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We demonstrate that in the supersymmetric extensions of a class of generalized (or K) field theories

introduced recently, the static energy satisfies a Bogomoln’yi-Prasad-Sommerfield bound in each

topological sector. Further, the corresponding soliton solutions saturate the bound. We also find strong

indications that the Bogomoln’yi-Prasad-Sommerfield bound shows up in the supersymmetry algebra as

a central extension, as is the case in the well-known supersymmetric field theories with standard kinetic

terms.
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I. INTRODUCTION

If a quantum field theory is assumed to be applicable to
physical processes at arbitrary energy scales, then both its
field contents and possible terms contributing to the
Lagrangian are quite constrained, mainly by the require-
ment of renormalizability. Recently, however, a different
point of view has gained support, where the field theory
under consideration is interpreted as a low-energy effective
field theory which, at sufficiently high energies, is super-
seded by a more fundamental theory (string theory being
the most prominent proposal). In this effective field-theory
interpretation, the presence of nonrenormalizable terms in
the Lagrangian just indicates the existence of a natural
cutoff in the effective field theory, beyond which calcula-
tions within the effective field theory framework are no
longer trustworthy, and effects of the fundamental theory
have to be taken into account. The effective field-theory
point of view, therefore, allows us to consider a much
broader class of Lagrangians, which may, in a first
instance, be rather general functions of the fields and their
space-time derivatives. Allowing for higher than first de-
rivatives in the Lagrangian, however, may introduce some
further problems like, e.g., the necessity to introduce
ghosts, so it is natural to consider a class of generalized
field theories given by Lagrangians which depend in a
Poincaré-invariant way on the fields and on their first
derivatives. Specifically, a broader class of kinetic terms,
generalizing the standard quadratic kinetic terms, may be
considered. These theories with generalized kinetic terms
(termed K field theories) have been studied with increasing
effort in the last years, especially in the context of cosmol-
ogy, where they might resolve some problems like inflation
or late time acceleration (K inflation [1] or K essence [2]).
Another relevant issue in cosmology is the formation of
(topological or nontopological) defects [3–11] where,
again, K field theories allow for a much richer phenome-
nology [12–28]. Specifically, the formation of domain
walls is described by effectively 1þ 1-dimensional

theories [13–16,23], with possible applications to the struc-
ture formation in the early Universe. In this context, the
problem of supersymmetric extensions of K field theories
emerges naturally. Indeed, if the fundamental theory
(e.g., string theory) is supersymmetric, and if some of the
supersymmetry is assumed unbroken even for the effective
field theory in a regime of not-too-low energy (e.g., in the
very early Universe [29–32]), then it is an important ques-
tion whether the resulting supersymmetric effective field
theory can be described, at all, in the context of K field
theories. The investigation of this problem has been
resumed very recently. Concretely, in Ref. [33], supersym-
metric (SUSY) extensions of some 3þ 1-dimensional K
field theories with cosmological relevance (ghost conden-
sates, galileons, Dirac-Born-Infeld inflation) have been
investigated, whereas the SUSY extensions of some
lower-dimensional theories relevant, e.g., for domain
wall formation, have been studied in Refs. [34–36].
If SUSY extensions of some K field theories can be

constructed, and if these SUSY K field theories support
topological defect solutions, then the following very impor-
tant questions arise immediately: are the topological defects
Bogomoln’yi-Prasad-Sommerfield (BPS) solutions? And,
if so, are they invariant under part of the SUSY trans-
formations? Further, if the defect solutions can be classified
by a topological charge, does this charge reappear in the
SUSYalgebra as a central extension? All these interrelated
features are well-known to show up in SUSY field theories
with standard kinetic terms [37–41], and SUSY allows us,
in fact, to better understand both the existence and the
structure of BPS solutions. Analogous results for SUSY K
field theories would, therefore, be very important for a
better understanding of these theories. It is the purpose of
the present paper to investigate this question for a large
class of SUSY K field theories in 1þ 1 dimensions.
Concretely, in Ref. [36], we introduced a class of SUSY

K field theories and studied their domain wall solutions,
but in that paper, we were not able to determine whether
these topological defects were of the BPS type. As a
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consequence, none of the related questions listed above
could not be addressed, either. In the present paper, we
shall close these loopholes. In Sec. II, we briefly review the
class of SUSY K field theories we consider and, in a next
step, demonstrate the BPS property of all their domain wall
solutions. In Sec. III, then, we demonstrate that the domain
wall (kink) solutions are invariant under part of the SUSY
transformations, and that they show up in the SUSY alge-
bra as central extensions. We also briefly discuss the same
issue for the class of models originally introduced in
Ref. [34]. Finally, Sec. IV contains our conclusions.

