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We investigate chiral symmetry breaking in the (2þ 1)-dimensional Thirring model as a function of the

coupling as well as the Dirac flavor number Nf with the aid of the functional renormalization group. For

small enough flavor number Nf <Ncr
f , the model exhibits a chiral quantum phase transition for

sufficiently large coupling. We compute the critical exponents of this second order transition as well as

the fermionic and bosonic mass spectrum inside the broken phase within a next-to-leading order derivative

expansion. We also determine the quantum critical behavior of the many-flavor transition which arises due

to a competition between vector and chiral-scalar channels and which is of second order as well. Due to

the problem of competing channels, our results rely crucially on the RG technique of dynamical

bosonization. For the critical flavor number, we find Ncr
f ’ 5:1 with an estimated systematic error of

approximately one flavor.
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I. INTRODUCTION AND SUMMARY

Introduction. Since the advent of graphene [1] there has
been an enormous amount of renewed interest in (2þ 1)-
dimensional relativistic fermion systems. Various variants
of ð2þ 1Þd quantum electrodynamics [2–18] and the
ð2þ 1Þd Thirring model [19–33] are actively discussed
as effective descriptions of graphene’s exceptional elec-
tronic properties [34–41]. Moreover, they are likewise
intrinsically interesting: in these models the number of
fermion flavors Nf serves as a control parameter for a
quantum phase transition at a critical value Ncr

f . Several

previous works provide a substantial amount of evidence
that chiral symmetry breaking (�SB) may be prohibited
even for arbitrarily large coupling if Nf >Ncr

f [22,24–31].

This is a similarity to many-flavor non-Abelian gauge
theories in four dimensions which are used for particle
physics models for dynamical electroweak symmetry
breaking [42–44]. However, the search for the quantum
critical point has so far been rather challenging: in the
Thirring model different approximate solutions to the
Dyson-Schwinger equations (DSE) yielded values between
Ncr

f ’ 3:24 [22] and Ncr
f ¼ 1 [23]. By constructing an

effective potential for the chiral order parameter, up to
leading order of the 1=Nf expansion Ncr

f ¼ 2 has been

found [26]. Extensive Monte Carlo simulations point to
Ncr

f ’ 6:6 [31]. The true value of Ncr
f is of decisive rele-

vance for the applicability of such relativistic fermion
effective theories for condensed matter systems, where
the number of flavors is typically Nf ¼ 2. If Nf ¼ 2 is
near Ncr

f , the properties of the quantum critical regime

could take an important influence on physical effects
corresponding to dynamical mass generation in the effec-
tive (strongly coupled) theories. Understanding such a

semimetal-Mott insulator transition is also desirable from
a technological point of view, e.g., with the ultimate aim of
engineering the band gap in graphenelike systems.
In addition to the significant quantitative discrepancies

observed in the literature, a more detailed comparison of
the critical behavior close to Ncr

f reported in those studies

reveals our insufficient understanding of fermionic field
theories in the nonperturbative domain: Kondo [26] reports
a second-order phase transition with the usual power-law
behavior as a function of the control parameter Nf . By
contrast, in the DSE studies [24,25] an essential scaling
behavior of the Kosterlitz-Thouless type has been found,
that is to say, a phase transition of infinite order. As argued
in Ref. [31], the nature of the transition in these studies
appears to depend on whether the strong-coupling limit is
taken before or after Nf % Ncr

f . The scaling analysis on the

lattice [31,32] is consistent with a power-law behavior
corresponding to a second-order phase transition which
qualitatively confirms, but quantitatively deviates from
the Kondo scenario [26].
In the present work, we confront the functional renor-

malization group (RG) approach with the puzzles given by
the ð2þ 1Þd chiral fermion systems at criticality. The
question is, what is the nature of the �SB phase transition
being controlled by either the bare coupling g (for fixed
Nf <Ncr

f ) or the number of flavors Nf (for fixed g > gcr)?
What are, if applicable, the corresponding exponents de-
termining the critical behavior? Naively, a universal an-
swer may not be apparent as ð2þ 1Þd fermion models are
perturbatively nonrenormalizable. However, rather than
inherent inconsistencies, this difficulty may reflect the fail-
ure of the perturbative approach [45–48]. In fact, there is a
large body of evidence for nonperturbative renormalizabil-
ity to all orders in a large-Nf expansion [19–23] and,
more recently, also beyond the 1=Nf expansion from a
functional RG approach [49,50]. As a bottom line,
(2þ 1)-dimensional fermion models appear to be a

*lukas.janssen@uni-jena.de
†holger.gies@uni-jena.de

PHYSICAL REVIEW D 86, 105007 (2012)

1550-7998=2012=86(10)=105007(28) 105007-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.105007


paradigm example for asymptotically safe theories [51–55]
that are UV complete due to the existence of interacting
UV fixed points.

In the remainder of this section, we briefly summarize
our findings, starting with a short review of a preceding
fermionic RG analysis [49]. All technical details and a
proper embedding and comparison to the literature is de-
ferred to the following sections.

Competing channels in the ð2þ 1Þd Thirring model.
Conventionally, the Thirring model in 2þ 1 dimensions
is defined by the Lagrangian

L ¼ Lkin þLint ¼ �c ai6@c a þ �g

2Nf

ð �c a��c
aÞ2; (1)

with Nf flavors of massless four-component Dirac spinors
c a, i.e., a ¼ 1; . . . ; Nf . The microscopic theory has a
chiral symmetry Uð2NfÞ; cf. Sec. II. Depending on the
value of the four-fermi coupling �g and the number of
flavors Nf , a fermion mass can be dynamically generated,
which breaks the chiral symmetry spontaneously. Upon
integrating out fluctuations, further interaction terms,
being compatible with the present Uð2NfÞ symmetry, are
generated by the RG transformations. On the four-fermi
level there are three further interactions besides the
Thirring term �ð �c��c Þ2: a flavor-singlet pseudoscalar

channel (Gross-Neveu interaction), a flavor-nonsinglet sca-
lar channel (Nambu-Jona-Lasinio interaction), and a
flavor-nonsinglet axial channel. However, not all of these
terms are independent in the pointlike limit: due to the
Fierz identities we can always choose an arbitrary subset of
two terms and write the respective other two as a linear
combination of these. A full basis is therefore given, e.g.,
by the Thirring and the Gross-Neveu interaction. The RG
flow of the dimensionless couplings in this basis is depicted
in Fig. 1. The vertical (horizontal) axis defines the theories
with pure Thirring (Gross-Neveu) interaction. We refer to
this axis as the ‘‘Thirring axis’’ (‘‘Gross-Neveu axis’’). The
angle bisector in the third quadrant defines the theories

with pure Nambu-Jona-Lasinio (NJL) interaction, which
we refer to as the ‘‘NJL axis.’’ In a functional RG analysis
(the technique is sketched in Sec. III), we find three inter-
acting fixed pointsA,B, and C besides the Gaussian fixed
point O. For the theories defined by the microscopic
Lagrangian (1) being purely on the Thirring axis, we find
two different phases, which are separated by the separatrix
through the fixed pointsB and C (red/solid curve in Fig. 1):
If we start the RG flow in the UV with a microscopic
coupling on the Thirring axis above the separatrix, the
couplings eventually flow to the noninteracting Gaussian
fixed point O; if we start below this curve, the four-fermi
couplings grow large in the IR. In the vicinity of the critical
coupling, the behavior of the system is governed by the
interacting fixed point C, as all trajectories are initially
attracted toward this fixed point. We refer to this fixed
point as the ‘‘Thirring fixed point.’’ We associate all tra-
jectories emanating from C with UV complete fully renor-
malized versions of the ð2þ 1Þd Thirring model. However,
we emphasize that the Thirring fixed point only in the strict
large-Nf limit lies directly on the Thirring axis: even if
absent on the microscopic scale, a second coupling besides
the Thirring coupling will always be generated by the
fluctuations for finite Nf .
We now give a heuristic argument for the occurrence of

the critical flavor number [49,50]. Let us first consider the
(unphysical) flavor number Nf ¼ 1:75, where the Thirring
fixed point C lies exactly on the NJL axis (left panel of
Fig. 1). In this specific case, the NJL axis is an IR attractive
hyperplane and the RG flow of the Thirring model for
sufficiently large (negative) coupling is dominated by a
divergent NJL coupling. A divergent scalar-type four-fermi
coupling at finite RG scale signals bound-state formation
in that channel and can be associated with the dynamical
generation of the corresponding order parameter, in this
case the chiral order parameter h �c c i. We therefore predict
that spontaneous breaking of chiral symmetry occurs due
to a dominance of the scalar-type NJL channel. Since the

FIG. 1 (color online). Fermionic RG flow in the Gross-Neveu (GN)—Thirring (Th) coupling plane, compiled from Refs. [49,50].
The angle bisector in the third quadrant defines the theories with pure Nambu-Jona-Lasinio (NJL) interactions. Left panel: For
Nf ¼ 1:75 the Thirring fixed point C lies exactly on the NJL axis withLint / ðSÞ2. Right panel: In the limit Nf ! 1, the Thirring fixed
point C lies on the Thirring axis withLint / ðVÞ2. Middle panel: For intermediate flavor number (here Nf ’ 5), we expect a competition
between the scalar-type NJL channel ðSÞ2 and the vector-type Thirring channel ðVÞ2.
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fixed-point positions change only smoothly with Nf ,
we expect this conclusion to hold also for small deviations
from Nf ¼ 1:75. By contrast, for very large flavor number,
the IR attractive hyperplane with the Thirring fixed point
C is located on the Thirring axis, i.e., at vanishing NJL
coupling (right panel of Fig. 1). In other words, the RG
flow is governed by a strong vector-channel dominance,
which generically inhibits �SB. For intermediate flavor
number (middle panel of Fig. 1), we thus expect a
transition between the scalar-type NJL channel, which
triggers �SB, and the vector-type Thirring channel, inhib-
iting �SB.

Dynamical boson fields. A more quantitative picture of
this quantum phase transition is difficult to obtain in the
purely fermionic language with pointlike interactions. A
quantitative RG analysis requires the inclusion of dynami-
cal chiral and vector bosonic degrees of freedom; see
Secs. IV, V, and VI, in order to study the interplay of these
competing channels as a function of Nf . This is the objec-
tive of this paper. In particular, we will show how the
competition between the NJL (dominant for small Nf)
and the Thirring channel (dominant for large Nf) leads to
a decrease of the dynamically generated fermion mass with
Nf , culminating in a complete vanishing at Ncr

f ’ 5:1
(linear regulator); cf. Fig. 2. We can also map out the order
of the phase transition as a function of Nf : in Fig. 3 we
depict the order parameter h’i / h �c c i versus Ncr

f =Nf � 1
in a double-log plot, showing very good compatibility with
a second order phase transition with scaling behavior
h’i / ðNcr

f =Nf � 1Þb and the universal critical exponent

b ’ 0:44. To avoid any possibility of confusion, let us
denote the critical exponents for the phase transition as a
function of Nf (at fixed overcritical coupling) with latin
letters, and the ones for the phase transition as a function of
the coupling (at fixed Nf <Ncr

f ) with greek letters. We find

that the latter phase transition is also of second order, the

critical behavior of which is determined by the RG flow in
the vicinity of the Thirring fixed point. We give our pre-
dictions for the universal critical exponents �, !, and ��

�

for various flavor numbers in Table II.
In addition to our quantitative results, it is one of our

most important observations that a simple partial boson-
ization à la Hubbard-Stratonovich is not sufficient for
resolving the competition among the various channels. A
method to deal with this challenging problem is dynamical
bosonization, as detailed in Sec. VII. As there is already a
large variety of analytical as well as numerical studies on
the ð2þ 1Þd Thirring model in the literature—with partly
contradictory results—we finally perform a careful and
critical comparison between the literature and our work
in Sec. X.

II. CONDENSATION CHANNELS
AND FIERZ BASIS

Let us start by presenting our conventions for general
fermionic models in d ¼ 2þ 1 Euclidean dimensions with
local quartic self-interaction, being invariant under the full
symmetry of the noninteracting theory. We concentrate on
representations of the Dirac algebra as they occur naturally
in the language of effective theories describing electronic
interactions on graphene’s honeycomb lattice [34–40] and
in cuprates [56–61].
The models shall satisfy Osterwalder-Schrader positiv-

ity [62], requiring invariance of the action under general-
ized complex conjugation defined by c y :¼ i �c�3 and a
simultaneous reflection of the Euclidean time coordinate,
which we choose to be x3. For a detailed discussion of our
chiral conventions, see Refs. [63,64]. Consider the 4� 4
reducible representation

�� ¼ 0 �i��

i�� 0

 !
; � ¼ 1; 2; 3; (2)

of the Dirac algebra f��; ��g ¼ 2���, reminiscent of the

chiral representation in four dimensions. Here, f��g�¼1;2;3
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FIG. 2. Log plot of the dynamically generated renormalized
fermion mass �m2

R;f in units of the renormalized mass �m2
R;	 of a

radial bosonic excitation on top of the chiral condensate. Our
estimates for the critical flavor number, Ncr

f ’ 5:1 for a linear

regulator, is amended by an error bar (gray shaded area) obtained
by varying the regularization scheme (e.g., Ncr

f ’ 5:8 for the

sharp cutoff).
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FIG. 3. Order parameter (black dots) versus Ncr
f =Nf � 1 in a

double-log plot, showing very good compatibility with power-
law scaling behavior h’i / ðNcr

f =Nf � 1Þb. The slope of the

regression line (gray) is b ’ 0:44.
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denote the standard 2� 2 Pauli matrices. In this formula-
tion, the Dirac fermions thus have four components. There
are now two other 4� 4matrices, which anticommute with
all �� as well as with each other,

�4 ¼
0 12

12 0

 !
and

�5 ¼ �1�2�3�4 ¼
12 0

0 �12

 !
:

(3)

Together with

1 4; ��� :¼ i

2
½��; ��� ð�< �Þ; i���4;

i���5; �45 :¼ i�4�5;

(4)

these 16 matrices form a complete basis of the 4� 4 Dirac
algebra,

f�AgA¼1;...;16 ¼ f14; ��; �4; ���; i���4; i���5; �45; �5g:
(5)

The general fermionic Lagrangian compatible with Uð2NfÞ
chiral as well as C, P , and T discrete symmetry has the
form [10,11,36,49,50]

L ¼ �c ai6@c a þ �g1
2Nf

ðVÞ2 þ �g2
2Nf

ðSÞ2 þ �g3
2Nf

ðPÞ2

þ �g4
2Nf

ðAÞ2; (6)

with the bare couplings �g1;...;4 carrying an inverse mass

dimension, and with the flavor-singlet channels

ðVÞ2 :¼ ð �c a��c
aÞ2; ðPÞ2 :¼ ð �c a�45c

aÞ2; (7)

and the flavor-nonsinglet channels

ðSÞ2 :¼ ð �c ac bÞ2 � ð �c a�4c
bÞ2 � ð �c a�5c

bÞ2
þ ð �c a�45c

bÞ2; (8)

