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In the paper a generalization of the (1þ 1)-dimensional model by Chodos et al. [Phys. Rev. D 61,

045011 (2000)] has been performed to the case of (2þ 1)-dimensional spacetime. The model includes

four-fermion interactions both in the fermion-antifermion (or chiral) and fermion-fermion (or super-

conducting) channels. We study temperature T and chemical potential � induced phase transitions in the

leading order of large-N expansion technique, where N is a number of fermion fields. It is shown that at

sufficiently large values of � and arbitrary relations between coupling constants, the superconducting

phase appears in the system both at T ¼ 0 and T > 0. In particular, at T ¼ 0 and sufficiently weak

attractive interaction in the chiral channel, the Cooper pairing occurs for arbitrary couplings in the

superconducting channel even at infinitesimal values of �.
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I. INTRODUCTION

Last years, great attention has been paid to the inves-
tigation of (2þ 1)-dimensional quantum field theories
(QFT) and, in particular, to models with four-fermion
interactions of the Gross-Neveu (GN) [1] type. Partially,
this interest is explained by a more simple structure of QFT
in two, rather than in three spatial dimensions. As a result,
it is much easier to investigate qualitatively such real
physical phenomena as dynamical symmetry breaking
[1–8] and color superconductivity [9], and to model phase
diagrams of real quantum chromodynamics (QCD) [10],
etc. in the framework of (2þ 1)-dimensional models.
Another example of this kind is spontaneous chiral sym-
metry breaking induced by external magnetic or chromo-
magnetic fields. This effect was for the first time studied
also in terms of the (2þ 1)-dimensional GN model [11].
Moreover, these theories are very useful in developing new
QFT techniques like the optimized perturbation theory
[10,12], and so on.

However, there is yet another more serious motivation
for studying (2þ 1)-dimensional QFT. It is supported
by the fact that there are many condensed matter systems
which, firstly, have a (quasi)planar structure and, secondly,
their excitation spectrum is described adequately by a
relativistic Dirac-like equation rather than by a
Schrödinger one. Among these systems are the high-Tc

cuprate and iron superconductors [13], the one-atom thick
layer of carbon atoms, or graphene [14,15], etc. Thus,
many properties of such condensed matter systems can
be explained in the framework of various (2þ 1)-
dimensional QFTs, including the GN-type models (see,
e.g., Refs. [16–24] and references therein).

In this paper we study phase transitions in a (2þ 1)-
dimensional GN-type model which describes competition

between two processes: chiral symmetry breaking (exci-
tonic pairing) and superconductivity (Cooper pairing).
Clearly, the model is suitable for qualitative analysis of
superconducting phase transitions in quasiplanar con-
densed matter systems. The structure of our model is a
direct generalization of known (1þ 1)-dimensional model
of Chodos et al. [25,26], which remarkably mimics the
temperature T and chemical potential � phase diagram of
real QCD, to the case of (2þ 1)-dimensional spacetime.
Recall that in Ref. [25], in order to avoid the prohibition on
Cooper pairing as well as spontaneous breaking of con-
tinuous symmetry in (1þ 1)-dimensional models (known
as the Mermin-Wagner-Coleman no-go theorem [27]), the
consideration was performed in the leading order of
1=N-technique, i.e., in the large-N limit assumption, where
N is the number of fermion fields. In this case quantum
fluctuations, which would otherwise destroy a long-range
order corresponding to spontaneous symmetry breaking,
are suppressed by 1=N factors. By the same reason in
(2þ 1)-dimensional spacetime and in the case of finite
values ofN, spontaneous breaking of continuous symmetry
is allowed only at zero temperature, i.e., it is forbidden at
T > 0. Hence, in order to make the investigation of super-
conducting phase transitions possible at T > 0, we sup-
pose, as it was done in Ref. [25], that in the framework of
our model N ! 1.
So at T ¼ 0 the results of our paper may be applied for

the description of superconductivity in different N-layer
condensed matter systems (N is finite and can even be
equal to one), whereas at T > 0 it is better to use the results
in the description of macroscopic systems composed of a
very large number of layers, such as graphite, etc.
The paper is organized as follows. In Sec. II the GN-type

model with four-fermion interactions in the fermion-
antifermion (or chiral) and fermion-fermion (or
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superconducting) channels is presented. Here the unrenor-
malized thermodynamic potential (TDP) of the model is
obtained in the leading order of the large-N expansion
technique. In Sec. III a renormalization group invariant
expression for the TDP is obtained whose global minimum
point provides us with chiral and Cooper pairs conden-
sates. In Sec. IV phase structure of the model is described
at T ¼ 0 both at � ¼ 0 and � � 0. In particular, it is
established in this section that infinitesimal chemical po-
tential induces the superconductivity phenomenon in the
case of a rather weak attractive interaction in the fermion-
antifermion channel. Finally, in Sec. V the ð�; TÞ-phase
diagrams are presented for some representative values of
coupling constants. We show in this section that at arbitrary
fixed T > 0 superconductivity is induced in the system at
sufficiently large values of �. Some related problems of
our consideration are relegated to three appendixes.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

Our investigation is based on a (2þ 1)-dimensional
GN-type model with massless fermions belonging to a
fundamental multiplet of the auxiliary OðNÞ flavor group.
Its Lagrangian describes the interaction both in the scalar
fermion-antifermion and scalar difermion channels:

L ¼ XN
k¼1

�c kð��i@� þ��0Þc k þG1

N

0
@XN

k¼1

�c kc k

1
A2

þG2

N

0
@XN

k¼1

c T
kCc k

1
A
0
@XN

j¼1

�c jC �c T
j

1
A; (1)

where � is the fermion number chemical potential [see
also the comments after Eq. (3)]. As noted above, all
fermion fields c k (k ¼ 1; . . . ; N) form a fundamental
multiplet of the OðNÞ group. Moreover, each field c k is
a four-component Dirac spinor (the symbol T denotes the
transposition operation). The quantities �� (� ¼ 0, 1, 2)
are matrices in the 4-dimensional spinor space. Moreover,
C � �2 is the charge conjugation matrix. The algebra of
the �� matrices as well as their particular representation
are given in Appendix A. Clearly, the Lagrangian L is
invariant under transformations from the internal auxiliary
OðNÞ group, which is introduced here in order to make it
possible to perform all of the calculations in the framework
of the nonperturbative large-N expansion method.
Physically more interesting is that the model (1) is invari-
ant under the discrete chiral transformation, c k ! �5c k

(the particular realization of the �5 matrix is presented in
Appendix A), as well as with respect to the transformations
from the continuous Uð1Þ fermion number group, c k !
expði�Þc k (k ¼ 1; . . . ; N), responsible for the fermion
number conservation or, equivalently, for the electric
charge conservation law in the system under consideration.

