables in SUð2Þ theory, consider (4.7). The minima of the
potential Vð~�Þ for a given � can be found as

dVð~�Þ
d~�

¼ 0 ) ~� ¼
8<
:
� �

2 branch-one

� �
2 þ � branch-two

(4.10)

or in terms of original� ¼ ~�þ �=2 field, and potential (4.5)
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dVð�Þ
d�

¼ 0 ) � ¼
8<
:
0 minimum for 0 � � < �

� minimum for �< �< 2�
:

(4.11)

The extremization problem has multiple solutions within
the fundamental domain of � 2 ½0; 2�Þ. The nature of an
extrema changes with varying �. A minimum may become
a maximum or vice versa. This results in multibranched
observables. The ground state is associated with the branch
which has lowest energy. Various observables will be dis-
cussed in Sec. IVB.

A. Dilute gas of monopoles and bions

Since mass gap and confinement at leading order in
fugacity expansion are destroyed by topological inter-
ference, Polyakov’s monopole-instanton mechanism is no
longer operative. It is natural to ask whether confinement
and mass gap will ever set in at � ¼ �, and if so, how?

In (deformed) YM theory, at � ¼ �, there are only two
physical options: Either the theory remains gapless or it has
two-fold degenerate vacua with a much smaller mass gap, as
will be shown by symmetry in IVD.An identical conundrum
was recently found in principal chiral NL� model in 2þ 1
dimensions in Ref. [34] but was not resolved. In gauge
theory, we will be able to solve the analogous problem.

The question ofwhether amass gapwill ever set in, or not,
is not unfounded. For example, there is a well-known classi-
fication of spin-S antiferromagnetic spin chain in 1þ 1
dimensions: half-integer spin systems are gapless, while
the integer spin systems are gapped [35]. This difference
stems from a topological term in the path integral,Zð2�SÞ ¼P

W2Ze
i2�SWZW , where ZW is the partition function over

a fixed topological charge sector. Here, we may identify
� � 2�S and the crucial difference between integer spin
(for which e2�iSW ¼ ðþ1ÞW) and half-integer spin for which
(ei2�SW ¼ ð�1ÞW) is the signed sum over the topological
sector in the latter. Although this is analogous to the situation
we encounter in dYM at � ¼ 0 vs � ¼ �, we will, in fact,
show that, despite the interference effect, a mass gap is
generated. It is m2ð� ¼ �Þ 	 e�2S0 , exponentially smaller
than m2ð� ¼ 0Þ 	 e�S0 , and the vacuum is two-fold degen-
erate. This phenomenon is a generalization of what takes
place in 2þ 1 dimensional bipartite antiferromagnetic
lattices [4] and quantum dimer model [5].

In order to answer the question of mass-gap gener-
ation at � ¼ �, we need to understand the topological
defects at second order in fugacity expansion. There are
two classes of such defects, classified according to topo-
logical charge. These are ½MiMj� for which QT ¼ 1 and

½Mi
�Mj� for which QT ¼ 0. In a normalization where the

four-dimensional instanton amplitudes are given by I4d ¼
½M1M2� ¼ e�2S0þi�, and �I4d ¼ ½ �M1

�M2� ¼ e�2S0þi�,
the formal expressions for the possible topological mole-
cule amplitudes are given by

½M1
�M2� ¼ bðgÞe�2S0þ2i�

½M2
�M1� ¼ bðgÞe�2S0þ2i�

½M1
�M1� ¼ cðgÞe�2S0 ;

½M2
�M2� ¼ cðgÞe�2S0 ;

½M1M1� ¼ dðgÞe�2S0þ2i�þi�;

½ �M1
�M1� ¼ dðgÞe�2S0�2i��i�;

½M2M2� ¼ dðgÞe�2S0�2i�þi�;

½ �M2
�M2� ¼ dðgÞe�2S0þ2i��i�:

(4.12)

The molecules with QT ¼ 0 do not have a � depen-

dence. ½M1
�M2� is capable of producing a mass gap for

gauge fluctuation, as it carries a magnetic charge plus two.
This molecule is referred to as a ‘‘magnetic bion’’ in the
context of QCD(adj) andN ¼ 1 super YM (SYM), where
it is the leading cause of confinement in the semiclassical
domain on R3 � S1 [22,23].
The generalization of the analysis of Sec. II C can be

used to give the values of the prefactors for the amplitudes
of these events. The result is

bðgÞ ¼ 2�a2

3

�
� log

�
g2

4�

�
þ �� 11

6

�
; (4.13)

which is the prefactor of the magnetic bion amplitude. The
analysis above is in the semiclassical domain and reliable
therein. There are also lattice studies in strongly coupled
domain providing some evidence which can possibly be
interpreted in terms of magnetic bions [36].