ðAÞ2 :¼ ð �c a��c
bÞ2 þ 1

2
ð �c a���c

bÞ2

� ð �c ai���4c
bÞ2 � ð �c ai���5c

bÞ2: (9)

Here, we have abbreviated ðc ac bÞ2 � c ac bc bc a, etc.
Nf denotes the number of four-component (reducible)
Dirac spinors, such that a; b ¼ 1; . . . ; Nf . By means of
the Fierz identities,

ðVÞ2 þ ðSÞ2 þ ðPÞ2 ¼ 0;

�4ðVÞ2 � 3ðSÞ2 þ ðAÞ2 ¼ 0;
(10)

any two four-fermi terms can be rewritten as a linear
combination of the remaining two. Put differently, by add-
ing a linear combination of Eqs. (10) with coefficients

i 2 R (in units of some inverse mass scale) to the
Lagrangian (6),

L ¼ �c ai6@c a þ 1

2Nf

ð �g1 þ 
1 � 4
2ÞðVÞ2

þ 1

2Nf

ð �g2 þ 
1 � 3
2ÞðSÞ2

þ 1

2Nf

ð �g3 þ 
1ÞðPÞ2 þ 1

2Nf

ð �g4 þ 
2ÞðAÞ2; (11)

the 
i are redundant parameters: in a full computation of
the functional integral, any physical quantity has to be
independent of 
i. This no longer necessarily remains
true once approximations are employed. A particular
example is given by mean-field theory, where this so-
called ‘‘Fierz ambiguity’’ or ‘‘mean-field ambiguity’’ can
have a sizable influence on the results, limiting its
quantitative reliability [65]. The ambiguity is absent in
the purely fermionic renormalization group equations
with momentum-independent couplings [49]. A solution
of the Fierz ambiguity using the functional RG in a par-
tially bosonized setting [66] requires dynamical bosoniza-
tion [67] as will become important below. An alternative
approach in the purely fermionic description employs a
new parametrization of the momentum structure of the
four-fermi couplings; see Ref. [68].
The particular choice of couplings �g and ~�g as used in

Ref. [49] is recovered for 
1 ¼ � �g2 � 3 �g4 and 
2 ¼ � �g4
and the definition

�g :¼ �g1 � �g2 þ �g4; (12)

~�g :¼ � �g2 þ �g3 � 3 �g4: (13)

The Thirring (vertical) axis in Fig. 1 corresponds to �g,
whereas the Gross-Neveu (horizontal) axis is associated
with ~�g (more precisely with their dimensionless counter-
parts). Upon choosing 
1 ¼ � �g3 and 
2 ¼ � �g4, the
Lagrangian reads

L ¼ �c ai6@c a � �gV
2Nf

ð �c a��c
aÞ2

þ �g�
4Nf

½ð �c ac bÞ2 � ð �c a�4c
bÞ2

� ð �c a�5c
bÞ2 þ ð �c a�45c

bÞ2�; (14)

where we have defined the new couplings

�g V :¼ � �g1 þ �g3 � 4 �g4 ¼ ~�g� �g; (15)

�g � :¼ 2ð �g2 � �g3 þ 3 �g4Þ ¼ �2~�g: (16)

This form is convenient in order to investigate the com-
petition between the vector ðVÞ2 and NJL-type ðSÞ2 channel
for Nf � 2. For Nf ¼ 1 one might however choose yet
another basis,

LUKAS JANSSEN AND HOLGER GIES PHYSICAL REVIEW D 86, 105007 (2012)

105007-4



LNf¼1 ¼ �c i6@c þ 2 �g1 � �g3 þ 3 �g4
4

ð �c��c Þ2

þ 2 �g2 � �g3 þ 3 �g4
4

� ½ð �c c Þ2 � ð �c�4c Þ2 � ð �c�5c Þ2�: (17)

The Dirac spinors can be projected onto their Weyl com-
ponents, using the projectors1

Pð45Þ
L=R ¼ 1

2
ð1� �45Þ ¼ 1

2

12 ð�iÞ12

i12 12

� �
; (18)

where the last equation holds for the representation (2) and
(3). This suggests the decomposition [10]

c a ¼ 1ffiffiffi
2

p �a þ �aþNf

ið�a � �aþNf Þ
� �

; (19)

�c a ¼ 1ffiffiffi
2

p ð ��a � ��aþNf ; ð�iÞð ��a þ ��aþNf ÞÞ; (20)

a ¼ 1; . . . ; Nf , with the definition of the Dirac adjoint ��
chosen such that �y :¼ i ���3 in agreement with c y :¼
i �c�3. In other words, we can trade the Nf flavors of four-
component spinors c for 2Nf flavors of two-component
spinors �. Therewith, the theory (14) can equivalently be
described using an irreducible representation by an action
consisting of 2Nf flavors of two-component Weyl spinors
��, �,

L ¼ ��ii6@�i � �gV
2Nf

ð ��i���
iÞ2 þ �g�

2Nf

ð ��i�jÞ2; (21)

where we have introduced the collective indices i, j, run-
ning over 2Nf flavors, i; j ¼ 1; . . . ; 2Nf . It is this represen-
tation in which the Uð2NfÞ symmetry is manifest,

Uð2NfÞ: �i �Uij�j; ��i � ��jðUyÞji; U2Uð2NfÞ:
(22)

Below, we use this formulation, allowing us to conven-
iently introduce collective low-energy degrees of freedom.

III. FUNCTIONAL RG APPROACH

The functional RG has become a standard method to
investigate strongly interacting field theories. In particular
for critical phenomena, it is a versatile tool yielding quan-
titatively accurate results in many cases. Conceptually, the
functional RG can be formulated in terms of a RG flow
equation for a generating functional. Among the various
formulations, the Wetterich equation [69] representing the

flow equation for the effective average action has become
the most widely used method owing to its flexibility,
numerical stability and direct applicability to physics
problems. For reviews see Refs. [70–76], and particularly
[77–79] for an emphasis on fermionic systems. Prominent
benchmark examples in three dimensions are bosonicOðNÞ
models [70,80,81] or the Gross-Neveu model [55,82,83].
The effective average action �k is a scale-dependent

variant of the standard generating functional for 1PI corre-
lation functions. The scale k denotes an IR regulator scale
separating the UV modes with momenta p2 > k2 which
have already been integrated out from the IR modes with
momenta p2 < k2 which still have to be averaged over. �k

is constructed in such a way that it can be related to the
microscopic bare action �k!� ! S� if k approaches the
UV cutoff scale �, while it approaches the standard full
effective action in the IR limit �k!0 ! �. The effective
average action obeys the Wetterich equation [69],

@t�k½�� ¼ 1

2
STr

0
@ @tRk

�ð2Þ
k ½�� þ Rk

1
A; @t � k

@

@k
; (23)

where the trace runs over all internal degrees of freedom
(flavor, spinor, momentum) as well as field degrees of
freedom. Here, the field � represents a collective field
variable including all bosonic or fermionic fields under
consideration. The denominator contains the second func-

tional derivative �ð2Þ
k ½�� with respect to the field � to-

gether with the regulator function Rk which can be thought
of as a momentum-dependent mass term.
Once the initial condition of the flow is fixed in terms of

the microscopic action S�, the exact solution of Eq. (23)
provides us with a RG trajectory of �k in the theory space
of action functionals, the end point at k ¼ 0 of which is the
exact effective action �.
As it is, in practice, difficult to find exact solutions, the

Wetterich equation can also be used to find approximate
solutions by means of systematic and consistent expansion
schemes of the effective action. While perturbation theory
constitutes one such expansion scheme, nonperturbative
schemes based on vertex or operator expansions are
equally legitimate and clearly superior at intermediate or
even strong coupling. For critical phenomena and the
analysis of long-range order, derivative expansions in
terms of the order-parameter fields have become a standard
tool yielding accurate results in many nontrivial examples.
In the present work, we will also use a truncation of the
effective action in the spirit of the derivative expansion.
However, as the chiral order parameter field is bosonic, the
derivative expansion has to be set up not only for the
microscopic fermionic fields as in Ref. [49], but requires
collective bosonic field variables, as introduced in the
next section. As a side remark we note that continuation
of the RG flow into regimes with broken symmetry can
also be achieved in purely fermionic descriptions without
Hubbard-Stratonovich transformation by inserting an

1We note that one could choose more adapted representations
in which �45 ¼ diagð12;�12Þ and thus the Weyl spinor �a

(�aþNf ) is simply given by the upper (lower) two components
of the Dirac spinor c a. The ‘‘graphene representation’’ [35,36]
is of this type.
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infinitesimally small symmetry-breaking component in the
initial action [84,85].

The aforementioned regulator function Rk is a to some
extent arbitrary function, satisfying a few conditions for
implementing a meaningful regularization [70,73,74].
Whereas exact solutions do not at all depend on the specific
choice of Rk, approximate solutions and even estimates of
universal (i.e., regularization scheme independent quanti-
ties) can depend on Rk. In the present work, wewill use this
variation of universal quantities as a function of Rk as an
estimate for the systematic error introduced by our approx-
imations. We consider results obtained for the linear regu-
lator as our best estimate, as it satisfies RG optimization
criteria [73,86]. By contrast, the sharp cutoff is known to
introduce strong regulator artifacts which we therefore use
to maximally span the error bar for our approximations.

IV. LOW-ENERGY DEGREES OF FREEDOM

The partition function of the theory defined by (21),

Z ¼
Z

D ��D� expð�SÞ; (24)

is in fact equivalent to the partition function of the
‘‘mesonic’’ theory of a ð2NfÞ � ð2NfÞ scalar matrix field
�ij and a vector field V�, coupling via a Yukawa-type

interaction to the fermions,

Z ¼ N
Z

D�D ��D�DV exp

�
�
�
��ii6@�i þ 1

2
�m2
��

ij�ji

þ 1

2
�m2
VV

2
� � �hVV� ��i���

i þ i �h� ��i�ij�j

��
; (25)

where i; j ¼ 1; . . . ; 2Nf . The equivalence can be seen by
multiplying Eq. (24) with appropriate Gaussian (Hubbard-
Stratonovich) factors,

1 ¼ N
Z

D� exp

�
� 1

2

�
�m��

ij þ i
�h�
�m�

��j�i

�

�
�
�m��

ji þ i
�h�
�m�

��i�j

��
; (26)

1 ¼ N
Z

DV exp

�
� 1

2

�
�mVV� �

�hV
�mV

��i���
i

�
2
�
; (27)

with some normalization constants N , not affecting any
expectation values. The scalar matrix field is Hermitian,
�y ¼ �, and the vector field V is real. The four-fermi
terms in Eq. (24) are then precisely canceled if the
constraints

�h2�

2 �m2
�

¼ �g�
2Nf

;
�h2V

2 �m2
V

¼ �gV
2Nf

; (28)

are imposed at the microscopic scale. From Eqs. (26) and
(27) we can read off the properties of the boson fields under
chiral transformations,

U ð2NfÞ: �ij � Uik�klðUyÞlj; V� � V�; (29)

U 2 Uð2NfÞ. The scalar matrix�may be decomposed into
a traceless part and its trace [87]

�ij :¼ �ij � �ij

2Nf

Tr�; ’ :¼ Tr�: (30)

The’ field is parity odd and can be attributed to the parity-
breaking channel ðPÞ � �c a�45c

a ¼ ��i�i. By contrast, a
vacuum expectation value of the traceless part � corre-
sponds to the dynamical breakdown of chiral symmetry,

h�iji � 0 , h �c ac ai ¼ h ��a�a � ��aþNf�aþNf i � 0;

(31)

a ¼ 1; . . . ; Nf , with the breaking pattern

U ð2NfÞ ! UðNfÞ 	 UðNfÞ: (32)

We can trade the ð2NfÞ � ð2NfÞ Hermitian traceless matrix
� for its independent components �
,

�ij ¼ ffiffiffi
2

p
�
ðt
Þij; (33)

i; j ¼ 1; . . . ; 2Nf , 
 ¼ 1; . . . ; ð2NfÞ2 � 1, where the t
 are
the generators of SUð2NfÞ in the fundamental representa-
tion, normalized so that Trðt
t�Þ ¼ �
�=2.

In the one-flavor case Nf ¼ 1 this formulation is equiva-
lent to a partial bosonization of the Fierz basis in the four-
spinor representation (17): the Hubbard-Stratonovich
transformation leads to the equivalent Yukawa-type theory
with three scalar modes ð�; �; 
Þ � ð �c c ; �c�4c ; �c�5c Þ
and a vector mode V� � �c��c with Lagrangian density

LNf¼1 ¼ �c i6@c þ 1

2
�m2
�ð�2 þ �2 þ 
2Þ

þ i �h� �c ð�þ i�4�þ i�5
Þc � �hVV�
�c��c :

(34)

From the discussion of the fermionic RG flow [49] we
expect that the long-range dynamics of this system is
dominated by the scalar NJL-type channel. For large
enough coupling �h2�= �m2

� we thus expect the scalar mode
to acquire a nonvanishing vacuum expectation value
(VEV), e.g., in the � direction, and the spectrum in the
broken phase consists of two massless Goldstone modes,
e.g., � and 
, and a massive radial mode �. The corre-
sponding critical behavior is an interesting problem by
itself: this system can be viewed as an effective low-energy
theory of spinless electrons on the honeycomb lattice and
thus as a simple model for suspended graphene [33]. It has
also been studied in the context of magnetic catalysis [88].
In the following, we will focus on the case Nf > 1 where a
true competition between the two channels (V) and (S) is
expected.
In contrast to the purely fermionic formulation [49], the

bosonized formulation presented here is well suitable to
quantitatively describe the spontaneous breaking of chiral
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symmetry. Loosely speaking, the bosonic fields�ij and V�

parametrize the possible formation of bound states of the
fermionic fields � ��i�j and � ��i���

i, respectively. The

corresponding critical phenomena of such a strongly cor-
related system require nonperturbative approximation
schemes. The functional renormalization group formulated
in terms of the Wetterich equation is such an appropriate
tool and has already shown its quantitative reliability in
other (2þ 1)-dimensional relativistic fermion systems, see
e.g., Refs. [55,82,83]. In the effective action we then have
to take into account also higher boson-boson interactions
generated through fluctuations, e.g.,

ðTr�2Þ2 ¼ ð�
�
Þ2; (35)

Tr�4 ¼ 1

2Nf

ð�
�
Þ2 þ 2d
��d����
������; (36)

where the d
��’s are the structure constants for the group

SUð2NfÞ. For Nf ¼ 1 the d
��’s vanish. For computational

reasons, we use the representation (25) for the case of
general Nf with scalar matrix field �ij having arbitrary
trace.