II. THE BPS BOUND

A. The models

The present paper continues the investigation of the mod-
els introduced in Ref. [36]; therefore, we use the same
conventions as in that reference, towhichwe refer for details.
The field theories we consider exist in 1þ 1-dimensional
Minkowski space, and we use the metric convention
ds2 � g��dx

�dx� ¼ dt2 � dx2. Further, we use the super-

field (�2 ¼ 1
2�

���)

�ðx; �Þ ¼ �ðxÞ þ ��c �ðxÞ � �2FðxÞ; (1)

and for the spinor metric to rise and lower spinor indices,
we use C�� ¼ �C�� ¼ ð�2Þ��. For the gamma matrices,

we choose a representation where the components of the
Majorana spinor are real. Concretely, we choose (the �i are
the Pauli matrices)

�0 ¼ �2; �1 ¼ i�3; �5 ¼ �0�1 ¼ ��1: (2)

Further, the superderivative is

D� ¼ @� þ i��@�� ¼ @� � i��
�
���@�; (3)

and allows us to extract the components of an arbitrary
superfield via (D2 � 1

2D
�D�):

�ðxÞ ¼ �ðx; �Þj; c �ðxÞ ¼ D��ðx; �Þj;
FðxÞ ¼ D2�ðx; �Þj; (4)

(the vertical line j denotes evaluation at �� ¼ 0). A
Lagrangian always is the �2 component of a superfield, so
it may be calculated from the corresponding superfield via
the projectionD2j.

Attempts to find supersymmetric extensions of field theo-
ries with nonstandard kinetic terms typically face the problem
that the auxiliary field couples to derivatives or becomes
dynamical. Recently, however, we found linear combinations
of superfields such that the auxiliary field F still obeys an
algebraic field equation and, in the bosonic sector, only cou-
ples to the scalar field � and not to derivatives [36]. The
construction uses the following superfields as building blocks:

Sðk;nÞ ¼
�
1

2
D��D��

��
1

2
D�D��D�D��

�
k�1

� ðD2�D2�Þn; (5)

where k ¼ 1; 2; . . . and n ¼ 0; 1; 2; . . . . The right linear com-
binations are

S ðkÞ � Xk�1

n¼0

ð�1Þn k
n

� �
Sðk�n;nÞ; (6)

and arbitrary linear combinations of these expressions, each
one multiplied by an arbitrary real function �kð�Þ of the
superfield �, are permitted. In addition, we may include a
superpotential -Pð�Þ. That is to say we define the superfield

S ð�;PÞ � XN
k¼1

�kð�ÞSðkÞ � Pð�Þ; (7)

[here � ¼ ð�1; �2; . . . ; �NÞ is a multi-index of scalar func-
tions], then the bosonic sector (i.e., with the fermions set equal
to zero, c � ¼ 0) of the corresponding Lagrangian,

L ð�;PÞ
b � ð�D2Sð�;PÞjÞc¼0; (8)

(b stands for ‘‘bosonic’’), reads explicitly

Lð�;PÞ
b ¼XN

k¼1

�kð�Þ½ð@��@��Þkþð�1Þk�1F2k��P0ð�ÞF;

(9)

and, as announced, F only appears algebraically and does not
couple to derivatives; see Ref. [36] for details.
In a next step, we should eliminate F via its algebraic

field equation,

XN
k¼1

ð�1Þk�12k�kð�ÞF2k�1 � P0ð�Þ ¼ 0; (10)

which, however, for a given Pð�Þ, is a rather complicated
equation for F with several solutions. It is, therefore, more
natural to assume a given on-shell value F ¼ Fð�Þ for F
and interpret the above equation as a defining equation for
the corresponding superpotential P. Eliminating the result-
ing P0ð�Þ, we arrive at the Lagrangian density