The linearized version of Lagrangian (1) that contains
auxiliary bosonic fields �ðxÞ, �ðxÞ, and ��ðxÞ has the
following form:

L ¼ �N�2

4G1

� N

4G2

���þ XN
k¼1

�
�c kð��i@� þ��0 � �Þc k

���

2
c T

kCc k � �

2
�c kC �c T

k

�
: (2)

Clearly, the Lagrangians (1) and (2) are equivalent, as can
be seen by using the Euler-Lagrange equations of motion
for bosonic fields which take the form

�ðxÞ ¼ �2
G1

N

XN
k¼1

�c kc k;

�ðxÞ ¼ �2
G2

N

XN
k¼1

c T
kCc k;

��ðxÞ ¼ �2
G2

N

XN
k¼1

�c kC �c T
k :

(3)

One can easily see from (3) that the neutral field �ðxÞ is a
real quantity, i.e., ð�ðxÞÞy ¼ �ðxÞ (the superscript symbol
y denotes the Hermitian conjugation), but the (charged)
difermion fields �ðxÞ and ��ðxÞ are mutually Hermitian
conjugated complex quantities, so ð�ðxÞÞy ¼ ��ðxÞ and
vice versa. Clearly, all of the fields (3) are singlets with
respect to the auxiliary OðNÞ group.1 Moreover, with
respect to parity transformation P (see also the comment
in Appendix A),

P: c kðt; x; yÞ ! �5�1c kðt;�x;yÞ; k¼ 1; . . . ;N; (4)

the fields �ðxÞ, �ðxÞ, and ��ðxÞ are even quantities, i.e.,
they are scalars. If the difermion field �ðxÞ has a nonzero
ground state expectation value, i.e., h�ðxÞi � 0, the
Abelian fermion number Uð1Þ symmetry of the model is
spontaneously broken down and the superconducting
phase is realized in the model. However, if h�ðxÞi � 0
then the discrete chiral symmetry of the model is sponta-
neously broken.
Let us now study the phase structure of the four-fermion

model (1) starting from the equivalent semibosonized
Lagrangian (2). In the leading order of the large-N
approximation, the effective action Seffð�;�;��Þ of
the considered model is expressed by means of the path
integral over fermion fields

expðiSeffð�;�;��ÞÞ ¼
Z YN

l¼1

½d �c l�½dc l� exp
�
i
Z

Ld3x

�
;

where

1Note that the �ðxÞ field is a flavor OðNÞ singlet, since the
representations of this group are real.

K. G. KLIMENKO, R.N. ZHOKHOV, AND V. CH. ZHUKOVSKY PHYSICAL REVIEW D 86, 105010 (2012)

105010-2



Seffð�;�;��Þ

¼�
Z
d3x

"
N

4G1

�2ðxÞþ N

4G2

�ðxÞ��ðxÞ
#
þ ~Seff : (5)

The fermion contribution to the effective action, i.e., the

term ~Seff in (5), is given by

expði~SeffÞ ¼
Z YN

l¼1

½d �c l�½dc l�

� exp

�
i
Z XN

k¼1

�
�c kð��i@� þ��0 � �Þc k

� ��

2
c T

kCc k ��

2
�c kC �c T

k

�
d3x

�
: (6)

The ground state expectation values h�ðxÞi, h�ðxÞi, and
h��ðxÞi of the composite bosonic fields are determined by
the saddle point equations,

�Seff

��ðxÞ ¼ 0;
�Seff

��ðxÞ ¼ 0;
�Seff

���ðxÞ ¼ 0: (7)

For simplicity, throughout the paper we suppose that the
above mentioned ground state expectation values do not
depend on spacetime coordinates, i.e.,

h�ðxÞi � M; h�ðxÞi � �; h��ðxÞi � ��; (8)

where M, �, ��, are constant quantities. In fact, they are
coordinates of the global minimum point of the TDP
�ðM;�;��Þ. In the leading order of the large-N expansion
it is defined by the following expression:Z

d3x�ðM;�;��Þ

¼ � 1

N
Sefff�ðxÞ;�ðxÞ;��ðxÞgj�ðxÞ¼M;�ðxÞ¼�;��ðxÞ¼�� ;

which givesZ
d3x�ðM;�;��Þ

¼
Z

d3x

�
M2

4G1

þ���

4G2

�
þ i

N
ln

�Z YN
l¼1

½d �c l�½dc l�

� exp

�
i
Z XN

k¼1

�
�c kDc k ���

2
c T

kCc k

��

2
�c kC �c T

k

�
d3x

��
; (9)

where D ¼ ��i@� þ��0 �M. To proceed, let us first
point out that without loss of generality the quantities �,
�� might be considered as real ones.2 So, in the following
we will suppose that � ¼ �� � �, where � is already a

real quantity. Then, in order to find a convenient expression
for the TDP it is necessary to invoke Appendix B, where
the path integral similar to (9) is evaluated.3 So, taking into
account in (9) the relation (B7) we obtain the following
expression for the zero temperature, T ¼ 0, TDP of the GN
model (1):

�ðM;�Þ ¼ M2

4G1

þ �2

4G2

þ i
Z d3p

ð2�Þ3 ln½ðp2
0 � ðEþ

� Þ2Þðp2
0 � ðE�

� Þ2Þ�;
(10)

where ðE�
� Þ2 ¼ E2 þ�2 þ �2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�2 þ�2E2

p
and

E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ j ~pj2p

. Obviously, the function �ðM;�Þ is in-
variant under each of the transformations M ! �M,
� ! ��, and � ! ��. Hence, without loss of general-
ity, we restrict ourselves to the constraints M � 0, � � 0,
and � � 0 and will investigate the global minimum point
of the TDP (10) just on this region. Using in the expression
(10) a rather general formula,

Z 1

�1
dp0 lnðp0 � AÞ ¼ i�jAj; (11)

where A is a real quantity, it is possible to reduce it to the
following one:

�ðM;�Þ � �unðM;�Þ

¼ M2

4G1

þ �2

4G2

�
Z d2p

ð2�Þ2 ðE
þ
� þ E�

� Þ: (12)

The integral term in (12) is an ultraviolet divergent one,
hence to obtain any information from this expression we
need to renormalize it.

III. THE RENORMALIZATION
PROCEDURE AT T¼0

First of all, let us regularize the zero temperature TDP
(12) by cutting momenta, i.e., we suppose that jp1j<�,
jp2j<� in (12). As a result we have the following regu-
larized expression (which is finite at finite values of �):

�regðM;�Þ

¼ M2

4G1

þ �2

4G2

� 1

�2

Z �

0
dp1

Z �

0
dp2ðEþ

� þE�
� Þ: (13)

Let us use in (13) the following asymptotic expansion:

2Otherwise, phases of the complex values �, �� might be
eliminated by an appropriate transformation of fermion fields in
the path integral (9).

