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We perform a global renormalization group study of OðNÞ symmetric Wess-Zumino theories and their

phases in three Euclidean dimensions. At infinite N the theory is solved exactly. The phases and phase

transitions are worked out for finite and infinite short-distance cutoffs. A distinctive new feature arises

at strong coupling, where the effective superfield potential becomes multivalued, signalled by divergences

in the fermion-boson interaction. Our findings resolve the long-standing puzzle about the occurrence of

degenerate OðNÞ symmetric phases. At finite N, we find a strongly coupled fixed point in the local

potential approximation and explain its impact on the phase transition. We also examine the possibility for

a supersymmetric Bardeen-Moshe-Bander phenomenon and relate our findings with the spontaneous

breaking of supersymmetry in other models.
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I. INTRODUCTION

Supersymmetry, the symmetry that links bosonic with
fermionic degrees of freedom, is an intriguing concept with
many applications in quantum field theory and statistical
physics. It plays a prominent role for open challenges in the
Standard Model of particle physics, such as the hierarchy
problem, and continues to inspire the construction of mod-
els for new physics. In statistical physics, supersymmetry
also appears as a technical symmetry in the exploitation of
systems that otherwise are too difficult to handle. It is,
thus, of great interest to further the understanding of inter-
acting supersymmetric theories and to clarify the impact
of supersymmetry on the phase structure and the critical
behavior at lowest and highest energies.

This work is devoted to the supersymmetric extension of
OðNÞ symmetric (SYM) scalar theories in three Euclidean
dimensions, continuing a line of research initiated in
Ref. [1]. Without supersymmetry, the bosonic theory
with a microscopic ð�2Þ3 potential is described by three
renormalized parameters permitting first-order phase tran-
sitions at strong coupling as well as second-order phase
transitions with Ising-type critical behavior [2]. In the limit
of infinitely many scalars, the analytically solvable spheri-
cal model also admits an ultraviolet fixed point with broken
scale invariance, the Bardeen-Moshe-Bander (BMB) phe-
nomenon, allowing for a nontrivial continuum limit [3–5].
With supersymmetry, additional fermionic degrees of free-
dom are present and their fluctuations modify the quantum
effective theory. The OðNÞ symmetric Wess-Zumino
model with a microscopic ð�2Þ2 superpotential is deter-
mined by only two renormalized parameters, and critical
and tricritical theories are the same. Its phase structure
has attracted some attention in the past [6–13]. In the limit
of infinitely many superfields, four different phases have
been observed [6,7], including peculiar degenerate OðNÞ
symmetric phases with several mass scales. Similar to the

scalar case, a supersymmetric version of the BMB fixed
point has equally been found at a critical coupling,
where the bosons and fermions become massive while
a Goldstone-boson (dilaton) and a Goldstone-fermion
(dilatino) are dynamically generated. The supersymmetric
OðNÞ model has also been discussed in the 1=N expansion
[11], where the authors found a nontrivial UV fixed point
and a stable dilaton phase. At next-to-leading order the
dilaton acquires a mass of order 1=N, showing that a phase
with spontaneously broken scale invariance only exists in
the limit of infinitely many superfields [13].
A method of choice in the study of phases and phase

transitions is Wilson’s renormalization group (RG) [14]. It
is based on a path-integral representation of the theory,
where the continuous integrating-out of momentum modes
permits a smooth and controlled interpolation between the
microscopic and the full quantum effective theory [15].
Physically motivated approximation schemes together
with analytic versions of the RG [16–18] allow for a global
analysis and a classification of phase transitions and criti-
cal exponents even at strong coupling. The method has
been successfully applied to phase transitions in Ising-type
universality classes [15,19–21], including high-precision
computations of its critical exponents with increasing
levels of sophistication [22–27]. The extension of the func-
tional RG toward supersymmetric theories [1,28–39],
therefore, bears the promise for deeper insights into the
phases and the critical behavior of supersymmetric OðNÞ
theories.
This paper is organized as follows: We recall the main

features of supersymmetric OðNÞ models including a
supersymmetric version of Wilson’s RG (Sec. II), followed
by a discussion of its exact analytical solution in the
large-N limit (Sec. III). We then give a detailed account
of the phase diagram and phase transitions in the renor-
malized theory and examine the appearance of a multi-
valued effective potential, also in comparison with earlier

PHYSICAL REVIEW D 86, 105006 (2012)

1550-7998=2012=86(10)=105006(22) 105006-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.105006


findings (Sec. IV). We repeat this exercise with a finite
short-distance cutoff, including a thermodynamical
derivation of scaling exponents (Sec. V), and examine
the supersymmetric BMB phenomenon (Sec. VI). At finite
N, we derive an exact fixed point to leading order in a
gradient expansion and evaluate its impact on the phase
transition and on the fate of the BMB mechanism
(Sec. VII). We close with a brief summary and some
conclusions (Sec. VIII).

II. SUPERSYMMETRIC RG FLOW

In this section, we sketch the features of supersymmetric
OðNÞ models and recall the supersymmetric renormaliza-
tion group flow in the local potential approximation. For a
detailed discussion and derivation see Ref. [1].

A. Action

The three-dimensional supersymmetric OðNÞ models
are built from N real superfields

�iðx; �Þ ¼ �iðxÞ þ ��c iðxÞ þ 1

2
���FiðxÞ (1)

containing scalar fields �i, Majorana fermions c i and
auxiliary fields Fi as components and a two-component
anticommuting Majorana spinor �. The invariant action

S ¼
Z

d3x

�
� 1

2
� �DD�þ 2WðRÞ

��������� ���
; (2)

wherein we suppress the internal summation index i, con-
tains the OðNÞ-invariant composite superfield

R¼1

2
�2¼ ��þð ��c Þ�þ1

2
���

�
�F�1

2
�c c

�
; (3)

where �� � �2=2. The supercovariant derivatives

D ¼ @

@ ��
þ i6@� and �D ¼ � @

@�
� i ��6@ (4)

obey fDk;
�Dlg ¼ �2ið��Þkl@�. An expansion in compo-

nent fields yields the off-shell Lagrangian density

Loff ¼ 1

2
ð��h�� i �c 6@c þ F2Þ þW 0ð ��Þ�F

� 1

2
W 0ð ��Þ �c c � 1

2
W 00ð ��Þð �c�Þðc�Þ: (5)

By eliminating the auxiliary fields F through their alge-
braic equation of motion, F ¼ �W 0ð ��Þ�, we obtain the
on-shell density. The field-dependent fermion mass mc ,

the bosonic potential V, and the field-dependent Yukawa-
type coupling �Y all follow from the superpotential W as

mc ¼ W 0ð ��Þ V ¼ ��½W 0ð ��Þ�2 �Y ¼ 1

2
W 00ð ��Þ:

(6)

All salient features of the classical theory are encoded in
the functions (6). For a polynomial superpotential, the
scalar field potential always has a minimum at Vð0Þ ¼ 0,
implying that global supersymmetry is unbroken.

B. Renormalization group

Including the effects of quantum and thermal fluctua-
tions implies that the classical action (2) is modified and
replaced by a ‘‘coarse-grained’’ or ‘‘flowing’’ effective
action �k. In the next-to-leading order in the superderiva-
tive expansion,

�k½�� ¼
Z

d3x

�
� 1

2
�Zk

�DD�þ 2Wk

��������� ���
(7)

interpolates between the classical action at the high-energy
cutoff scale k ¼ � and the full effective action at k ¼ 0.
The fluctuations above k modify both the superpotential,
which has turned into a scale-dependent superpotentialWk,
and the kinetic terms, which may acquire a nontrivial field-
and momentum-dependent wave function renormalization

factor Zkð12�2; �DDÞ.
The RG momentum scale k is introduced on the level of

the path integral by adding suitable momentum cutoffs
Rkðq2Þ to the inverse propagators of the fields. The cutoffs
regularize the path integral in the infrared and give rise
to a finite flow of the scale-dependent effective action.
Optimized choices for Rk are available to ensure the stabil-
ity of the resulting RG equations [16–18]. The scale de-
pendence of the effective action (7) is described by a
functional differential equation [14]

@t�k ¼ 1

2
STrð�ð2Þ

k þ RkÞ�1@tRk; (8)

which emerges as an exact identity from a path integral
representation. Here, t ¼ lnk=� denotes the dimensionless

RG ‘‘time’’ parameter, �ð2Þ
k the second functional deriva-

tive of �k with respect to the fields, and the supertrace
denotes a momentum integration and a sum over all fields,
including appropriate minus signs for fermions.

C. Derivative expansion

Finally, we detail our equations to leading order in a
superderivative expansion, the so-called local potential
approximation (LPA). It amounts to setting the wave func-
tion factor Zk ¼ 1 throughout, which is a good approxi-
mation in the large-N limit, where RG corrections to the
wave function renormalization of the relevant degrees of
freedom, the Goldstone modes, are suppressed as 1=N. In
scalar OðNÞ theories, the LPA gives already very good
results for scaling at the Wilson-Fisher fixed point [22].
Here, the LPA does retain the full field and scale depen-
dence of the superpotential Wk.
In this work, we introduce the momentum cutoff as

a supersymmetric invariant F term of the superfield by
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adding �Sk ¼ 1
2

R
d3x�Rk�j ��� to the action under the

path integral, with

�Rkð �DDÞ� ¼ � 1

2
�rkð�hÞ �DD�: (9)

The dimensionless function rkðp2Þ describes the shape of
the momentum cutoff. The momentum trace is performed
analytically for specific optimized choices for rk [16–18].
Following Refs. [18,34], we adopt

rkðp2Þ ¼
�
k

jpj � 1

�
�ðk2 � p2Þ: (10)

The flow in LPA for the superpotential is obtained by
projecting (8) onto the term linear in the auxiliary field
F, and this yields

N

k2
@tW ¼ �ðN � 1ÞI

�
W 0

k

�
� I

�
W 0 þ 2 ��W00

k

�
; (11)

where IðxÞ ¼ x=ð1þ x2Þ. It is understood that W and its
derivatives are functions of the RG scale k and the fields,
and we will omit the index k. The first term on the rhs is the
contribution of the N � 1 Goldstone modes and the last
term is the contribution of the radial mode. Note that the
rhs of the flow vanishes for W 0 � 0, and for 1=jW 0j ! 0,
corresponding to the classical limit where the couplings
and the potential (6) are independent of the RG scale.

To achieve the simple form (11) we have rescaled the
fields and the superpotential as

�� ! N

8�2
��; W ! N

8�2
W: (12)

Note thatW 0 is invariant under the rescaling which absorbs
the redundant overall factor 1=ð8�2Þ, originating from the
momentum integration, into the field and the superpoten-
tial. The additional rescaling with N also removes the
leading N dependence from the RG equation (11). In these
conventions, and with given initial condition Wk¼�ð ��Þ
the RG flow determines the superpotential in the infrared
limit k ! 0.