We parametrize the dynamics of the low-energy degrees
of freedom by an ansatz for the effective average action �k.
This ansatz corresponds to a systematic expansion of the
action in powers of the field gradients to second order.
Moreover, we simplify the discussion by considering in-
teractions only up to fourth order in the fields. Our ansatz
for the effective action then reads

�k ¼
Z
x

�
Z�;k ��

ii6@�i þ Z�;k

2
@��

ij@��
ji þUkð�Þ

þ ZV;k

4
V��V�� þ

�AV;k

2
ð@�V�Þ2 þ

�m2
V;k

2
V�V�

þ
��k
6
V�V�@�V� þ ��k

8
ðV�V�Þ2 þ ��k

4
V�V��

ij�ji

� �hV;kV� ��i���
i þ i �h�;k ��

i�ij�j

� �gV;k
2Nf

ð ��i���
iÞ2 þ �g�;k

2Nf

ð ��i�jÞ2
�
; (37)

where V�� :¼ @�V� � @�V� and i; j ¼ 1; . . . ; 2Nf . Ukð�Þ
describes an effective potential in the scalar sector. All
couplings in the effective action are understood to be scale
dependent, indicated by the index k. It is straightforward
to match this action exactly to the microscopic models
discussed above. For instance, by setting all bosonic
couplings to zero at the UV cutoff scale k ¼ �, we return
to the fermionic action (21). Alternatively, we can set the
fermionic couplings to zero, gV;�, g�;� ¼ 0, and choose

the compositeness conditions

Z�;k; ZV;k; �AV;k; ��k ! 0; for k ! �; (38)

which guarantee that the bosonic fields have no kinetic
term and are purely auxiliary at the high scale.

Furthermore, satisfying the constraints (28) and setting
the higher-order bosonic interactions to zero at k ! �
leads us to the Yukawa-type theory as given in Eq. (25).
This implements the Hubbard-Stratonovich transformation
at a fixed scale k ¼ � in the functional RG context. Of
course, as soon as we start integrating out modes, the
couplings set to zero at one scale can be generated at lower
scales due to fluctuations. Also the constraints (28) will
generally not be satisfied at lower scales. Whereas the
purely fermionic flow has been extensively discussed in
Ref. [49], we will now concentrate on the partially boson-
ized variants. We start with computing the RG flow in
Sec. VI for the fixed-field variables introduced above. As
the Hubbard-Stratonivich transformation demonstrates, the
effective action (37) contains some redundancy, as field
reparametrizations can trade various operators for one
another. In Sec. VII, we exploit this redundancy to intro-
duce scale-dependent fields that adjust the fermion-boson
couplings dynamically in order to effectively perform
Hubbard-Stratonovich transformations on each scale (dy-
namical bosonization). In the following, we will mostly
ignore the momentum-dependent terms in the vector chan-
nel, i.e., we will consider the pointlike limit

ZV;k ! 0; �AV;k ! 0; ��k ! 0; for all k: (39)

The beta functions will however be computed for general
ZV;k, �AV;k � 0 (but ��k ¼ 0).

V. SCALAR MASS SPECTRUM

Due to Uð2NfÞ symmetry, the effective potential Ukð�Þ
necessarily has to be a pure function of Uð2NfÞ-invariant
quantities. The Hermitian scalar matrix field can be diago-
nalized by a Uð2NfÞ rotation [cf. Eq. (29)],

� � U�Uy ¼

m̂1 0 . . . 0

0 m̂2 . . . 0

..

. . .
. ..

.

0 0 . . . m̂2Nf

0
BBBBBB@

1
CCCCCCA; (40)

with real eigenvalues m̂i. In a quartic approximationUkð�Þ
can then be parametrized in terms of the two invariants 	
and �,

	 ¼ 1

2
Tr�2 ¼ 1

2

X
i

m̂2
i ; (41)

� ¼ 1

2
Tr

�
1

2
�2 � 	

2Nf

�
2 ¼ 1

8

X
i

m̂4
i �

1

2

�P
i m̂i

4Nf

�
2
: (42)

At higher field orders the potential can depend on addi-
tional (suitably defined [89]) higher-order invariants con-
structed from ~�n � Trð�2=2� 	=2NfÞn for n � 3. We
expand the scalar potential about its k-dependent minimum
ð	0;k; �0;kÞ. In the symmetric (SYM) regime the potential is

minimal at the origin ð	0;k; �0;kÞ ¼ ð0; 0Þ, whereas in the
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chiral symmetry broken (�SB) regime we allow for a
nonvanishing VEV which we assume to be acquired along
the 	 direction, i.e., 	0;k > 0 and �0;k ¼ 0:

Ukð	;�Þ ¼
8<
: �m2

�;k	þ ��1;k

2 	2 þ ��2;k�; SYM regime;

��1;k

2 ð	�	0;kÞ2 þ ��2;k�; �SB regime:
(43)

If the potential solely depends on 	 and �, it is sufficient to
evaluate its flow equation in a two-dimensional subspace of
all possible scalar configurations. We consider the traceless
class, valid for Nf > 1,

ð�ijÞ ¼: m̂ diagð�;þ1; . . . ;þ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Nf�1 times

;��;�1; . . . ;�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Nf�1 times

Þ; (44)

where � � 1, m̂ 2 R. For any 	 and � with �=	2<
ðNf � 1Þ=4Nf , the parameters m̂ and � are given by

m̂2 ¼ 	

Nf

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nf

Nf � 1

�

	2

s �
; (45)

�2 ¼ 1þ Nf

0
@ 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nf

Nf�1
�
	2

q � 1

1
A: (46)

If the flow eventually chooses a vacuum configuration with
� ¼ 1 and m̂ > 0, the chiral symmetry is spontaneously
broken while parity symmetry remains preserved,

ð�ij
0 Þ ¼

	0

Nf

1 0

0 �1

 !
� 0

, h ��a�a � ��aþNf�aþNf i ¼ h �c ac ai � 0: (47)

For simplicity, we assume in the following that
@2Uk=@�

2 ¼ @2Uk=@	@� ¼ 0, which holds in the case of
the quartic approximation (43). The spectrum of the scalar
mass matrix �2Uk=���� for Nf > 1 is given in Table I.

For a vacuum configuration with � ¼ 1 we have
�0;k ¼ 0. In the SYM regime 	0;k ¼ 0, all modes are degen-

erate and have mass �m2
� ¼ @Uk=@	jð	;�Þ¼ð0;0Þ. In the �SB

regime with 	0;k > 0 and @Uk=@	jð	;�Þ¼ð	0;k;0Þ ¼0 we find

2Nf
2 massless scalar modes corresponding exactly to the

number of broken generators in the symmetry breaking
pattern

U ð2NfÞ ! UðNfÞ 	 UðNfÞ; (48)

in accordance with Goldstone’s theorem. Additionally, we
obtain one massive radial mode with �m2

	 ¼ 2	0;k@
2Uk=@	

2

and 2Nf
2 � 1 massive modes in � direction with

�m2
� ¼ ð	0;k=NfÞ@Uk=@�. Since ��=��j�0

¼ 0 we expect

the 2Nf
2 � 1 degeneracy of the masses �m2

� to be a general

result, holding also beyond our quartic approximation
(43), as long as no higher-order invariants �~�n become
important.

VI. PARTIALLY BOSONIZED RG FLOW

Next, we determine the flow of the model in a partially
bosonized description. This corresponds to start at the high
scale with the Hubbard-Stratonovich transformed action of
(25) and the compositeness condition (38). As is standard
in this type of truncation, higher-order fermionic interac-
tions are set to zero also on all lower scales.
We fix the standard RG invariance of field rescalings by

defining the renormalized fields as

~� ij :¼ Z1=2
�;k�

ij; ~�i :¼ Z1=2
�;k�

i; (49)

~V � :¼ Z1=2
V;kV�; ~��i :¼ Z1=2

�;k ��
i: (50)

The dimensionless effective potential for space-time di-
mension d then reads

uð~	; ~�Þ :¼ k�dUkðZ�1
�;kk

d�2 ~	; Z�2
�;kk

2ðd�2Þ~�Þ; (51)

where ~	 :¼ Z�;kk
2�d	 and ~� :¼ Z2

�;kk
2ð2�dÞ�, and the di-

mensionless renormalized couplings are

AV;k :¼ Z�1
V

�AV;k; � :¼ Z�1
�;kZ

�1
V;kk

d�4 ��k; (52)

TABLE I. Spectrum of the scalar mass matrix �2Uk=���� for @2Uk=@�
2 ¼ @2Uk=@	@� ¼ 0 and Nf > 1. Primes denote partial

derivatives with respect to 	, UðnÞ
k � @nUk=@	

n, and Uk;� � @Uk=@�. For m̂ � m̂ð	; �Þ and � � �ð	; �Þ see Eqs. (45) and (46).

Eigenvalue Degeneracy

U0
k þ m̂2

2 Uk;�½3�2 � 1þ 1��2

Nf
� 1

U0
k þ m̂2

4Nf
f4NfðNf � 1ÞU00

k þ ð4� NfÞUk;� þ ½4NfU
00
k þ ð3Nf � 4ÞUk;���2

� ½ð4NfðNf � 1ÞU00
k þ ðNf þ 2ÞUk;�Þ2 þ 2ð16Nf

2ðNf � 1ÞU002
k

� 4NfðNf þ 2Þð3Nf � 2ÞU00
kUk;� � ð3Nf

2 � 4Nf þ 4ÞU2
k;�Þ�2

þ ð4NfU
00
k þ ð3Nf � 2ÞUk;�Þ2�4�1=2g

1þ 1

U0
k þ m̂2

2 Uk;�
1�Nf

Nf
ð1� �2Þ 2

U0
k þ m̂2

2 Uk;�½�2 � �þ 1��2

Nf
� 4ðNf � 1Þ þ 4ðNf � 1Þ

U0
k þ m̂2

2 Uk;�½2þ 1��2

Nf
� 2Nf

2 � 4Nf þ 1

U0
k þ m̂2

2 Uk;�
1��2

Nf
2ðNf � 1Þ2
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m2
V
:¼ Z�1

V;kk
�2 �m2

V;k; h2� :¼ Z�1
�;kZ

�2
�;kk

d�4 �h2�;k; (53)

� :¼ Z�2
V;kk

d�4 ��k; h2V :¼ Z�1
V;kZ

�2
�;kk

d�4 �h2V;k: (54)

By evaluating the Wetterich equation (23) for a constant
scalar background field (44), we obtain the flow of the
dimensionless scalar potential

@tu ¼ �duþ ðd� 2þ ��Þ~	u0 þ ð2d� 4þ 2��Þ~�u;~�

þ 2vd

X2Nf

i¼1

‘ðBÞd0 ðm2
i ;��Þ þ 2vdd‘

ðBÞd
0 ðm2

V þ �~	;�VÞ

� 4vdd�½ðNf � 1Þ‘ðFÞd0 ð ~m2h2�;��Þ
þ ‘ðFÞd0 ð ~m2�2h2�;��Þ� (55)

with u � uð~	; ~�Þ, u0 � @u=@~	, u;~� � @u=@~� and

~m2 :¼ Z�;kk
2�dm̂2. The dimensionless scalar masses

m2
i � m2

i ð~	; ~�Þ can straightforwardly be deduced from
Table I. We have further defined the anomalous dimensions

��=�=V ¼ �@t lnZ�=�=V;k: (56)

The flow involves the threshold functions ‘ðB=FÞ0 ð. . .Þ, which
encode the details of the regularization scheme; their defi-
nitions and explicit forms for the linear and the sharp cutoff

are listed in the Appendix. We have abbreviated v�1
d ¼

2dþ1
d=2�ðd=2Þ, i.e., v�1
3 ¼ 8
2. As discussed above, we

work here with the two-component Weyl spinors such that

the dimension of the gamma matrices is d� ¼ 2. By suit-

able differentiation of Eq. (55) we obtain the flow of the
scalar couplings occurring in Eq. (43). In the SYM regime,

@tm
2
� ¼ @tu

0jð~	;~�Þ¼ð0;0Þ; (57)

@t�1 ¼ @tu
00jð~	;~�Þ¼ð0;0Þ; @t�2 ¼ @tu;~�jð~	;~�Þ¼ð0;0Þ; (58)

whereas in the �SB regime,

@t� ¼ � 1

�1

@tu
0jð~	;~�Þ¼ð�;0Þ; (59)

@t�1 ¼ @tu
00jð~	;~�Þ¼ð�;0Þ; @t�2 ¼ @tu;~�jð~	;~�Þ¼ð�;0Þ; (60)

with the dimensionless VEV � :¼ Z�;kk
2�d	0;k and the

abbreviations uðnÞ � @nu=@~	n and u;~� � @u=@~�.
Similarly, the flow equations for all other couplings

present in the effective action are straightforwardly
obtained by suitable projections of the Wetterich equation
(23). This amounts to a summation of all possible 1-loop
diagrams where the vertices are given by full (though
truncated) vertex functions and the inner lines correspond
to the full propagators. With the useful Mathematica pack-
age DoFun [90], the evaluation of the RG flow equation
can be automated easily. The beta function for the vector
mass reads

@tm
2
V ¼ ð�2þ �VÞm2

V � 2vdðdþ 2Þ‘ðBÞd1 ðm2
V þ ��;�VÞ�

� 2vd

�
2Nf

2‘ðBÞd1 ðu0;��Þ þ ð2Nf
2 � 1Þ‘ðBÞd1

�
u0 þ �

Nf

u;~�;��

�
þ ‘ðBÞd1 ðu0 þ 2�u00;��Þ

�
�

þ 8vdðd� 2Þd�Nf

d
‘ðFÞd1

�
�

Nf

h2�;��

�
h2V þ 16vdd�

d
�‘ðFÞd2

�
�

Nf

h2�;��

�
h2�h

2
V; (61)

with the derivatives of the potential uðnÞ and u;~� being evaluated at the minimum ð~	; ~�Þ ¼ ð�; 0Þ. In the symmetric regime
we have of course � ¼ 0. For the vector-vector interaction � and the vector-scalar interaction � we get

@t� ¼ ðd� 4þ 2�VÞ�þ 2vdðd2 þ 10dþ 12Þ
dþ 2

‘ðBÞd2 ðm2
V þ ��;�VÞ�2

þ 2vd

�
2Nf

2‘ðBÞd2 ðu0;��Þ þ ð2Nf
2 � 1Þ‘ðBÞd2

�
u0 þ �

Nf

u;~�;��

�
þ ‘ðBÞd2 ðu0 þ 2�u00;��Þ

�
�2

þ 16vdðd� 2Þð4� dÞd�Nf

dðdþ 2Þ ‘ðFÞd2

�
�

Nf

h2�;��

�
h4V þ 128vdð4� dÞd�

dðdþ 2Þ �‘ðFÞd3

�
�

Nf

h2�;��

�
h2�h

4
V

� 384vdd�
dðdþ 2ÞNf

�2‘ðFÞd4

�
�

Nf

h2�;��

�
h4�h

4
V; (62)
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@t�¼ðd�4þ��þ�VÞ�þ2ðdþ2Þvd‘
ðBÞd
2 ðm2

Vþ��;�VÞ��

þvd

��
2Nf

2þ1

Nf
2

u00 þ2Nf
2�1

2Nf
3

u;~�

��
2Nf

2‘ðBÞd2 ðu0;��Þþð2Nf
2�1Þ‘ðBÞd2

�
u0 þ �

Nf

u;~�;��

�
þ‘ðBÞd2 ðu0 þ2�u00;��Þ

�

þ 1

Nf

u;~�‘
ðBÞd
2

�
u0 þ �

Nf

u;~�;��

��
�þ2vd

Nf
2

�
2Nf

2‘ðBBÞd1;1 ðu0;m2
Vþ��;��;�VÞ

þð2Nf
2�1Þ‘ðBBÞd1;1

�
u0 þ �

Nf

u;~�;m
2
Vþ��;��;�V

�
þ‘ðBBÞd1;1 ðu0 þ2�u00;m2

Vþ��;��;�VÞ
�
�2

þ8vdð4�dÞd�
d

‘ðFÞd2

�
�

Nf

h2�;��

�
h2Vh

2
��

96vdd�
dNf

�‘ðFÞd3

�
�

Nf

h2�;��

�
h2Vh

4
�

�32vdð4�dÞd�
dNf

2
�2‘ðFÞd4

�
�

Nf

h2�;��

�
h2Vh

6
�: (63)