Lð�;FÞ
b ¼ XN

k¼1

�kð�Þ½ð@��@��Þk � ð�1Þk�1ð2k� 1ÞF2k�;

(11)

where now F ¼ Fð�Þ is a given function of � which we
may choose freely depending on the system we want to
study. The �kð�Þ, too, are functions which we may choose
freely, but they should obey certain restrictions in order
to guarantee, e.g., positivity of the energy, or the null
energy condition (NEC); see Ref. [36] for details.
Next, we have to briefly discuss the field equations. For

a general Lagrangian LðX;�Þ where X � 1
2 @��@�� ¼

1
2 ð _�2 ��02Þ, the Euler-Lagrange equation reads

@�ðL;X@
��Þ �L;� ¼ 0; (12)
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and the energy momentum tensor is

T�� ¼ L;X@��@��� g��L: (13)

For static configurations � ¼ �ðxÞ, �0 � @x�, only two
components of the energy momentum tensor are nonzero,

T00 ¼ E ¼ �L; (14)

T11 ¼ P ¼ L;X�
02 þL; (15)

where E is the energy density and P is the pressure.
Further, for static configurations, the Euler-Lagrange equa-
tion may be integrated once to give

� 2XL;X þL ¼ �02L;X þL � P ¼ 0; (16)

(in general, there may be an arbitrary, nonzero integration
constant at the right-hand side of Eq. (16), but the condi-
tion that the vacuum has zero energy density sets this
constant equal to zero). For the Lagrangian (11), we, there-
fore, get the once integrated static field equation

XN
k¼1

ð2k� 1Þð�1Þk�1�kð�Þð�02k � F2kÞ ¼ 0: (17)

In a first step, it is useful to interpret this equation as an
algebraic, polynomial equation for �0 of order 2N. It
obviously has the two solutions (roots)

�0 ¼ �Fð�Þ; (18)

which are independent of the �kð�Þ; therefore, we call
them ‘‘generic’’ roots. In addition, in general, it will have
2N � 2 further roots

�0 ¼ �Rið�Þ; i ¼ 2; . . . ; N; (19)

(we set R1 ¼ F), which depend both on Fð�Þ and on
�kð�Þ. We, therefore, call them ‘‘specific’’ roots.

B. Kink solutions

In a next step, we now interpret the roots �0 ¼ �Rið�Þ
as first order differential equations and want to understand
under which conditions their solutions may be topological
solitons (kinks and antikinks). A first condition is that the
potential term in the Lagrangian (11),

Vð�;FÞ ¼ XN
k¼1

�kð�Þð�1Þk�1ð2k� 1ÞF2k; (20)

must have at least two vacua, i.e., field values � ¼ �0;l

such that Vð�0;lÞ ¼ 0, where l ¼ 1; . . . ; L and L � 2.
Now, we will make some simplifying assumptions. The
functions �kð�Þ should have no singularities, i.e.,
j�kð�Þj<1 for j�j<1, such that no kinetic term gets
artificially enhanced. Further, the standard kinetic term
should never vanish, i.e., �1 > 08�. Under these assump-
tions, the standard kinetic term dominates in the vicinity of
the vacua, and the standard asymptotic analysis for kink

solutions applies. A kink (antikink) is a static solution
�kðxÞ which interpolates between two vacua, �kð�1Þ �
�� 2 f�0;lg, where for a kink, it holds that �þ >��,
whereas for an antikink, �� >�þ. We shall assume in
what follows that the signs of all the roots Ri have been
chosen such that �0 ¼ þRi corresponds to the kink (if this
equation has a kink solution, at all), and �0 ¼ �Ri corre-
sponds to the antikink.
A necessary condition for a root Rið�Þ to provide a kink

solution is that it must have two zeros at two different vacua,
i.e., Rið��Þ ¼ 0. This is a nontrivial condition because,
generically, roots may have no or one zero, as well, with
the only condition that the total number of zeros of all the
roots coincides with the number of vacua of the potential,
including multiplicities. In other words, both the existence
of a sufficient number of vacua and the existence of roots
with two zeros requires some fine-tuning of the functions F
and �k. The simplest way to achieve this fine-tuning is via
symmetry considerations. If, for instance, F and all the �k