To study the critical behavior we introduce a dimension-
less field variable �, a dimensionless superpotential w and
a dimensionless scalar potential v as

� ¼ ��

k
; wð�Þ ¼ Wð ��Þ

k2
; vð�Þ ¼ ��

k

�
W0ð ��Þ
k

�
2
:

(13)

In terms of (13) the flow equation (11) reads

@twþ 2w� �w0 ¼ �
�
1� 1

N

�
Iðw0Þ � 1

N
Iðw0 þ 2�w00Þ:

(14)

For completeness we add the flow equation for w0 � u,

@tuþ u� �u0 ¼ �
�
1� 1

N

�
u0I0ðuÞ

� 1

N
ð3u0 þ 2�u00ÞI0ðuþ 2�u0Þ; (15)

and similarly for higher derivatives of the superpotential.

III. EFFECTIVE POTENTIAL

In this section, we discuss the explicit and exact solution
for the effective potential in the limit 1=N ! 0 and derive
the main equations which govern the symmetry breaking in
this model.

A. RG flow and boundary condition

In the large-N limit, the flow equation (15) for u � w0
simplifies considerably and is given by

@tuþ u� �u0 ¼ � 1� u2

ð1þ u2Þ2 u
0: (16)

The terms on the lhs encode the canonical scaling of the
superpotential and the fields and the rhs encode the effects
due to fluctuations. The integration of (16) with respect to
the logarithmic RG scale t ¼ lnk=� gives

�� 1

u
� FðuÞ ¼ GðuetÞ (17)

with

FðuÞ ¼ u

1þ u2
þ 2 arctanðuÞ: (18)

The function GðxÞ is determined by the initial conditions
for uð�Þ imposed at some reference scale k ¼ �. We use
throughout the boundary condition

k ¼ �:

(
uð�Þ ¼ �ð�� 	Þ
W 0ð ��Þ ¼ �ð ��� 	�Þ; (19)

where � denotes the quartic superfield coupling at the
cutoff. We recall that it is an exactly marginal coupling,
i.e., that @t� ¼ 0. If the UV parameter 	 is positive, 	� is
interpreted as vacuum expectation value (VEV) for the
scalar field at k ¼ �.
Following Ref. [1], the fixed point solutions are parame-

trized in terms of the parameter

c ¼ 1=�: (20)

Then the function GðxÞ is given by

GðxÞ ¼ c� FðxÞ þ 	� 1

x
(21)

in terms of the initial parameters. For initial conditions
different from (19), the function is modified accordingly.

B. Factorization

Using the initial condition (19), the analytical solution
(17) takes the form
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�� �0ðtÞ ¼ cuþHðuÞ �HðuetÞe�t

�0ðtÞ ¼ 1þ 
	e�t; t ¼ lnk=�;
(22)

where the non-negative function

HðuÞ � uFðuÞ ¼ u2

1þ u2
þ 2u arctanu (23)

encodes the RG modifications due to fluctuations [1]. The
parameter 
	 ¼ 	� 1 measures the deviation of the VEV
at the initial scale �0ðt ¼ 0Þ ¼ 	 from its critical value
	cr ¼ 1. For any positive deviation we have �0ðtÞ ! 1 in
the infrared limit corresponding to a finite VEV of the
scalar field. Since the potential V in (6) shows a second
minimum at �� ¼ 0, the global OðNÞ symmetry is (not)
spontaneously broken if the finite (vanishing) VEV is
taken. Conversely, for a negative 
	 we have �0ðtÞ< 0
in the infrared limit such that the global minimum of the
effective potential is achieved for vanishing ��. This leaves
the global OðNÞ symmetry intact. The case 
	 ¼ 0 then
corresponds to the boundary between the symmetric and
broken phases.

From (22) we conclude that the IR repulsive mode
associated with �0ðtÞ is solely controlled by the initial
VEV, independently of the coupling strength �. This has
been seen previously in purely scalar theories in the
large-N limit [20]. All the remaining couplings included
in the potential are either exactly marginal or IR attractive.
Their flow is encoded in the term HðuetÞe�t in the first
equation of (22). This factorization of the solution is a
consequence of the large-N limit, and allows for a straight-
forward analysis of the entire phase structure of the model.
The global form of solutions uð�; tÞ is mainly determined
by the coupling � ¼ 1=c and the function H, with �0 only
entering through a shift of the �-axis.

The non-negative function H appearing in the implicit
solution (22) will be of importance below. Expanding H in
powers of 1=u leads to

H ¼ �juj � 1� 1

3u2
þO

�
1

u4

�
: (24)

Conversely for small u we find the expansion

H ¼ 3u2 � 5

3
u4 þ 7

5
u6 þOðu8Þ: (25)

The solution (22) is invariant under ðc; uÞ $ ð�c;�uÞ
since HðuÞ is an even function. Furthermore, the scalar
field potential only depends on u2 and we may restrict the
discussion to c � 0.

C. Fixed points

We briefly recall the main results from Ref. [1]. The
fixed point solutions follow from (17) by setting GðuetÞ to
a constant c,

� ¼ 1þHðu�Þ þ cu�: (26)

The constant c is related to the marginal quartic superfield
coupling � ¼ u0ð� ¼ �0ðtÞÞ as c ¼ 1=�. Five character-
istic values cI < cL < cP < cM < cG for jcj have been
identified:

cI ¼ 0 cL ¼ 1

2
ð�þ 3Þ cP ¼ �

cM ¼ 2

3
�þ 5

8

ffiffiffi
3

p
cG ¼ 1:

(27)

The extreme values cI and cG correspond to the
‘‘would-be’’ Wilson-Fisher and the Gaussian fixed-point
solution �ðu�Þ, respectively. The solutions exist and extend
over all physical field space � � 0 in the weak coupling
regime cP � jcj< cG. For jcj � cM, fixed-point solutions
are monotonous functions of u� and extend over the entire
real axis. In the intermediate coupling regime cL < jcj �
cP, fixed-point solutions exist both with and without a node
at � ¼ 1. Finally, in the strong coupling regime jcj � cL,
the solutions do not extend over all fields � � 0.
Numerically, the ranges

cM � cP
cP

’ 0:011;
cP � cL

cP
’ 0:023 (28)

are very small. The fixed points are non-Gaussian except
for jcj ¼ cG, yet they display Gaussian scaling for all
physical fixed points except for jcj ¼ cP or cI.

D. Nonanalyticities

Finally, we discuss the appearance of nonanalytic
behavior in the integrated flows at intermediate and strong
coupling. This discussion completes the general descrip-
tion of fixed point solutions in Ref. [1] and will be of help
to understand the RG flows away from critical points in the
next section.
By construction, the basic flow equation (8) is well

defined (finite, no poles). Furthermore, the rhs of the super-
symmetric flow (16) is bounded, provided that the super-
potential remains real. Incidentally, this is in contrast to the
standard purely bosonic flows, which potentially may grow
large in a phase with spontaneous symmetry breaking
(SSB). Despite their boundedness, the supersymmetric
fixed-point solutions display Landau-type poles at strong
coupling due to nonanalyticities, such as cusps, of the
integrated RG flow. This can be appreciated as follows:
consider the field-dependent dimensionless mass term
u0ð�Þ. From the fixed-point solution (26), we conclude
that it diverges provided that

d�

du

��������us

¼ cþH0ðusÞ ¼ 0: (29)

This condition determines the singular value us and from
(26) we obtain the value of the singular field,

�s ¼ 1þHðusÞ � usH
0ðusÞ � 1� u2s

ð1þ u2sÞ2
: (30)
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The function H0ðuÞ is odd and bounded by H0ðucÞ ¼ �cM.
Asymptotically, we have jH0ðu ! �1Þj ¼ cP < cM, see
Fig. 1. Hence, with decreasing jcj a divergence for u0 is first
encountered for jcj ¼ cM. Performing an expansion of (26)
up to the first nontrivial order, we find that

�� �c ¼ 1

6
H000ðucÞðu� � ucÞ3 (31)

up to subleading corrections. In the expansion we used (29)
and that H00 vanishes at uc. We note that (31) is continuous
across ðu�; �Þ ¼ ðuc; �cÞ. Therefore, the nonanalyticity in
the solution can be written as

u� � us ¼ �sgnð�� �cÞ
�������� �� �c

1
6H

000ðucÞ
��������1=3

; (32)

where the signs refer to c ¼ �cM, leading to a nonpertur-
bative Landau pole in u0�,

1

u0�
¼ � 9

2
jH000ðucÞj1=3j�� �cj2=3: (33)

At a fixed-point solution, the Landau pole remains invis-
ible, because it is achieved at the negative �c ¼ �1=8.
Increasing the coupling by lowering jcj below cM, the
expansion in the vicinity of d�=du ¼ 0 becomes

�� �s ¼ 1

2
H00ðusÞðu� � usÞ2 (34)

up to subleading terms, where us is determined through
(29). In this regime, H00ðusÞ is nonzero throughout. In the
parameter range cP � jcj< cM, we find two solutions for
us with jus1j< jucj< jus2j and H00ðus1Þ< 0<H00ðus2Þ.
Effectively, the solution for the superpotential becomes
multivalued in a limited region of field space. For
jcj< cP we find one solution for us with H00ðusÞ> 0.
In contrast to (33), the nonanalyticity has turned into a
square root,

1

u0�
¼ �2jH00ðusÞj1=2ð�� �sÞ1=2: (35)

The nonanalyticity (35) is stronger than (33) and the
solution (34) cannot be continued continuously beyond
the point ðu�; �Þ ¼ ðus; �sÞ. For jcj< cL, we have that
�sðcÞ> 0 and the pole appears in the physical regime. In

contrast, the solutions extend over all fields provided that
�s � 0 which is the case for jcj � cL.
It is interesting to note that nonanalyticities, such as

cusps, have been detected previously in the context of the
random field Ising model, where disorder is technically
introduced with the help of Parisi-Sourlas supersymmetry.
Using functional renormalization, it has been argued that a
cusp behavior at finite ‘‘Larkin scales’’ k ¼ kL > 0 is at
the origin for the spontaneous breaking of Parisi-Sourlas
supersymmetry [40–42].
At this point it should be mentioned that the super-

potential W 0 shows another nonanalytic behavior: It is
not differentiable at its node ��0 in the exact IR limit for
arbitrary couplings c > 0. This issue is discussed in detail
in Sec. VB 2 and VD below.

IV. RENORMALIZED FIELD THEORY

In this section, we discuss the spontaneous breaking of
symmetry and the phase structure of the model in the limit
where the UV scale � is removed.

A. Renormalization

The solution (22) is valid for all k and �, and we may
take the ‘‘continuum limit’’ 1=� ! 0. The term containing
the explicit t dependence drops out in the continuum limit,
in consequence of the limit k=� ! 0 for fixed and finite k
and (25). The remaining scale dependence solely reduces
to the implicit scale dependence of �0ðkÞ in

�� �0ðkÞ ¼ cuþHðuÞ �0ðkÞ ¼ 1þ ��0=k: (36)

The dimensional parameter ��0 has taken over the role of

	� in (22). In the above, the VEV (or the mass term,
respectively) is the only quantity which is nontrivially
renormalized in the continuum limit by requiring that

�� 0 � lim
�!1

ð
	ð�Þ�Þ<1: (37)

Consequently, the canonical dimension of fields remain
unchanged (no anomalous dimension). The continuum
limit maps the original set of free parameters ð�; 	;�Þ to
the parameters ð�; ��0Þ. Note that all couplings of the super-
field derivative—the marginal coupling c and the IR

attractive higher-order couplings uðnÞð�0Þ—have settled
on their fixed point values. The only ‘coupling’ which
has not settled on a fixed point is the UVattractive dimen-
sionless VEV �0. With this perspective, ��0 and the non-
renormalized parameter c should be viewed as a free
parameters of the model, fixed by the microscopic parame-
ters of the theory. In terms of the dimensional fields
�� ¼ �k and superfield derivativeW 0ð ��Þ ¼ uð�Þk, the inte-
grated RG flow becomes

��� ��0ðkÞ¼cW0 þkHðW 0=kÞ ��0ðkÞ¼kþ ��0: (38)

We note that ��0 also has the interpretation of the physical
VEV in the infrared limit of the theory, provided it is

FIG. 1 (color online). The nonmonotonic odd function H0ðuÞ.
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positive. Below, we find it is useful to switch between the
representations (36) and (38).