In the symmetric regime the flow of the Yukawa coupling h� is unambiguous. In the broken regime however the diverse
scalar modes in general can develop different couplings. We will focus on the Goldstone-mode coupling to the fermions,
which is expected to give the dominant contribution for aspects of criticality. However, this Goldstone-mode projection
may introduce artifacts deeply in the broken regime; see below. The flow equation reads

@th
2
�¼ðd�4þ��þ2��Þh2�þ

4vd

Nf

�
‘ðFBÞd1;1

�
�

Nf

h2�;u
0 þ �

Nf

u;~�;��;��

�
�‘ðFBÞd1;1

�
�

Nf

h2�;u
0 þ2�u00;��;��

��
h4�

þ8vd

Nf
2
�

�
2Nf

2u00‘ðFBÞd1;2

�
�

Nf

h2�;u
0;��;��

�
þðð2Nf

2�1Þu;~�þ2ðNf�1Þu00Þ‘ðFBBÞd1;1;1

�
�

Nf

h2�;u
0;u0 þ �

Nf

u;~�;��;��

�

þð2u00 þu;~�Þ‘ðFBBÞd1;1;1

�
�

Nf

h2�;u
0;u0 þ2�u00;��;��

��
h4��8vdd‘

ðFBÞd
1;1

�
�

Nf

h2�;m
2
Vþ��;��;�V

�
h2�h

2
V: (64)

For the flow of the fermion-vector coupling we find

@th
2
V ¼ ðd� 4þ �V þ 2��Þh2V � 4vdðd� 2Þ

dNf

�
2Nf

2‘ðFBÞd1;1

�
�

Nf

h2�; u
0;��; ��

�

þ ð2Nf
2 � 1Þ‘ðFBÞd1;1

�
�

Nf

h2�; u
0 þ �

Nf

u;~�;��; ��

�
þ ‘ðFBÞd1;1

�
�

Nf

h2�; u
0 þ 2�u00;��; ��

��
h2�h

2
V

� 8vd

dNf
2
�

�
2Nf

2‘ðFBÞd2;1

�
�

Nf

h2�; u
0;��; ��

�
þ ð2Nf

2 � 1Þ‘ðFBÞd2;1

�
�

Nf

h2�; u
0 þ �

Nf

u;~�;��; ��

�

þ ‘ðFBÞd2;1

�
�

Nf

h2�; u
0 þ 2�u00;��; ��

��
h4�h

2
V � 8vdðd� 2Þ2

d
‘ðFBÞd1;1

�
�

Nf

h2�;m
2
V þ ��;��; �V

�
h4V

� 16vdðd� 2Þ
dNf

�‘ðFBÞd2;1

�
2

n
�h2�;m

2
V þ ��;��; �V

�
h2�h

4
V; (65)

and the anomalous dimensions read

�� ¼ 8vdd�
d

mðFÞd
4

�
�

Nf

h2�;��

�
h2� þ 8vdd�

dNf

�mðFÞd
2

�
�

Nf

h2�;��

�
h4�

þ 16vd

dNf
2
�½Nf

2u002 þ ðNf � 1Þu2;~��mðBÞd
2;2 ðu0; u0 þ 2�u00;��Þ; (66)

�� ¼ 4vd

dNf

�
2Nf

2mðFBÞd
1;2

�
�

Nf

h2�; u
0;��; ��

�
þ ð2Nf

2 � 1ÞmðFBÞd
1;2

�
�

Nf

h2�; u
0 þ �

Nf

u;~�;��; ��

�

þmðFBÞd
1;2

�
�

Nf

h2�; u
0 þ 2�u00;��; ��

��
h2� � 8vdm

ðFBÞd
1;2

�
�

Nf

h2�;m
2
V þ ��;��; �V

�
h2V; (67)
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�V ¼ 16vdðd� 2Þd�Nf

d
mðFÞd

4

�
�

Nf

h2�;��

�
h2V

þ 16vdd��m
ðFÞd
2

�
�

Nf

h2�;��

�
h2�h

2
V: (68)

Within our truncation we find that the flows of the two
possible vector-field kinetic terms are in fact equivalent,
i.e., @t �Ak ¼ @tZV;k. The vector propagator thus is diagonal,

GðVÞ
��;k ¼ ���=ðZV;kp

2 þ �m2
V;kÞ. The definitions of the

threshold functions ‘ðB=FÞd... ð. . .Þ and mðB=FÞd
... ð. . .Þ are listed

in the Appendix, together with their explicit forms for
linear and sharp cutoff. The flow equations have been
independently verified for the symmetric regime in local
potential approximation with the DoFun package [90].

As is the case in the fermionic formulation, we expect
the flow to be dominated by the vector channel for suffi-
ciently large flavor number Nf . Whether for large coupling
the V field then can develop a finite vacuum expectation
value is an interesting question on its own right: e.g.,
(2þ 1)-dimensional models exhibiting spontaneous break-
ing of Lorentz symmetry have been investigated in
Refs. [91–95]. By contrast, one could suspect that the
vector mass eventually flows to zero, triggering a close
resemblance of the strongly coupled Thirring model for
large flavor number to a U(1) gauge theory. This is in fact
the prediction of the large-Nf studies [21,96]. In the present
work, we are mainly interested in a possible scalar con-
densation corresponding to chiral symmetry breaking and
thus leave this issue for future studies.

As long as the vector mass m2
V does not become too

small it is then sufficient to consider the pointlike approxi-
mation in the vector channel, ZV;k ! 0, corresponding to

m2
V ! 1. In this limit, the beta functions no longer depend

on h2V and m2
V separately but only on the ratio gV ¼

Nfh
2
V=m

2
V , reflecting the RG invariance of field rescalings.

In the remaining flow equations the vector anomalous
dimension�V completely drops out. The flow of Z�;k given

by Eq. (67) is driven by a competition between a positive
scalar loop term / h2� and a negative vector loop term

/ h2V . In the pointlike approximation of the vector sector,
m2

V ! 1 and hence the vector loop term vanishes. For
reasons of consistency, we will therefore suppress also
the scalar loop term in Eq. (67), i.e., we treat the fermionic
sector in the leading-order derivative approximation
�� � 0. This is compatible with the observation that the

flow of the fermionic wave function renormalization in 3d
fermion systems at criticality is usually very small
[55,82,83,97–99]. As we shall see in Sec. VII, this assump-
tion is exactly fulfilled for large number of fermion flavors
Nf ! 1, where the fixed-point equations can be solved
analytically; in fact, this is the known result of the 1=Nf

expansion [20].
In comparison, the scalar anomalous dimension is non-

vanishing in this limit, and we thus expect the flow of Z�;k

to be crucial also for finite Nf . We note that similar ob-
servations have also been made in other Yukawa-type
systems in three dimensions, where a nonvanishing
�� �Oð1Þ is essential in order to find the correct critical

behavior [55,82,83,99]. Also the recent results for the
Nf ¼ 1 model [33] fit into this scheme.
For the remainder of this section, we omit the

vector-vector interaction � and the vector-scalar interac-
tion � for simplicity. We concentrate on the UV structure
only in order to compare it with our previous results in
the fermionic language. A full analysis of the IR properties
of the dynamically bosonized RG flow follows in
Sec. VII. For the search of a fixed point, we hence end
up with a system of six coupled nonlinear equations for
the five couplings in the SYM regime (m2

�, �1, �2,

h2�, Nfh
2
V=m

2
V) and the anomalous dimension ��. The

stability matrix @�i=@gjjg� at a fixed point g� ¼
ðm�2

� ; ��
1; �

�
2; h

�2
� ; Nfh

�2
V =m�2

V Þ has five eigenvalues, which

we refer to as ��1; . . . ;��5, in ascending order accord-
ing to their real part. In the large-Nf limit the fixed-point
structure can be mapped out analytically and we discover
precisely the known structure from the fermionic flow [49]:
the Thirring universality class is governed by a UV
fixed point having one IR relevant direction with critical
exponent �1 ¼ 1 and �i�2 < 0. It is located in the
pure fermion-vector sector, i.e., Nfh

�2
� =m�2

� ¼ 0 and

Nfh
�2
V =m�2

V > 0. Moreover, the fixed-point position exactly
coincides with the Thirring fixed point in the fermionic
RG [49],

g�� ¼ Nf

h�2�
m�2

�

¼ 0; for Nf ! 1; (69)

g�V ¼ Nf

h�2V
m�2

V

¼ 3
2

2‘ðFÞ1 ð0Þ ; for Nf ! 1; (70)

for the dimensionless renormalized fermionic couplings
g� ¼ Z�2

� kd�2 �g� and gV ¼ Z�2
� kd�2 �gV . For finite Nf we

discover deviations from the fermionic fixed-point struc-
ture. In Fig. 4, results from the bosonized description are
shown as black lines, and the corresponding fermionic
results from Ref. [49] are plotted as gray lines. These
deviations are not unexpected, since the fermionic descrip-
tion differs from the partially bosonized description in two
respects: first, the fluctuation-induced kinetic terms of the
bosons describe momentum dependencies of the fermionic
four-point functions. These momentum dependencies are
neglected in a fermionic derivative expansion used in
Ref. [49]. In addition to this advantage of the partially
bosonized description, there is also a disadvantage arising
from the fact that the fluctuations are no longer Fierz-
complete in the partially bosonized description even in
the pointlike limit, as will be demonstrated explicitly in
the next section.
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The question of which description is quantitatively more
accurate cannot be answered a priori. There are, however,
a couple of indications that the fermionic description is
more reliable at least in the UV: First, as already observed
in Ref. [49], the universal aspects of the UV fixed-point
structure in the fermionic language do not depend on the
choice of regulator, as it should be. If momentum depen-
dencies were important, we would expect a strong scheme
dependence of the universal observables on approximate
RG calculations. This UV stability of fermionic flows has
been observed in a variety of contexts [100,101]. Second,
the fixed-point properties in the fermionic and partially
bosonized description differ both quantitatively and quali-
tatively, as is visible in Fig. 4 for the Thirring fixed point.
Also, in the bosonized language, we find two further
interacting fixed points with two or more relevant direc-
tions (while there is only one fixed point with two relevant
directions in the fermionic description). In fact, we observe
a qualitative breakdown of the partially bosonized descrip-
tion for intermediate Nf : for Nf < 4 the additional fixed
points are located in the pure fermion-scalar sector
h2V=m

2
V¼0 and the pure fermion-vector sector h2�=m

2
�¼0,

respectively. Since @th
2
� / Oðh2�Þ and @th

2
V / Oðh2VÞ both

sectors are in fact invariant under RG transformations.
The Thirring fixed point, which for Nf < 4 has compo-

nents in both sectors, h2�=m
2
� > 0 and h2V=m

2
V > 0, hits the

fixed point in the pure fermion-vector sector once Nf ! 4.
The fixed-point position as a function of Nf is therefore
nonanalytic at Nf ¼ 4. For Nf > 4 the Thirring fixed point
stays in the fermion-vector subspace h2�=m

2
� ¼ 0, coincid-

ing with the fermionic-RG fixed point only for Nf ! 1. In
Fig. 4 we have plotted the critical exponents for the RG
relevant (�1) and the RG irrelevant direction (�2), show-
ing good agreement in the former case while in the latter
case, in particular for small Nf , large deviations occur.

To summarize: for large Nf 
 1, we find a qualitative
behavior which is consistent between the fermionic and
the partially bosonized description. The scalar sector

decouples for Nf 
 1 and only the fermion-vector inter-
actions Nfh

2
V=m

2
V ��g matter. For smaller Nf , the quan-

titative deviations between both descriptions increase and
particularly the fixed-point structure becomes rather differ-
ent, culminating at a nonanalyticity atNf ¼ 4. We interpret
this behavior as a breakdown of the partially bosonized
description arising from the Fierz incompleteness as shown
below. Incidentally, the agreement between both descrip-
tions improves again for smaller Nf , where the flow in both
cases is dominated by a strong fermion-scalar coupling
Nfh

2
�=m

2
� ��2~g. This single-channel dominance appears

to alleviate the problem of Fierz incompleteness. This
observation also lends support to the recent single-channel
analysis of the Nf ¼ 1 system [33].
We conclude that the ‘‘Fierz ambiguity’’ is a severe

problem for partially bosonized formulations of the
Thirring model precisely in the region where different
channels compete with each other. For the location of the
quantum phase transition in terms of a critical fermion
number, a solution of this problem is mandatory. For
applications of the Thirring model at a fixed given fermion
number, say Nf ¼ 2 for graphene, a solution of this prob-
lem may still exert a sizable quantitative influence. A
solution in terms of a dynamically bosonized RG flow
will be presented in the next section.