Although the ½M1
�M1� molecule is not important for

our current analysis, it is of crucial importance in the full
theory. In N ¼ 1 SYM theory, this molecule is shown to
lead to center stabilization and is referred to as a ‘‘neutral’’
or ‘‘center-stabilizing bion’’. [27].11 Perhaps, to keep the
analogy between the molecules in quantum mechanics and
the ones in field theory as parallel as possible, we should
note that the constituents of the center-stabilizing bion are
also attractive. That means, we need the generalization of
the BZJ prescription to field theory, which is undertaken in
Ref. [26]. Following Ref. [26], we find

cðgÞ ¼ 2�a2

3

�
� log

�
� g2

4�

�
þ �� 11

6

�

¼ bðgÞ � 2�a2

3
ði�Þ: (4.14)

11In order to see its role in center-symmetry, restore the gauge-

holonomy dependence in the monopole amplitude, M1 !
e
�4�

g2
��þi�

, where �� is the separation between two eigenvalues

of Wilson line. Then, ½M1
�M1� ¼ e

�8�

g2
��

, leading to a repulsion

between eigenvalues, and ½M2
�M2� ¼ e

�8�

g2
ð2����Þ

. The sum of
the two is minimized when �� ¼ �, the center-symmetric
configuration at weak coupling regime. See Ref. [27].
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As in quantum mechanics, the (refined) BZJ prescription
leads to an imaginary part contribution to vacuum energy.
In YM theory, we also expect the vacuum energy in per-
turbation theory to be non-Borel summable. In order for
the gauge theory to make sense, the ambiguity (associated
with non-Borel summability) must cancel with the two-
fold ambiguity of the neutral bion contribution.12

The characteristic size of the ½Mi
�Mj�molecules can be

found, as in quantum mechanics, by studying the integral
over the quasizero mode. The result is, parametrically,
rb 	 L

g2
, same as the magnetic bion size in QCD(adj) or

N ¼ 1 SYM [22,23], and is universal. The bion size is
much larger than monopole-instanton size rm 	 L, but

much smaller than the intermonopole separation dm-m 	
LeS0=3 that in turn is much smaller than the interbion

separation db-b 	 Le2S0=3 as depicted in Fig. 5. Namely,

rm � rb � dm-m � db-b
# # # #
L � L

g2
� LeS0=3 � Le2S0=3:

(4.15)

Again, this hierarchy means that the use of semiclassical
methods for a dilute gas of instantons, bions, and other
topological molecules is simultaneously justified.
On the other hand, the molecules appearing in the first

class have nonuniversal properties. Whether these mole-
cules form or not depends on the details of theory. In dYM,
their properties are dependent on the mass of the A4 scalar
and, hence, on the deformation parameter a1. The charac-
teristicA4 mass in the center-symmetric phase is g

L ða1 � 1Þ.
IfmA4

¼ 0, the net interaction between self-dual monopole

instantons vanishes: the �-scalar exchange is cancelled by
the A4-scalar exchange. This is unlike bions, where the
interaction strength is parametrically unaltered in the limit
mA4

¼ 0. The size of the bion is only altered by a factor of

two in this limit. For a range of a1 deformation parameter,
the amplitude associated with the QT ¼ 1-type events are
much suppressed dðgÞ � bðgÞ relative to QT ¼ 0 events.
This approximation becomes exact in the supersymmetric
N ¼ 1 theory, as well as its softly broken N ¼ 0 non-
supersymmetric version. This suggests that we can omit
such events with respect to bions in the long-distance
description, and we will do so.

Let T ¼ fMi;
�Mi; ½Mi

�Mj�; ½MiMj� . . .g denote

the set of topological defects and molecules in dYM. The
grand canonical partition function of this Coulomb gas is

Z ¼ Y
T

	 X1
nT ¼0

ð�T ÞnT
nT !

Z
R3

YnT
k¼1

drTk



e�SintðrTk Þ; (4.16)

where Sint denotes the Coulomb interactions among the set
of defects in T , and �T is the fugacity of T . Unlike
Ref. [1], which only took into account the monopole
instantons in the compactified theory, we also include the
defects at second order in the semiclassical expansion. This
is necessary (and sufficient) to correctly describe the in-
frared physics at arbitrary � in the small S1 � R3 domain.
We do keep the BPST instanton-induced term in the action,
not because it should be kept to capture the long-distance
physics correctly but rather to show the unimportance of its
contribution to observables. The partition function can be
transformed into a three-dimensional scalar field theory

Zð�Þ ¼ R
D�e�

R
R3

Ld½��, where

Ld ¼ 1

2L

�
g

4�

�
2ðr�Þ2 � 4ae�S0 cos

�
�

2

�
cos�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
monopole-instanton

� 2be�2S0 cos2�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
magnetic bion

� 2a4de
�2S0 cos�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

BPST-instanton

: (4.17)

The physical aspects of the long-distance theory are
captured by this dual action (4.17). These are examined
below.
In order to make the correspondence with the quantum

antiferromagnet easier, we will also give the equivalent
Lagrangian in terms of shifted variable ~� ¼ �� �

2 . It is

θ

(+1,+1/2)

(−1, +1/2)

           exp[+i   /2] θ exp[+i   /2] θ

exp[−i    /2] θ exp[−i    /2] 

(−1, −1/2)

(+1, −1/2)

FIG. 5 (color online). The dilute gas of monopole instantons
and bions. In Euclidean space where monopole instantons are
viewed as particles, the correlated instanton events should be
viewed as molecules. Despite the fact that the density of mono-
pole instantons is independent of �, at � ¼ �, the effect of the
monopole-instanton events dies off due to destructive topologi-
cal interference, and the properties of dYM theory are deter-
mined by a dilute bion plasma.