3In Appendix B we consider for simplicity the case N ¼ 1,
however the procedure is easily generalized to the case with
N > 1.
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E þ
� þ E�

� ¼ 2j ~pj þM2 þ�2

j ~pj þOð1=j ~pj3Þ; (14)

where j ~pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

q
. Then, upon integration there term-

by-term, it is possible to find

�regðM;�Þ ¼ M2

2
4 1

4G1

� 2� lnð1þ ffiffiffi
2

p Þ
�2

3
5

þ �2

2
4 1

4G2

� 2� lnð1þ ffiffiffi
2

p Þ
�2

3
5

�
2�3

� ffiffiffi
2

p þ ln
�
1þ ffiffiffi

2
p 	�

3�2
þOð�0Þ; (15)

where Oð�0Þ denotes an expression which is finite in the
limit � ! 1. Secondly, we suppose that the bare coupling
constants G1 and G2 depends on the cutoff parameter � in
such a way that in the limit � ! 1 one obtains finite
expressions in the square brackets of (15). Clearly, to fulfill
this requirement it is sufficient to require that

1

4G1

� 1

4G1ð�Þ ¼
2� lnð1þ ffiffiffi

2
p Þ

�2
þ 1

2�g1
;

1

4G2

� 1

4G2ð�Þ ¼
2� lnð1þ ffiffiffi

2
p Þ

�2
þ 1

2�g2
;

(16)

where g1;2 are finite and �-independent model parameters

with dimensionality of inverse mass. Moreover, since bare
couplings G1 and G2 do not depend on a normalization
point, the same property is also valid for g1;2. Hence, taking
into account in (13) and (15) the relations (16) and ignoring
there an infinite M- and �-independent constant, one
obtains the following renormalized, i.e., finite, expression
for the TDP:

�renðM;�Þ ¼ lim
�!1

8<
:�regðM;�ÞjG1¼G1ð�Þ;G2¼G2ð�Þ

þ 2�3ð ffiffiffi
2

p þ lnð1þ ffiffiffi
2

p ÞÞ
3�2

9=
;: (17)

It should also be mentioned that the TDP (17) is a renor-
malization group invariant quantity.

The fact that it is possible to renormalize the effective
potential of the initial model (1) in the leading order of the
large N expansion is the reflection of a more general
property of (2þ 1)-dimensional theories with four-
fermion interactions. Indeed, it is well known that in the
framework of the naive perturbation theory (over coupling
constants) these models are not renormalizable. However,
as it was proved in Ref. [3], in the framework of a non-
perturbative large N technique these models are renorma-
lizable in each order of 1=N-expansion.

In vacuum, i.e., at � ¼ 0, theOð�0Þ term in (15) can be
calculated explicitly, so we have for the renormalized
effective potential VðM;�Þ the expression4

VðM;�Þ ��renðM;�Þj�¼0

¼ M2

2�g1
þ �2

2�g2
þðMþ�Þ3

6�
þ jM��j3

6�
: (18)

Now, let us obtain an alternative expression for the
renormalized TDP (17) at � � 0. For this purpose one
can rewrite the unrenormalized TDP�unðM;�Þ (12) in the
following way:

�unðM;�Þ

¼ M2

4G1

þ �2

4G2

�
Z d2p

ð2�Þ2 ðE
þ
� j�¼0 þ E�

� j�¼0Þ

�
Z d2p

ð2�Þ2 ðE
þ
� þ E�

� � Eþ
� j�¼0 � E�

� j�¼0Þ; (19)

where

Eþ
� j�¼0 þ E�

� j�¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pj2 þ ðMþ �Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pj2 þ ðM� �Þ2

q
:

Since the leading terms of the asymptotic expansion (14)
do not depend on�, it is clear that the last integral in (19) is
a convergent one. Other terms in (19) form the unrenor-
malized TDP (effective potential) at � ¼ 0 which is
reduced after renormalization procedure to the expression
(18). Hence, after renormalization we obtain from (19) the
following finite expression [evidently, it coincides with
renormalized TDP (17)]:

�renðM;�Þ

¼ VðM;�Þ�
Z d2p

ð2�Þ2
�
Eþ
� þ E�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pj2 þðMþ�Þ2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pj2 þðM��Þ2

q �
; (20)

where VðM;�Þ is presented in (18). The integral term in
(20) can be explicitly calculated. As a result, we have

12��renðM;�Þ

¼ 6M2

g1
þ 6�2

g2
þ 2ðMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

q
Þ3

þ 2jM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
j3 � 3tþðMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
Þ

þ 3t�jM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
j

� 3ð�2 �M2Þ�2

�
ln









tþ þ�ðMþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p Þ
t� þ�jM� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p j









;
(21)

4Vacuum TDP is usually called effective potential.
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where t� ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p ��2. It is not so evident, but at
� ¼ 0 the expression (21) for �renðM;�Þ coincides with
VðM;�Þ (18).

IV. PHASE STRUCTURE OF THE MODEL AT T¼0

As was mentioned above, the coordinates of the global
minimum point ðM0;�0Þ of the TDP�renðM;�Þ define the
ground state expectation values of auxiliary fields �ðxÞ and
�ðxÞ. Namely, M0 ¼ h�ðxÞi and �0 ¼ h�ðxÞi. The quan-
tities M0 and �0 are usually called order parameters, or
gaps, because they are responsible for the phase structure
of the model or, in other words, for the properties of the
model ground state [see also the comment after (4)].
Moreover, the gap M0 is equal to the dynamical mass of
one-fermionic excitations of the ground state. As a rule,
gaps depend on model parameters as well as on various
external factors. In our consideration the gaps M0 and �0

are certain functions of the free model parameters g1 and
g2 and such external factors as chemical potential � and
temperature T.

A. The case �¼0

First of all, let us discuss the phase structure of the model
(1) in the simplest case when � ¼ 0 and T ¼ 0. The
corresponding TDP is given in (18) by the function
VðM;�Þ. Since the global minimum of this function was
already investigated in Ref. [28], although in the frame-
work of another (2þ 1)-dimensional GN model, we
present at once the phase structure of the initial model
(1) at � ¼ 0 (see Fig. 1).

In Fig. 1 the phase portrait of the model is depicted
depending on the values of the free model parameters g1
and g2. There the plane ðg1; g2Þ is divided into several
areas. In each area one of the phases I, II, or III is imple-
mented. In the phase I, i.e., at g1 > 0 and g2 > 0, the global
minimum of the effective potential VðM;�Þ is arranged at
the origin. So in this case we have M0 ¼ h�ðxÞi ¼ 0 and
�0 ¼ h�ðxÞi ¼ 0. As a result, in the phase I both discrete
chiral and continuous electromagnetic Uð1Þ symmetries
remain intact and fermions are massless. Due to this reason
the phase I is called symmetric. In the phase II, which is
allowed only for g1 < 0, at the global minimum point
ðM0;�0Þ the relations M0 ¼ �1=g1 and �0 ¼ 0 are
valid. So in this phase chiral symmetry is spontaneously
broken down and fermions acquire dynamically the mass
M0. Finally, in the superconducting phase III, where
g2 < 0, we have the following values for the gaps:
M0 ¼ 0 and �0 ¼ �1=g2.
Note also that if g1 ¼ g2 � g and, in addition, g < 0

(it is line L in Fig. 1), then the effective potential (18) has
two equivalent global minima. The first one, the point
(M0 ¼ �1=g, �0 ¼ 0), corresponds to a phase with chiral
symmetry breaking. The second one, i.e., the point
(M0 ¼ 0, �0 ¼ �1=g), corresponds to superconductivity.
Clearly, if the cutoff parameter� is fixed, then the phase

structure of the model can be described in terms of bare
coupling constants G1, G2 instead of finite quantities g1,
g2. Indeed, let us first introduce a critical value of the

couplings, Gc ¼ �2

8� lnð1þ ffiffi
2

p Þ . Then, as it follows from

Fig. 1 and (16), at G1 <Gc and G2 <Gc the symmetric
phase I of the model is located. If G1 >Gc, G2 <Gc

(G1 <Gc, G2 >Gc), then the chiral symmetry broken
phase II (the superconducting phase III) is realized.
Finally, let us suppose that both G1 >Gc and G2 >Gc.
In this case atG1 >G2 (G1 <G2) we have again the chiral
symmetry broken phase II (the superconducting phase III).