B. Characteristic energy

The RG flow (36) and (38) carries a characteristic energy
scale E, meaning that the theory changes its qualitative
behavior depending on whether fluctuations have an en-
ergy larger or smaller than E. The energy scale is set by the
UV renormalization of the model (37) and given by

E ¼ j ��0j: (39)

For k 	 E, the dimensionful VEV scales proportional to k,
and the dimensionless parameter �0 becomes a constant.
This corresponds to a fixed point. All other dimensionless
couplings equally have stopped to evolve with RG scale
and thus the entire solution approaches a high-energy (UV)
fixed point. This fixed point would persist for all k provided
that E ¼ 0. It then has also the interpretation of an IR fixed
point. This regime is most conveniently described using
(36). For E> 0, and with decreasing k, deviations from the
fixed point become visible once k reaches E. Here the VEV
displays a crossover from linear scaling ��ðkÞ / k for
k 	 E to the constant value ��0 for k 
 E. In full analogy,
the dimensionless VEV displays a crossover from a
constant value to scaling inversely proportional to the RG
scale. In addition, the running of all dimensionful cou-
plings in the potential is switched on once k � E and
below. This regime is conveniently described using (38)
which governs the remaining RG running through its rhs.

C. Gap equations

We first discuss the phase structure based on the inte-
grated RG equations in the IR limit k ¼ 0, see Fig. 2. This
allows for a direct comparison with earlier results based on

gap equations and Schwinger-Dyson equations [6,7]. In the
infrared limit we may use (24) in (38) and obtain

��� ��0 ¼ cW0 þ cPjW 0j: (40)

Since the potential shows a local minimum at vanishing
field, the squared particle masses are given by

�� 2 ¼ V00ð�Þj�¼0 ¼ W 02ð ��Þj ��¼0: (41)

Thus, (40) becomes a gap equation for the mass parameter
�� � W 0ð �� ¼ 0Þ,

�� 0 ¼ �c ��� cPj ��j: (42)

The significance of (42) is as follows. For fixed ��0 and c it
yields the possible infrared solutions for the masses at
vanishing field. Without loss of generality we restrict the
discussion to c � 0. For nonvanishing ��0 we find two
solutions

m ¼ �� ¼ � ��0

cP þ c
� 0 M ¼ � �� ¼ � ��0

cP � c
� 0:

(43)

In the symmetric regime with negative ��0 the mass m is
always present and the second mass M is available as long
as c < cP. In the SSB regime with positive ��0 there are
two degenerate ground states: As expected, we find a
nonsymmetric ground state with a radial mass M�, see

Secs. VD and VE. However, for c > cP, the gap equations
show an additional symmetric ground state, characterized
by the mass M. Note that changing the sign of c leads to
equivalent results under the following replacements

ðc;m;M;M�Þ $ ð�c;M;m;�M�Þ: (44)

At the phase transition, i.e., for ��0 ¼ 0, the gap
equation (42) states that either c ¼ � with the mass
M> 0 undetermined or c ¼ �� and the mass m undeter-
mined. These findings agree with the earlier ones from
Refs. [6,7]. The sole difference is that the value for the
critical coupling, cP, depends on the regularization. The
precise link to the conventions used in Refs. [6,7] is given
in Table I.

D. RG phase diagram

Next we discuss the phase diagram implied by the
integrated RG equations for all scales k, and compare
with the results based on the k ¼ 0 limit.

FIG. 2 (color online). Schematic phase diagram of the super-
symmetric model based on the gap equation (42) in the infinite
cutoff limit. Results agree with earlier findings in Refs. [6,7].

TABLE I. ‘‘Translation guide’’ between the conventions used
in Refs. [6,7], and this paper.

This paper ��0 � ¼ 1=c
Bardeen et al. [6] �4�2���1 ð4�2Þ�1�
Moshe and Zinn-Justin [7] �4�2ð���cÞu�1 ð4�2Þ�1u
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1. Graphical representation

We begin with a useful graphical representation of the
renormalized RG trajectories (36). For vanishing ��0, we
note that the trajectories (36) reduce to the fixed point
solutions u�ð�Þ analyzed in Ref. [1]. The only difference
with the fixed point solutions is related to a shift of the
argument,

uð�Þ ¼ u�ðXÞ; X � �þ 1� �0ðkÞ ¼ �� ��0

k
(45)

in terms of the fixed point solutions.
The structure of the solutions and their dependence on

the constant c is shown in Fig. 3. Once the free parameters
are fixed, the RG evolution of a particular solution stays on
a curve with constant c, indicated by the curves given in the
figure. Rotating counterclockwise around ðX; u�Þ ¼ ð1; 0Þ
from the horizontal cG line to the cI curve (from the cI
curve to the cG line) covers all curves with positive
(negative) c. Both sets connect through the point (1, 0).
We recall that ðc; u�Þ $ ð�c;�u�Þ describe equivalent
physics.

Using (45) and (36), we conclude that for uð�Þ to cover
all physical fields � 2 ½0;1�, we need that

X 2 ½� ��0=k;1�: (46)

The curves u�ðXÞ in Fig. 3 define monotonous (and inver-
tible) functions provided that X > 1. A unique classifica-
tion of curves is then achieved by choosing a value for u�
on a line of constant X > 1, together with fixing ��0.
Interestingly, two different values for u� may correspond
to one and the same parameter c. Below, we mostly stick to

the classification in terms of c, and we will highlight
situations where this is no longer sufficient.

2. Symmetric regime

The symmetric phase is characterized by a finite and
negative ��0 and for large scales X reduces to �. A restric-
tion on the coupling parameter c is imposed if we require
that the solution u should exist for all �. For weak
coupling,

�� 0 < 0; jcj � cP (47)

all u� are single-valued for non-negative arguments such
that the u�ðXÞ stay well-defined for all scales, see Fig. 4.
For intermediate coupling

�� 0 < 0; cP � jcj � cL (48)

the theory admits two distinct effective potentials, and two
scalar mass parameters. They are related to trajectories
which either run through a node, or not, depending on
whether uð0Þ for k 	 E is larger or smaller than 1, see
Fig. 4. The theory is then characterized by the coupling
and the scalar mass at vanishing field. This peculiar struc-
ture has been found previously and we discuss it in more
detail below.
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FIG. 4 (color online). RG trajectories in the OðNÞ symmetric
phase: at weak coupling, trajectories either show a vanishing
VEV for all scales [SYM, (green) outer, shaded areas starting at
ju�j ¼ 1, which are bordered by the thick lines from the right],
or a nonvanishing VEV for large scales [SYM, (yellow) inner,
shaded areas containing the line u� ¼ 0]. At strong coupling
trajectories terminate at Landau poles.
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FIG. 3 (color online). Graphical representation of the solutions
u�ðXÞ of (36), where X ¼ �� ��0=k. The shaded areas are
separated by thick lines at jcj ¼ cI, cL, cP, cM and cG.

PHASES OF SUPERSYMMETRIC OðNÞ THEORIES PHYSICAL REVIEW D 86, 105006 (2012)

105006-7



3. Symmetry broken regime

Spontaneous symmetry breaking is possible for positive
��0. This requires that u�ðXÞ has to be well-defined for all
real X. In view of the analytical solution in Fig. 3, this
limits the achievable couplings to

�� 0 > 0; jcj> cP: (49)

Smaller jcj do not lead to a well-defined physical theory in
the IR. For

�� 0 > 0; jcj � cM (50)

the function u� is one-to-one and the theory described by
uð�Þ in (36) remains well-defined even in the IR limit. The
theory is then characterized by twomass scales. The first one
is given by the scalarmass at vanishingfield corresponding to
anOðNÞ symmetric phase, whereas the second mass scale is
given by the radial mass at �� ¼ ��0 allowing for SSB.

4. Strong coupling and Landau regime

It remains to discuss the strong coupling and Landau
regimes in Figs. 4 and 5. We begin with trajectories in the
SYM regime, with

�� 0 < 0; jcj< cL: (51)

We take a ‘bottom-up’ view according to which the
couplings evolve from the infrared towards higher scales,
parametrizing the effective potential in terms of local
couplings in an expansion about vanishing field.
Trajectories with (51) emanate from the upper/lower-right
corner in Fig. 4 for k � 0 and increasing k corresponds
to decreasing X. With increasing k, the running mass
term and the fermion-boson coupling at vanishing field
u0ð� ¼ 0Þ � u0�ð� ��0=kÞ diverge at k ¼ kL, and the renor-
malized RG flow comes to a halt: the solutions (36) cannot
be continued beyond these points, because X cannot
decrease any further along the integral curve u�ðXÞ.
Interestingly, the potential is double-valued for k < kL
with two different trajectories terminating at the same
Landau pole. Using (34) together with (45), the nonanaly-
ticity in u reads

�� �sðkÞ ¼ 1

2
H00ðusÞðuð�Þ � usÞ2 (52)

and the Landau poles are located at

�sðkÞ ¼ �s � 1þ �0ðkÞ ¼ �s þ ��0

k
: (53)

From the fixed point solution we know that �s � 1 and
therefore �sðkÞ � �0ðkÞ for all k. In the IR limit, this
implies that ��sðkÞ ! ��0ðkÞ from below. Here, the values
for �s are fixed by the coupling strength c via (30) and is
positive in the regime (51). From (53) it follows that
kL ¼ � ��0=�s is positive, see Fig. 6. We conclude that
the parameters (51) allow for a supersymmetric model
with linearly realized OðNÞ symmetry up to scales k ¼ kL.
Next we discuss the SSB regime starting with intermedi-

ate couplings

�� 0 > 0; cP � jcj � cM: (54)

Here all curves of constant c contain two Landau points
with jus1j< jucj< jus2j and H00ðus1Þ< 0<H00ðus2Þ (see
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FIG. 5 (color online). RG trajectories u�ðXÞ according to (36)
in the regions with spontaneous breaking of the OðNÞ symmetry
in the parametrization (45). Couplings are either finite for all k
(SSB; blue shaded area, which is bordered by the solutions u�ðXÞ
with jcj ¼ 1 and jcj ¼ cM, cf. Fig. 3), or run into a singularity
(Landau; red shaded area, which is bordered by the solutions
u�ðXÞ with jcj ¼ cM and jcj ¼ cP). Some trajectories cannot be
continued beyond the Landau pole (green shaded area, bordered
by the solutions u�ðXÞ with jcj ¼ cP and jcj ¼ cL). The SSB
phase cannot be defined for strong coupling (white area, bor-
dered by solutions with jcj ¼ cL).