12This molecule is associated with a pole in the Borel plane at
t ¼ 8�2 ¼ 1

2 ð16�2Þ, where t ¼ 16�2 is the pole corresponding
to four-dimensional instanton–anti-instanton. Reference [26]
provides evidence that the neutral bion is the weak-coupling
semiclassical incarnation of the elusive IR renormalon (for
which, to our knowledge, no semiclassical description exists.)
We are quickly glossing over this issue here; for the fuller
discussion, see Ref. [26]
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Ldð~�Þ¼ 1

2L

�
g

4�

�
2ðr~�Þ2�2ae�S0ðcos ~�þcosð~�þ�ÞÞ

�2be�2S0 cosð2 ~�þ�Þ�2a4de
�2S0 cos�: (4.18)

B. Vacuum energy density and
topological susceptibility

The potential (4.17), for arbitrary �, has two
�-independent extrema, located at � ¼ f0; �g, which lead
to two competing vacua. There are also, for a range of�, two
�-dependent extrema. But these are always maxima. The
‘‘vacuum family,’’ in the sense of Ref. [30], is captured by
theta-independent extrema of (4.17), at least one of which is
always a minima. For a range of �, there are two minima,
located at� ¼ 0, and�, independent of �. See the potential
for dual photon, Fig. 6, for three values of �.

Because of the existence of two candidate vacuum states,
physical observables such as vacuum energy density, mass
gap, string tension, and deconfinement temperature are
two-branched functions. Because the two-candidate ground
states become degenerate at � ¼ �, or at odd-multiples of
�, the observables are smooth except for odd multiples of
�, where it is nonanalytic.

The true ground-state properties, for a given �, are found
by using the branch associated with the global minimum of
energy. The vacuum energy density Eð�Þ is extracted from
the value of the Vð�; �Þ evaluated at these two extrema,
LEð�Þ ¼ Mink¼0;1½Vðk�; �Þ�. Explicitly,

Eð�Þ¼�4min
k¼0;1

�
�4að�LÞ�1=3 cos

�
�þ2�k

2

�

�2bð�LÞ10=3�2a4dð�LÞ10=3 cos�þ . . .

�
: (4.19)

Recall that the multibranch structure is a conjecture on
R4 for large-N theory [8]. Here, we were able to derive
the two-branched structure, shown in Fig. 7, starting with
microscopic physics in a semiclassical framework in dYM
theory. By continuity, we expect that this result also holds
for pure YM theory on R4.
The multibranched structure is sourced by topological

defects with fractional topological charge. It is also worth
noting that the four-dimensional BPST instanton effects in
this expansion are analytic, negligible, and unimportant.
We can also extract topological susceptibility:

�¼ @2E
@�2

���������¼0
� �4að�LÞ�1=3 þ 2a4dð�LÞ10=3 þ . . . :

(4.20)

The crucial point in this expression is that the four-
dimensional BPST instanton effects, even in the semiclas-
sical domain, give negligible contributions to topological
susceptibility. This is in accordance with lattice results
[9,11]. In the semiclassical regime, in (deformed) YM
theory, the leading contributions are from monopole-
instanton events.

C. Mass gap, string tension, and
deconfinement temperature

The mass gap of the theory is also a two-branched
function. It can be extracted from the curvature of the

potential at its minima: m2
1;2ð�Þ ¼ Lð4�g Þ2 @2Vð�;�Þ

@�2 j�¼0;�.

At leading order in the semiclassical expansion, we find

mð�Þ ¼ A�ð�LÞ5=6
��������cos

�
�

2

���������
1=2

: (4.21)

At leading order in semiclassical expansion, at � ¼ �,
mass gap vanishes despite the fact that the density of
monopole instantons is independent of �. This is a conse-
quence of destructive topological interference. At this
stage, the theory has two choices, either to remain gapless

7
8

 = 0

2

V

FIG. 6 (color online). Vð�; �Þ as a function of � for � ¼ 0, 7�8 ,
�. At� ¼ 0, there is auniqueground state. For a rangeof�, there are
two minima. At � ¼ �, there are two degenerate (ground) states.