B. Consideration of the chemical potential

In this section we study the influence of the chemical
potential �> 0 on the phase structure of the model (1)
(temperature is still vanishing). Numerical and analytical
investigations of the TDP (21) show that its minimum
points are of the form (M � 0, � ¼ 0), (M ¼ 0, � � 0),
or (M ¼ 0, � ¼ 0) only. So to study the properties of the
global minimum point of the function (21) it is enough to
consider its reductions on the M- and �-axes, where the
TDP (21) becomes

12��renðM;�Þj�¼0

� 12�!1ðMÞ

¼ 6M2

g1
þ 2ðMþ�Þ3 þ 2jM��j3 � 3�ðMþ�Þ2

þ 3�ðM��ÞjM��j; (22)

FIG. 1. The ðg1; g2Þ-phase portrait of the model at � ¼ 0. The
labels I–III denote the symmetric, the chiral symmetry breaking,
and the superconducting phases, respectively. In the phase II
h�i ¼ �1=g1. In the phase III h�i ¼ �1=g2. On the line
L � fðg1; g2Þ: g1 ¼ g2g, where g1;2 < 0, the TDP minima cor-

responding to the phase II and III are equivalent.
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12��renðM;�ÞjM¼0

� 12�!2ð�Þ

¼ 6�2

g2
þ 4ð�2 þ �2Þ3=2 � 6�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q

� 3��2 ln

�ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p Þ2
�2

�
; (23)

respectively. Comparing the minima of the functions
(22) and (23), it is possible to find the global minimum
point of the whole TDP (21) and its dependence on the
model parameters �, g1, and g2, i.e., to determine the
phase structure of the model. In addition, in the present
section we will study the behavior of a particle density n in
different phases when � varies,

n ¼ �@�renðM;�Þ
@�

jM¼M0;�¼�0
: (24)

Since the global minimum point of the TDP (21) coincides
with the global minimum point either of the function
!1ðMÞ (22) or the function !2ð�Þ (23), it is clear that in
the chirally broken phase �0 ¼ 0 and the gap M0 does not
depend on the parameter g2. Correspondingly, in the super-
conducting phase we haveM0 ¼ 0 and the gap�0 does not
depend on the parameter g1. So, one can use the following
expressions for the particle density in the chiral symmetry
broken II and superconducting III phases:

n









phaseII
¼ �@!1ðMÞ

@�









M¼M0

¼ 1

2�
ð�2 �M2

0Þ�ð��M0Þ; (25)

n









phaseIII
¼ �@!2ð�Þ

@�









�¼�0

¼ 1

2�

2
4� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ�2
0

q
þ�2

0 ln
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

0

q
�0

3
5;
(26)

where �ðxÞ is the Heaviside step function.
The case g1 < 0.—First of all, let us suppose that g1 is

fixed and negative, i.e., g1 < 0. Then it is easy to show that
for arbitrary value of g2 there exists a critical chemical
potential �critðg2Þ (see Fig. 2)5 such that at �<�critðg2Þ
the system is in the chiral symmetry breaking phase II (if
�critðg2Þ> 0), and it is in the superconducting phase III at
�>�critðg2Þ. In other words, if �<�critðg2Þ � 0, then

the global minimum of the TDP (21) lies at the point
(M0 ¼ �1=g1, �0 ¼ 0) which does not depend on � in
the interval 0<�<�critðg2Þ. However, at � ¼ �critðg2Þ
it jumps to the point (M0 ¼ 0, �0 ¼ �critðg2Þ), where
�critðg2Þ vs g2 is depicted in Fig. 3. Hence, at the critical
point� ¼ �critðg2Þ a first order phase transition occurs and
a superconducting gap �0 ¼ �critðg2Þ is dynamically gen-
erated. It turns out that�0 vs� is an increasing function in
the interval �>�critðg2Þ. In particular, the behavior �0 vs
� is presented in Fig. 5 (at g2 ¼ 0:5jg1j), Fig. 6 (at g2 ¼
�1:5jg1j), and Fig. 7 (at g2 ¼ �0:5jg1j) as the curve 1.
Moreover, it is clear from Fig. 2 that at �<�critðg2Þ,

i.e., in the phase II, the particle density is equal to zero. To

FIG. 2. The ð�; g2Þ-phase portrait of the model and critical
chemical potential �critðg2Þ vs g2 at arbitrary fixed g1 < 0. At
each point � ¼ �critðg2Þ � 0 there is a first order phase tran-
sition from the chiral symmetry breaking phase II to the super-
conducting phase III.

FIG. 3. Superconducting gap �0 ¼ �critðg2Þ vs g2 which is
generated at the critical point, i.e., at � ¼ �critðg2Þ, at arbitrary
fixed g1 < 0.

5All of the Figs. 2–10 are drawn in terms of dimensionless
quantities which are obtained after multiplication of appropriate
powers of jg1j with corresponding dimensional quantities. For
example, there instead of �, �0, g2 we use their dimensionless
analogies jg1j�, jg1j�0, g2=jg1j. Instead of particle density n the
dimensionless quantity g21n is depicted there, etc.
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explain this circumstance, recall that in the phase II the gap
M0 is equal to 1=jg1j. So, for all g2 values the relation
�critðg2Þ<M0 is valid (see Fig. 2). As a result, throughout
the phase II, where �<�critðg2Þ, we have �<M0 and
hence, as it follows from the relation (25), the zero particle
density, n ¼ 0. However, when� reaches its critical value,
� ¼ �critðg2Þ, the nonzero particle density ncritðg2Þ is gen-
erated dynamically in the system (see Fig. 4). Further
growth of the chemical potential is accompanied by
increase of the particle density n vs �. [Evidently, in this
case the particle density must be calculated with the help of
the expression (26).] For example, in Figs. 5–7 at the same
representative relations between g1 and g2 the particle

density n vs � is depicted as a monotonically increasing
curve 2.
Finally recall that at � ¼ 0 the two phases, II and III,

have equivalent minima of the TDP only at negative values
of g1 ¼ g2 (it is line L in Fig. 1). It turns out that for
arbitrary fixed g1 < 0 and at growing chemical potential,
this property of the TDP is also allowed but in a much more
extensive g2 region. Indeed, as our analysis shows in this
case, if g2 > 0 or g2 < g1 then at� ¼ �critðg2Þ (see Fig. 2)
the TDP has two equivalent minima, corresponding to
these phases. As a result, for these values of g1 and g2
there is a coexistence of chirally broken and superconduct-
ing phases at� ¼ �critðg2Þ. In this case, when viewed from

0

0.2

0.4

0.6

0.8

0.5 1 1.5 2

FIG. 5. Superconducting gap �0 and particle density n vs � at
arbitrary fixed g1 < 0 and g2 ¼ 0:5jg1j. Curves 1 and 2 are the
plots of the dimensionless quantities jg1j�0 and jg1j2n, corre-
spondingly. Here jg1j�c ¼ jg1j�critðg2 ¼ 0:5jg1jÞ � 0:995 and
jg1j�c ¼ jg1j�critðg2 ¼ 0:5jg1jÞ � 0:098.
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FIG. 4. Particle density n ¼ ncritðg2Þ vs g2 which is generated
at the critical point, i.e., at � ¼ �critðg2Þ, at arbitrary fixed
g1 < 0. At �<�critðg2Þ the particle density n is equal to zero.
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FIG. 6. Superconducting gap �0 and particle density n vs � at
arbitrary fixed g1 < 0 and g2 ¼ �1:5jg1j. Curves 1 and 2 are the
plots of the dimensionless quantities jg1j�0 and jg1j2n, respec-
tively. Here jg1j�c ¼ jg1j�critðg2 ¼ �1:5jg1jÞ � 0:545 and
jg1j�c ¼ jg1j�critðg2 ¼ �1:5jg1jÞ � 0:838.

