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We demonstrate the presence of genuine multipartite entanglement between the modes of quantum

fields in nonuniformly moving cavities. The transformations generated by the cavity motion can be

considered as multipartite quantum gates. We present two setups for which multimode entanglement can

be generated for bosons and fermions. As a highlight we show that the genuine bosonic multipartite

correlations can be resonantly enhanced. Our results provide fundamental insights into the structure of

Bogoliubov transformations and suggest strong links between quantum information, quantum fields in

curved spacetimes and gravitational analogues by way of the equivalence principle.
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I. INTRODUCTION

During the past decade research in the area of relativistic
quantum information has addressed questions concerning
the inherently relativistic aspects of quantum phenomena,
unveiling the close connections between effects in quan-
tum field theories and quantum information theory.

In this context several models to store and access
bipartite quantum correlations in relativistic settings have
been proposed, including Unruh-DeWitt type detector
models [1], free field modes [2–4] and cavity modes (see
Refs. [5–10] for details and Ref. [11] for a recent review).

In these situations bipartite entanglement was exten-
sively studied but, save for a few exceptions [12–16], the
role of genuine multipartite correlations in these studies
was marginal. However, multipartite correlations are ex-
pected to feature in relativistic scenarios, e.g., in the trans-
formation of Minkowski modes to Rindler modes [2].
Moreover, they become ever more prominent as the size
and complexity of the systems in question increase. In
these scenarios the classification of genuine multipartite
entanglement will allow for a more detailed charac-
terization of relativistic effects and may be used for
high-sensitivity tests that indicate the ‘‘quantumness’’ of
relativistic phenomena. In fact, the identification of quan-
tum correlations can be a keystone to the experimental
verification of effects in quantum field theory, such as the
Hawking effect in analog fluid systems, see Ref. [17].

Here we want to focus on the generation of genuine
multipartite entanglement by the nonuniform motion of
cavities that contain relativistic quantum fields. We employ
the techniques developed in Refs. [6,7], for bosonic and
fermionic fields respectively, where the moving cavities
follow world tubes that are composed of segments of

inertial motion and uniform acceleration. In this frame-
work we ask the questions: Can the Bogoliubov trans-
formations that are induced by the nonuniform motion
generate genuine multipartite, quantum correlations? If
this is the case, can we quantify and/or classify the arising
entanglement?
We present two scenarios for which we can indeed

create, and partially classify, such correlations, thereby
realizing quantum gates by motion. First, in Sec. II, we
consider three individual cavities, labelled Alice, Rob and
Charlie, that share pairwise bipartite entanglement in their
initially common rest-frame, before Rob’s cavity under-
goes nonuniform motion, see Fig. 1. In the second scenario
we consider Rob’s cavity on its own in Sec. III. In these
scenarios the significantly different advantages of bosonic
and fermionic systems become apparent.
In the bosonic case the transformations induced by the

cavity motion generate multimode entangling quantum
gates. Moreover, we show that the genuine multipartite
character of the bosonic entanglement can be enhanced
reso prinantly by appropriate timing of the cavity’s trajec-
tory segments. The qubit structure of the fermionic sys-
tems, on the other hand, allows for a clear classification of
the arising multipartite correlations. The cavity motion
effectively acts as a multipartite quantum gate producing
Dicke states and W states. We present explicit pure state
decompositions for these classifications in Secs. II B and
III B, respectively.
The calculation of the Bogoliubov transformations for

the nonuniform cavity motion are performed perturbatively
in terms of a parameter h that physically represents the
product of the (rest-frame) cavity width � and the accel-
eration at the center of the cavity. Using the Bogoliubov
coefficients obtained in this way we can perform all other
computations analytically. For simplicity we restrict our
considerations to (1þ 1)-dimensional Minkowski space-
time where the metric tensor ��� has the signature ð�;þÞ.
The setup can be naturally extended to accommodate addi-
tional spatial dimensions that enter into the effective mass
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of the field via the corresponding transverse momenta [6].
We use units where Planck’s constant and the speed of light
are dimensionless, i.e., ℏ ¼ c ¼ 1. By OðxÞ we denote a
quantity for which OðxÞ=x remains bounded as x goes to
zero. We use an asterisk and a dagger to denote complex
and Hermitian conjugation respectively.