2 3 4
2 3 4

m2

(a) (b)

FIG. 7. (a) The vacuum energy density Eð�Þ is periodic by 2� and smooth except for odd multiples of � ¼ �, where a two-fold
degeneracy arises. (b) The mass gap of the theory, associated with the global minimum of vacuum energy, is the maximum of the two
branches. At � ¼ �, there is spectral degeneracy.
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or to have two isolated gapped vacua. A similar problem
also appears in Refs. [34,37]. At subleading e�2S0 order, a
much smaller mass gap is generated due to magnetic bions,

and it is proportional to mð�Þ 	�ð�LÞ8=3.
The mass gap of the theory is the upper branch of a

two-branched function:

m2ð�Þ ¼ max
k¼0;1

a�2

�
ð�LÞ5=3 cos

�
�þ 2�k

2

�

þ ð�LÞ16=3 þ . . .�: (4.22)

For the range of � for which bothm2
1 > 0 andm2

2 > 0, there
are two minima. Ifm2

1 > 0 andm2
2 < 0 (or vice versa), then

the second extremum is actually a maximum. The func-
tions Eð�Þ and the mass gap are smooth function for
all �, but odd multiples of �, where they are nonanalytic.
At these values, there are two true ground states, located
at � ¼ 0 and � ¼ �. This is a manifestation of the CP
symmetry at � ¼ �, which is spontaneously broken and is
discussed in IVD.

We also define the topological susceptibility of the mass
gap (square) as

�m ¼ @2½m2ð�Þ�
@�2

���������¼0
¼ �A�2ð�LÞ5=6=4< 0: (4.23)

This implies that at � ¼ 0, the mass gap is maximum
(the correlation length is minimum). With increasing theta,
due to the topological interference of the monopole instan-
tons, the mass gap decreases and correlation length in-
creases. Although we have not been able to do so yet, we
believe that it can be proven rigorously that the mass gap
(and spectrum) susceptibility is negative semidefinite: It is
negative for all finite N for SUðNÞ and approaches zero at
N ¼ 1 limit. It may be interesting to demonstrate this
analytically and check it by using lattice techniques. For
example, a recent lattice work [38] studies mass gap in
two-dimensionalOð3Þ field theory at arbitrary � and claims
that this should be feasible for SUð2Þ YM theory. It would
be interesting to check (4.22) through simulations.

String tension: The string tension may be evaluated by
calculating the expectation values of largeWilson loops in the
defining 1

2 -representation of SUð2Þ, hW1=2ðCÞi. This calcula-
tion is done for deformed YM theory at � ¼ 0 in Ref. [1]. We
refer the reader there for details, and herewemainly quote the
differences. hW1=2ðCÞi is expected to decrease exponentially

with the area of the minimal spanning surface,

hW1=2ðCÞi 	 e�T1=2ð�ÞAreað�Þ: (4.24)

Here, � denotes the minimal surface with boundary C, and
T1=2ð�Þ is the�-dependent string tension for 12 -representation.
Such area law behavior implies the presence of an asympto-
tically linear confining potential between static charges in
1
2 -representation, VRðxÞ 	 T1=2ð�Þjxj as jxj ! 1.

The insertion of a Wilson loop W1=2ðCÞ in the original

theory corresponds, in the low-energy dual theory, to the

requirement that the dual scalar fields have nontrivial
monodromy,

Z
C0
d� ¼ 4��

�
1

2

�
¼ 2�; (4.25)

where C0 is any closed curve whose linking number with
C is one. For anR2 fillingWilson loop in the xy plane, this is
equivalent to finding the action of the kink solution interpo-
lating between � ¼ 0 at z ¼ �1 and � ¼ 2� at z ¼ þ1.
At leading order in semiclassical expansion, we find,

T1=2ð�Þ 	�2ð�LÞ�1=6

��������cos
�
�

2

���������
1=2

: (4.26)

Clearly, Tð�þ 2�Þ ¼ Tð�Þ. At � ¼ �, the string tension
vanishes at leading order in semiclassical expansion just like
the mass gap did. This means that at � ¼ �, and at leading
order in semiclassical expansion, the gauge theory does not
confine. However, at subleading (e�2S0) order, a much
smaller string tension is generated due to magnetic bions.
The string tension at � ¼ � is,

Tð�Þ 	�2ð�LÞ5=3: (4.27)

Wemay also discuss the susceptibility of the string tension

to the � angle, �T ¼ @2Tð�Þ
@�2

j�¼0. The conclusions are quite

similar to the ones for the mass gap. Most importantly, the
susceptibility is negative for SUð2Þ. Since the string tension
is a nonextensive observable, the susceptibility must reach
zero asN ! 1. In other words, the string tension atN ¼ 1
must be � independent, as per our discussion in Sec. I.
Deconfinement temperature: Consider the deformed YM

on R3 � S1L, where we inserted the subscript L to remind
the reader that there is a deformation along this circle, and
the theory at any value of L is confining. In the small-L
regime, we can examine the deconfinement transition by
semiclassical techniques by introducing a thermal circle
S1� (with no deformation), and considering the theory on

R2 � S1L � S1�. At � ¼ 0, the physics near the deconfine-

ment temperature is described by a classical two-
dimensional XY-spin model with a Uð1Þ ! Z2-breaking
perturbation, and the transition temperature is, in the
semiclassical domain, �dð� ¼ 0Þ ¼ 4�L

g2
[39]. At � ¼ �,

according to (4.17), the monopole effects disappear. If we
do not incorporate the magnetic bion term, the theory does
not confine, i.e., the theory is then in the deconfined phase
for any T � 0. Incorporating magnetic bions, for suffi-
ciently low temperatures the theory is confined, but we
expect the deconfinement temperature to be reduced with
respect to � ¼ 0 case. At � ¼ �, the physics near the
deconfinement temperature is described by a classical two-
dimensional XY-spin model with a Uð1Þ ! Z4-breaking
perturbation. This is same as SUð2Þ QCD(adj) dis-
cussed in Ref. [39]. In this latter case, �dð�¼�Þ¼8�L

g2
¼

2�dð�¼0Þ. Therefore, in terms of temperatures,
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Tdð� ¼ �Þ ¼ 1