0
0.5 1 1.5 2

0.5

1

1.5

2

2.5

FIG. 7. Superconducting gap �0 and particle density n vs � at
arbitrary fixed g1 (both at g1 < 0 and g1 > 0) as well as at
g2 ¼ �0:5jg1j. Curves 1 and 2 are the plots of the dimensionless
quantities jg1j�0 and 6jg1j2n, respectively.
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the side, we have the following picture of phase transitions
in the system. At rather small values of � the ground state
of the system is an empty space (particle density is zero). If
fermions are created in this state, they have a mass equal to
M0 ¼ �1=g1, i.e., the ground state corresponds to a chir-
ally broken phase II. Then, if � reaches the critical value
� ¼ �critðg2Þ, bubbles of a new phase III appear in the
empty space. Inside each bubble the particle density n is
nonzero and equal to ncritðg2Þ (see Fig. 4).

The case g1 > 0.—Now the model phase structure con-
sideration for a positive g1 values is in order. Recall, in this
case we have a rather weak attractive interaction in the
chiral channel, i.e., G1 <Gc. Evidently, if in addition
g2 < 0, then in this case the superconducting phase is
realized for arbitrary values of � � 0. The behavior of

the gap �0 and particle density n vs � in this branch of the
superconducting phase is given in Fig. 7 in the particular
case g2 ¼ �0:5g1 for g1 > 0. Moreover, as it is clear from
Fig. 7, the same behavior for �0 and n vs � remains valid
for the case g2 ¼ �0:5jg1j and negative values of g1. To
explain this fact, it is necessary to take into account the
remark made after Eq. (24) that the superconducting gap
does not depend on the coupling g1 but only on the g2 one.
So, it is no wonder that the plots of �0 and n are not
changed when the parameter g1 changes the sign.
Recall, if both g1 > 0 and g2 > 0, then we have at

� ¼ 0 the phase I without any symmetry breaking, where
the gaps �0 and M0 vanishes (see Fig. 1). However, our
analysis shows that at arbitrary small nonzero � the global
minimum point of the TDP (21) moves from the point
(M0 ¼ 0, �0 ¼ 0) to the following one (M0 ¼ 0,
�0 � 0). Hence, at positive values of g1 and g2 a continu-
ous second order phase transition occurs from symmetric
phase I to superconducting one III when chemical potential
acquires an arbitrary small nonzero value. The typical
behavior of the gap �0 and particle density n vs � in this
superconductivity region is depicted in Fig. 8. Comparing
Figs. 7 and 8, we see that at the same value of� the gap�0

and particle density n are much greater in the case g1 > 0,
g2 < 0, than in the case g1 > 0, g2 > 0. To support this
statement we draw in Figs. 9 and 10 the plots of the gap �0

and particle density n vs g2 in two different regions g2 < 0
and g2 > 0, respectively, at the particular value of the
chemical potential, � ¼ 0:5=g1.
We see that at g1 > 0, i.e., at G1 <Gc, the chiral sym-

metry breaking is absent but the Cooper pairing phase
occurs at any �> 0. To explain this different behavior,
one can use the following very naive physical arguments.
Since at �> 0 we have a nonzero particle density (see,
e.g., in Fig. 8), there is a Fermi sea of particles with
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FIG. 8. Superconducting gap �0 and particle density n vs � at
arbitrary fixed g1 > 0 as well as at g2 ¼ 0:5g1. Curves 1 and 2
are the plots of the dimensionless quantities jg1j�0 and jg1j2n,
respectively.
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FIG. 10. Superconducting gap �0 and particle density n vs
g2 > 0 at arbitrary fixed g1 > 0 and � ¼ 0:5=g1. Curves 1 and 2
are the plots of the dimensionless quantities g1�0 and g21n,
respectively.
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FIG. 9. Superconducting gap �0 and particle density n vs
g2 < 0 at arbitrary fixed g1 > 0 and � ¼ 0:5=g1. Curves 1 and
2 are the plots of the dimensionless quantities g1�0 and g21n,
respectively.
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energies less or equal to � (Fermi surface). Evidently, in
this case there is no energy cost for creating a pair of
particles with opposite momenta just over the Fermi sur-
face. Then, due to an arbitrary weak attraction between
these particles (G2 > 0), the Cooper pair is formed and
Uð1Þ symmetry is spontaneously broken, as a result of
Bose-Einstein condensation of Cooper pairs. Note, since
in the energy spectrum of fermions the gap � � 0 appears
(see in Fig. 8), rather small external forces are not able
to destroy the superconducting condensate and it is a
stable one.

Concerning the chiral symmetry breaking in this case, it
is clear that a particle and a hole with opposite momenta
can also be created without any energy cost in the system.
Moreover, there is also an attraction between a particle and
a hole. However, since the nonzero gapM does not appear
in the energy spectrum at sufficiently small G1 <Gc, the
particle-hole pairing in this case is a rather weakly bounded
resonance, which unlike a stable pair, could be easily
destroyed by an arbitrary small external influence. So, no
stable Bose-Einstein condensate of these pairs appears and
chiral symmetry remains intact. (For a more detailed dis-
cussion on possible types of pairing in dense (quark)
fermionic matter, see Ref. [29]).

In summary, we can say that at T ¼ 0 chemical potential
induces superconductivity in the model for arbitrary
relations between coupling constants g1;2 (or equiva-

lently G1;2).

V. FINITE TEMPERATURE

Now let us study the influence of both temperature T and
chemical potential� on the phase structure of the model. It
is well known (see, e.g., in Ref. [30]) that in d space
dimensions (in our case, evidently, d ¼ 2) the transition
probability from one degenerated minimum of the TDP to
another is proportional to expð�N	Ld�2Þ, where L is the
linear size of the system and 	 is the inverse temperature,
	 ¼ 1=T. It follows from this expression that at d ¼ 2 the
transition probability is zero even at finite N if T ¼ 0. This
leads to the fact that a continuous symmetry can be sponta-
neously broken in any planar systems at T ¼ 0. (Hence,
our consideration of superconducting phase transitions
performed at T ¼ 0 in the previous section is valid for
arbitrary values of N). However, if T � 0, then transition
probability in the above expression does not vanish at finite
N. This circumstance ensures the vanishing of the order
parameter and, as a result, might lead to a prohibition for
spontaneous symmetry breaking in d ¼ 2 spatial dimen-
sions at finite N and T � 0. However, if N ! 1 the
transition probability vanishes and the spontaneous sym-
metry breaking is allowed. Just this assumption, i.e., the
same as in Refs. [25,26], is used in the following consid-
eration, where we study the temperature dependent super-
conducting phase transitions in the leading order of the
large-N expansion technique.