are symmetric under the reflection � ! ��, then all the
rootsRi inherit this symmetry. If, therefore, a root has a zero
�0;l, then it has the second zero��0;l, by construction. The

only additional fine-tuning required in this case is that the
potential must have at least one vacuum at � � 0.
The generic root �0 ¼ F will lead to a kink solution if

the function F has at least two zeros, which obviously
provide the corresponding vacua in the potential; see
Eq. (20). We shall call the resulting kink solutions ‘‘generic
kinks.’’ If we choose, e.g., F ¼ 1��2, then all models
with this F (i.e., for arbitrary �k) will have the standard�

4

kink�k ¼ tanhðx� x0Þ (here, x0 is an integration constant
reflecting translational invariance). Depending on the �k,
these models may have further kink solutions, based on
some of the specific roots Ri; i ¼ 2; . . . ; N. If these kinks
exist, we shall call them ‘‘specific kinks.’’
We remark that for different roots which only have one

zero each, but for different vacuum values, it is sometimes
still possible to construct kink solutions interpolating
between the two vacua in the space C1 of continuous func-
tions with a continuous first derivative. Indeed, if two differ-
ent roots Ri and Rj with two different zeros have a common

range of values� 2 ½�<;�>� between the two vacua, then
we may form a kink solution in the space C of continuous
functions with a discontinuous first derivative by joining the
two local solutions at any value in the common range (the
joining point x0 in base space is arbitrary due to translational
invariance). If, in addition, the equation Rið�Þ ¼ Rjð�Þ has
a solution�s in the common range, then the derivatives of the
two local solutions coincide at this point, and wemay form a
kink solution in the space C1 by joining the two local
solutions at �s. Let us point out that if we require kinks to
be solutions of the corresponding variational problem,
then solutions in the space C1 are perfectly valid. They
lead to well-defined energy densities and, therefore, provide
well-defined critical points of the corresponding energy
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functional. For more details and some explicit examples, we
refer to Ref. [36].

C. Kink energies and BPS bounds

In a next step, we want to study the energies of kinks.
The energy density for the Lagrangian (11) is

Eð�;FÞ
b ¼ XN

k¼1

�kð�Þðð _�2 ��02Þk�1ðð2k� 1Þ _�2 þ�02Þ

þ ð�1Þk�1ð2k� 1ÞF2kÞ; (21)

and, for static configurations,

E ¼ XN
k¼1

ð�1Þk�1�kð�Þð�02k þ ð2k� 1ÞF2kÞ: (22)

With the help of Eq. (17), for kink solutions, this may be
expressed like

E ¼ XN
k¼1

ð�1Þk�12k�kð�Þ�02k

¼ �0 XN
k¼1

ð�1Þk�12k�kð�Þ�02k�1 � �0wð�;�0Þ; (23)

where the last expression is especially useful for the
calculation of the corresponding energies. Indeed, for the
energy calculation, we should now replace �0 in wð�;�0Þ
by the root Ri which corresponds to the kink solution, and
interpret the resulting function of � as the � derivative of
another function. That is to say we define an integrating
function Wið�Þ for each root Ri via

Wi;� � wð�;Rið�ÞÞ ¼ XN
k¼1

ð�1Þk�12k�kð�ÞR2k�1
i ; (24)

then, the kink energy is

E¼
Z
dx�0Wi;�¼

Z
d�Wi;�¼Wið�þÞ�Wið��Þ: (25)

For the calculation of the kink energy, we, therefore, do not
have to know the kink solution. We just need the root and
the two vacuum values �� of the kink. For the C1 kinks
described above which are constructed by joining local
solutions for two different roots Ri and Rj, we need the

two corresponding integrating functions and the joining
point �s. The energy then results in

E ¼ Wjð�þÞ �Wjð�sÞ þWið�sÞ �Wið��Þ: (26)

Until now, the energy considerations have been for arbitrary
roots, but now we shall see that the generic root R1 � F
apparently plays a particular role. First, the integrating
function of the generic root is just the superpotential,
W1 ¼ P. Indeed, we find