2
Tdð� ¼ 0Þ: (4.28)

To calculate Tdð�Þ for general � is a more demanding task,
but it is possible by using the renormalization group tech-
niques described in Ref. [39]. As mentioned above, on
physical grounds, we should expect a lower deconfinement
temperature at �¼� and, indeed, this is the case.

Finally, in the large-N limit, the deconfinement tempera-
ture must exhibit � independence because it is a nonexten-
sive observable, as per our discussion in Sec. I.

D. CP symmetry and its realization

In themicroscopic theory, underCP, e
�i� 1

16�2

R
trF
�

~F
� !
e
þi� 1

16�2

R
trF
�

~F
�

. Since � is 2� periodic and the second
Chern number is an integer for four-dimensional instanton
configurations, CP is a (nontrivial) symmetry of the theory
if and only if � ¼ �, because ��þ 2� ¼ �. At � ¼ 0,
YM theory is believed to possess a unique vacuum. If so, at
� ¼ �, the theory must have two vacua and spontaneously
broken CP.

In order to see how this symmetry is realized in the long-
distance theory, recall the two types of monopole amplitudes
(4.4),M1 andM2. These amplitudes are periodic functions
of � 2 ½0; 2�Þ, leading to the Lagrangian (4.5). Since the
microscopic theory possess an exact Z2 symmetry exactly at
(odd multiples of) � ¼ �, and no other �, this must also
be a symmetry of the low-energy effective theory at exactly
(odd-multiples of) � ¼ �, and no other �.

Consider the shift � ! �þ c . This rotates the ampli-
tudes as

M1 ! eicM1; M2 ! e�icM2;

½M1
�M2� ! e2ic ½M1

�M2�:
(4.29)

Clearly, this is not a symmetry of (4.17) for general
c . However, only at c ¼ �, the phase shift of both
monopole amplitudes coincide Mi ! ð�1ÞMi, and bion
amplitude remains invariant. Consequently, in low-energy
effective theory (4.17), cosð�2Þ cos� ! � cosð�2Þ cos� and

cos2� ! cos2�. This can be a symmetry of the theory if
and only if the first operator vanishes identically. This
happens exactly at (odd multiples of) � ¼ �.

The low-energy effective theory has a Z2 shift symmetry
exactly at � ¼ � and is described by the Lagrangian

Ld¼ 1

2L

�
g

4�

�
2ðr�Þ2�2be�2S0 cos2�þOðe�4S0 cos4�Þ:

(4.30)

The effective theory obtained in dYM theory at � ¼ �
coincides with the one in nonlinear sigma models [37].
The potential has two minima within the unit cell related
by the Z2 shift symmetry � ! �þ � and a spontaneously
brokenCP symmetry.CP, in the small-S1 domain, is broken
due to the condensation of a disorder (monopole) operator,

e�S0hei�i ¼ �e�S0 : (4.31)

Due to spontaneous breaking of CP, there must be a domain
wall. Consider one fillingR2 on xy plane. Then, the�ðzÞmust
interpolate between the two vacua such that

R1
�1d�¼�.

The resulting domain wall tension scales as TDWð�Þ 	
�3ð�LÞ2=3.
Clearly, as the � parameter is varied, there are not only

quantitative but qualitative changes in the behavior of
gauge theory. At � ¼ �, despite the fact that the density
of monopole instantons is exponentially larger than the
density of magnetic bions, confinement, the mass gap,
and string tensions are sourced by the latter, and the theory
has two vacua.

E. Continuity and evading the problems with
four-dimensional instantons

The problems associated with four-dimensional instan-
tons in an unbroken asymptotically free gauge theory onR4

are well known. Since the instanton size is a moduli, a self-
consistent treatment of dilute instanton gas approximation
does not exist. (See, for example, Sec. 3.6 in Coleman’s
lecture [20]. This is still an up-to-date presentation.)
In the semiclassical regime, the deformed theory exhibits

abelianization, and the long- distance theory is described
by SUð2Þ ! Uð1Þ Abelian group, much like the Coulomb
branch of supersymmetric theories. The gauge symmetry
breaking scale is v	 1

L . In our locally four-dimensional

spontaneously broken gauge theory, the instanton size mod-
uli is cut off by the gauge symmetry breaking scale v, as in
supersymmetric gauge theories with adjoint scalars, such
asN ¼ 4 SYM. This sets the scale of the coupling constant
entering to the four-dimensional instanton amplitude

exp½� 8�2

g2ðvÞ þ i��. The only four-dimensional instantons

in the systems are the ones with size less than v�1 	 L.
Therefore, the four-dimensional instanton expansion is
justified.
However, as discussed in depth, the control over the four-

dimensional instantons is hardly the point. The expansion on
R3 � S1 is an expansion in monopole instantons. It is the
three-dimensional instantons and twisted instantons (whose
topological charge in a center-symmetric background is
1=2). For generalN, the topological charge for these defects
is 1=N, and the correct expansion parameter is

exp

�
� 8�2

g2NðvÞ þ i
�

N

�
: (4.32)