II. MULTICAVITY ENTANGLEMENT

As the first scenario we consider three cavities, Alice,
Rob and Charlie. Each cavity represents an individual
spacetime in which a relativistic quantum field is confined
by appropriate boundary conditions. We can assume with-
out loss of generality that all three cavities are manufac-
tured in the same way and that they are initially (in the
‘‘in-region’’) at rest with respect to each other. At t ¼ 0
Rob’s cavity starts to accelerate linearly and uniformly. We
assume that the world tube of Rob’s cavity consists of
periods of inertial motion and uniform acceleration such
that the cavity remains rigid throughout the journey, i.e.,
the cavity length � > 0, as measured by the comoving
observer, is constant. For the perturbative treatment we
further assume that the accelerations in all individual seg-
ments are small with respect to the inverse cavity length
1=�. Figure 1 shows the spacetime diagram of this setup
for a sample travel scenario.

A. Scalar fields

Let us consider a real, scalar field � of mass m � 0 in
Rob’s initially inertial cavity in the ‘‘in-region’’. The field
satisfies the Klein-Gordon equation ð�hþm2Þ� ¼ 0,
where h is the scalar D’Alambertian. We follow the pro-
cedure laid out in Ref. [6] and represent the confinement to

the cavity by imposing the Dirichlet boundary conditions
�ðt < 0; aÞ ¼ �ðt < 0; bÞ ¼ 0. We thus obtain a discrete
spectrum of mode functions �n in the in-region, where the
field can be decomposed as

� ¼ X
n

ð�nan þ��
na

y
n Þ: (1)

The annihilation and creation operators, an and ayn , satisfy
the usual commutation relations ½an; aym� ¼ �nm. The vac-
uum state of the corresponding Fock space is annihilated
by all an’s, i.e., anj0i ¼ 0.
Before we construct our initial state let us briefly recall

the characteristics of genuine multipartite entanglement.
Any pure quantum state that can be written as a tensor
product with respect to any bipartition is called bisepar-
able. Generalizing this notion to mixed states, any mixed
quantum state is called biseparable if it admits at least
one decomposition into a convex sum of pure, biseparable
states. Conversely, all states that are not biseparable
are called genuinely multipartite entangled. See, e.g.,
Refs. [18,19] for more details.
We now proceed by constructing an initial state that

contains no such genuine multipartite entanglement.
We select two of Rob’s modes, k and k0, and entangle
them with modes A and C in Alice’s and Charlie’s cavities
respectively. This could be achieved by a scheme similar to
that presented in Ref. [20]. The initial, biseparable state of
the four modes A, k, k0 and C we denote by

��
ARC ¼ j��ih��j (2)

with j��i ¼ j��iAkj��ik0C, where the bipartite entangled
states are given by

j��iAk ¼ 1ffiffiffi
2

p ðj0i � j1Aij1kiÞ; (3a)

j��ik0C ¼ 1ffiffiffi
2

p ðj0i � j1k0 ij1CiÞ: (3b)

At t ¼ 0 we start to accelerate Rob’s cavity uniformly and
linearly and we let it follow a world tube that consists
of segments of inertial motion and uniform acceleration.
An example trajectory is shown in Fig. 1. After an arbitrary
number of such trajectory segments we assume without
loss of generality that the cavity remains inertial in the

‘‘out-region’’. The mode functions ~�m and their corre-

sponding annihilation and creation operators ~am and ~aym
in the out-region are related to their in-region counterparts
by a Bogoliubov transformation with coefficients �mn and
�mn, i.e.,

~�m ¼ X
n

ð�mn�n þ �mn�
�
nÞ (4)

and

~am ¼ X
n

ð��
mnan � ��

mna
y
n Þ: (5)

In the case where the length � ¼ ðb� aÞ of the rigid cavity
is fixed and the individual accelerations of the cavity at any

Rob in region

out region

Alice Charlie

2

2

2

a b
x

ct

FIG. 1 (color online). Space-time diagram of the multicavity
setup: While Alice’s and Charlie’s cavities remain at rest Rob’s
cavity undergoes nonuniform motion. Rob’s cavity of width
� ¼ ðb� aÞ follows a world tube that consists of alternating
segments of inertial motion (red, parallel lines) and uniform
acceleration (green, confocal hyperbolae). The individual seg-
ments in this example travel scenario are of equal duration 	=2
and equal acceleration h=� as measured at the center of Rob’s
cavity. The dashed lines indicate the light cone at ðt; xÞ ¼ ð0; 0Þ.