W1;� ¼ XN
k¼1

ð�1Þk�12k�kð�ÞF2k�1 � P0ð�Þ; (27)

see Eq. (10). Second, if the generic root has a kink solution,
then this solution is, in fact, a BPS solution and saturates a
BPS bound, as we want to demonstrate now. In general, an
energy density has aBPSbound if itmay bewritten off-shell
(i.e., without using the static Euler-Lagrange equation) as

E ¼ ðPSDÞð�;�0Þ þ tðxÞ; (28)

where (PSD) is a positive semidefinite function of� and�0,
and tðxÞ is a topological density, i.e., a total derivativewhose
integral only depends on the boundary values��. Further, a
soliton solution (a kink�k) is of the BPS type, i.e., saturates
the BPS bound if the positive semidefinite function is zero
when evaluated for the kink, (PSD)ð�k;�

0
kÞ ¼ 0. In our

case, the possible topological terms are the expressions
�0Wi;� for the different roots. In any case, a possible

topological term must be linear in �0 in order to be a total
derivative (we emphasize, again, that the BPS form (28)
must be valid off shell, i.e., it is not legitimate to replace�0
by a root Ri or vice versa). Let us now demonstrate that the
energy density may be expressed in BPS form (28) for
the generic topological term t ¼ �0W1;� � �0P;�, and that

the corresponding positive semidefinite function is zero
precisely for the generic kink, i.e., for �0 ¼ F. Indeed, we
find for the difference E � t for the generic topological term

E ��0P;� ¼ XN
k¼1

ð�1Þk�1�kð�Þð�02k

þ ð2k� 1ÞF2k � 2k�0F2k�1Þ (29)

¼ ð�0 � FÞ2Sð�0; FÞ � ð�0 � FÞ2

� XN
k¼1

ð�1Þk�1�kð�ÞHkð�0; FÞ; (30)

where

Hkð�0; FÞ � X2k�1

i¼1

i�02k�1�iFi�1: (31)

Before proving this algebraic identity, we want to make
some comments. The above result implies a genuine BPS
soliton provided that the positive semidefinite function
is zero only iff � obeys the corresponding generic kink
equation�0 ¼ F. This implies that Sð�0; FÞmust be strictly
positive for any nontrivial field configuration [for the trivial
vacuum �0 ¼ 0 and F ¼ 0, it holds that Sð0; 0Þ ¼ 0], i.e.,
Sða; bÞ> 0 unless a ¼ 0 and b ¼ 0. This inequality,
indeed, holds for each individual term Hkða; bÞ, i.e.,
Hkða; bÞ> 0 unless a ¼ 0 and b ¼ 0 (the proof requires
two complete inductions; therefore, we relegate it to the
Appendix). The inequality Sða; bÞ> 0 for the complete
function S, therefore, implies some restrictions on the func-
tions �kð�Þ (one possible choice is that the �k are zero for
even k and positive semidefinite for odd k, but there are less
restrictive choices). This is similar to the conditions of
positivity of the energy density, or the NEC, which, too,
imply some restrictions on the�k (again,�k zero for even k
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and positive semidefinite for odd k is a possible choice), and
we shall assume in the sequel that the�k obey these restric-
tions (i.e., the restrictions resulting from the condition
S > 0, and either positivity of the energy density or the
NEC; these restrictions are probably related, but we shall
not investigate this problem further and assume the two
restrictions independently). Now, let us prove the algebraic
identity between Eqs. (29) and (30). This follows from the
following identities (we set �0 ¼ a, F ¼ b):

a2k þ ð2k� 1Þb2k � 2kab2k�1 (32)

¼ ða�bÞða2k�1þa2k�2bþa2k�3b2þ . . .þab2k�2

�ð2k� 1Þb2k�1Þ
¼ ða�bÞ2ða2k�2þ 2a2k�3bþ 3a2k�4b2

þ . . .þð2k� 1Þb2k�2Þ
� ða�bÞ2Hkða;bÞ; (33)

where the equality of adjacent lines may be checked easily.
So, we found, indeed, that generic kinks (if they exist)

saturate a BPS bound, whereas, up to now, we could not
make a comparable statement about additional specific
kinks. This special role played by the generic kink solution
is not surprising from the point of view of the supersym-
metric extension, because only the generic kink obeys the
simple equation �0 ¼ F, and only the generic kink has a
topological charge which may be expressed in terms of the
superpotential. On the other hand, the special character of
the generic kink is surprising from the point of view of the
purely bosonic theory