In this case, in order to get the corresponding (unrenor-
malized) thermodynamic potential �TðM;�Þ one can
simply start from the expression for the TDP at zero
temperature (10) and perform the following standard
replacements:

Z 1

�1
dp0

2�
ð	 	 	Þ ! iT

X1
n¼�1

ð	 	 	Þ;

p0 ! p0n � i!n � i�Tð2nþ 1Þ; n ¼ 0;�1;�2; . . . ;

(27)

i.e., the p0 integration should be replaced by the summa-
tion over Matsubara frequencies !n. Summing over
Matsubara frequencies in the obtained expression (the
corresponding technique is presented, e.g., in Ref. [31]),
one can find for the TDP

�TðM;�Þ¼ M2

4G1

þ �2

4G2

�
Z 1

�1
d2p

ð2�Þ2 ðE
þ
� þE�

� Þ

�2T
Z 1

�1
d2p

ð2�Þ2 lnð½1þe�	Eþ
� �½1þe�	E�

� �Þ;
(28)

where 	 ¼ 1=T and E�
� are given in (10). Clearly, only the

first integral in this expression (which is the same as in the
zero temperature case) is responsible for ultraviolet diver-
gency of the whole TDP (28). So, regularizing the TDP
(28) in the way as it was done in (13) for zero temperature
TDP and then replacing G1;2 ! G1;2ð�Þ [see Eq. (16)], we
can obtain in the limit � ! 1 a finite expression denoted
as �ren

T ðM;�Þ,
�ren

T ðM;�Þ¼�renðM;�Þ

�2T
Z 1

�1
d2p

ð2�Þ2 lnð½1þe�	Eþ
� �½1þe�	E�

� �Þ;
(29)

where �renðM;�Þ is the zero temperature TDP (21).
Numerical investigations show that all possible local min-
ima of the TDP �ren

T ðM;�Þ are located in the lines M ¼ 0
or � ¼ 0. So it is sufficient to deal with corresponding
restrictions of the TDP on these lines, i.e., with the follow-
ing functions:

F1ðMÞ � �ren
T ðM;�Þj�¼0

¼ !1ðMÞ � 2T
Z 1

�1
d2p

ð2�Þ2 lnð½1þ e�	ðEþ�Þ�

� ½1þ e�	jE��j�Þ

¼ M2

2�g1
þM3

3�
� 2T

Z 1

�1
d2p

ð2�Þ2 lnð½1þ e�	ðEþ�Þ�

� ½1þ e�	ðE��Þ�Þ; (30)
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F2ð�Þ � �ren
T ðM;�ÞjM¼0

¼ !2ð�Þ � 2T
Z 1

�1
d2p

ð2�Þ2
� lnð½1þ e�	Eþ

� �½1þ e�	E�
� �Þ; (31)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~pj2 þM2
p

, ðEþ
� Þ2 ¼ ðj ~pj ��Þ2 þ �2,

and the functions !1ðMÞ, !2ð�Þ are presented in
(22) and (23), respectively. The gaps M0 and �0 are the
solutions of the following stationary (gap) equations:

@F1ðMÞ
@M

� M

�
f1ðMÞ ¼ 0;

@F2ð�Þ
@�

� �

�
f2ð�Þ ¼ 0;

(32)

where

f1ðMÞ ¼ 1

g1
þMþ T lnf½1þ e�	ðMþ�Þ�½1þ e�	ðM��Þ�g;

(33)

f2ð�Þ ¼ 1

g2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
þ 2T ln

�
1þ e�	

ffiffiffiffiffiffiffiffiffiffiffiffi
�2þ�2

p 	

��
Z �

0
tanh

0
@	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ�2
p

2

1
A dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ �2
p ; (34)

respectively (for details, see Appendix C). On the basis of
these gap equations we will study the phase structure of the
model at T > 0.

The case g1 > 0.—First of all let us consider the phase
portrait of the model at g1 > 0. It straightforwardly follows
from (32) and (33) that the gapM0 is always zero at g1 > 0
(it is a nonzero quantity only at g1 < 0). However, the gap
�0 is positive both at g2 < 0 and g2 > 0 if temperature is
sufficiently small, i.e., when f2ð0Þ< 0. So, at g1 > 0 and
for arbitrary values of � the superconducting phase III
is arranged at sufficiently small values of temperature
T < Tcð�Þ. At T > Tcð�Þ the gap equations (32) supply
the �0 ¼ 0 and M0 ¼ 0 gap values, i.e., the symmetric
phase. The second order phase transition temperature
Tcð�Þ is the solution of the equation f2ð0Þ ¼ 0,

f2ð0Þ� 1

g2
þ�þ2T lnð1þe�	�Þ��

Z �

0
tanh

�
	q

2

�
dq

q
¼0:

(35)

Hence, in the ð�; TÞ plane the curve T ¼ Tcð�Þ is the
boundary between symmetric and superconducting
phases. A numerical investigation of Eq. (35) produces at
g2 ¼ �0:5g1 the phase portraits of the model presented in
Figs. 11 and 12.

If g2 < 0, then it follows from (35) that Tcð0Þ ¼
�1=ð2g2 ln2Þ. Moreover, in this case the critical tempera-
ture can be given as a series over the small parameter �,

Tcð�Þ ¼ Tcð0Þ ��2g2=16þ oð�2g2Þ: (36)

Comparing this expansion at g2 ¼ �0:5g1 with Tcð�Þ of
Fig. 11, we see that (36) supplies a rather good approxi-
mation for the critical temperature only in the interval
0<�g1 < 0:2.
Now let us try to present some analytical approximation

for the Tcð�Þ at g2 > 0 (g1 is still fixed and positive). For
this purpose note first of all that for all points of the critical
curve T ¼ Tcð�Þ of Fig. 12 the relation �=T � �	>>1
is valid. Then, it is convenient to present Eq. (35) in the
following equivalent form:

1

2Tg2
þ�	

2
þ lnð1þe�	�Þ

��	

2

�
C1þ

Z �	=2

1

dz

z
þC2�

Z 1

�	=2
½tanhz�1�dz

z

�
¼0;

(37)

where
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FIG. 12. ð�; TÞ-phase diagram of the model at arbitrary fixed
g1 > 0 and at g2 ¼ 0:5g1.

0 0.5 1 1.5 2

1.4

1.5

1.6

1.7

1.8

FIG. 11. ð�; TÞ-phase diagram of the model at g2 ¼ �0:5jg1j
and arbitrary fixed g1 both at g1 < 0 and g1 > 0.
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C1 ¼
Z 1

0
tanhz

dz

z
� 0:910;

C2 ¼
Z 1

1
½tanhz� 1�dz

z
� �0:091:

(38)

The third term in (37) as well as the last integral in the
braces of (37) can be neglected in comparison with other
terms. The obtained equation can be easily solved with
respect to T. As a result we have

Tcð�Þ � �

2
exp½C1 þ C2 � 1� 1=ð�g2Þ�: (39)

Note that at g2 ¼ 0:5g1 the plot of the expression (39)
coincides with great accuracy with the critical temperature
of Fig. 12 in the whole interval 0<�g1 < 2.