In the semiclassical expansion, the four-dimensional instan-

tons with amplitude 	 exp½� 8�2

g2
� are exponentially sup-

pressed and are not the origin of the most interesting
physics. The expansion parameter is (4.32), and not the
four-dimensional instanton amplitude. It is worth noting that
(4.32) survives the large-N limit.
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V. QUANTUM ANTIFERROMAGNETS AND
DEFORMED YANG-MILLS

In this section, we will outline a surprising relation
between two-dimensional quantum anti-ferromagnets
(AF) on bipartite lattices, dYM theory on R3 � S1, and
by continuity, pure YM theory on R4. As reviewed below,
the long-distance theory for the AF is defined on R2;1 in
Minkowski space and the one of the dYM is also defined
on R2;1. We will demonstrate that AF with even and odd
integer spin (not half-integer) is equivalent to dYM with
� ¼ 0 and � ¼ �, respectively.

The ground-state properties of SUðNÞ quantum antifer-
romagnets on bipartite lattices in two spatial dimensions
are studied in Ref. [4]. Following Ref. [4], call the two
sublattices of the bipartite lattice as A and B. One asso-
ciates an irreducible representation of SUðNÞ with nc rows
and m columns to sublattice A and the conjugate irrep with
nc rows and N-m columns to sublattice B. For SUðNÞ, in
the low-energy, large nc (spin) limit, the continuum limit of
the lattice system can be described by a NL�model with a
complex Grassmann manifold (target space)

MN;mðCÞ ¼ UðNÞ=½UðmÞ �UðN �mÞ�; (5.1)

supplemented with a Berry phase-induced term. Form ¼ 1,
this corresponds to the CPN�1 model. The field theory
has topological configurations, ‘‘hedgehog’’-type instanton
events. Reference [4] expresses the low-energy partition
function as a dilute gas of instantonswith complex fugacities.
The complexification of the fugacity is due to the Berry
phase. Reference [4] proposed that the properties of the
Coulomb plasma vary periodically with the spin nc of states
on each site, and that the ground state has a degeneracy

dð2SÞ ¼ 1;4;2;4; for nc ¼ 2S¼ 0;1;2;3ðmod4Þ: (5.2)

According to Ref. [4], for a given nc, the fugacity of the
monopole instantons becomes complex due to the Berry
phase. The monopole amplitude is modified into

e�S0ei ~� ! e�S0þi�nc2 �sei ~�; �s ¼ 0; 1; 2; 3: (5.3)

Since the lattice is bipartite, the unit cell of the lattice,
similarly to staggered fermions in lattice gauge theory, may
be thought of as having a unit cell 2a� 2a. The monopole
events emanating from each one of these four smaller cells
(with sizea� a)may acquire a different phase depending on
the value of nc. There are three inequivalent cases.

(i) For nc ¼ 0 (mod 4), the phase is zero. Then, there is
only one type of monopole-instanton event

M1 	 e�S0ei ~�; (5.4)

whose proliferation generates the effective potential
Vðnc ¼ 0Þ 	 e�S0 cos ~� with a unique ground state.

(ii) For nc ¼ 2 (mod 4), then there are two types of
instanton events, which differ by a phase shift �:

M1 	 e�S0ei ~�; M2 	 e�S0þi�ei ~�: (5.5)

Clearly, these two events, in a Euclidean-path inte-
gral formulation, interfere destructively, and the
effective potential is Vðnc ¼ 2Þ 	 e�2S0 cos2 ~�
with two ground states.

(iii) For nc ¼ 1, 3 (mod 4), then there are four types of
instanton events,

M1 	 e�S0ei ~�; M2 	 e�S0þi�2ei ~�;

M3 	 e�S0þi�ei ~�; M4 	 e�S0þi3�2 ei ~�:
(5.6)

These instanton events interfere destructively both at
leading order ðe�S0Þ, as well as subleading orders
ðe�2S0 ; e�3S0Þ. The effectivepotential isVðnc ¼ 1Þ 	
e�4S0 cos4 ~� with four ground states.