L b ¼
XN
k¼1

�kð�Þð@��@��Þk � Vð�Þ; (34)

(with given �k and a given potential V), whose once-
integrated static field equation just leads to the 2N roots

�0 ¼ �Rið�Þ; i ¼ 1; . . . ; N; (35)

without distinguishing them in terms of an auxiliary field
or a superpotential. The resolution of the puzzle may be
understood if we express the once-integrated static field
equation both in terms of the potential and in terms of the
on-shell auxiliary field,

XN
k¼1

ð2k� 1Þð�1Þk�1�kð�Þð�02k � F2kÞ

¼ XN
k¼1

ð2k� 1Þð�1Þk�1�kð�Þ�02k � V ¼ 0: (36)

Up to now, we assumed a given Fð�Þ which leads to the
two generic roots�0 ¼ F and the remaining, specific roots.
But, now, we may interpret this equation in a different way.
We may treat only V and the �k as given and try to find all
the solutions for F of the equation

XN
k¼1

ð2k� 1Þð�1Þk�1�kð�ÞF2k ¼ V: (37)

Obviously, the solutions are just the roots Fi ¼ Rið�Þ [see
Eq. (17)], and the corresponding first-order equations now
just read �0 ¼ �Fi. We remark that different on-shell
choices Fi for the auxiliary field F lead to different super-
potentials and, therefore, to different supersymmetric
extensions. As a result, the resolution of the puzzle is
that one given bosonic theory allows for N different super-
symmetric extensions such that each kink solution is the
generic solution of its corresponding supersymmetric
extension. As a consequence, the energy density allows
for BPS bounds for all kink solutions. The existence of
several BPS bounds for one and the same energy density
may seem surprising, but the different bounds exist, of
course, in different topological sectors (i.e., for different
boundary values), so there is no contradiction. Finally, all
topological charges (i.e., all BPS energies) are now given
in terms of the corresponding superpotentials. Indeed, we
calculate [see Eqs. (10), (23), and (24)]

Wi;�ð�Þ ¼ wð�;Rið�ÞÞ ¼ wð�;FiÞ
¼ P0ðFið�ÞÞ � P0

ið�Þ: (38)

We remark that from a practical point of view, it is still
useful to choose a specific on-shell Fð�Þ, because in this
way, we may choose simple functions with simple kink
solutions. For generic �k and a generic V, on the other
hand, the resulting roots will usually be quite complicated.

III. SUSYALGEBRA AND CENTRAL EXTENSIONS

From now on, we will, again, restrict to a fixed super-
symmetric extension, i.e., to fixed, given �k, a fixed, given
on-shell auxiliary field Fð�Þ and the corresponding super-
potential given by Eq. (10). The SUSY transformations of
the fields read

	� ¼ 
�c �; 	c � ¼ �ið��Þ��
�@��� 
�F;

	F ¼ i
�ð��Þ��@�c �; (39)

[where 
� ¼ ð
1; 
2Þ are the Grassmann-valued SUSY
transformation parameters, and 
� ¼ ði
2;�i
1Þ], or
more explicitly

	� ¼ ið
2c 1 � 
1c 2Þ
	F ¼ ið
2ðc 0

1 � _c 2Þ � 
1ð _c 1 � c 0
2ÞÞ

	c 1 ¼ 
1ð�0 � FÞ � 
2 _�

	c 2 ¼ 
1 _�� 
2ð�0 þ FÞ:

(40)