FIG. 6 (color online). Location of the UV Landau pole for
trajectories in the SYM phase at strong coupling with (51)
(see text).
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Sec. III D). Each of them is described by (52) with (53)
and parameters 0>�s2ðcÞ> �s1ðcÞ. The singularity at
ð�s1; us1Þ corresponds to an IR Landau pole (‘top-down’),
whereas the one at ð�s2; us2Þ corresponds to an UV Landau
pole (‘bottom-up’). In the infrared limit, the domain
where u is multi-valued, collapses to a point with � �� ¼
kð�s1 � �s2Þ ! 0. The location of both discontinuities
approach the VEV ��sðkÞ ! ��0 from below, and the dis-
continuity in the superpotential derivative

�W 0 � W 0ð ��s1Þ �W 0ð ��s2Þ ¼ kðus1 � us2Þ (55)

then also becomes arbitrarily small. Interestingly, the UV
and IR Landau poles become degenerate on the integral
curve for jcj ¼ cM where �s1 ¼ �s2 ¼ �1=8. The non-
analyticity evolves with

uð�Þ � us ¼ �sgnð�� �sðkÞÞ
���������� �sðkÞ

1
6H

000ðusÞ
��������1=3

(56)

together with (53). In this case, the quartic scalar self-
coupling u0ð� ¼ 0Þ still diverges at the Landau pole, but
the renormalized RG flow continues nonperturbatively
rendering u0ð0Þ again finite. The nonanalyticity (56) first
appears for vanishing field at the scale kL ¼ � ��0=�s and
evolves up to the VEV ��0 in the IR limit.

Next we consider the SSB regime at strong coupling,

�� 0 > 0; jcj< cL: (57)

The model has a radial mass proportional to the VEV.
Curves of constant c in Fig. 5 have a Landau pole with
(52) and (53) and parameter �s > 0. The integral curves
have no continuation beyond the pole, which occurs within
the physical regime for all k. In particular, the effective
potential is not defined for the entire inner part �� < ��0 in
the IR limit and a scalar mass W 0ð0Þ cannot be defined.

Finally we consider trajectories in the SSB regime, with

�� 0 > 0; cL < jcj< cP: (58)

Here, in contrast to (57), solutions (45) cover all positive
values for X even for large k; see (46). In a ‘top-down’
perspective (with decreasing k) trajectories in the regime
(58) emanate at X � 0 and continue towards smaller X.
Again, all trajectories reach a Landau pole for the quartic
(and higher) superfield coupling at vanishing field, given
by (52) and (53) with the parameter �sðcÞ taking negative
values. The Landau scale reads kL ¼ � ��0=�s > 0, and the
effective potential does not exist for fields below ��sðkÞ ¼
kð�s � 1Þ þ ��0ðkÞ � ��0ðkÞ. As in (57), the theory still has
a radial scalar mass set by the VEV and the quartic cou-

pling, because the one-sided derivative dW 0
d �� j ��0

with �� � ��0

can be taken for fields larger than the VEV. In turn, a scalar
mass at vanishing field cannot be defined. Therefore we
conclude that the renormalized RG flow cannot be contin-
ued towards the infrared for scales below the Landau scale
k < kL for parameters (58).

E. Discussion

Our results are summarized in Fig. 7 and should be
compared with Fig. 2. The phase diagram is given in
dependence on the coupling parameter c and the scale
parameter ��0.
In the SYM regime, the theory has a weakly coupled

phase with a scalar massm where both theOðNÞ symmetry
and supersymmetry are preserved (47). With increasing
coupling parameter �, the theory admits two OðNÞ sym-
metric phases with two mass scales m and M (48). This
regime has a very narrow width in parameter space, see
(28), which is sensitive to the underlying regularization.
For strong coupling (51), the theory displays two mass
scales m and M. However, it is also plagued by Landau-
type singularities which admit no solution for the super-
potential at scales above the Landau scale kL. This is not
visible from an evaluation of the IR gap equations alone,
see Fig. 2 for comparison.
In the SSB regime, the theory has a weakly coupled

phase (50) where the OðNÞ symmetry could be spontane-
ously broken and the effective potential for the scalar has
two degenerate minima corresponding to two mass scales
M andM�. The first mass scale is associated with an OðNÞ
symmetric phase, whereas the second mass scale emerges
from a finite VEV allowing for SSB. Furthermore, global
supersymmetry remains intact. With increasing coupling
parameter �, the theory enters a narrow parameter range
where RG trajectories would run through a series of
Landau poles at intermediate energies (54). Here, the dis-
continuity in field space and in the superpotential deriva-
tive shrinks to zero in the IR limit, the details of which are
sensitive to the underlying regularization. For even larger

FIG. 7 (color online). Schematic phase diagram based on the
RG in the infinite cutoff limit. The scale kL is given in Fig. 6. The
tighter constraints as opposed to Fig. 2 arise from the inspection
of the full effective potential at all scales k. The parameter range
between cM, cP and cL is very narrow (28).
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couplings jcj< cP (57) and (58), the theory is so strongly
coupled that RG trajectories terminate at Landau poles in
the physical regime. The effective potential does not exist
for fields below the nontrivial VEV �� < ��0 in the IR limit.
Still, the potential does admit a radial mass M�.

Unbroken global supersymmetry requires a ground state
with vanishing energy, and an elsewise positive dimension-
ful effective potential for all fields and all RG scales.
Strictly speaking, the nonexistence of an effective potential
for small fields means that we cannot decide, based on the
potential alone, whether supersymmetry is spontaneously
broken at strong coupling, or not. In fact, the results seem
to suggest that a description of the ground state in terms
of constant fields may no longer be adequate at strong
coupling. The occurrence of a Landau scale kL makes it
conceivable that supersymmetry is spontaneously broken
in the strongly coupled regime, signalled by a divergence
in the Ward identity for supersymmetry. This interpretation
would be consistent with the picture for the spontaneous
breaking of Parisi-Sourlas supersymmetry in disordered
Ising models [40], which is triggered by cusplike non-
analyticities of the RG flow at a finite ‘‘Larkin scale’’ kL.
At strong coupling, these limitations of the full effective
potential and the occurrence of Landau poles are not
directly visible from the infrared limit only, see Figs. 2
and 7. It is a virtue of the fully integrated RG flow for all
scales k that the structure of the effective potential at strong
coupling has become transparent.

V. EFFECTIVE FIELD THEORY

In this section, we discuss the integrated RG flow from
an effective theory perspective. We assume that the UV
scale � is finite, and that the boundary condition at k ¼ �
has been achieved by integrating-out the fluctuations with
momenta above �. The RG equations then detail the
remaining low-energy flow of couplings for all scales
k <�. In terms of dimensional quantities, the solution
(22) reads

��� ��0ðkÞ ¼ cW0 þH

�
W 0

k

�
k�H

�
W 0

�

�
�

��0ðkÞ ¼ kþ ��0:
(59)

The parameter ��0 is given by ��0 ¼ �ð	� 1Þ in terms of
the microscopic (UV) parameters. Our motivation for
studying (59) is twofold. Firstly, we want to further clarify
the origin of the ‘‘peculiar’’ phases discussed in the pre-
vious section. Second, we want to evaluate the effect of
changes in the boundary condition and higher-order cou-
plings on the phase structure and critical phenomena.

A. Gap equations

We begin with the IR limit of the integrated RG flow.
The corresponding gap equations for the scalar masses
at vanishing fieldW 0ð0Þ � ��, i.e., in theOðNÞ symmetric

phases, are given in terms of the dimensionless parameter
� by

� ��0

�
¼ c�þ cPj�j �Hð�Þ; (60)

where we used expansion (24) for H. For ��0 � 0 we find
two possible branches of solutions with

Hð�Þ ¼ ðcþ cpÞ�þ ��0

�
; ð�> 0Þ

Hð�Þ ¼ ðc� cpÞ�þ ��0

�
; ð�< 0Þ:

(61)

We consider c � 0 since changing the sign amounts to
interchanging � $ �� in (61). The main difference with
(42) in the infinite cutoff limit is the appearance of the
term Hð�Þ.
In the SYM regime with negative ��0 we find one, two, or

three solutions to (61) with m ¼ ��> 0, and none, one,
or two solutions M ¼ ���> 0, see Fig. 8. Three solu-
tions for positive�� can only exist if the slope cþ cP is in
between cP and cM, cf. Fig. 1.
For most parts of the parameter space we only have a

single scalar massm, similar to the weak coupling phase of
the renormalized theory. For small ��0=� and strong cou-
pling, a ‘‘triangle’’ opens up allowing for two additional
mass scales of the type M. The borderline cð ��0=�Þ is
found analytically, starting at the point ðc; ��0=�Þ ¼
ðcP; 0Þ and ending at ðc; ��0=�Þ � ð0;�1:077Þ, see Fig. 9.
Furthermore, we find two more masses of the type m in a
tiny ‘‘spikelike’’ region at very strong coupling, bordered
by the curves connecting ðc; ��0=�Þ ¼ ðcM � cP;�9=8Þ �
ð0:035;�1:125Þ with ðc; ��0=�Þ ¼ ð0;�1:077Þ and (0,�1)
as indicated in the same figure. The bordering lines
cð ��0=�Þ are known analytically. In total, we either have
a single mass m, or three masses mþ 2M or 3m, or five
different mass scales of the type 3mþ 2M in the region
where the triangle and the spike overlap. Some of the

FIG. 8 (color online). The graphical solution of the gap equa-
tion (61) in the symmetric phases with ��0 < 0. For positive �
there exist one, two or three solutions.
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masses are parametrically large in the strong coupling
domain. We believe that these masses in the very strongly
coupled domain are an artifact of the regularization and
should not be trusted.

In the regime ��0 > 0 allowing for SSB, a unique scalar
mass solution M to (61) is achieved from the branch with
negative �, for all couplings. In addition, the theory shows
the expected radial mass M�. However, we emphasize that

some of the solutions found here, in particular those at
strong coupling, have parametrically large masses suggest-
ing that these may be spurious.

B. RG phase diagram

Next we turn to the phase diagram of the integrated RG
flow at finite � for all scales k.

1. Symmetric regime

The phase diagram corresponding to (59) is given in
Fig. 10, where the axes denote the (inverse) quartic super-
field coupling 1=� and the parameter ��0 in units of the
initial scale �. For ��0 < 0 the theory is in the symmetric
phase, provided that the coupling is small enough. There
is also a strong coupling regime where the RG flow devel-
ops a Landau pole and the effective potential becomes
multivalued in the physical regime �� > 0. The boundary
between the two regimes is marked by a curve ccrð ��0=�Þ.
The latter is determined as follows: In the IR limit, the
solution (59) reads

��� ��0 ¼ cW0 þ �jW 0j �H

�
W 0

�

�
� (62)

and shows a Landau pole if d ��=dW0 vanishes. Using (62)
in the condition d ��=dW0 ¼ 0 at �� ¼ 0 yields

��0

�
¼ H

�
W 0

L

�

�
�W 0

L

�
H0

�
W 0

L

�

�
; (63)

where W 0
L is equal to W 0ð0Þ when the Landau pole enters

the physical region at �� ¼ 0. The real roots of this poly-
nomial equation are

W 0
L

�
¼ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8 ��0=�

p � ð3þ 2 ��0=�Þ
2ð1þ ��0=�Þ

�
1=2

; (64)

where the plus (minus) sign belongs to the critical coupling
characterizing a Landau pole at �� ¼ 0 in the positive
(negative) half-plane of W 0. Inserting this into (62), eval-
uated at �� ¼ 0, yields the critical couplings

ccr ¼ 1

W 0

�
� ��0 þH

�
W 0

�

�
�� cPjW 0j

�
jW 0

L
(65)

as a function of the VEV ��0. In general, we find that the
occurrence of Landau poles is only possible in the parame-
ter range1 ��0=� 2 ð�1:125; 0Þ and c 2 ð0; cPÞ, i.e., the
strong coupling regime. Besides ambiguities with W 0

L < 0

FIG. 9 (color online). Phases of the supersymmetric model
according to the gap equations at finite UV scale. The SYM
phase displays either a single mass scale m or several ones. The
SSB regime displays two scalar mass scales M and M� for all

couplings. Note that the mass scale M represents an OðNÞ
symmetric state within the regime where we would normally
only expect SSB to occur. The phase transition between the SYM
phase and the SSB phase is continuous with Gaussian exponents.