VII. DYNAMICALLY BOSONIZED RG FLOW

Although the bosonic partition function (25) is fully
equivalent to the original fermion theory (21), the corre-
sponding leading-order truncations of the effective action
are not. The reason is that the four-fermi couplings, though
absent in the bare action due to the Hubbard-Stratonovich
trick, are again generated by the box diagrams displayed in
Fig. 5. However, an inclusion of �g�;k and �gV;k in the

truncation (37) does not seem very appealing, as it intro-
duces a redundancy in the effective action. Instead, we
employ dynamical bosonization [67,73,74,102] as it has
already been successfully used to resolve mean-field
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N f h 2 m 2
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2 4 6 8 10 12
0.85
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FIG. 4. Left panel: Nonuniversal UV fixed-point values of the Thirring fixed point for the bosonic (black) and fermionic RG
flow (gray, compiled from Ref. [49]) for the linear regulator. In the bosonic language already for Nf � 4 the fixed point is located in the
pure fermion-vector sector, while in the fermionic language this is the case only for large Nf . Fermionic and bosonic descriptions
coincide only for Nf ! 1 but approach each other again for small Nf . Right panel: Largest critical exponent �1 and subleading
exponent �2 (inset).
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ambiguities [66] or implement particle-hole fluctuations in
ultracold fermi gases [103]. Here we use the simplified
approach2 proposed in Ref. [67]. The idea is to perform a
Hubbard-Stratonovich transformation at each RG step,
such that all newly generated four-fermi interactions are
again reexpressed in terms of the bosonic interactions. In
this way, the four-fermi couplings �g�;k and �gV;k vanish at

all scales. The bosonic fields then necessarily become scale
dependent. We use the following field redefinitions:

�ij
k�dk ¼ �ij

k � ið ��j�iÞ�!�;k; �� � �; (71)

V�;k�dk ¼ V�;k þ ð ��i���
iÞ�!V;k; V� � V; (72)

with to be determined functions !�=V;k. Note that we

keep the fermion fields fixed. For scale-dependent bosonic
fields the flow equation for the effective average action is
modified,

@k�k½�k; Vk� ¼ @k�k½�k; Vk�j�k;Vk
þ
Z ��k½�k; Vk�

��ij
k

@k�
ij
k

þ
Z ��k½�k; Vk�

�V�;k

@kV�;k

¼ 1

2
STr

@kRk

�ð2Þ
k ½�k; Vk� þ Rk

þ i
Z ��k½�k; Vk�

��ij
k

ð ��j�iÞ@k!�;k

�
Z ��k½�k; Vk�

�V�;k

ð ��i���
iÞ@k!V;k; (73)

where the first term is evaluated for fixed fields and hence
leads to the standard flow of �k with �� and V� replaced

by �k and Vk, respectively [67]. We have suppressed the
additional dependence of �k on the fermion fields �� and �
for brevity. Projecting onto the boson couplings, we find
the beta functions

@tu ¼ @tuj�k;Vk
; @t�

2 ¼ @t�
2j�k;Vk

; (74)

@tm
2
V ¼ @tm

2
V j�k;Vk

; @th
2
� ¼ @th

2
�j�k;Vk

þ u0@t!�;k;

(75)

@t�
2 ¼ @t�

2j�k;Vk
; @th

2
V ¼ @th

2
V j�k;Vk

þm2
V@t!V;k;

(76)

i.e., the scale-dependent bosonization changes only the
flow of h2� and h2V and leaves the other beta functions in

the bosonic sector invariant. For the four-fermi couplings
we obtain

@tg� ¼ @tg�j�k;Vk
� h�@t!�;k; (77)

@tgV ¼ @tgV j�k;Vk
� hV@t!V;k: (78)

Choosing

@t!�;k �
�g�

h�
; @t!V;k �

�gV

hV
; (79)

where �g�
:¼ @tg�j�k;Vk

, �gV
:¼ @tgV j�k;Vk

, establishes

that gV;k and g�;k vanish at all scales, if absent at the UV

scale k ¼ �. The beta functions �g� and �gV are straight-

forwardly obtained by suitable projections of the box dia-
grams in Fig. 5,

FIG. 5. Box diagrams contributing to the flow of g� and gV . Solid lines are fermions, dashed lines are scalar fields, and wiggly lines

vector fields. Doubled inner lines denote full propagators Gk ¼ ð�ð2Þ
k;0 þ RkÞ�1.

2This approach follows from an approximation to an exact
equation [73] where the neglected terms are parametrically
suppressed for the present application [74].
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�g�=V
¼ 4vda

ð1Þ
�=V

�
2Nf

2‘ðFBÞd1;2

�
�

Nf

h2�; u
0;��; ��

�
þ ð2Nf

2 � 1Þ‘ðFBÞd1;2

�
�

Nf

h2�; u
0 þ �

Nf

u;~�;��; ��

�

þ ‘ðFBÞd1;2

�
�

Nf

h2�; u
0 þ 2�u00;��; ��

��
h4� þ 4vda

ð2Þ
�=V‘

ðFBÞd
1;2

�
�

Nf

h2�;m
2
V þ ��;��; �V

�
h4V

þ 4vda
ð3Þ
�=V

�
2Nf

2‘ðFBBÞd1;1;1

�
�

Nf

h2�; u
0; m2

V ;��; ��

�
þ ð2Nf

2 � 1Þ‘ðFBBÞd1;1;1

�
�

Nf

h2�; u
0 þ �

Nf

u;~�; m
2
V ;��; ��

�

þ ‘ðFBBÞd1;1;1

�
�

Nf

h2�; u
0 þ 2�u00; m2

V ;��; ��

��
h2�h

2
V (80)

with to be determined (possibly Nf-dependent) constants

aðiÞ�=V . In the �SB regime the fermions couple also to the

expectation value � and there are more terms

��‘ðFBÞd2;2 ð�h2�=Nf ; . . .Þh4�=Vh
2
�. They are suppressed for

small � � 1 and bounded from above for large � 
 1

since �‘ðFBÞd2;2 ð. . .Þ � �=ð1þ �h�=NfÞ � ‘ðFBÞd1;2 ð. . .Þ. We ex-

pect that such terms do not take a significant influence on
the flow. For simplicity, wewill omit them in the following.
Instead of evaluating the diagrams in Fig. 5 explicitly, we

can determine the aðiÞ�=V by taking advantage of the fact

[66,67] that the dynamically bosonized flow in the point-
like limit ZV;k ! 0 and Z�;k ! 0 exactly coincides with

the fermionic flow computed in [49],

@t

�
Nf

h2�

m2
�

�
� �2@t~gj�k;Vk

; (81)

@t

�
Nf

h2V
m2

V

�
� @tð~g� gÞj�k;Vk

: (82)

This fixes aðiÞ�=V uniquely and establishes an exact mapping

of the fermionic fixed-point structure [49] onto the boson-
ized language in the pointlike limit. Beyond the pointlike
approximation, the bosonized RG permits us to reliably run
toward and into the �SB regime, allowing us to predict the
desired IR values of, for instance, fermion mass or order
parameter as a function of Nf .

VIII. UV STRUCTURE AND FIXED POINTS

A. Large-Nf limit

In the limit of infinite flavor number Nf ! 1, the flow
equations simplify considerably. For the dynamically
bosonized flow in the symmetric regime we have

@t

�m2
�

Nf
2

�
¼ ð�2þ ��Þ

�m2
�

Nf
2

�
; (83)

@tm
2
V ¼ ð�2þ �VÞm2

V þ 2

3
2
‘ðFÞ1 ð0;��ÞðNfh

2
VÞ; (84)

@tðNf�1Þ ¼ ð�1þ 2��ÞðNf�1Þ � 1


2
‘ðFÞ2 ð0;��Þh4�; (85)

@t�2 ¼ ð�1þ 2��Þ�2 � 2


2
‘ðFÞ2 ð0;��Þh4�; (86)

@tðNf�Þ ¼ ð�1þ 2�VÞðNf�Þ þ 4

15
2
‘ðFÞ2 ð0;��ÞðNfh

2
VÞ2;
(87)

@tðNf�Þ ¼ ð�1þ �� þ �VÞðNf�Þ
þ 2

3
2
‘ðFÞ2 ð0;��ÞðNfh

2
VÞh2�; (88)

@th
2
� ¼ ð�1þ �� þ 2��Þh2�

� 4


2

�m2
�

Nf
2

�
‘ðFBÞ1;2 ð0; m2

V ;��; �VÞðNfh
2
VÞ2; (89)

@tðNfh
2
VÞ ¼ ð�1þ �V þ 2��ÞðNfh

2
VÞ; (90)

�� ¼ 2

3
2
mðFÞ

4 ð0;��Þh2�; (91)

�V ¼ 4

3
2
mðFÞ

4 ð0;��ÞðNfh
2
VÞ; (92)

�� ¼ 0; (93)

where we have multiplied the flow equations with suitable
factors of Nf in order to simplify the large-Nf counting of
orders. Hence, in this limit the fermion wave function
renormalization does not flow, �� ¼ �@t lnZ�;k � 0,

whereas the flow of the bosonic wave function renormal-
izations is nonzero.
Let us search for fixed points: assuming a fixed-point

value m�2
� � 0, we are forced to conclude from Eq. (83)

that the scalar anomalous dimension at the fixed point
obeys ��

� ¼ 2. Similarly, Eq. (90) requires for an interact-

ing fixed point with h�2V � 0 for the vector anomalous
dimension ��

V ¼ 1. In fact, this is the large-Nf result found
in Ref. [20]. With these values of the anomalous dimen-
sions, the full set of fixed-point values can be computed
analytically; see Table II.
At this point, it may be worthwhile to make a few

comments. For taking the limit Nf ! 1, we have implic-
itly assumed a specificNf scaling of the couplings, defining
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the corresponding ’t Hooft couplings. Since all rescaled
couplings acquire finite (in particular nonzero) fixed-point
values, the corresponding rescalings are self-consistent and
the large-Nf limit is well defined. For the original four-
fermi couplings g� ¼ Nfh

2
�=m

2
� and gV ¼ Nfh

2
V=m

2
V this

implies the large-Nf scaling g� ¼ Oð1=NfÞ and gV ¼
Oð1Þ, already known from the fermionic flow [49]. In
fact, the fixed-point positions of g� and gV for the dynami-

cally bosonized flow in the large-Nf limit and fermionic
flow exactly coincide, provided the same regulator is em-
ployed. We note, however, that the equivalence in general
does not hold for the flow beyond the fixed-point regime,
since kinetic terms of the bosonic fields are generated
during the flow according to their finite anomalous dimen-
sions. For instance, the large anomalous dimension ��

� ¼
2 indicates a rapid flow of the scalar kinetic term.

Consider the second contribution to the beta function of
the scalar-fermion coupling h2� in Eq. (89), being propor-

tional to m2
�. This is exactly the contribution from the

diagrams in Fig. 5, i.e., the large-Nf reminiscence of the
scale-dependent Hubbard-Stratonovich transformation.
Without this contribution, the large-Nf fixed-point equa-
tions cannot be solved with finite couplings. In other
words, dynamical bosonization is crucial to finding the
correct large-Nf behavior in the scalar sector in the present
model. We have already seen an indication for this in
Sec. VI, where the scalar sector completely decoupled
for Nf � 4 using only standard partial bosonization.

For the given set of integer anomalous dimensions, the
large-Nf fixed-point values for the vector-vector coupling
� and the vector-scalar coupling � are in fact negative. We
attribute this to the fact that we neglected the momentum-
dependent contribution / ��k in Eq. (37) as well as higher-
order terms in the effective potential. In any case, in the

large-Nf limit� and � do not feed back into the flow of the
remaining couplings. For consistency, we again evaluate in
what follows the flow equations for a pointlike current-
current interaction, ZV;k ! 0, and neglect the vector-vector
self-interactions � and vector-scalar interactions �, analo-
gous to Sec. VI. This is expected to be a reasonable
approximation as long as the vector mass m2

V does not
become too small.

B. Fixed-point structure at general Nf

Beyond the large-Nf limit, we evaluate the fixed-point
equations numerically, both for linear and sharp cutoff.
Again, we recover the known UV structure: there is one
interacting Thirring fixed point for all 1<Nf 
 1, having
only one IR relevant direction. [Recall that the caseNf ¼ 1
has been explicitly excluded in the derivation of our
bosonic flow equations; cf. Eq. (44).] For small Nf the
Thirring fixed point is located close to the pure scalar
channel subspace, whereas for Nf ! 1 the scalar-fermion
coupling becomes negligible. As we have also observed in
the partially bosonized formulation in Sec. VI, the fixed-
point position in this limit again exactly coincides with the
fermionic fixed point. For small Nf , we find deviations
from the fermionic UV structure. As the dynamically
bosonized flow and the fermionic one have an identical
fixed-point structure in the pointlike limit (by construc-
tion), these deviations are fully related to the momentum
dependence in the bosonized scalar channel. The latter is
particularly important once the scalar coupling becomes
long range, i.e., for small �m2

�. In other words, the bosons

dynamically become fluctuating relevant degrees of free-
dom. We depict the fixed-point positions for the linear
regulator in Fig. 6, together with the corresponding values
for the fermionic flow compiled from Ref. [49] for

TABLE II. Left columns: Nonuniversal fixed-point couplings for the linear regulator and various flavor numbers Nf . Right columns:
Universal correlation length exponent �, subleading exponent !, and anomalous dimension ��

�. Rough error estimates arise from the

comparison to sharp cutoff results. For Nf * 6 we do not expect chiral symmetry breaking due to vector-channel domination, such that
the critical exponents of the Thirring fixed point do not have the same physical meaning for the long-range physics; see Sec. IX. This is
indicated by the bracketed numbers in the right columns. For Nf ¼ 2, a meaningful estimate of the systematic error for � is not
available due to sharp-cutoff artifacts; see text.

Nf m2
�=Nf

2 Nf�1 �2 h�2� Nfh
�2
V =m�2

V � ! ��
�

2 0.132 5.85 24.68 15.96 1.99 2.4(?) 1.0(2) 1.4(7)

3 0.265 16.94 39.84 19.36 6.11 1.22(2) 1.5(2) 1.6(3)

4 0.271 20.95 44.45 20.61 8.83 1.084(5) 1.7(1) 1.7(2)

5 0.266 22.70 46.55 21.41 10.83 1.043(8) 1.74(7) 1.8(1)

6 0.259 23.56 47.70 21.95 12.35 [1.026(6)] [1.80(4)] [1.85(8)]

8 0.247 24.34 48.86 22.59 14.44 [1.012(3)] [1.84(2)] [1.91(5)]

10 0.238 24.68 49.42 22.93 15.79 [1.007(2)] [1.79(4)] [1.94(3)]

12 0.231 24.85 49.73 23.14 16.74 [1.004(9)] [1.72(4)] [1.95(2)]

25 0.209 25.16 50.33 23.54 19.39 [1.0006(1)] [1.423(1)] [1.988(2)]

100 0.187 25.26 50.52 23.68 21.45 [1.0000(1)] [1.126(1)] [1.999(1)]

1
8
45

64
2

25
128
2

25
12
2

5
9
2

4 [1] [1] [2]’ 0:178 ’ 25:27 ’ 50:53 ’ 23:69 ’ 22:21
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comparison. Explicit values are given in Table II. If the
fixed point corresponds to a second-order phase transition
as we expect it for small Nf , the critical behavior is
uniquely determined by the fixed-point regime, where the
flow can be linearized. Let g ¼ ðm2

�; �1; �2; h
2
�; Nfh

2
V=m

2
VÞ

denote the vector of our (generalized) couplings. The
scaling of the correlation length in the vicinity of the
critical point is

� ¼ �m�1
�;R / j�gj��ð1þ b�j�gj!� þ � � �Þ; (94)

with �g :¼ g� � gcr measuring the distance from critical-
ity (‘‘reduced temperature’’) and the renormalized scalar
mass �m2

�;R ¼ limk!0m
2
�k

2. By again denoting the smallest

eigenvalue (being negative) of the stability matrix
@�i=@gjjg� with ��1 < 0 and the second smallest eigen-

value (being positive) with ��2 > 0 we have for the
correlation length exponent and the first subleading expo-
nent [104]

� ¼ 1=�1 > 0; and ! ¼ ��2 > 0: (95)

At the critical point �g ¼ 0, where the correlation length
diverges, the asymptotic behavior of the scalar two-point
function is determined by the anomalous dimension
��
� ¼ ��ðg�Þ as

h’ðxÞ’ð0Þi / 1

jxjd�2þ��
�

: (96)

The critical exponents extracted from the flow in the fixed-
point regime are shown in Figs. 7 and 8. We expect the
values, as listed in Table II, obtained with the linear regu-
lator to represent our most accurate results and use the
difference to the sharp-cutoff results as a rough estimate on
the truncation-induced error. We find that the correlation-
length exponent is to a large extent regulator independent,
��=� & 1 . . . 2% for Nf * 2:1. Near Nf ¼ 2, the sharp-
cutoff results deviate from the linear regulator by up to a
factor of 2. We interpret this behavior as a large artifact of
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FIG. 6. Left panel: Nonuniversal UV fixed-point values of dynamically bosonized RG flow for the linear regulator. The couplings
have been multiplied with suitable Nf factors; for better visibility, the scalar mass has been multiplied with an additional factor 50.
Right panel: Comparison of dynamically bosonized RG (black) with fermionic RG (gray). The improvement due to dynamical
bosonization becomes obvious by comparing this plot with the left panel of Fig. 4.
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FIG. 7. Left panel: Correlation length exponent � extracted from the linearized flow in the fixed-point regime with linear (solid) and
sharp regulator (dashed). The difference (gray shaded band) serves as a rough error estimate. The critical exponent is to a large extent
independent of the regulator, while the uncertainty increases for Nf & 2, as shown in the inset. For increasing Nf it approaches rapidly
the fermionic result 1=�1 ¼ 1. Right panel: Corrections-to-scaling exponent !.
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the sharp cutoff and consider the result using the linear
regulator as our best estimate. For this particular case of
Nf ¼ 2, it is however difficult to estimate the systematic
error. As expected, slightly larger but controlled deviations
between linear and sharp cutoff occur for the anomalous
dimension and the corrections-to-scaling exponent,
���=��, �!=! & 10 . . . 15%. Explicit values are again

given in Table II. This hierarchy of accuracy is well known
from RG studies of scalar models based on the derivative
expansion [70,80,105].