Obviously, for a generic kink solution ( _� ¼ 0, �0 ¼ F,
c � ¼ 0), the SUSY transformation restricted to 
2 ¼ 0 is
zero, whereas, for a generic antikink, the restriction 
1 ¼ 0
gives zero.
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On the other hand, the SUSY transformations of the
fields are generated by the SUSY generators Q ¼ 
�Q�

via the commutators 	� ¼ ½iQ;��, etc., where Q should
be determined from the Noether current of the SUSY
transformations, and the commutators are evaluated with
the help of the canonical (anti)commutation relations of the
fields. The supercharges Q� are known to obey the algebra

fQ�;Q
�g ¼ 2��ð��Þ�� þ 2iZð�5Þ�� (41)

or, explicitly,

Q2
1 ¼ �0 þ Z

Q2
2 ¼ �0 � Z

fQ1; Q2g ¼ 2�1;

(42)

where the curly bracket is the anticommutator, �� ¼
ð�0;�1Þ are the energy and momentum operators and Z
is a possible central extension which the SUSY algebra
may contain. An explicit calculation of the operators which
appear in the SUSY algebra requires the knowledge of the
Noether current and the canonical momenta and, therefore,
of the complete SUSY Lagrangian, including the fermionic
terms, which, in general, is quite complicated. If we only
want to determine the central charge, however, it is enough
to evaluate the SUSY algebra for a specific field configu-
ration, because the central charge is essentially a number
(it commutes with all operators) and, therefore, must take
the same value for all field configurations within a given
topological sector. We now evaluate the SUSY algebra for
a generic kink solution and make the reasonable assump-
tion that not only the restricted SUSY transformation (i.e.,
the action of the corresponding SUSY charge on the fields)
for a generic kink is zero, but that the corresponding SUSY
charge itself is zero when evaluated for the generic kink.
As we know the energy of the kink, this allows us then to
determine the central charge. Concretely, for the kink, the
corresponding charge is Q2, and we get

Q2
2 ¼ 0 ¼ Ek � Z ¼ Pð�þÞ � Pð��Þ � Z

) Z ¼ Pð�þÞ � Pð��Þ; (43)

where P is the superpotential, and �� are the asymtopic
values of the kink. For the antikink,Q1 is zero, and we find
Z ¼ Pð��Þ � Pð�þÞ. We remark that for positive semi-
definite energy densities, the resulting restrictions on the
functions �k imply that the central extension Z is always
positive, because P0 � 0 for the kink, and P0 � 0 for the
antikink, as follows from the energy density (22) and the
defining equation for P0, Eq. (10). We, therefore, found
exactly the same result for the central extension as in the
case of the SUSYextension of a standard scalar field theory
with a quadratic kinetic term for the boson field.

A. Central extensions for the models of Bazeia,
Menezes and Petrov

Here, we want to demonstrate that the same central
extensions of the SUSY algebra in terms of the super-
potential may be found for another class of supersymmet-
ric K field theories, originally introduced by Bazeia,
Menezes and Petrov (BMP) [34]. They are based on the
superfield

S BMP ¼ fð@��@��Þ 1
2
D��D��; (44)

and lead to the bosonic Lagrangian

L BMP ¼ fð@��@��ÞðF2 þ @��@��Þ: (45)

Here, the Lagrangian produces a coupling of the auxiliary
field F with the kinetic term @��@��, but, on the other

hand, the auxiliary field only appears quadratically, imply-
ing a linear (algebraic) field equation for F. The same
bosonic Lagrangians may, in fact, be constructed from
the building blocks (5) of Sec. II by taking a different
linear combination (the fermionic parts of the correspond-
ing Lagrangians will in general not coincide)

S ðkÞ
BMP � Xk�1

n¼0

ð�1Þn k� 1
n

� �
Sðk�n;nÞ; (46)

leading to the bosonic Lagrangians

L ðkÞ
BMP ¼ ðF2 þ @��@��Þð@��@��Þk�1: (47)

Wemay easily recover the Lagrangian (45) by taking linear
combinations of these,

LBMP ¼ X1
k¼1

�kL
ðkÞ
BMP

¼ ðF2 þ @��@��ÞX
k

�kð@��@��Þk�1

� ðF2 þ @��@��Þfð@��@��Þ: (48)

Adding a superpotential, the resulting bosonic Lagrangians
are

L ðPÞ
BMP¼fð@��@��ÞðF2þ@��@��Þ�P0ð�ÞF; (49)

or, after eliminating the auxiliary field F using its algebraic
field equation

F ¼ P0

2f
; (50)