FIG. 10 (color online). Phases of the supersymmetric model
according to the RG equations at finite UV scale. The SSB
regime is quite similar to the result at 1=� ¼ 0, see Fig. 7. The
SYM phase is substantially larger (see text). The phase transition
between the SYM phase and the SSB phase is continuous with
Gaussian exponents. Note that there exists a very tiny Landau
phase for couplings cP < jcj< cM in the SSB regime.

1Note that we allow for negative 	 ¼ ��0=�þ 1, i.e., classical
potentials with a single minimum at �� ¼ 0 (symmetric phase).
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for couplings c < cP, we also find Landau poles with
W 0

L > 0 in the very narrow strong coupling regime with
c < ðcM � cPÞ � 0:035, see Fig. 11.

Hence, we interpret the different regimes of the sym-
metric phase as follows (see Fig. 10): We observe Landau
poles in the physical regime with W 0

L < 0, if the superfield
coupling � is larger than c�1

cr�, i.e., c < ccr�. The corre-
sponding borderline starts at the point ðc; ��0=�Þ ¼ ðcP; 0Þ
and ends at (0, �1:077), similar to borderline resulting
from the gap-equation analysis. Furthermore, for very
strong couplings c < cM � cP 
 1 we observe ambigu-
ities withW 0

L > 0 in the physical regime (dark shaded area
in Fig. 10). However, this area is bounded by ccrþ from
below, where ccrþ starts at ðcM � cP;�1:125Þ and ends
at (0, �1:077).

Interestingly, the available domain of couplings is sub-
stantially larger than in Fig. 7. The reason for that is quite
intuitive, since decreasing the VEV ��0 comes along with a
shift of the solutionW 0 to the left and thus the Landau pole
may enter the unphysical regime �� < 0. In addition, the
equations do not admit a second mass M, unlike the case
for 1=� ¼ 0. We emphasize that the RG study of the phase
diagram also allows for a simple descriptive explanation of
the occurrence of the various masses as shown in Fig. 9.
The two additional masses M, observed in the strong
coupling domain (see big triangle, Fig. 9) result from an
ambiguity of the solution W 0 in the negative half-plane.
The borderline connecting ðcP; 0Þ and (0,�1:077) in Fig. 9
represents the special solution with c ¼ ccr� showing a
Landau pole in the IR exactly at �� ¼ 0 and this corre-
sponds to an additional infinitely large mass M. Similarly,
the two additional masses of type m in the spikelike strong
coupling region result from ambiguities of the solution for
positive W 0.

2. Symmetry broken regime

For ��0 > 0, the theory is in a phase featuring sponta-
neous OðNÞ symmetry breaking. For sufficiently weak
coupling with jcj � cM, the theory displays a well-defined,
low-energy regime with two mass scales M and M�. The

first one is associated to the curvature at vanishing field and
thus represents an OðNÞ symmetric phase, whereas the
second mass is given by the curvature at the nonvanishing
VEV �0 and implies SSB.
In the very narrow coupling-regime cP < jcj< cM there

occur IR Landau poles at ð�sðkÞ; usðkÞÞ with

�sðkÞ ¼ 1þ cus þHðusÞ �HðusetÞe�t þ ��0

k
;

0 ¼ cþH0ðusÞ �H0ðusetÞ
(66)

within the physical regime for scales k < kL. However,
similar to the renormalized theory, the poles approach the
VEV limk!0 ��sðkÞ ! ��0 in the IR limit from below and
the domain, where W 0 is multivalued collapses to a point.
Hence, the effective Potential is well defined and unique.
For stronger couplings c < cP, the effective potential is

plagued by Landau poles and becomes multivalued even in
the IR. This becomes apparent by considering the second
derivative W 00 of the superpotential. The latter shows a
nonanalyticity at ��0 exactly in the IR limit with

lim
��! ��0�

W 00ð ��Þ ¼ 1

c� �
; (67)

where W 0ð ��0�Þ ! �0. Apparently, the solution W 0 shows
a cusp with positiveW 00 forW 0 ! þ0 and negativeW 00 for
W 0 ! �0 in the vicinity of the node if jcj< cP. Since
there exists at most one Landau pole withW0

L < 0 in the IR
limit (Fig. 11) and sinceW 0ð �� ! �1Þ ¼ �1, it becomes
apparent that there has to be a Landau pole located in the
physical regime for k ! 0 if and only if jcj< cP.

C. Discussion

Now we compare and discuss the phase diagrams
obtained by (a) considering the renormalized theory with
� ! 1 and (b) looking at the effective theory with �
finite.
Firstly, let us compare the phase diagrams Figs. 2 and 9

as derived from the gap equations (42) and (61).
Apparently, the gap equations (61) of the effective theory
contain an additional cutoff- (and regulator-) dependent
contribution Hð�Þ compared to (42). The term Hð�Þ thus
leads to the following modifications of the phase diagram
of the renormalized theory: In the symmetric phase, it
diminishes the parameter range where we observe further
masses in addition to m. Besides, we find up to five differ-
ent OðNÞ symmetric phases in the very strong coupling
regime jcj 
 1 and for certain VEV ��0. In the spontane-
ously broken regime, the function Hð�Þ enlarges the
parameter range to infinitely large couplings � ¼ 1=c,

0.5 1 1.5 2 2.5

1

0

1

2

3

FIG. 11 (color online). Possible values W 0
L=� as a function of

the inverse superfield coupling c ¼ 1=� associated with a
Landau pole in the IR limit, i.e., with d ��=dW 0 ¼ 0.
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where we observe a second mass M in addition to M�.

However, since the masses in the very strong coupling
regime are quite large, i.e., of the order of the cutoff �,
we believe them to be regulator-dependent and unphysical.

Next, let us compare the phase diagrams Figs. 7 and 10
as deduced from our RG studies. Here, we claimed solu-
tions W 0ð ��Þ to be physically relevant, if there exists no
Landau pole characterized by an infinitely large fermion-
boson coupling W 00 in the physical domain.

Let us first consider the SYM regime. Here, the narrow
window between the couplings cL and cP, where there
exist two masses m and M vanishes for finite � and the
effective theory shows only a single mass m. Furthermore,
the strong coupling domain is reduced and becomes
��0-dependent for � finite. The different structure of the
SYM regimes become apparent by comparing Fig. 3 with
Figs. 12 and 13. In the renormalized theory (Fig. 3), there
exists an UV Landau pole in the physical domain for

FIG. 12 (color online). Effective field theory with finite �: Graphical representation of the dimensionless superpotential derivative
uðXÞ as a function of X ¼ �� ��0=k in (45) for weak, intermediate and strong superfield coupling (from left to right). Each panel
shows the RG flow, starting with u�ð�Þ ¼ �ð�� �0ð�ÞÞ according to (19) in the UV up to the IR limit.

FIG. 13 (color online). Effective field theory with finite �: Graphical representation of the dimensionful superpotential derivative
W 0=� as a function of �X ¼ ð ��� ��0Þ=� for weak, intermediate and strong superfield coupling (from left to right). Each panel shows
the RG flow of the superpotential, starting with W0

�ð ��Þ ¼ �ð ��� ��0ð�ÞÞ according to (19) in the UV up to the IR limit. Note the

nonanalyticity of the effective superpotential at �X ¼ 0 in the IR limit k ! 0 (see Secs. VB 2 and VD). Note further that the running
potential with c ¼ cP (middle panel) shows ambiguities for very small j �Xj 
 1 for small scales k which are not visible in the figure.
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superfield couplings stronger than � ¼ c�1
L and the poten-

tial is not even defined for all fields � > 0. In contrast, the
effective theory always features a well-defined UV limit,
given by the superpotentialW 0

� ¼ �ð ��� ��0ð�ÞÞ at the UV
scale k ¼ �. The potential is defined for all fields but may
show ambiguities for sufficiently strong couplings. This is
illustrated in Fig. 13, where the superpotential W 0=� is
plotted as a function of �X ¼ ð ��� ��0Þ=�. In the SYM
phase, the origin �� ¼ 0 corresponds to �X ¼ j ��0j=�> 0.
Now, let us consider the strongly coupled domain with
jcj< cP fixed (Fig. 13, right panel) and j ��0j 
 1. Here,
a IR Landau pole occurs at kL > 0 in the physical regime
and additional masses at the origin appear by approaching
the IR. However, if we choose j ��0j large enough, the IR
Landau pole drifts out of the physical domain and the
effective potential is unique and well-defined for all
�� � 0 with a single mass m. This upper limit of j ��0jðcÞ
simply corresponds to the borderline connecting ðcP; 0Þ
and (0, �1:077) in Fig. 10.

We find identical weak, Landau, and strong coupling
SSB regimes for the renormalized and the effective theory,
see Figs. 7 and 10. The renormalized as well as the effec-
tive theory exhibit an IR Landau pole for all jcj< cP
(Figs. 3 and 13. The existence of an IR Landau pole within
the effective theory is shown as follows, see Fig. 13, right
panel: The origin �� ¼ 0 corresponds to �X ¼ � ��0=�< 0
and thus there always emerges an IR Landau pole in the
physical domain at kL > 0 for jcj< cP. Independent of the
superfield coupling and the VEV ��0 > 0, there always
exists only a single mass M at the origin representing an
OðNÞ symmetric phase. Again, the effective potential is
always defined for all fields but may show ambiguities,

whereas the potential is not defined for all fields �� > 0 in
the strong coupling regime jcj< cP in the infinite cutoff
limit � ! 1.
Finally, Fig. 14 compares the different mass scales of the

renormalized and the effective model. Notice that these
masses represent OðNÞ symmetric phases of the model,
since they emerge from the curvature of the potential at
vanishing field �� ¼ 0. The parametrically large masses m
observed in the spikelike region (see Fig. 9) are not
included in Fig. 14, since we believe them to be an artifact
of the chosen regularization.
In summary, in the SSB phase, and in the symmetric

phase at weak coupling, the difference between the
ð�2Þ2d¼3 theory at finite and infinite UV cutoff is minute,

resulting in equivalent phase diagrams. In the symmetric
phase for c < cP, the difference is more pronounced: At
finite UV cutoff the fluctuations of the Goldstone modes
have less ‘‘RG time’’ available to built-up nonanalyticities
in the effective potential. This leads to a shift in the
effective boundary between weak and strong coupling,
allowing for a substantially larger domain of a regular
OðNÞ symmetric phase. At strong coupling, we also con-
clude that the absence of an OðNÞ symmetric phase at
infinite cutoff arises from the theory at finite UV scale
through an OðNÞ symmetric phase with anomalously large
mass of the order of the UV scale itself.