Now, let us switch back to dYMtheory. This theory has two
types of monopoles, M1 andM2. At � ¼ 0, the amplitude

M1 and
�M2 are identical. The theory at � ¼ 0 (mod 2�) has

a unique ground state, much like the nc ¼ 0 (mod 4) case of
the spin system. However, when we introduce �, we can in

fact distinguish M1 and �M2 monopole-events. They have
identical magnetic charge, but their topological phases are
opposite in sign.
Using (4.18), the grand canonical partition function of

the Coulomb plasma takes the form

Zð�Þ ¼ X
n1 ; �n1�0
�n2 ; �n2�0

X
nb; �nb�0

ei�½ðn2� �n2Þþðnb� �nbÞ�Zðn1n2 �n1 �n2; nb �nbÞ;

(5.7)

where Zðn1n2 �n1 �n2; nb �nbÞ is the canonical partition func-
tion for a fixed number of monopole instantons, bions. The
crucial difference with respect to the Polyakov model—
apart from the existence of M2 monopole—is the exis-
tence of the �-phase factor. The partition function is 2�
periodic.
The partition functions of spin system with integer spin,

for the first two cases listed above, are

S 2 2Z ) Z ¼ X
n1;n2; �n1; �n2�0

Zn1n2 �n1 �n2

S 2 2Zþ 1 ) Z ¼ X
n1;n2; �n1; �n2�0

ei�½ðn2� �n2Þþðnb� �nbÞ�Zðn1n2 �n1 �n2; nb �nbÞ;
(5.8)
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which means that the deformed YM theory interpolates
between even-integer spin S 2 2Z and odd-integer spin
S 2 2Zþ 1 as � varies continuously from 0 to �,. In the
S 2 2Z partition function, we did not include bions be-
cause they give an exponentially suppressed perturbation.

We reach to the following identification between the
quantum antiferromagnet with spin S and deformed YM
theory with � angle:

dYM at � ¼ 0ðmod 2�Þ()AF at 2S ¼ 0ðmod 4Þ
dYM at � ¼ �ðmod 2�Þ()AF at 2S ¼ 2ðmod 4Þ:

(5.9)

Spin in the AF is discrete, whereas the � angle is continu-
ous. Nonetheless, by inspecting (5.7), we may identify13

�()�S: (5.10)

There is a sense in which the � angle in YM theory may be
seen as a continuous version of the discrete spin variable in
the quantum spin system. The topological phase in YM
theory can be identified with the Berry phase-induced
topological term in the MN;mðCÞ NL� model.

Note that the deformed YM theory does not capture the
half-integer spin cases. For that, one needs four different
types of monopole-instanton events, while dYM has only
two types.

A. Berry phase vs four-dimensional topological phase

It may sound surprising that Berry phase in the AF spin
system and topological phase in four-dimensional gauge
theory may actually be identified. Both systems, in their
long distance descriptions, can be formulated on R3 in a
Euclidean space.

However, it is well known on R3 that an analog of the
topological term of the four-dimensional theory does not
exist. There is a three-dimensional Chern-Simons term, but
that does not play a role in our problem; in fact, it would
have been detrimental for the survival of long-range inter-
actions between monopoles. Then, it is crucial to under-
stand, from a three-dimensional long-distance point of
view, how the compactified theory generates a topological
phase for monopole instantons. This helps us to see why
the effect of Berry phase-induced action and the effect of
the topological phase are actually the same thing.

Reference [4] shows, in some detail, that in the long-
distance description of the quantum antiferromagnets on
bipartite lattice, there exists a Berry phase-induced term in
the effective action given by

SB ¼ X
s

i
nc�

2
�s �ms

ms ¼ 1

4�

Z
S21

B:dS ¼ 1

4�

Z
R3

rB:
(5.11)

We will not repeat their derivation, here, and refer the
reader to Ref. [4] for details.
The topological term in the locally four-dimensional

YM action, formulated on R3 � S1, is the second Chern
number. How does it relate to the Berry phase-induced
term SB, and more specifically, how does the first Chern
number, the magnetic flux, even appear in the long-
distance description? Below, we will demonstrate the fol-
lowing statement connecting the two.
The second Chern number on R4, upon compactification

on R3 � S1 and in a background of a center-symmetric
gauge holonomy, gives a contribution proportional to first
Chern number (magnetic flux) of the topological configu-
ration times ð� 1

2Þ depending on the type of the topological
defect. In other words, the center-symmetric ‘‘dimensional
reduction’’ of the four-dimensional topological � term is
the Berry phase-induced action (5.11) in antiferromagnets.
The steps necessary to demonstrate this statement are

already present in my work with Poppitz in Ref. [16] on
index theorem on R3 � S1. Consider the topological
charge contribution in the action,

Q¼ 1

16�2

Z
R3�S1

trF
�
~F
�¼ 1

32�2

Z
R3�S1

@
K

: (5.12)

The topological charge density is a total derivative and can
be written as the divergence of the topological current K
:

K
 ¼ 4�
�� tr

�
A�@A� þ 2i

3
A�AA�

�
: (5.13)

Consider the M1 monopole. Using the fact that for the
static BPS background, K
 is a periodic function of the
compact coordinate y, we may rewrite

Z
R3�S1

@
K

¼

Z
d3x

Z L

0
dyð@4K4þ@mKmÞ¼L

Z
R3
@mKm:

Km is the spatial component of K
, given by

Km ¼ 4�mij trðA4Fij � Ai@4Aj � @iðA4AjÞÞ: (5.14)

The only contribution to topological charges comes from
the first term, which, using �ijkFjk ¼ 2Bi, can be written as