IX. IR BEHAVIOR AND Nf-CONTROLLED
QUANTUM PHASE TRANSITION

A. Critical fermion number

If we start the flow for small Nf with initial UV cou-
plings close to the fixed point, we find that the scalar mass
eventually vanishes at some scale k�, indicating the spon-
taneous breakdown of chiral symmetry. In the following,
we will refer to k� as ‘‘�SB scale.’’ Continuing the flow for
k < k� in the �SB regime the fermions become massive
with renormalized mass �m2

R;f ¼ Nf
�1�h2k2 and the scalar

sector consists of one radial mode with renormalized mass
�m2
R;	 ¼ 2��1k

2, 2Nf
2 � 1 massive modes with �m2

R;� ¼
Nf

�1��2k
2, and 2Nf

2 massless Goldstone modes. In the

deep IR k ! 0, we expect all massive modes as well as
eventually the Goldstone modes to decouple, leading to IR
predictions for the mass spectrum.

However, our truncation is not able to resolve this de-
coupling, as all couplings among the different modes are
approximated by the same expansion coefficient of the
effective potential. In fact, we naively find that the dimen-
sionless parameters run into an attractive IR fixed point,
such that the dimensionful masses run into a maximum and
eventually decrease again for small k � k�; see Fig. 9.
This effect is a well-known artifact of our treatment of the
effective potential, as it artificially couples the Goldstone
modes to the flow of all other scalar operators. This prob-
lem can technically be solved by an adapted choice of field
coordinates [106]. Here, we follow a more immediate

strategy, and simply stop the flow before it enters the
artificial IR fixed-point regime. For our quantitative esti-
mates, we stop the flow at the maximum of the radial mass
�m2
R;	. We have checked that the following results to a large

extent do not depend on this choice. We note that the
critical behavior in terms of the exponents � and ��

�

remains, of course, unaffected by this, since it is solely
determined by the UV structure of the theory.
Once the physical scale has been set, for instance, by

measuring the value of the radial mass �m2
R;	, we can

compare the dynamically generated masses among differ-
ent Nf . We have already shown the renormalized fermion
mass �m2

R;f in units of the radial mass �m2
R;	 in Fig. 2. In

Fig. 10 we now depict the renormalized scalar mass �m2
R;� in

the same units. For increasing flavor number we observe
that both �m2

R;f and �m2
R;� decrease (apart from some inter-

esting nonmonotonic behavior of the fermion mass for
Nf � 3) and eventually vanish for some critical flavor
number Nf % Ncr

f . This is a clear and expected signature

for a quantum phase transition governed by flavor
number Nf .
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FIG. 8. Anomalous dimension �� at the fixed point, with
linear regulator (solid) and sharp regulator (dashed).
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FIG. 9. RG evolution of renormalized masses in �SB regime
for k < k� and Nf ¼ 2. We stop the flow when the radial mass
�m2
R;	 approaches its maximum (vertical line).
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FIG. 10. Scalar mass �m2
R;� in units of the radial mass �m2

R;	 on
logarithmic scale (linear cutoff). Gray shaded area: Estimates for
critical flavor number Ncr

f ’ 5:1 (linear cutoff) and 5.8 (sharp

cutoff).
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Directly at Nf ¼ Ncr
f we find that the vector-fermion

coupling Nfh
2
V=m

2
V diverges at the same time as the scalar

mass m2
�;k approaches zero, i.e., at the �SB scale k�. We

expect that this divergence is an artifact of our truncation
which will be stabilized by higher terms in the vector sector
[for instance, the terms / ��k, ��k, ��k in Eq. (37)]. Here, we
interpret the divergence as an indication for ‘‘vector-boson
dominance’’ in the IR, inhibiting �SB. If the divergence
were real, the model could exhibit dynamical Lorentz
symmetry breaking [91–95]. For larger Nf >Ncr

f we

observe the divergence already at higher scales k > k�,
inhibiting the flow to enter the �SB regime.

The value of Ncr
f can thus be obtained in two ways: First,

we observe for increasing Nf a sharp decrease of the
logarithm of the fermion mass once Nf % Ncr

f . Second,

we look for the largest Nf below which the vector-fermion
coupling Nfh

2
V=m

2
V remains finite for all scales in the

interval k 2 ½k�;��. Above this Nf , the vector-fermion
coupling diverges before the scalar mass m�;k approaches

zero. For the linear cutoff we find Ncr
f ’ 5:07 with the

former method and Ncr
f ’ 5:1 with the latter, agreeing

with each other on the level of numerical precision. For
the sharp cutoff, our truncation unfortunately does not
allow us to enter the �SB regime: we find �1;k� < 0 at

the �SB scale, indicating the requirement of higher terms
in the polynomial expansion of the effective potential (43).
This is in line with optimization considerations [73,86]: for
a nonoptimized regulator (as is the sharp cutoff) a higher
expansion order is needed to achieve similar predictive
power. For the scalar and fermion sectors, the linear regu-
lator by contrast satisfies standard optimization criteria
[73,86]. Nonetheless, also in the sharp-cutoff scheme, we
can determine the flavor number above which the vector-
fermion coupling diverges before m�;k ! 0. From this

criterion, we find Ncr
f ’ 5:8. Identifying the cutoff depen-

dence with a rough error estimate yields our result for the
critical flavor number

Ncr
f ’ 5:1ð7Þ: (97)

This prediction represents one of the central results of this
work.

B. Thirring universality class

In the fermionic RG [49], we have shown that the
‘‘pure’’ Thirring model, defined by a microscopic action
including only current-current interaction, is in the univer-
sality class defined by the interacting Thirring fixed point
with one IR relevant coupling. Of course, this statement
ultimately only holds for our specific regularization
scheme, since fixed-point positions themselves are nonun-
iversal. In the bosonized formulation developed here we
can further explore the universality class of the pure
Thirring model by starting the flow with initial couplings

Z�1
� /m2

�;�
1; �i;��1 ði¼1;2Þ; h2�;��1; (98)

i.e., with a decoupled scalar sector. In our explicit compu-
tations we use Z�;� ¼ 10�6, m�;� ¼ 106, �i;� ¼ 0,

h2�;� ¼ 0. However, universality guarantees that our re-

sults are independent of the exact values for the initial
couplings as long as the system is governed by the corre-
sponding fixed point. With the functional RG flow, we can
explicitly verify universality. Figure 11 shows the RG
evolution of the dimensionless couplings for Nf ¼ 2 for
two different initial values of the vector-fermion coupling
gV ¼ Nfh

2
V=m

2
V just above and below the critical value gcr.

Though we start with a decoupled scalar sector, the scalar
couplings are rapidly generated by the RG flow, as already
known from the purely fermionic RG. For initial couplings
close to criticality, the flow runs from the pure Thirring
axis into the fixed-point regime, which is exactly given by
the Thirring fixed-point couplings in Table II; cf. Fig. 11.
Thus, the critical behavior of a conventionally defined pure
Thirring model without scalar channel in the bare action is
indeed given by the universality class of our Thirring fixed
point. For completeness, we show in Fig. 12 the critical
coupling gcr for which the flow approaches the Thirring
fixed point as a function of Nf , to be compared with
previous results in Ref. [49].3 As in the fermionic calcu-
lation, we do not find a sharp decrease of 1=gcr as
Nf % Ncr

f . This observation is in agreement with lattice

simulations [27–31] but disagrees with earlier analytical
estimates [24,25]. A rapid variation of 1=gcr would have
been expected if the many-flavor quantum phase transition
was induced by a change in the UV fixed-point structure.
This, however, is not the case in the Thirring model where
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FIG. 11. RG evolution of dimensionless couplings for the
‘‘pure’’ Thirring model with Nf ¼ 2 and initial couplings
m2

�;� ¼ 106, �i;� ¼ 0, h2�;� ¼ 0, and two different gV;� ¼
Nfh

2
V;�=m

2
V;� just above (black) and below (gray) gcr. Near

lnðk=�Þ ’ �5 the flow approaches the UV fixed-point regime.
The black solid line corresponds to m2

� above and � below the

�SB scale lnðk�=�Þ ’ �15, respectively.

3We use the opportunity to point out that the values for 1=gcr
plotted in Ref. [49] include an erroneous factor of 2. This has
already been corrected in Ref. [50].
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the transition is rather due to a competition between the
vector and scalar channel. Since the Thirring fixed point is
present for all Nf , we can still determine a ‘‘would-be’’
critical coupling gcr even for Nf >Ncr

f (dashed line in

Fig. 12).
In order to establish the connection between the negative

eigenvalues of the stability matrix �i and the critical
exponents in Eq. (95) we have assumed that the propagator
has a scaling form, from which one infers the hyperscaling
relations [104]

� ¼ �

2
ðd� 2þ ��

�Þ; � ¼ �ð2� ��
�Þ: (99)

The hyperscaling assumption can in fact explicitly be
checked by computing directly the critical behavior of
the order parameter h’i / j�gj�, inverse susceptibility
(unrenormalized mass) ��1 ¼ �m2

	 ¼ Z� �m2
R;	 / j�gj�,

and inverse correlation length (renormalized mass) ��1 ¼
�mR;	 / j�gj�. As a function of the distance to criticality,

we indeed find that the expected linear behavior on a

double-log plot is excellently fulfilled; see Fig. 13 for the
case of the pure Thirring model (initially decoupled scalar
sector) and Nf ¼ 2. The slopes of the regression lines for
initial couplings on the pure Thirring axis are (for Nf ¼ 2)

� ¼ 2:769; � ¼ 1:553; � ¼ 2:364; (100)

whereas if we start the flow directly near the Thirring fixed
point, we obtain

� ¼ 2:771; � ¼ 1:539; � ¼ 2:361: (101)

The values should be compared with the critical exponents
obtained from the linearized flow in the Thirring fixed-
point regime (see Table II), together with the hyperscaling
assumption:

�

2
ðd�2þ��

�Þ¼2:771; �ð2���
�Þ¼1:539; �¼2:360;

(102)

in excellent agreement with Eqs. (101). However, hyper-
scaling is to a large extent also fulfilled for the conven-
tionally defined pure Thirring model; cf. Eqs. (100) with
(102). We attribute the small (but significant) hyperscaling
violations to the presence of other fixed points: in particu-
lar the critical behavior could be influenced by fixed point
B, which (at least in the pointlike limit—see Fig. 1) is
located in the broader vicinity of the pure Thirring axis and
potentially describes a different universality class. We will
further elaborate on this aspect in the following section; see
also Fig. 14.

X. COMPARISON WITH PREVIOUS STUDIES

The diversity of results for the 3d Thirring model ob-
tained so far in the literature calls for a careful comparison
of our findings with those derived with other techniques.
In hindsight, this variety of partly contradictory results
arises from the somewhat unexpected complexity of the
model. We have identified several sources for this

1 2 3 4 5 6
0.00

0.01

0.02

0.03

0.04

0.05

0.06

N f

1
g

cr

FIG. 12. Critical coupling 1=gcr for the pure Thirring model
with initially decoupled scalar sector as a function of Nf . For
Nf * 5:1 (gray area) we find no signature of chiral symmetry
breaking (dashed line).
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FIG. 13. Critical behavior of pure Thirring model with Nf ¼ 2: order parameter h’i / j�gj� (left panel) and inverse susceptibility
��1 ¼ �m2

	 / j�gj� (right panel) in double-log plot, showing the expected power law. The slope of the regression line (gray dashed) is

� ¼ 2:769 and � ¼ 1:553, respectively. Left inset: For very large coupling on the pure Thirring axis the order parameter decreases
again; see Sec. X.
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complexity: (i) an involved UV fixed-point structure (three
instead of just one UV fixed point with the Thirring fixed
point being off the pure Thirring axis), (ii) a complex
bound state spectrum giving rise to effective vector and
scalar degrees of freedom, and (iii) a symmetry-breaking
mechanism with competing vector and scalar channels. All
issues need to be taken care of in order to arrive at con-
clusive answers.

Let us start with a comparison with the large-Nf expan-
sion. With standard large-Nf techniques, renormalizability
of the pure 3d Thirring model with only current-current
interaction / gVð �c��c Þ2 (i.e., without scalar channel)

has been shown to hold if and only if a regularization
scheme is employed in which the vector field propagator
remains purely transverse on the quantum level, defining
an interacting UV fixed point [19–22,107]. In Ref. [20], it
is found to leading order in 1=Nf (in terms of our notation)

@tgV ¼ gV

�
1� gV

g�V

�
; �V ¼ gV

g�V
; �� ¼ Oð1=NfÞ;

(103)

which is exactly the large-Nf behavior of our flow
equations (83)–(93): if the fixed point corresponds to a
second-order phase transition, the corresponding
correlation-length exponent is � ¼ 1=� ¼ 1 where
� ¼ �@�=@gV jg�V and the vector field anomalous dimen-

sion is �Vðg�VÞ ¼ 1.
The seeming resemblance to gauge theories has been

taken even more seriously: Yang [107] claims that the
partially bosonized Thirring model is equivalent to (a
gauge-fixed version of) a U(1) gauge theory, in which
the mass of the vector boson is generated by the Higgs
mechanism. Insisting on the gauge symmetry, it is there-
with argued that the coupling gV cannot be renormalized.
Consequently, the beta function would be vanishing for any
value of gV [21,28].