The case g1 < 0.—In this case we present three
ð�; TÞ-phase portraits of the model for qualitatively dis-
tinct relations between g1 and g2. The first one for g2 ¼
�0:5jg1j (which is in Fig. 11) was already described above
because it is the same as in the case g1 > 0, g2 ¼ �0:5g1.
The other two phase portraits are represented in Figs. 13
and 14 for g2 ¼ 0:5jg1j and g2 ¼ �1:5jg1j, respectively.
There the points ð�; TÞ of the boundary between the sym-
metric and chiral symmetry breaking (or superconducting)
phases are given implicitly by the equation f1ð0Þ ¼ 0 (or
f2ð0Þ ¼ 0), where the functions f1ðMÞ and f2ð�Þ are
defined in (33) and (34), respectively. On these boundaries,
the second order phase transitions occur. In contrast, the
boundary between chiral symmetry breaking and super-
conducting phases is the curve of the first order phase

transitions. So at the points ð�; TÞ of this boundary the
two phases may coexist.
Analyzing the cited above ð�; TÞ-phase diagrams of

Figs. 11–14, we see that for each arbitrary fixed value T
of the temperature (and for all relations between coupling
constants) there exist a definite value �T of the chemical
potential such that for all �>�T the superconducting
phase is realized in the system. This property is inherent
only to a (2þ 1)-dimensional model (1) and it is absent in
the two-dimensional analogue [25].

VI. SUMMARYAND CONCLUSIONS

In this paper we study the competition between chiral
and superconducting condensations in the framework of
the (2þ 1)-dimensional GN-type model (1) which is a
direct generalization of the two-dimensional analogue by
Chodos et al. [25]. So, the initial four-fermion model (1)
describes interactions both in the fermion-antifermion
(or chiral) and superconducting difermion (or Cooper pair-
ing) channels with couplings G1 and G2, respectively.
Moreover, it is chirally and Uð1Þ invariant one (the last
group corresponds to conservation of the fermion number
or electric charge of the system). To avoid the ban on the
spontaneous breaking of continuous symmetry in (2þ 1)-
dimensional field theories at T > 0, we consider, as it was
done in Ref. [25], the phase structure of our model in the
leading order of the large-N technique, i.e., in the limit
N ! 1, where N is a number of fermion fields.
The case T ¼ 0, � ¼ 0.—First of all we have investi-

gated the thermodynamic potential of the model at T ¼ 0,
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FIG. 13. ð�; TÞ-phase diagram of the model at g2 ¼ 0:5jg1j
and arbitrary fixed g1 < 0. All of the curves are the lines of
second order phase transitions except the boundary between the
superconducting and chiral symmetry breaking phases, where a
first order phase transition is realized. The coordinates of the
tricritical point A are the following ones: jg1j�A � 0:999 and
jg1jTA � 0:056. Moreover, jg1j�c � 0:995 and jg1jTc ¼
1=ð2 ln2Þ � 0:721.
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FIG. 14. ð�; TÞ-phase diagram of the model at g2 ¼ �1:5jg1j
and arbitrary fixed g1 < 0. All of the curves are the lines of
second order phase transitions except the boundary between
the superconducting and chiral symmetry breaking phases,
where a first order phase transition is realized. The coordinates
of the tricritical point A are the following ones: jg1j�A � 0:645
and jg1jTA � 0:602. Moreover, jg1j�c � 0:545 and jg1jTc ¼
1=ð2 ln2Þ � 0:721.
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� ¼ 0. In this case the phase portrait is presented in Fig. 1
in terms of the renormalization group invariant finite
coupling constants g1 and g2. Each point ðg1; g2Þ of this
diagram corresponds to a definite phase. For example, at
g1;2 > 0, i.e., at sufficiently small values of the bare cou-

pling constants G1;2 (see the comment at the end of

Sec. IVA), neither chiral nor Uð1Þ symmetries are violated
and the system is in the symmetric phase, etc.

The case T ¼ 0, � � 0.—In this case we select two
qualitatively different situations, g1 < 0 and g1 > 0. If
g1 < 0 and fixed, then in Fig. 2 we draw the
ðg2; �Þ-phase diagram of the model. It means that at
g2 > 0 or at g2 < g1 the phase II with zero particle density
is realized at sufficiently low values of �. In this case the
ground state of the system is an empty space. Then at some
critical value � ¼ �critðg2Þ bubbles of the new phase III
with particle density ncritðg2Þ (see Fig. 4) can appear in the
space, and for all �>�critðg2Þ the whole space is filled
with superconducting phase, in which particle density n is
not zero, n > ncritðg2Þ. If g1 > 0, then the system is in the
superconducting phase even at arbitrary small values of �.
Hence, at T ¼ 0 and at growing chemical potential, the
system is transformed into a superconducting state.

The case T > 0, � � 0.—Phase portraits of the model
are presented in this case in Figs. 11–14. It is clear from the
figures that at fixed � and increasing temperature the
symmetric phase is restored. However, at arbitrary fixed
T, growth of the chemical potential leads to appearing of
superconductivity in the system at arbitrary relations
between coupling constants g1 and g2.

The fact that chemical potential induces superconduc-
tivity phenomenon is the main result of our paper. Note
that in general this property of the (2þ 1)-dimensional
GN-type model (1) is not valid in the case of the two-
dimensional model [25].

We hope that our investigations can shed new light on
the superconducting phenomena in condensed matter sys-
tems with planar structures.

APPENDIX A: ALGEBRA OF THE �-MATRICES
IN THE CASE OF SO(2,1) GROUP

The two-dimensional irreducible representation of the
3-dimensional Lorentz group SO(2,1) is realized by the
following 2� 2 ~�-matrices:

~�0 ¼ �3 ¼
1 0

0 �1

 !
;

~�1 ¼ i�1 ¼
0 i

i 0

 !
;

~�2 ¼ i�2 ¼
0 1

�1 0

 !
;

(A1)

acting on two-component Dirac spinors.

They have the properties

Trð~�� ~��Þ ¼ 2g��;

½~��; ~��� ¼ �2i"��� ~��;

~�� ~�� ¼ �i"��� ~�� þ g��;

(A2)

where g�� ¼ g�� ¼ diagð1;�1;�1Þ, ~�� ¼ g�	 ~�
	,

"012 ¼ 1. There is also the relation

Trð~�� ~�� ~��Þ ¼ �2i"���: (A3)

Note that the definition of chiral symmetry is slightly
unusual in three dimensions (spin is here a pseudoscalar
rather than a (axial) vector). The formal reason is simply
that there exists no other 2� 2matrix anticommuting with
the Dirac matrices ~�� which would allow the introduction
of a �5 matrix in the irreducible representation. The impor-
tant concept of chiral symmetries and their breakdown by
mass terms can, nevertheless, be realized also in the frame-
work of (2þ 1)-dimensional quantum field theories by
considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinors c have the
following form:

c ðxÞ ¼
� ~c 1ðxÞ
~c 2ðxÞ

�
; (A4)

with ~c 1, ~c 2 being two-component spinors. In the reduc-
ible four-dimensional spinor representation one deals with
(4� 4) � matrices �� ¼ diagð~��;�~��Þ, where ~�� are
given in (A1). One can easily show that (�, � ¼ 0, 1, 2)