D. Effective potential

As already mentioned in Sec. III B, the relevant micro-
scopic coupling 	 ¼ 	cr þ ��0=� determines the macro-
scopic physics of the model: if 	 < 	cr ( ��0 < 0), the
effective potential preserves global OðNÞ symmetry.

FIG. 14 (color online). Green solid lines: mass scales m, M of the renormalized theory (� ! 1) as functions of the coupling c
according to the gap equations (43) for fixed ��0 ¼ f�0:5;�0:5; 0:5g (left, middle, right panel). Blue, thick dashed lines: Masses m=�,
M=� of the effective theory (�<1) as functions of the coupling c according to the gap equations (60) for fixed ��0=� ¼
f�0:5;�0:5; 0:5g.
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Contrary, if 	 > 	cr ( ��0 > 0), the symmetry may be spon-
taneously broken, if the VEV ��0 > 0 is taken. The specific
UV coupling 	cr ¼ 1 marks the phase transition between
the two regimes. Figure 15 shows the flow of the effective
average potential Vkð ��Þ for different values of 	, starting in
the UV at k ¼ � with

V� ¼ ��ðW 0
�Þ2 ¼ �2 ��ð ��� 	�Þ2 (68)

according to (19), up to the IR limit k ! 0. Three aspects
of the potential need to be discussed further:

Firstly, there exists a strong coupling domain, where the
effective potential shows ambiguities within the physical
domain, both in the infinite cutoff limit (Fig. 3) and in the
effective theory limit (Fig. 13, right panel). At strong
coupling, the effective potential admits no physical solu-
tion for small fields, except for an unphysical one with
1=ju0j 
 1 in the effective theory description. This result
indicates that a description of the theory in terms of an
effective superpotential is no longer viable, possibly hint-
ing at the formation of bound states with or without the
breaking of supersymmetry. Incidentally, for the same
parameter values the effective potential admits two solu-
tions for large fields, except for an unphysical third solu-
tion one in the effective theory description. The theory
admits two different effective potentials associated to the
same microscopic parameters, which has been discussed in
Ref. [1] in the context of fixed-point solutions.

Secondly, the effective potential at k ¼ 0 is nonanalytic
at its nontrivial minimum ��0. Consider, therefore, the
second derivative of the superpotential

W 00ð ��Þ ¼ 1

cþH0ðW 0=kÞ �H0ðW0=�Þ (69)

in the vicinity of ��0ðkÞ, where W 0ð ��0ðkÞÞ ¼ 0 according to
(59). By approaching the IR, (69) simplifies to (67).

Apparently, this nonanalyticity does not appear until the
exact IR limit k ¼ 0 is approached. Contrary to this, for all
finite scales k > 0we findW 00ð ��0ðkÞÞ ¼ 1=c, which simply
represents the exactly marginal superfield coupling �.
Since the radial mass is given by

M2
� ¼ V 00ð�Þj�¼�0

¼ ð2 ��W 00ð ��ÞÞ2j�0ðkÞ; (70)

a uniquely defined radial mass only exists for finite scales
k > 0 and reads

M�ðkÞ ¼ 2� ��0ðkÞ ¼ 2�ðkþ ��0Þ; ��0 > 0: (71)

First studies at finite N indicate that the nonanalyticity of
W 0 for k ¼ 0 is solely due to the large-N limit.
Thirdly, the effective scalar field potential in the SSB

phase with nonvanishing VEV is not convex, even in the IR
limit k ! 0. As it has already been mentioned in Ref. [30],
the supersymmetric analogon of the potential term in the
classical action is the superpotentialW, (2). Consequently,
a flow of the superpotential is derived which drives the
approach to convexity of the superpotential W, but not
necessarily of the potential V ¼ ��W02. The superpotential
W is a convex function if and only if the first derivative
W 0ð ��Þ represents a monotonically increasing function of ��.
According to (62), this condition is satisfied as long as
c > cP, i.e., in the weakly coupled domain. This fact sup-
ports the conjecture that supersymmetry may be broken
spontaneously in the strongly coupled domain exhibiting
Landau poles.

E. Phase transition & critical exponents

The supersymmetric OðNÞ model in d ¼ 3 is an
effective field theory that features the large-distance
properties of statistical models near a second-order phase
transition. According to Ref. [1], the fixed-point solution

FIG. 15 (color online). RG flow of the effective average potential Vk=�
3 as a function of ��=� according to (59) for different values

of 
	 ¼ ��0=� ¼ f�0:1; 0;þ0:1g at weak coupling c ¼ 3:7. If ��0 < 0, the system evolves into an OðNÞ symmetric phase (left panel).
Vanishing ��0 corresponds to the phase transition between the OðNÞ symmetric and the SSB phase and the scale invariant solution is
approached in the IR limit (middle panel). If ��0 > 0, the macroscopic theory is characterized by a nonvanishing VEV ��0ðk ! 0Þ ¼
��0 > 0 (right panel). The insets show the potential at small fields approaching the IR limit.
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characterizing the phase transition shows Gaussian scaling
for all finite couplings c, except for jcj ¼ cP, cI. Following
Ref. [15] we can also extract the thermodynamical critical
exponents. The expectation value of the field h�i serves as
order parameter, and in the SSB regime it is related to the
VEV ��0 via (choose �i ¼ 
i1�)

h�i ¼ lim
k!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ��0ðkÞ

q
� ffiffiffiffiffiffiffiffi

2 ��0

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
	�

p
: (72)

We may associate the deviation of 	 from its critical value
	cr ¼ 1 with the deviation of the temperature T from the
critical temperature Tc according to 
	�� ðTc � TÞ.
Thus we have

h�i � ð ��0Þ� with � ¼ 1

2
: (73)

Next, consider the critical exponent � describing the man-
ner in which the correlation length 
 diverges (the mass
vanishes) by approaching the phase transition. We thereby
distinguish between


�1 ¼ m� ð� ��0Þ� ðSYM regime; ��0 < 0Þ

�1 ¼ m� ð ��0Þ�0 ðSSB regime; ��0 > 0Þ: (74)

Let us consider first the squared masses corresponding to
OðNÞ symmetric ground states as given by (41). We are
interested in how the superpotential W0 vanishes at the
origin when ��0 ! 0. We begin with the parameter range
c > 0 and c � cP. Using (62) and (25) we have

��� ��0 ¼ cW0 þ �jW 0j � 3

�
W 02 þO

�
W 04

�3

�
(75)

for small masses. In the SYM regime, this gives (43) for
W 0=� 
 1, where the second mass in (43) only exists in
the strong coupling region c < �. Hence, according to (74)
we have

� ¼ 1: (76)

In the SSB regime, there exists a unique OðNÞ symmetric
ground state with mass M given by (43) for all c > �,
implying

�0 ¼ 1: (77)

We also observe a spontaneously OðNÞ broken ground
state, characterized by its radial mass according to (71).
Since M� � ��0, this also leads to (77).

Now consider the exponent 
, given by Jj ��0¼0 ��
,

where J ¼ @V=@�. Close to the phase transition, where we
may assume the cutoff to be much larger than the mass
scale, i.e., W 0=� 
 1, the effective potential reads

Vð ��Þ ¼ 1

A2
��ð ��� ��0Þ2 (78)

with A ¼ cþ �sgnð ��� ��0Þ and sgnð0Þ ¼ 0. This leads to

Jj ��0¼0 ¼ 3

4A2
�
 with 
 ¼ 5: (79)

Finally, we discuss the critical exponent � associated with
the susceptibility � ¼ @�=@J ¼ ð@2V=@�2Þ�1 near the
phase transition,

�ðJÞjJ¼0 � ð� ��0Þ� ðSYM phase; ��0 < 0Þ
�ðJÞjJ¼0 � ð ��0Þ�0 ðSSB phase; ��0 > 0Þ: (80)

Using (78) and (80) we get

� ¼ �0 ¼ 2: (81)

Note that the results (76), (77), (79), and (81) are invariant
under changing c $ �c, see (44). The thermodynamical
scaling exponents derived here can equally be obtained
from the leading RG exponent together with scaling rela-
tions by using � ¼ 1=�, where � ¼ 1 is the IR relevant
eigenvalue due to the VEV. The scaling exponents in the
special case where c ¼ �cP are discussed in the following
section.

VI. SPONTANEOUS BREAKING
OF SCALE INVARIANCE

In this section, we discuss the supersymmetric analogon
of the Bardeen-Moshe-Bander (BMB) phenomenon, the
spontaneous breaking of scale invariance and the associ-
ated nonclassical scaling.

A. Bardeen-Moshe-Bander phenomenon

We first recall the BMB phenomenon for scalar OðNÞ
symmetric theories. Linear OðNÞ models serve as perfect
testing ground for studying critical phenomena. For large
N the solvable spherical model gives a qualitatively accu-
rate picture of the phase structure of the theory. The
ð�2Þ2d¼3 theory exhibits an IR-attractive Wilson-Fisher

fixed point corresponding to a second-order phase transi-
tion between the OðNÞ symmetric and the spontaneously
broken phase [20]. In contrast, the scalar ð�2Þ3d¼3 model

shows a more complex phase structure [3–5,20].
Depending on the renormalized couplings �2, � and � of
the operators �2, �4 and �6, one observes a first-order
phase transition without universal behavior or a second-
order phase transition with universal behavior. Both
regimes are separated by a tricritical line t, characterized
by vanishing couplings �2 and � as depicted in Fig. 16.
A surface of first-order transitions continues into the OðNÞ
symmetric phase for couplings with �> �c and ends at a
gas-liquid transition line l. Scale invariance is an exact
symmetry of the tricritical theory, but at the end point
ð0; 0; �cÞ, scale invariance is spontaneously broken. The
free coupling � is dimensionally transmuted to an unde-
termined mass scale m and a massless Goldstone-boson
(dilaton) shows up. In the large-N limit this nontrivial and
UV-stable BMB fixed point marks the point where the
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tricritical line t and the gas-liquid line l meet. Hence, the
tricritical line connects the Gaussian fixed point and the
BMB fixed point. One expects that at finite N the tricritical
line extends all the way to infinite � and the BMB point
disappears [43]. We note that the BMB fixed point is also
of interest as a fundamental UV fixed point, allowing for a
non-Gaussian continuum limit for the ð�2Þ3d¼3 theory with

nonclassical scaling.

B. Supersymmetric BMB phenomenon

In the supersymmetric theory, the BMB phenomenon
has first been discussed in Ref. [6] with variational
methods. Here, the critical ð�2Þ2d¼3 theory with a quartic

superfield potential corresponds, in the scalar sector, to a
critical ð�2Þ3d¼3 with a sextic potential. The main new

addition due to supersymmetry is that the scalar quartic
and sextic couplings are no longer independent of each
other.