8 trA4Bm. This is the gauge-invariant magnetic field in the
dimensionally reduced theory. This means that we can
replace the spatial component of the topological current
with the magnetic field under the integral sign, namelyR
Km ¼ R

4vBm. Using the explicit form of the gauge

holonomy and the asymptotic form of the magnetic field,
we obtain 8trA4Bmj1 ¼ 4�

L
r̂m

r2
Thus, the topological charge

contribution reduces to

13The identification for the one-dimensional spin chain (1þ 1
dimensional field theory) would be � , 2�S, and in that case,
the difference is between the integer and half-integer spin. Gauge
theory, however, is related to spin systems in two spatial
dimensions.
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QðM1Þ ¼ 1

2

1

4�

Z
R3

rB ¼ 1

2

1

4�

Z
S21

B:dS ¼ þ 1

2
:

(5.15)

Similar calculation for the �M2 antimonopole (or twisted
antimonopole) is more technical due to twist. The mag-

netic charge of �M2 is alsoþ1. Using the result of Sec. 2.2

of Ref. [16], we find the phase associated with �M2 event as

Qð �M2Þ ¼ � 1

2

1

4�

Z
R3

rB ¼ � 1

2

1

4�

Z
S21

B:dS ¼ � 1

2
:

(5.16)

As noted in (4.4), despite the fact that M1 and �M2 have
the same magnetic charge, they acquire opposite topologi-
cal phases upon introducing the � angle. We obtain

exp

�
i�

32�2

Z
R3�S1

Fa

�

~Fa

�

�
¼ exp

�
�i

�

2

1

4�

Z
R3

rB
�

¼ exp

�
�i

�

2

1

4�

Z
S21

B:dS

�

¼ exp

�
�i

�

2

�
; (5.17)

respectively, forM1 (þ) and �M2 (�). This relation under-
lies the topological interference effects. It is also the reason
why the topological phase in gauge theory on R3 � S1 and
Berry phase-induced action in quantum antiferromagnets on
R2;1 (R3 in Euclidean formulation) coincide for certain
values of � and the phenomena that we have uncovered are
a generalization of the physics of Berry phases of spin
systems.

Equation (5.17) also instructs us that the sign problem in
simulations of quantum anti ferromagnets and YM theory
with � angle are equivalent problems in their respective
semiclassical regimes.

VI. DISCUSSION AND PROSPECTS

As an end note, we would like to mention a few ways to
generalize this work and a new problem in gauge theory.

Generalization: Deformations and continuity can be
used to generalize our work to all gauge groups. A more
accessible theory is SUðNÞ QCD(adj) with light fermions
endowed with periodic (not antiperiodic) boundary con-
ditions. This theory automatically satisfies our continuity
criterion. Moreover, by dialing the fermion mass term, it
can be continuously connected to YM theory.

Mapping field theory � angle to Aharonov-Bohm effect:
One direction that we find interesting is a more direct link
between the Aharonov-Bohm effect in ordinary quantum
mechanics and SUðNÞ gauge theory with � angle. A certain
modification of the TNð�Þmodel is related to quantum field

theory by using compactification on asymmetric three-
torus. On torus, the study of zero-mode dynamics and
magnetic flux sectors reduce to a basic quantum mechanics
problem with an Aharonov-Bohm flux [6]. Mapping the
�-angle dependence of YM theory (in a semiclassical
domain) to Aharonov-Bohm effect, the effects of a chang-
ing � and CP-symmetry breaking can be emulated through
(superselection sectors) in quantum mechanics.
What is the � angle in four-dimensional gauge theory?

Our construction also suggests that the � parameter of YM
theory may have a more interesting topological interpre-
tation. Recall the topological terms in four-dimensional
gauge theory and in quantum mechanics of a charged
particle on a circle,

i�

16�2

Z
trF
�

~F
�; and
i�qm

2�

Z
_q: (6.1)

In quantum mechanics, the presence of the theta term can
be reformulated as a ‘‘hole’’ in the topology of the con-
figuration space qðtÞ, and

�qm � jej�
ℏc

¼ jej
ℏc

Z
~Bemd ~S ¼ jej

ℏc

Z
~Aemd~l; (6.2)

where Bem and Aem are the magnetic field and gauge
potential of electromagnetism. This term follows from

the usual minimal coupling, e ~q: ~Aem
. We can rewrite the

topological term in quantum mechanics as

i

2�
�qm

Z
_q ¼ i

2�

�jej
ℏc

Z
~Bemd ~S

�
�

Z
_q: (6.3)

We can see the tiny solenoid which supports the ~Bem flux
as drilling a hole in the configuration space and turning it
into a nonsimply connected space. This gives � angle a
physical meaning in quantum mechanics.
The question we are curious about is the analog of the

(6.3) in quantum field theory. Perhaps, � angle in YM can be
reformulated as a ‘‘hole’’ in the topology of the configura-
tion space Að ~xÞ, much like the Aharonov-Bohm effect. It
would be interesting to understand the change in the topol-
ogy of the configuration space of gauge theory which would
induce the four-dimensional � term. At another layer of
abstraction, it would also be useful to understand the origin
of the � ‘‘flux’’ in gauge theory.
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