LðPÞ
BMP ¼ f �

�
P02

4f2
þ @��@��

�
� P02

2f

¼ f � @��@��� P02

4f
: (51)

The energy functional for static configurations may be
written in a BPS form. Indeed,
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EðPÞ
BMP ¼

Z
dx

�
�02fþ P02

4f

�

¼
Z

dx

�
1

4f
ð2�0f	 P0Þ2 ��0P0

�
; (52)

and for a solution to the first order (or BPS) equation

2�0ðxÞfð��02Þ ¼ P0; (53)

(we take the plus sign for a kink), the resulting energy is

EðPÞ
BMP ¼

Z 1

�1
dx�0P0

¼
Z �ð1Þ

�ð�1Þ
d�P0

¼ Pð�þÞ � Pð��Þ: (54)

Finally, from Eq. (50) for F and the BPS equation (53), it
follows that the equation �0 ¼ F still holds for a kink
solution, and, therefore, the restricted SUSY transforma-
tion with only 
1 nonzero is, again, zero when evaluated for
the kink. We conclude that the central charge in the SUSY
algebra is, again, given by the topological term

Z ¼ jPð�þÞ � Pð��Þj; (55)

for this class of models.

IV. CONCLUSIONS

In this paper, we carried further the investigation of a
class of SUSY K field theories originally introduced in
Ref. [36]. Concretely, we demonstrated that all the domain
wall solutions which exist for this class of field theories
are, in fact, BPS solutions. Further, these BPS solutions are
invariant under part of the SUSY transformations. We also
found strong indications (based on a very reasonable as-
sumption) that the topological charges carried by the
domain wall solutions show up in the SUSY algebra as
central extensions. That is to say the situation we found is
exactly equivalent to the case of standard SUSY theories
with BPS solitons, despite the much more complicated
structure of the SUSY K field theories investigated here.
Let us emphasize, again, that from an effective field theory
point of view, K field theories are as valid as field theories
with a standard kinetic term, and there exists no reason not
to consider them. Even one and the same topological defect
with some given, well-known physical properties may
result either from a theory with a canonical kinetic term,

or from a certain related class of K field theories (so-called
noncanonical twins of the standard, canonical theory),
Refs. [18,42]. K field theories should, therefore, be
considered on a par with standard field theories in all
situations where they cannot be excluded a priori. This
implies that also the study of their possible SUSY exten-
sions is a valid and relevant subject. Structural investiga-
tions of the type employed in the present paper are, then,
important steps towards a better understanding of these
supersymmetric generalized field theories with nonstan-
dard kinetic terms.
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APPENDIX

We want to prove that

a2k�2 þ 2a2k�3bþ � � � þ ð2k� 1Þb2k�2 > 0 8 k;

(A1)

unless a ¼ 0 and b ¼ 0. For a ¼ 0, b � 0, and for a � 0,
b ¼ 0, this is obvious, so we may restrict to the case a � 0
and b � 0. In this case, we may divide by b2k�2, so that we
have to prove (x � a=b)

fkðxÞ � x2k�2 þ 2x2k�3 þ � � � þ ð2k� 1Þ> 0; (A2)

which we do by complete induction. Obviously, the state-
ment is true for k ¼ 1: f1ðxÞ ¼ x2 þ 2xþ 3 ¼ ðxþ 1Þ2 þ
2> 0. Now, we assume that it holds for fk and calculate
fkþ1. We get

fkþ1ðxÞ ¼ x2k þ 2ðx2k�1 þ x2k�2 þ � � � þ 1Þ þ fkðxÞ
� gkðxÞ þ fkðxÞ; (A3)

and the statement is true if gkðxÞ � 0 8 k. This, again,
we prove by induction. Obviously, it is true for k ¼ 1:
g1ðxÞ ¼ x2 þ 2xþ 2 � 0. For gkþ1, we calculate

gkþ1ðxÞ ¼ x2kðxþ 1Þ2 þ gkðxÞ; (A4)

and it is obviously true that gkðxÞ � 0 ) gkþ1ðxÞ � 0 and,
therefore, fkðxÞ> 0 ) fkþ1ðxÞ> 0, which is what we
wanted to prove.
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