Using the fully integrated RG flow, the following picture
for the BMB phenomenon emerges: If we fine-tune the
classical coupling 	 ¼ 	cr, the solution (22) at the origin
� ¼ 0 reads

� 1 ¼ cu0 þHðu0Þ (82)

in the IR limit, where u0 � uð� ¼ 0Þ. This equation sim-
ply represents the fixed-point solution at vanishing field.
The OðNÞ symmetric ground state is characterized by the
mass

M2 ¼ ðW0ð0ÞÞ2 ¼ ��2 ¼ ðu0kÞ2; (83)

whereM ¼ � ��> 0. Evidently, u0 has to diverge as 1=k in
order to allow for spontaneous breaking of scale invariance
with a finite mass scale M in the IR limit k ! 0. Now we
find the transcendental equation (85) to have always a
single zero mass solutionM ¼ 0, except for c ¼ cP, where
it shows an additional, infinitely large solution u0 ! �1.
Note that this limit emerges from uð�Þ through negative
field squared values � ! 0�, which is a consequence
of our regularization. Hence, the specific microscopic
parameters

ð	; �Þ ¼ ð1; 1=�Þ (84)

lead to a macroscopic theory, where the mass of the OðNÞ
bosonic and fermionic quanta is left undetermined. Thus,
scale invariance is spontaneously broken in accordance
with Refs. [6,7,11] and a mass is generated by dimensional
transmutation. The coupling parameter � takes the value
(84) in our conventions, and the associated degree of
freedom is ‘transmuted’ to an arbitrary mass scale M.
Spontaneously broken scale invariance leads to the appear-
ance of a Goldstone boson (dilaton) which is accompanied
by a Goldstone fermion (dilatino), since supersymmetry is
left unbroken. Note that these particles are exactly mass-
less, since � is not renormalized.

C. BMB scaling exponents

Next we turn to the scaling exponents of the supersym-
metric BMB fixed point. The critical exponents (74) and
(80) become double-valued due to a different scaling
behavior of the different mass scales m, M near the fixed
point. These, in turn, originate from the finite and the
infinite u0 solutions detected at jcj ¼ cP, see Fig. 3. The
latter is responsible for the special nonanalytic behavior
of the solution at the BMB fixed point. We first consider
c ¼ cP, and the critical exponents � and �0 defined in (74).
By approaching the phase transition from the SYM regime,
we find m ¼ � ��0=2� and hence

� ¼ 1: (85)

In turn, approaching the fixed point from the SSB regime,
the expression for M in (43) is not applicable since the
contribution linear in W 0 in (75) vanishes. The subleading

quadratic terms take over and we are lead to M2 ¼ �
3 ��0,

implying that the supersymmetric BMB exponent �0 is
given by

�BMB ¼ 1

2
: (86)

We now consider c ¼ �cP. By virtue of the symmetry (44)
we note that the mass scalesm $ M interchange their roles
under cP $ �cP. Consequently, the scaling exponents
(85) and (86) also interchange their values. Therefore we
conclude that the theory at jcj ¼ cP displays conventional

FIG. 16 (color online). Phase structure of the scalar OðNÞ
model at infinite N including the BMB fixed point, according
to Ref. [5] (see text).
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scaling with (85) as well as un-conventional scaling
with (86). The former is a consequence of the smooth
‘‘non–BMB’’ type’’ scaling related to finite u0, whereas
the latter is the BMB scaling associated to infinite u0. In
either case, and under the above identification, we con-
clude that the scaling indices from the symmetric and
symmetry broken regimes agree. We also stress that the
BMB scaling exponent (86) is nonclassical. Furthermore, it
cannot be derived from the RG scaling alone, as they are
due to nonanalyticities in the field dependences. As a final
comment we note that an infinite u0, the fingerprint for
spontaneous breaking of scale invariance, is stable under
alterations of the RG scheme.

VII. RADIAL MODE FLUCTUATIONS

In this section, we give a first account of the phase
transition in a theory with finitely rather than infinitely
many supermultiplets N, focussing on the existence of a
fixed point, the phase transition, and the fate of the super-
symmetric BMB phenomenon to leading order in a
gradient expansion.

A. Exact fixed point

The main new addition to the supersymmetric RG
flow at finite N are the fluctuations of the radial mode.
They imply that the quartic coupling � is no longer an
exactly marginal coupling with an identically vanishing
�-function. Instead, the flow of this coupling is governed
by terms of order 1=N. The absence of an exactly marginal
coupling implies that the line of fixed points found at
infinite N will collapse into a finite, possibly empty set
of fixed points. Furthermore, the running of the VEV no
longer factorizes from the other couplings of the theory
resulting in a more complex structure of the RG flow.

In order to study the supersymmetric OðNÞ model at
finite N we return to the full RG flow (15), which in terms
of u � w0 takes the form

@tu¼�uþ�u0 �
�
1� 1

N

�
u0

1�u2

ð1þu2Þ2

� 1

N
ð3u0 þ2u00�Þ 1�ðuþ2�u0Þ2

ð1þðuþ2�u0Þ2Þ2 : (87)

A global, analytical, solution of the RG flow (87) is pres-
ently not at hand, and we have to resort to approximate
solutions instead [25]. We start with a polynomial approxi-
mation to order n for the ‘potential’ u, writing

uð�; tÞ ¼ Xn
i¼1

aiðtÞð�� �0ðtÞÞi: (88)

It expresses the potential in terms of (nþ 1) couplings
ð�0; a1; . . . ; anÞ to determine its fixed points. Inserting the
ansatz (88) into the PDE (87) we find a tower of ordinary,
coupled differential equations for the couplings,

@t�0ðtÞ ¼ ��0ðtÞ þ
�
1� 1

N

�

þ 1

N

�
3þ 4�0ðtÞa2ðtÞa1ðtÞ

� ð1� ð2�0ðtÞa1ðtÞÞ2Þ
ð1þ ð2�0ðtÞa1ðtÞÞ2Þ2

..

.

@tanðtÞ ¼ fnð�0ðtÞ; a1ðtÞ; a2ðtÞ; . . . ; anþ2ðtÞÞ: (89)

Note that the functions fn depend on the couplings anþ1

and anþ2, because the rhs of (87) involves up to second
derivatives of u. The fixed-point solution requires the flow
of all couplings to vanish and hence we set the lhs of (89)
equal to zero, leading to an algebraic system of (nþ 1)
equations for (nþ 3) unknowns. These may be solved,
tentatively, by setting the last two couplings anþ1 and
anþ2 to zero. We find

�0�ðNÞ ¼ 1� 1

N
a1�ðNÞ ¼ 1

2

N

N � 1

a2�ðNÞ ¼ � 3

8

N2

ðN � 1Þ2
(90)

for the first three couplings. The solution bifurcates into
two independent fixed points starting with a3. Intriguingly,
the recursive relation leads to an exact analytical solution
of the full system for all N to arbitrarily high expansion
order n. The reason for this unlikely outcome is that the
fixed point (90) is independent of the boundary condition
which we have imposed initially on the higher order cou-
plings. This follows from noticing that all fixed-point
equations (89) with n � 2 are of the form

0 ¼ fnð�0; a1; . . . ; anþ2Þ
¼ ~fnð�0; a1; . . . ; anÞ

þ ðnþ 1Þð�0 � 1þ 1=N þ @t�0Þanþ1

� nþ 1

N

1� 
2

ð1þ 
2Þ2 ½ð3þ 2nÞanþ1 þ 2ðnþ 2Þ�0anþ2�

� 4�0
ðnþ 1Þ2
N

ð3a1 þ 4a2�0Þð
2 � 3Þ
ð1þ 
2Þ3 anþ1:

Here 
 ¼ 2a1�0, and @t�0 is given according to (89). At
the fixed point (90) we have 
� ¼ 1, and all terms propor-
tional to anþ1 and anþ2 vanish. Thus, the fixed-point
equation for every anðn > 2Þ is independent of anþ1

and anþ2 provided the first three couplings have the values
(90), and we are lead to a closed system of (nþ 1) equa-
tions for (nþ 1) couplings allowing for an exact solution
order by order.

B. Exact scaling exponents

The new fixed point (90) has two branches one of which
is IR attractive in all couplings except for the running VEV
which remains an IR relevant operator. The second fixed
point is UV relevant in all couplings and is not pursued any
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further. The universal scaling exponents of the Wilson-
Fisher type fixed point can be determined analytically.

From the eigenvalues of the stability matrix Bj
i ¼

@ð@taiÞ=@ajj� we read off that the lowest coupling

(a0 � �0) defines an IR unstable direction with a critical
index

�0 ¼ 1: (91)

Note that the leading critical exponent � ¼ 1=�0 in (91) is
super-universal and identical to the result at infinite N. The
exponent does not receive corrections due to the fluctua-
tions of the radial mode and therefore cannot be used to
distinguish universality classes of different N. All other
couplings ai, i ¼ 1; 2; 3; . . . define IR attractive directions
with subleading critical exponents

�i ¼ 1� i� iðiþ 1Þ
6

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ 17

N � 1

s
� 1

1
A: (92)

The universal eigenvalues �i are strictly negative for all
N > 1. Furthermore, the Gaussian critical exponents
�G;i ¼ 1� i for integer i � 0 of the theory in the

large-N limit are recovered from (91) and (92) in the limit
1=N ! 0. In particular the formerly exactly marginal �6

coupling has now become irrelevant.
Similarly, the fixed-point values of the couplings (90)

converge to the large-N fixed-point values for N ! 1. In
the presence of the radial fluctuations, the N-dependent
quartic superfield couplings ��ðNÞ is given by the coeffi-
cient a1�ðNÞ, see (90). Taking the limit of infinite N singles
out a unique value for the quartic superfield coupling,

lim
N!1��ðNÞ ¼ 1

2
; (93)

meaning that the line of nontrivial fixed points parame-
trized by the exactly marginal superfield coupling � has
shrunk to a single point. Notice also that the fixed-point
value (93) is different from the supersymmetric BMB value
� ¼ 1=cP in the infinite N limit, see (28). This serves as a
strong indication for the nonexistence of a supersymmetric
BMB fixed point in the presence of the radial fluctuations
and N > 1.

C. Global scaling solution

The infinite N limit (93) belongs to the strong coupling
regime where the fixed-point solution for the superpoten-
tial derivative u� displays two branches, neither of which
extends towards arbitrarily small fields [1]. The latter,
signalled through the divergence of du�=d� at some finite
field value � � 0, is responsible for the occurrence of a
Landau scale. It remains to be seen whether the fixed point
at finite N continues to belong to the strongly coupled
regime or not.