From our functional RG viewpoint, nonperturbative re-
normalizability relies on neither a specific regularization
scheme nor a resemblance or equivalence to a gauge
theory. All that is needed is a non-Gaussian UV fixed point
(or a line of fixed points) with suitable properties to render
the system asymptotically safe [51,52]. We observe such a
fixed point both in the purely fermionic description which
does not have a gauge symmetry as well as in the boson-
ized language where the vector mass term breaks gauge
symmetry manifestly. Still, it is interesting to see that our
large-Nf flow equations (83)–(93), resemble that of a
gauge-fixed theory: the vector mass does not feed back
into the vector sector and the second kinetic term (� �AV;k)

looks like a gauge-fixing term that is even locked to the
kinetic term in our truncation.

Whether or not the RG flow is eventually attracted by a
gauge-invariant theory in the long-range limit still remains
an open question. In our approach, this could be investi-
gated by measuring the flow with respect to the hyperplane

of actions in theory space that satisfy the (regulator-
modified) Ward-Takahashi identity [73,74,108]. We be-
lieve, however, that this question is unrelated to that of
chiral symmetry breaking, as the latter occurs in the chiral
scalar sector which does not participate in the local
symmetry.
The formulation of the Thirring model as a gauge theory

is also at the basis of the analytical studies [22–25], which
attempt to solve the Dyson-Schwinger equations (DSE) by
setting the full vector propagator to its large-Nf form, and
the full vertex to the bare vertex (known as ladder approxi-
mation). All such studies observe the existence of a non-
trivial solution corresponding to chiral symmetry breaking
for small values of Nf <Ncr

f . However, their predictions

for the value of Ncr
f and the critical behavior of fermion

mass and chiral order parameter differ significantly:
Ref. [22] reports Ncr

f ’ 3:24. Hong and Park [23] claim

that symmetry breaking should persist for any value of Nf ,
i.e., Ncr

f ¼ 1. In Ref. [24], an essentially singular behavior

close to Ncr
f ’ 4:32 is found,

�mR;f / �exp

�
� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ncr
f =Nf � 1

p �
; for Nf <Ncr

f ; (104)

that is to say, a phase transition of infinite order. Such an
essential scaling law is known from a number of gauge
theories, such as quenched QED4 [42,109,110] and QED3

withNf fermion flavors [6–8,15,18], as well as many-flavor
QCD4 [42,43,111–113]. In this context, the scaling law is
often referred to as Miransky scaling; the scenario has also
been termed a (pseudo)conformal phase transition [42].
Essential scaling has also been found in two-dimensional
statistical systems, such as the XY model, where the
scenario is called a Kosterlitz-Thouless phase transition
[114–117]. As has been pointed out recently [79,118], the
general mechanism responsible for essential scaling is the
merger of two RG fixed points [100,119,120] and their
subsequent disappearance into the complex plane, or a
running of a fixed point off to zero or infinite coupling.
By contrast, we find that the UV Thirring fixed point
persists for any Nf; hence there is no basis for and con-
sequently no observation of essential scaling in our work.
By constructing an effective potential for the chiral order

parameter h’i / h �c c i, to leading order in 1=Nf , Kondo
[26] reports a second-order phase transition,

h’i /
�
Ncr

f

Nf

� 1

�
b
; for Nf <Ncr

f ; (105)

where for d ¼ 3 he finds the critical exponent b ¼ 1
and Ncr

f ¼ 2. We have been motivated by these consider-

ations to attempt a fit to our results for order parameter
and fermion mass. In Fig. 3, we depict h’i= �mR;	 versus the

combination ðNcr
f =NfÞ � 1 in a double-log plot. In fact, the

behavior is very well compatible with a power-law scaling
corresponding to a second-order phase transition at
Ncr

f . However, the linear fit (gray line) gives b ’ 0:44 in
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qualitative agreement with the Kondo scenario [26] but a
quantitatively differing estimate for the exponent. We em-
phasize that for a quantum phase transition atNcr

f occurring

due to competing condensation channels, the correspond-
ing critical exponents do not have to coincide with those
determining the phase transition with the coupling as con-
trol parameter. In particular, there is no reason that �jNcr

f

and b should coincide. In any case, a fit to an essential
scaling behavior analogous to (104) both for order parame-
ter and fermion mass is much less successful and is not
supported by our results.

Chiral symmetry breaking in the pure 3d Thirring model
has also been investigated on the lattice [27–32]. One
extensive study [31] finds Ncr

f ¼ 6:6ð1Þ, the bare value of

which we consider as still consistent with our result; see
below. Moreover, the study also analyzes the critical be-
havior close to the phase transition, both for fixedNf <Ncr

f

as a function of the bare coupling g and for fixed g > gcr as
a function of Nf . In the latter case, the data are fitted to an
equation of state of the form

m ¼ A½ðNf � Ncr
f Þ þ CL�1

n�h �c c ip þ Bh �c c ipþ1
b; (106)

with m being the bare fermion mass (explicit symmetry-
breaking parameter), L the linear extent of the system, and
A, B, C some constants. Close to criticality in the chiral
(m ! 0) and thermodynamic (L ! 1) limit, Eq. (106) in
fact reduces to the Kondo formula (105). It is interesting to
notice that the fit reported in Ref. [31] yields b ’ 0:37,
which could be considered as roughly compatible with our
result b ’ 0:44.

However, striking discrepancies occur when one
compares the critical behavior for fixed Nf <Ncr

f with

the bare coupling as control parameter. In particular, in
the sequence of studies [28–31] it is found that the expo-
nent � lies between � � 2:8 (Nf ¼ 2) and � � 5:8
(Nf ¼ 6); i.e., most notably, � increaseswithNf . The result
for Nf ¼ 2 has been confirmed in a recent work [32] based
on a new algorithmic approach, where the same lattice
action has been employed directly in the massless-fermion
limit with manifest Uð1Þ 	 Uð1Þ chiral symmetry. The re-
sulting anomalous dimension reads ��

� ¼ 0:65ð1Þ, which
(under the hyperscaling assumption) is equivalent to � ¼
ð5� ��

�Þ=ð1þ ��
�Þ ¼ 2:64ð2Þ. By contrast, we find

(cf. Table II) � � 1:5 (Nf ¼ 2) and � � 1:1 (Nf ¼ 6),
that is to say, � decreases with Nf and the values lie well
below the aforementioned lattice predictions.4

The lattice simulations rely on a microscopic definition
of the Thirring model which is fixed by a bare action
including only the Thirring-like current-current interaction.

It is therefore a priori not clear whether the critical
behavior in the lattice models is in fact given by the
Thirring fixed point; cf. the discussion in Ref. [49]. Our
analysis in the preceding Sec. VIII supports the implicit
assumption that bare actions on the Thirring axis belong
to the Thirring universality class for all relevant Nf

(cf. Fig. 11). Nonetheless, since fixed-point positions are
scheme dependent, our results may not be directly trans-
ferable to the lattice theory. In particular, it is known from
the flow in the pointlike limit, that a microscopic formu-
lation, being fixed on the Thirring axis, could, for instance,
be influenced by the fixed point B, which has more than
one RG relevant direction (see Fig. 1). In order to get a
glimpse of how such a situation could change the corre-
sponding critical behavior we compute in the dynamically
bosonized formulation the critical exponents associated
with fixed point B. We emphasize however that a theory
defined at B in any case cannot be fixed by just one
bare parameter. Naively using the hyperscaling relation5

�ðBÞ ¼ ½5� ��
�ðBÞ�=½1þ ��

�ðBÞ� we can relate the criti-
cal exponent �ðBÞ to the anomalous dimension ��

�ðBÞ at
B; see Fig. 14. The values for �ðBÞ lie well above those for
the Thirring fixed point. Most notably, �ðBÞ in fact now
increases with Nf , in qualitative consistency with the be-
havior shown in Fig. 5 of Ref. [31]. For comparison, we also
depict the correlation length exponent � ¼ 1=�1, associ-
ated with the largest negative eigenvalue of the stability
matrix, i.e., the strongest RG relevant direction. In order to
test this scenario lattice simulations with actions containing
both invariant operators �gV as well as g� are needed.

However, we would like to propose yet another way to
resolve this seeming contradiction between our results and
lattice studies: All quoted lattice studies implement stag-
gered fermions, in which case the chiral limit is more easily
accessible. Exactly the same lattice action employed in the

2 3 4 5 6 7
0

1

2

3

4

5

N f

FIG. 14. Critical exponents � and � for a theory defined at the
fixed point B with more than one RG relevant direction; to be
compared with Fig. 5 of Ref. [31].

4As a side remark we note that the DSE studies [24,25] point
to � ¼ 2 (Nf <Ncr

f ) and � ¼ 1 (Nf ¼ Ncr
f ). (This fact has been

debated in Ref. [31].) The numerical similarity to our results is
probably accidental, since the nature of the transition reported in
these studies substantially differs from ours; see Eq. (104) above.

5Of course, hyperscaling may not hold at a fixed point with
two relevant directions.
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Thirring studies has also been used in simulations of the
chiral Uð1Þ 	 Uð1Þ Gross-Neveu (�GN) model in three di-
mensions [121], yielding � ¼ 0:88ð8Þ and ��

�¼0:46ð11Þ,
probably consistent with the Nf ¼ 2 lattice Thirring results
� ¼ 0:85ð1Þ, ��

� ¼ 0:65ð1Þ [32] and � ¼ 0:71ð4Þ, ��
� ¼

0:60ð2Þ [28]. In fact, the symmetry-breaking pattern of the
lattice Thirring model in the staggered fermion formula-
tion is [29]

U ðNstaggÞ 	 UðNstaggÞ ! UðNstaggÞ; (107)

where Nstagg is the number of staggered fermion flavors. It

is related to the number of continuum four-component
fermions by Nf ¼ 2Nstagg [122]. It is an open question

whether the breaking pattern of the continuum Thirring
model,

U ð2NfÞ ! UðNfÞ 	 UðNfÞ; (108)

is restored in the continuum limit of the lattice Thirring
model; see Refs. [28,29] for a discussion. This scenario
could be checked by a careful analysis of the low-energy
spectrum in the broken phase: the number of Goldstone
modes for the breaking pattern (107) would be N2

stagg ¼
Nf

2=4, whereas for (108) one expects 2Nf
2 massless

modes. Alternatively, one could examine the spectrum of
the Dirac operator on the lattice: a necessary condition for
the restoration of the full Uð2NfÞ symmetry in the contin-
uum limit is that the lattice Dirac operator has to exhibit the
same four-fold degeneracy of the continuum Dirac opera-
tor. In fact, for a similar strongly coupled (2þ 1)-
dimensional model (in the context of graphene), such a
comparison reveals significant breaking of the Uð2NfÞ
symmetry, even in the vicinity of the second-order phase
transition point [123]. Unfortunately, we do not know of
any such study for the Thirring model so far. If the con-
tinuum Thirring pattern (108) is not restored in the simu-
lations, then the lattice Thirring result could possibly
describe the �GN universality class with breaking pattern
(107). In other words, the results for critical exponents
would differ, simply because the continuum and the lattice
models would not be in the same universality class.

We have been motivated by these considerations to
compare the lattice results also to results for a fermionic
UðNLÞ 	 UðNRÞ model [50,99]. For NL ¼ NR ¼ 1, a func-
tional RG study has provided the result ��GN ¼ 2:58ð9Þ.
Interestingly enough, we observe that these �GN findings
are in fact well consistent with the general trend reported
for the lattice Thirring model, e.g., � ¼ 2:75ð9Þ for
Nstagg ¼ 1 [28]. [We emphasize however that Nstagg ¼ 1

corresponds to two four-component continuum flavors,
whereas the Uð1Þ 	 Uð1Þ model in Refs. [50,99] is
defined with solely one four-component fermion.] In
Refs. [29,121], the question has been raised whether for
Nf ¼ 2 the distinction between �GN and Thirring models

might be unimportant and both models might actually
coincide. In such a scenario the fixed point pertaining to
the �SB phase transition would incidentally lie in a
U(4)-symmetric IR attractive subspace of the theory space.
While certainly possible, we know of no argument support-
ing such a conjecture; it is also not favored by our results
for the �GN and Thirring models.
In order to clarify these questions, it would be very

interesting to simulate the Thirring model in a formulation
in which either the restoration of the Uð2NfÞ symmetry can
be explicitly verified in the continuum limit or in which it is
manifest. In the two-component fermion formulation
[Eq. (21)] the latter option might be pursued using standard
methods (e.g., Wilson fermions [124]), since there is no
notion of chirality in this formulation and the Uð2NfÞ
is just a flavor symmetry. Alternatively, in the four-
component language [Eq. (14)], one could employ more
advanced chiral-fermion techniques, such as domain-wall
[125–127] or overlap [128] fermions, both of which are
explicitly chirally symmetric and deserve to be studied on
their own rights due to their relevance to lattice QCD4.
We would finally like to comment on the unorthodox

behavior of the chiral condensate far from the critical
point, as reported in the lattice study [31]. There, it has
been found that h �c c i decreases again for large (current-
current) coupling gV . The corresponding peak position at
gV ¼ gV;max is independent of both lattice volume and bare

fermion mass, indicating that its origin is at the UV scale.
The effect has then been attributed to the fact that the
vector propagator in the lattice regularization violates the
transversity condition, the latter being crucial to the renor-
malizability of the 1=Nf expansion. The impact of the extra
divergence can however be absorbed by a coupling renor-
malization g0V ¼ gVð1� gV=gV;limÞ�1, such that the strong

coupling limit is recovered at gV ¼ gV;lim. gV;lim is there-

upon identified with the peak position gV;max.

By contrast, our RG results suggest that the 3d Thirring
model can in fact be renormalized nonperturbatively with-
out insisting on a transverse vector propagator, if one
allows for a microscopic definition in the two-dimensional
coupling plane spanned, for instance, by the couplings gV
and g�. If this remains robust beyond our approximation, it

could provide a natural explanation for the nonmonotonic
behavior of the condensate as a function of gV : Since the
numerical value of any IR observable (in units of a fixed
UV cutoff �) is first and foremost given by the ‘‘duration’’
of RG time t ¼ lnðk=�Þ before the flow freezes out or
enters the IR regime, it could well be that for a theory
defined on the pure Thirring axis with bare g� ¼ 0 an IR

quantity decreases again for large gV far from criticality.
Loosely speaking, just because we start the flow with a
large current-current interaction does not necessarily mean
that we are closer to the �SB regime. In order to check
these considerations we have computed the order parame-
ter for different bare couplings gV on the Thirring axis and

LUKAS JANSSEN AND HOLGER GIES PHYSICAL REVIEW D 86, 105007 (2012)

105007-22



an initially decoupled scalar sector, showing indeed a
maximum far from criticality gV 
 gcr and a subsequent
decrease; see inset of Fig. 13.