Trð����Þ¼4g��; ����¼���þg��;

���¼1

2
½��;���¼diagð�i"��� ~��;�i"��� ~��Þ:

(A5)

In addition to the Dirac matrices �� (� ¼ 0, 1, 2) there
exist two other matrices �3, �5 which anticommute with all
�� (� ¼ 0, 1, 2) and with themselves,

�3 ¼ 0; I

I; 0

 !
; �5 ¼ �0�1�2�3 ¼ i

0; �I

I; 0

 !
; (A6)

with I being the unit 2� 2 matrix. Finally note that in

terms of two-component spinors ~c 1, ~c 2 the parity trans-
formation P, defined in the space of four-component spin-
ors by the relation (4), looks like

P: ~c 1ðt; x; yÞ ! i~�1 ~c 2ðt;�x; yÞ;
~c 2ðt; x; yÞ ! i~�1 ~c 1ðt;�x; yÞ:

(A7)

Such a definition of the space parity transformation is
commonly used in (2þ 1)-dimensional theories with
four-component representation for Dirac spinors (see,
e.g., in Ref. [32]).
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APPENDIX B: THE PATH INTEGRATION OVER
ANTICOMMUTATING FIELDS

Let us calculate the following path integral over
anticommutating four-component Dirac spinor fields
qðxÞ, �qðxÞ:

I ¼
Z
½d �q�½dq� exp

�
i
Z

d3x

�
�qDq� �

2
ðqTCqÞ

� �

2
ð �qC �qTÞ

��
; (B1)

where we use the notations of Sec. II and, in particular, the
operatorD is given in (9). Note in addition, the integral I is
equal to the argument of the ln function in Eq. (9) in the
particular case N ¼ 1. Recall that there are general
Gaussian path integrals [33],Z

½dq� exp
�
i
Z

d3x

�
� 1

2
qTAqþ 
Tq

��

¼ ðdetðAÞÞ1=2 exp
�
� i

2

Z
d3x½
TA�1
�

�
; (B2)

Z
½d �q� exp

�
i
Z

d3x

�
� 1

2
�qA �qT þ �
 �qT

��

¼ ðdetðAÞÞ1=2 exp
�
� i

2

Z
d3x½ �
A�1 �
T�

�
; (B3)

where A is an antisymmetric operator in coordinate and
spinor spaces, and 
ðxÞ, �
ðxÞ are anticommutating spinor
sources which also anticommutate with q and �q. Firstly, let
us integrate in (B1) over q fields with the help of the
relation (B2) supposing there that A ¼ �C, �qD ¼ 
T ,
i.e., 
 ¼ DT �qT . Then,

I ¼ ðdetð�CÞÞ1=2
Z
½d �q� exp

�
� i

2

Z
d3x �q

� ½�CþDð�CÞ�1DT� �qT
�
: (B4)

Secondly, the integration over �q-fields in (B4) can be easily
performed with the help of Eq. (B3), where one should put
A ¼ �CþDð�CÞ�1DT and �
 ¼ 0. As a result, we have

I ¼ ðdetð�CÞÞ1=2ðdet½�CþDð�CÞ�1DT�Þ1=2
¼ ðdet½�2C2 þDC�1DTC�Þ1=2: (B5)

Taking into account the relations ð@�ÞT ¼ �@� and
C�1ð��ÞTC ¼ ��� (� ¼ 0, 1, 2), we obtain from (B5)

I ¼ ðdet½��2 þDþD��Þ1=2 � ðdetBÞ1=2; (B6)

where D� ¼ ��i@� �M���0. Using the general rela-
tion detB ¼ expðTr lnBÞ, we get from (B6)

lnI¼1

2
TrlnðBÞ¼X2

i¼1

Z d3p

ð2�Þ3 lnð�iðpÞÞ
Z
d3x: (B7)

(A more detailed consideration of operator traces is
presented in Appendix A of the paper [34].) In this formula
symbol Tr means the trace of an operator both in
the coordinate and internal spaces. Moreover, �iðpÞ
(i ¼ 1, 2) in (B7) are two twice degenerated eigenvalues
of the 4� 4 Fourier transformation matrix �BðpÞ of the
operator B, i.e.,

�1;2ðpÞ ¼M2 �p2
1 �p2

2 ��2 þp2
0 ��2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M2p2

2 �M2p2
1 þM2p2

0 þ�2p2
2 þ�2p2

1

q
:

(B8)

APPENDIX C: GAP EQUATIONS

The equation for the gap M0, i.e., the first one of
equations (32), is obtained, e.g., in Ref. [4], where a phase
structure of the initial model (1) was considered in the
particular case of G2 ¼ 0.
To obtain a gap equation for the superconducting gap

�0, @F2ð�Þ=@� ¼ 0, let us first transform the original
expression (31) for the TDP F2ð�Þ using polar coordinates
in the integral in (31). Integrating in the obtained expres-
sion over a polar angle, we have

F2ð�Þ ¼ !2ð�Þ � T

�

Z 1

0
pdp lnð1þ e�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ�Þ2þ�2

p
Þ

� T

�

Z 1

0
pdp lnð1þ e�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp��Þ2þ�2

p
Þ: (C1)

It is very convenient to change integration variables in (C1)
(we use q ¼ pþ� for the first integral and q ¼ p�� for
the second one) and, after some manipulations, to get an
equivalent expression,

F2ð�Þ ¼ !2ð�Þ � 2T

�

Z 1

�
qdq lnð1þ e�	

ffiffiffiffiffiffiffiffiffiffiffi
q2þ�2

p
Þ

� 2T�

�

Z �

0
dq lnð1þ e�	

ffiffiffiffiffiffiffiffiffiffiffi
q2þ�2

p
Þ: (C2)

Starting from (C2) and taking into account the expression
(23) for !2ð�Þ, we have the following gap equation:

@F2ð�Þ
@�

¼ �

�g2
þ�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q

���

�
ln

�
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ�2
p
�

�

þ �

�

Z 1

�

2qdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ �2

p ð1þ e	
ffiffiffiffiffiffiffiffiffiffiffi
q2þ�2

p
Þ

þ 2��

�

Z �

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ �2

p ð1þ e	
ffiffiffiffiffiffiffiffiffiffiffi
q2þ�2

p
Þ

¼ 0: (C3)

SUPERCONDUCTING PHASE TRANSITIONS INDUCED BY . . . PHYSICAL REVIEW D 86, 105010 (2012)

105010-13



The first integral in (C3) is a rather simple one, i.e.,

Z 1

�

2qdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ�2

p �
1þ e	

ffiffiffiffiffiffiffiffiffiffiffi
q2þ�2

p 	 ¼ 2

	
ln
�
1þ e�	

ffiffiffiffiffiffiffiffiffiffiffiffi
�2þ�2

p 	
:

(C4)

In contrast, let us present the third term in (C3) in the
integral form, i.e.,

���

�
ln

0
@�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ�2
p
�

1
A ¼ ���

�

Z �

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ�2

p ;

(C5)

which then can be combined with the last integral of (C3).
As a result we obtain for the superconducting gap �0 the
second of equations (32).
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