To answer this question, and to compare the fixed points
at finite and infinite N, we need to study the finite N

potentials at small fields numerically. The Taylor series
(88) of the scaling solution has a finite radius of conver-
gence. Alternatively, one may expand the inverse
fixed-point solution �ðuÞ in powers of u. At infinite N,
the analytical scaling solution � ¼ 1þ cu� þHðu�Þ ¼P1

i¼0 biu
i� has a finite radius of convergence r set by the

gap of the inverse propagator (here: r ¼ 1) [16]. Either
expansion is limited to a finite range in field space. In
order to cover the full field space, and to make potential
nonanalyticities of the form u0�ð�Þ ! 1 visible, we
numerically integrate the differential equation of the in-
verse function �ðu�Þ instead of u�ð�Þ. It reads

0 ¼ �� u��0 �
�
1� 1

N

� ð1� u2�Þ
ð1þ u2�Þ2

� 1

N
ð3�02 � 2��00Þ �02 � ðu��0 þ 2�Þ2

ð�02 þ ðu��0 þ 2�Þ2Þ2 (94)

subject to suitable boundary conditions. The boundary
conditions �ð0Þ ¼ �0� and �0ð0Þ ¼ 2�0� correspond to a
singular point of (94) and cannot be used. Instead, we
extract boundary conditions for �ðu�Þ, �0ðu�Þ for ju�j ¼
0:01 
 1 from the polynomial approximation to u�ð�Þ of
the order n ¼ 9. The combined use of polynomial expan-
sions and subsequent numerical integration is a well-tested
technique in critical scalar theories [25].
Figure 17 compares the polynomial approximation of

the scaling solution with the numerical one for N ¼ 3. The
graph also contains the analytical solution of the theory at
infiniteN. The latter is given by the fixed-point equation of
(87), where we neglect the contribution of the radial mode
(the term in the second line) and fix the free parameter of
the solution to a1�ðN ¼ 3Þ according to (90). We find that

FIG. 17 (color online). Fixed point solution u�ð�Þ for N ¼ 3.
The figure compares the polynomial approximation (blue, long-
dashed line) with the nonperturbative integration (green, solid
line) and a large-N-like solution (black, short-dashed line).
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the large-N solution approximates the finite-N solution
very well in the vicinity of the node �0� and above, largely
independently of the chosen value for N > 1. This is
entirely due to the structure of the fixed point (90), where
2a1��0� � 1. The numerical solutions illustrate further that
the fixed-point solution at finite N shows a similar non-
analytic behavior characterized by a diverging mass term
u0� ! 1, as it appears in the large-N limit for strong quartic
superfield coupling (cf. Sec. III D).

We now discuss the N dependence of the scaling solu-
tion (90). Figure 18 shows that the fixed-point solution,
displayed for various integer N � 2, always generates a
diverging du=d� for some positive field values � ¼ �cðNÞ,
with 0< �cðNÞ< �0�ðNÞ. The solution u�ð�Þ does not
exist for small 0 � � < �c, for all N considered. Also,
we find that u�ð�cÞ becomes increasingly large in magni-
tude with decreasing N. Hence, the main effect of the
competition between the radial mode and the Goldstone
mode fluctuations, with decreasing N, is a shift of the end
point �cðNÞ and the VEV �0�ðNÞ towards smaller values.
Continuity in N suggests that this pattern persists for all
N > 1 where �0� > 0.

For the supersymmetric Ising model where N ¼ 1, the
Goldstone modes are absent and the RG dynamics is
controlled by the fluctuations of the radial mode. In the
limit N ! 1, (90) predicts a vanishing VEV, �0 ¼ 0 and
implies the existence of a supersymmetric Ising fixed point
valid for all fields, though at the expense of a nonanalytic
behavior of u�ð�Þ at vanishing field. Note that a direct
study of the N ¼ 1 case using the same RG equations
[34] has also detected a regular Ising fixed-point ana-
lytic in the fields, whose critical eigenvalue �0 ¼ 3=2 is

different from (91). Furthermore, the diverging of all
higher order couplings (90) in the limit N ! 1 together
with the continuity of the fixed point in N suggests that
�c ! 0 and ju�ð�cÞj ! 1 in this limit. This behavior is
intriguing inasmuch as the diverging of u�ð� ! 0Þ is the
fingerprint for the spontaneous breaking of scale invari-
ance. It may thus qualify for a novel supersymmetric BMB
phenomenon which originates from the radial mode rather
than the Goldstone fluctuations. It would seemworth to test
this picture directly in the supersymmetric Ising model
without relying on the limit N ! 1 adopted here.
To conclude, the fixed point (90) is of the strongly

coupled type for all N > 1 as signalled by the same
qualitative behavior seen previously at infinite N [1].
Furthermore, the fluctuations of the Goldstone modes are
central for the existence of the endpoint in field space
�c > 0 of strongly coupled fixed-point solutions. At infi-
nite N, and as a consequence of �c > 0, the phase diagram
at strong coupling is governed by nonanalyticities at finite
RG scales. Due to �cðNÞ> 0 for N > 1, the same type of
nonanalyticities with an associated Landau scale kL control
the phase transition associated with the fixed point (90) at
finite N. The above behavior at strong coupling is thus
generic for supersymmetric ð�2Þ2 theories withN > 1 and,
to distinguish from the nonanalyticities at infinite N,
responsible for, e.g., the conventional BMB phenomenon.

VIII. SUMMARYAND CONCLUSIONS

Analytical solutions of interacting local quantum field
theories are benchmarks for a deeper understanding of
concepts and mechanisms in theoretical physics. In this
work, we have provided a global renormalization group
study of interacting supersymmetric theories in three
Euclidean dimensions, the OðNÞ symmetric ð�2Þ2 Wess-
Zumino theories, continuing a line of research initiated in
Ref. [1]. These theories are the supersymmetric versions of
OðNÞ symmetric scalar ð�2Þ3 theories, which display first-
and second-order phase transitions and the seminal
Bardeen-Moshe-Bander (BMB) mechanism.
The main new features due to supersymmetry arise

through the fluctuations of the Goldstone modes, in par-
ticular at strong coupling, and their competition with the
fluctuations of the radial mode. In the limit of infinitely
many superfields, the radial mode is absent and the theory
is solved exactly. The phase diagram is then controlled by
two free parameters, the exactly marginal quartic super-
field coupling and the vacuum expectation value, which
takes the role of an infrared relevant coupling. Locally, the
theory has an interacting fixed point for all quartic cou-
plings, yet globally the line of fixed points terminates at a
critical value. At weak coupling, the theory displays a
second- order phase transition between anOðNÞ symmetric
and a symmetry broken phase with Gaussian scaling, and
global supersymmetry remains intact. At strong coupling,
the global effective potential becomes multivalued in

FIG. 18 (color online). Fixed-point solution u�ð�Þ for various
N > 1, showing N ¼ 2, 3, 10, 20 and 100 from left to right (full
lines) in comparison with the infinite N result (dashed line). With
increasing N the solutions converges to the exact infinite N result
with �ðNÞ approaching (93).
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certain regions of field space, signalled by divergences in
the local fermion-boson interactions at a finite Landau scale
kL. The appearance of the characteristic energy scale kL
resolves the long-standing puzzle about peculiar degenerate
OðNÞ symmetric ground states detected previously [6,7],
showing that these arise, gradually, from the integrating-out
of strongly coupled long-wavelength fluctuations. In this
regime, supersymmetry may be spontaneously broken.
Furthermore, this pattern is largely insensitive to whether
an infinite or a finite short-distance cutoff is chosen, solely
inducing a shift in the boundary between the weakly and
strongly coupled regimes. At finite N, and to leading order
in a gradient expansion, the additional fluctuations of the
radial mode lift the degeneracy of the quartic superfield
coupling and the line of fixed points collapses to a finite set.
Locally, a newWilson-Fisher-type fixed point appears with
non-Gaussian exponents and super-universal scaling in its
infrared relevant coupling. Globally, the fixed point belongs
to the strongly coupled regime, in complete analogy to the
strong coupling behavior observed at infinite N. In its
vicinity, and with decreasing N, the admixture of radial
fluctuations shrinks the domain in field space where a
Landau scale occurs. The scaling solution extends over all
fields as soon as the Goldstone fluctuations are absent,
though at the expense of a square-root type nonanalyticity
in the effective potential at vanishing field.

The availability of a supersymmetric BMB phenomenon
equally depends on the competition between Goldstone
modes and the radial mode. At infinite N, the Goldstone
fluctuations lead to the well-known BMB fixed point
whose scaling exponent � ¼ 1=2 arises due to nonanaly-
ticities of the infinite N limit. Supersymmetry remains
intact, and the spontaneous breaking of scale invariance
leads to the appearance of an arbitrary mass scale together
with an exactly massless Goldstone boson and fermion.
The fixed point disappears in the presence of both, radial
and Goldstone mode fluctuations. The BMB mechansim
may re-appear provided the Goldstone modes are absent
altogether, in which case the spontaneous breaking of scale
invariance is driven solely by the radial mode. A definite
conclusion on this point requires more study.

From a structural point of view, the most distinctive new
feature due to supersymmetry at strong coupling is the
buildup of a multivalued effective potential, accompanied
by nonanalyticities in the polynomial interactions at a
Landau scale kL. Here, we have established that this
phenomenon arises primarily through the fluctuations of
the Goldstone modes, irrespective of whether there are
finitely or infinitely many of them. It is worth noting that
similar nonanalyticities have recently been observed in the
random-field Ising model, where the disorder is imple-
mented with the help of Parisi-Sourlas supersymmetry
[40]. In these models, the spontaneous breaking of super-
symmetry is directly associated to the appearance of
cusplike nonanalyticities together with a violation of the

Ward identity for Parisi-Sourlas supersymmetry at a finite
Larkin scale kL. The latter plays a role analogous to the
Landau scale found here. Provided this similarity persists
on a fundamental level, it suggests that supersymmetry
may be spontaneously broken in the ð�2Þ2 theory at strong
coupling. Conversely, our findings make it conceivable that
the occurrence of a Larkin scale is the signature of a
multivalued effective potential in disordered Ising models.
Finally, we stress that the availability of an analytic

functional RG for supersymmetry was decisive to achieve
our results, allowing for a controlled and global interpola-
tion between the short- and long-distance regimes of the
theory even at strong coupling. It is a virtue of the fully
integrated RG flow at all scales that the structure of the
quantum effective theory has become transparent. We
expect that the combination of analytical and numerical
tools adopted from Ref. [25] will prove equally useful
for the nonperturbative study of supersymmetry in other
settings and extensions.

ACKNOWLEDGMENTS

Helpful discussions and earlier collaborations with Jens
Braun, Holger Gies, Moshe Moshe, Tobias Hellwig, Axel
Maas and Edouard Marchais are gratefully acknowledged.
This work has been supported by the DFG under GRK
1523 and Grant No. Wi 777/11 and by the Science and
Technology Facilities Council (STFC) under Grant
No. ST/J000477/1.

APPENDIX: CONVENTIONS

Relevant symmetry relations and Fierz identities for

Majorana spinors are ��� ¼ ���, ����� ¼ � ����� and
�k ��l ¼ � 1

2 ð ���Þ1kl. One of the main features of the action

is its invariance under supersymmetry transformations.
The latter are characterized by the supersymmetry varia-
tions 
��

i, generated by N ¼ 1 fermionic generator Q.
We have


��
iðxÞ ¼ i ��kQk�

iðxÞ with Qk ¼ �i@ ��k
� �

�
kl�l@�;

�Qk ¼ �i@�k � ��l�
�
lk@�: (A1)

Thus, (A1) leads to the supersymmetry variations


�i ¼ ��c i; 
c i ¼ ðFiþ i6@=�iÞ� and 
Fi ¼ i ��6@=c i

(A2)

of the component fields. The anticommuting sector of the
superalgebra is given by the anticommutator of two super-
charges

fQk;
�Qlg ¼ 2i��

kl@�: (A3)

The derivation of the supersymmetric flow equation is
given in Appendix B of Ref. [1].
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