XI. CONCLUSIONS

We have studied chiral symmetry breaking in the 3d
Thirring model with Nf fermion flavors. Using the func-
tional RG equation for the effective average action, we
have investigated the RG flow of the system parametrized
in terms of the fundamental fermionic as well as composite
bosonic degrees of freedom. We have analyzed both
UV structure and IR behavior of the theory in the
usual formulation with fixed fields as well as for dynami-
cally bosonized fields, that is to say, by applying a scale-
dependent Hubbard-Stratonovich transformation. Both
formulations show the existence of a Thirring fixed point
with one RG relevant direction. For small Nf it is located
close to the scalar-channel subspace, while it approaches
the vector-channel subspace (the pure Thirring axis)
for increasing Nf . All this is well compatible with previous
findings or indications in the purely fermionic descrip-
tion [49].

For entering the symmetry-broken regime, however, the
description using composite bosonic fields is highly ad-
vantageous. Whereas partial bosonization has become a
standard tool for functional RG analyses of strongly corre-
lated fermion systems, a quantitatively reliable study of the
3d Thirring model appears to require dynamical bosoniza-
tion [67,73,74,102]. The reason is that the physics of
competing channels is technically affected by the Fierz
ambiguity representing a challenge for many techniques
based on Hubbard-Stratonovich transformations. The 3d
Thirring model therefore serves as a paradigm example for
the competing-channel problem and its resolution through
dynamical bosonization.

For the present model, we have confirmed previous
results from DSE studies and Monte Carlo simulations
indicating that chiral symmetry breaking, corresponding
to a condensation in the scalar channel, occurs for large
enough coupling if the number of fermion flavors Nf is
smaller than a critical value Ncr

f , while it is shown to be

absent for Nf >Ncr
f , independently of the coupling. We

obtain the estimate Ncr
f ’ 5:1ð7Þ, where we have used

regulator dependencies as an indicator for the systematic
error of our approximation.

Since all previous studies we know of rely on a micro-
scopic definition of the 3d Thirring model with pure
current-current (Thirring-like) interaction, the mechanism
behind the quantum phase transition at Ncr

f has so far been

rather unclear. The present work has shown for the first
time that the critical flavor number may occur due to a
competition between different condensation channels: the
NJL-type scalar channel on the one hand, dominating for
small Nf and triggering �SB, and the Thirring-type vector
channel on the other hand, dominating for large Nf and

inhibiting �SB. In particular, our results exclude a quan-
tum phase transition mechanism based on fixed-point an-
nihilation that would imply essential scaling of order
parameters as a function of Ncr

f � Nf .

The RG approach is particularly useful for predicting
the critical phenomena associated with a given universality
class. We have computed the critical behavior for fixed
Nf <Ncr

f as a function of the bare coupling in terms of

the exponents �, ��
�, �, and � both for a microscopic

definition of the model at the Thirring fixed point as well
as on the pure Thirring axis (pure Thirring model). For
Nf ¼ 2, we have verified that the hyperscaling relations are
fulfilled for UV complete models defined at the Thirring
fixed point. Models with initial conditions on the pure
Thirring axis necessarily inherit a certain degree of non-
universality which becomes visible in small violations of
hyperscaling, presumably induced by the vicinity of an-
other fixed point (fixed point B in our notation). Strictly
speaking, the model starting on the pure Thirring axis is not
itself a UV complete quantum field theory. We can, how-
ever, think of it as belonging to a RG trajectory (line of
constant physics) that emanates from fixed point B and
thus has a definite UV completion. For the theory defined
at the Thirring fixed point, we have also computed the
corrections-to-scaling exponent !.
Close to the quantum critical point Nf % Ncr

f , we have

discussed the scaling behavior as a function ofNf (for fixed
couplings above their critical values). For the quantum
phase transition as a function of Ncr

f � Nf , we have com-

puted the exponent b ’ 0:44 (‘‘magnetization exponent’’),
implying that there is clear evidence for the transition to be
of second order. We have also computed the dynamically
generated fermion mass �m2

R;f (fermion gap) and the �-mode

mass �m2
R;� in units of the radial mass �m2

R;	 (inverse healing

length) as a function of Nf <Ncr
f . In principle, these are

inherent predictions of our analysis and could be verified
by correlator measurements in lattice simulations. Since
our IR analysis is affected by an artificial nondecoupling of
Goldstone modes, our quantitative estimate should, how-
ever, not be taken too literally. We consider our results on
critical exponents as our most accurate quantitative
predictions.
At the present stage, the long-range behavior in the

vector-dominated phase for large Nf >Ncr
f is difficult to

resolve. Our approximation with pointlike vector channel
does not allow a reliable prediction of the IR properties of
the system forNf * Ncr

f , since for small vector massm2
V &

Oð1Þ momentum-dependent terms / ZV;k, �AV;k, ��k in the

effective action (37) become important as we can read off
from the vector anomalous dimension growing large. In
this sense, our estimate for the critical flavor number might
be a lower bound to the true value of Ncr

f . A larger critical

flavor number could, for instance, arise from a nontrivial
interplay of dynamical vector and scalar channels driving
the system to criticality also for larger flavor number. Thus,
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we consider our findings for Ncr
f to be still compatible with

the lattice results [31], pointing to Ncr
f ’ 6:6. In any case

however, it would be very interesting to see how far the
inclusion of momentum-dependent terms in the vector
sector would modify the IR flow of the large-Nf theory.
This is in particular true for the term / ��kV�V�@�V�,

which has no analogue in scalar field theories and thus
could lead to a qualitatively different IR behavior as com-
pared to the latter. Furthermore, at this point we also cannot
exclude with certainty that this term does not change the
UV structure of our theory in the large-Nf limit. This
deserves further investigation.

Whereas most [22,24–31] (but not all [23]) of the pre-
vious studies agree at least on the very existence of a
critical flavor number at order Ncr

f �Oð2 . . . 7Þ, the nature
of the phase transition has so far been a substantially
delicate issue. Based on our detailed predictions, in par-
ticular for the transition at fixed Nf <Ncr

f as a function of

the coupling, we believe that it may now be possible to
resolve the discrepancies in the literature. For that purpose,
we propose an independent investigation of the critical
behavior of the 3d Thirring model, for instance, by means
of a Monte Carlo simulation with a lattice action exhibiting
manifest Uð2NfÞ symmetry.
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APPENDIX: LOOP INTEGRALS

For self-containedness, we give here the explicit results
for the loop integrals for linear and sharp cutoff. The
regulator functions Rk present in the Wetterich equation
(23) may be written in terms of dimensionless shape func-
tions rk via

R�;kðqÞ ¼ Z�;kq
2r�;kðq2Þ; (A1)

Rc ;kðqÞ ¼ �Zc ;k 6qrc ;kðq2Þ; (A2)

with collective bosonic and fermionic fields � ¼
ð�ab; V�; . . .Þ and c ¼ ðc a; . . .Þ, respectively. The linear

cutoff, which satisfies an optimization criterion [129], is
defined as

r
opt
�;kðq2Þ ¼

�
k2

q2
� 1

�
�ðk2 � q2Þ; (A3)

r
opt
c ;kðq2Þ ¼

0
@ ffiffiffiffiffi

k2

q2

s
� 1

1
A�ðk2 � q2Þ: (A4)

The sharp cutoff is defined as the a ! 1 limit of the class
of regulators given by

rsc�;kðq2Þ ¼ a

�
k2

q2
� 1

�
�ðk2 � q2Þ; (A5)

rscc ;kðq2Þ ¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

�
k2

q2
� a� 1

a

�s
� 1

1
A�ðk2 � q2Þ; (A6)

where we demand for definiteness that the sharp-cutoff
limit a ! 1 is to be taken after the integration over the
internal momentum q, i.e., after the substitution into the
threshold functions [130].
The one-loop structure of the Wetterich equation guar-

antees that the flow equations can always be written in
terms of single integrals—the threshold functions, which
encode the details of the regularization scheme. Their
definitions are

‘ðB=FÞd0 ð!;��=c Þ¼1

2
k�d ~@t

Z 1

0
dxx

d
2�1 log½P�=c ðxÞþ!k2�;

(A7)

‘ðB=FÞdn ð!;��=c Þ ¼ ð�1Þn
ðn� 1Þ! @

n
!‘

ðB=FÞd
0 ð!;��=c Þ

¼ � 1

2
k2n�d

� ~@t
Z 1

0
dxx

d
2�1½P�=c ðxÞ þ!k2��n;

(A8)

‘ðBBÞdn1;n2 ð!1; !2;��;�VÞ
¼ � 1

2
k2ðn1þn2Þ�d

� ~@t
Z 1

0
dxx

d
2�1½P�ðxÞ þ!1k

2��n1½PVðxÞ þ!2k
2��n2 ;

(A9)

‘ðFBÞdn1;n2 ð!1;!2;�c ;��Þ
¼�1

2
k2ðn1þn2Þ�d

� ~@t
Z 1

0
dxx

d
2�1½Pc ðxÞþ!1k

2��n1½P�ðxÞþ!2k
2��n2 ;

(A10)

‘ðFBBÞdn1;n2;n3ð!1; !2; !3;�c ; ��Þ
¼ � 1

2
k2ðn1þn2þn3Þ�d

� ~@t
Z 1

0
dxx

d
2�1½Pc ðxÞ þ!1k

2��n1

� ½P�ðxÞ þ!2k
2��n2½P�ðxÞ þ!3k

2��n3 ; (A11)
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mðBÞd
2;2 ð!1; !2;��Þ
¼ � 1

2
k6�d ~@t

Z 1

0
dxx

d
2

�
@x

1

P�ðxÞ þ!1k
2

�

�
�
@x

1

P�ðxÞ þ!2k
2

�
; (A12)

mðFÞd
2 ð!;�c Þ ¼ � 1

2
k6�d ~@t

Z 1

0
dxx

d
2

�
@x

1

Pc ðxÞ þ!k2

�
2
;

(A13)

mðFÞd
4 ð!;�c Þ ¼�1

2
k4�d ~@t

Z 1

0
dxx

d
2þ1

�
@x

1þ rc ðxÞ
Pc ðxÞþ!k2

�
2
;

(A14)

mðFBÞd
1;2 ð!1;!2;�c ;��=VÞ

¼ 1

2
k4�d ~@t

Z 1

0
dxx

d
2

1þ rc ðxÞ
Pc ðxÞþ!1k

2
@x

1

P�=VðxÞþ!2k
2
;

(A15)

with ni 2 N and where we have suppressed the scale index
k for the sake of simplicity. Moreover, we have abbreviated
the (inverse) regularized propagator parts by

P�ðxÞ :¼ x½1þ r�ðxÞ�; Pc ðxÞ :¼ x½1þ rc ðxÞ�2:
(A16)

For the integrations, we have substituted q2 � x, viz.,

Z ddq

ð2
Þd ¼ 4vd

Z
dqqd�1 ¼ 2vd

Z
dxx

d
2�1 (A17)

with vd :¼ 1
4 VolðSd�1Þ=ð2
Þd ¼ ½2dþ1
d=2�ðd=2Þ��1. ~@t

is defined to act only on the regulator’s t dependence,

~@ t :¼
X

�¼�;V;c

Z
dx0

@t½Z�r�ðx0Þ�
Z�

�

�r�ðx0Þ (A18)

¼
Z

dx0x0
�
@t½Z�r�ðx0Þ�

Z�

�

�P�ðx0Þ

þ @t½ZVrVðx0Þ�
ZV

�

�PVðx0Þ
þ 2½1þ rc ðx0Þ�

@t½Zc rc ðx0Þ�
Zc

�

�Pc ðx0Þ
�
: (A19)

Both the linear and sharp regulators have the very conve-
nient feature that all loop integrals can be performed ex-
plicitly. For the linear cutoff the results are

‘ðBÞd0 ð!;��Þ ¼ 2

d

�
1� ��

dþ 2

�
1

1þ!
; (A20)

‘ðBÞdn ð!;��Þ ¼ 2

d

�
1� ��

dþ 2

�
n

ð1þ!Þnþ1
; (A21)

‘ðFÞd0 ð!;�c Þ ¼ 2

d

�
1� �c

dþ 1

�
1

1þ!
; (A22)

‘ðFÞdn ð!;�c Þ ¼ 2

d

�
1� �c

dþ 1

�
n

ð1þ!Þnþ1
; (A23)

‘ðBBÞdn1;n2 ð!1; !2;��;�VÞ
¼ 2

d

��
1� ��

dþ 2

�
n1

1þ!1

þ
�
1� �V

dþ 2

�
n2

1þ!2

�
1

ð1þ!1Þn1ð1þ!2Þn2 ;
(A24)

‘ðFBÞdn1;n2 ð!1; !2;�c ; ��Þ
¼ 2

d

��
1� �c

dþ 1

�
n1

1þ!1

þ
�
1� ��

dþ 2

�
n2

1þ!2

�
1

ð1þ!1Þn1ð1þ!2Þn2 ;
(A25)

‘ðFBBÞdn1;n2;n3ð!1; !2; !3;�c ; ��Þ
¼ 2

d

��
1� �c

dþ 1

�
n1

1þ!1

þ
�
1� ��

dþ 2

��
n2

1þ!2

þ n3
1þ!3

��

� 1

ð1þ!1Þn1ð1þ!2Þn2ð1þ!3Þn3 ; (A26)

mðBÞd
2;2 ð!1; !2;��Þ ¼ 1

ð1þ!1Þ2ð1þ!2Þ2
; (A27)

mðFÞd
2 ð!;�c Þ ¼ 1

ð1þ!Þ4 ; (A28)

mðFÞd
4 ð!;�c Þ ¼ 1

ð1þ!Þ4 þ
1� �c

d� 2

1

ð1þ!Þ3

�
�
1� �c

2d� 4
þ 1

4

�
1

ð1þ!Þ2 ; (A29)

mðFBÞd
1;2 ð!1; !2;�c ; ��=VÞ ¼

�
1� ��=V

dþ 1

�

� 1

ð1þ!1Þð1þ!2Þ2
:

(A30)

For the sharp cutoff we find
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‘ðB=FÞd0 ð!;��=c Þ ¼ � logð1þ!Þ þ ‘ðB=FÞd0 ð0;��=c Þ;
(A31)

‘ðB=FÞdn ð!;��=c Þ ¼ 1

ð1þ!Þn ; (A32)

‘ðBBÞdn1;n2 ð!1; !2;��;�VÞ ¼ 1

ð1þ!1Þn1ð1þ!2Þn2 ; (A33)

‘ðFBÞdn1;n2 ð!1; !2;�c ; ��=VÞ ¼ 1

ð1þ!1Þn1ð1þ!2Þn2 ;
(A34)

‘ðFBBÞdn1;n2;n3ð!1; !2; !3;�c ; ��Þ
¼ 1

ð1þ!1Þn1ð1þ!2Þn2ð1þ!3Þn3 ; (A35)

mðBÞd
2;2 ð!1; !2;��Þ ¼ 1

ð1þ!1Þ2ð1þ!2Þ2
; (A36)

mðFÞd
2 ð!;�c Þ ¼ 1

ð1þ!Þ4 ; (A37)

mðFÞd
4 ð!;�c Þ ¼ 1

ð1þ!Þ4 ; (A38)

mðFBÞd
1;2 ð!1; !2;�c ; ��Þ ¼ 1

ð1þ!1Þð1þ!2Þ2
: (A39)
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