FRIIS et al. PHYSICAL REVIEW D 86, 105003 (2012)

105003-2



point of the trajectory are small compared to 1=� the
Bogoliubov coefficients can be computed analytically as
a Maclaurin expansion, i.e.,

�mn ¼ �ð0Þ
mn þ �ð1Þ

mn þOðh2Þ; (6a)

�mn ¼ �ð1Þ
mn þ �ð2Þ

mn þOðh3Þ; (6b)

with �ð0Þ
mn ¼ �mnGm (no summation), see Ref. [6]. The Gm

are phase factors satisfying jGmj2 ¼ 1 that are picked up
by the modes during the free time evolution in each seg-

ment of the cavity motion. The superscripts ðnÞ in Eq. (6)
indicate the power of the expansion parameters hi, which
represent the products of the cavity width and the accel-
eration at the center of the cavity in the i-th trajectory
segment. For ease of notation we will suppress the sub-
script i in the remaining discussion.

The Bogoliubov coefficients for any trajectory that is
composed of segments of inertial motion and uniform
acceleration can be constructed from the coefficients for
a single switch from inertial motion to constant accelera-
tion, i.e., coefficients relating Minkowski modes �n and

Rindler modes ~�n, along with phasesGn that are picked up
by the modes in each segment. A detailed derivation of
these coefficients for massless and massive scalar fields as
well the construction of generic trajectories can be found in
Refs. [6,10].

Using well-known standard procedures (see, e.g.,
Ref. [6] or [8]) the Fock states jnki and jnk0 i of Rob’s
cavity in the initial state ��

ARC can be transformed to the

out-region basis j~nii to obtain the transformed density
matrix ~��

ARC. The transformations between the relevant

in-region and out-region Fock states up to first order in
the perturbative expansion are given by (see Ref. [8])

j0i ¼ j~0i � 1

2

X
p;q

G�
q�

ð1Þ�
pq ~ayp~ayq j~0i þOðh2Þ; (7a)

j1ki ¼ G�
kj~1ki þ

X
m�k

�ð1Þ�
mk j~1mi

� 1

2
G�

k

X
p;q

G�
q�

ð1Þ�
pq ~ayp~ayq j~1ki þOðh2Þ; (7b)

j1kij1k0 i ¼ G�
k�

ð1Þ
kk0 j~0i þG�

k

X
m�k0

�ð1Þ�
mk0 ~a

y
mj~1ki

þG�
kG

�
k0 j~1kij~1k0 i þG�

k0
X
m�k

�ð1Þ�
mk ~aymj~1k0 i

� 1

2
G�

kG
�
k0
X
p;q

G�
q�

ð1Þ�
pq ~ayp~ayq j~1kij~1k0 i þOðh2Þ;

(7c)

and the transformation of j1k0 i can be obtained from (7b)
by replacing k with k0.

Subsequently, we trace over all of Rob’s out-region
modes except k and k0, gaining the reduced density
operator ~��

Akk0C of the four bosonic modes A, k, k0 and C.

Keeping terms up to first order in h we find that ~��
Akk0C is

effectively a state of two qubits, the modes A and C, and
two qutrits, the modes k and k0. In other words, to first
order in h the modes A and C are not further populated
by the Bogoliubov transformation and their respective
Hilbert spaces can be truncated to single-qubit, i.e., two-

dimensional, Hilbert spaces with basis vectors j~0ki, j~1ki
and j~0k0 i, j~1k0 i respectively. For the modes k and k0, on the

other hand, the states j~2ki and j~2k0 i are populated by the
cavity motion. This means the description of these modes
involves at least three basis vectors each, i.e., the modes
effectively become qutrits.
For such states a general quantification of genuine multi-

partite entanglement proves to be cumbersome, as there is
no general classification scheme for multipartite systems
beyond qubits. However, we can construct an inequality
that acts as a witness for genuine multipartite entanglement
by comparing diagonal and off-diagonal elements of
~��
Akk0C. The construction of such a witness is straightfor-

ward: We exploit permutation symmetries of biseparable
pure states to construct a convex function of density
matrix elements that satisfies a simple inequality. The
convexity of this function ensures that biseparable mixed
states satisfy the inequality. Consequently, its violation
detects genuine multipartite entanglement in mixed states,
see Refs. [19,21,22]. Since the diagonal elements that are
newly generated by the Bogoliubov transformation are at
least Oðh2Þ the witness inequality, whose complete form is
given by Eq. (A1) of the appendix, takes the simple form

2jh1Cjh~2k0 jh~2kjh1Aj~��
Akk0Cj~0ij �Oðh2Þ � 0: (8)

Evaluating the matrix element we can recast (8) as

1

2
j�ð1Þ

kk0 j �Oðh2Þ � 0: (9)

Within the perturbative regime this inequality is violated,
i.e., genuine multipartite entanglement is detected, when-

ever �ð1Þ
kk0 � 0. This is the case for all mode pairs of

opposite parity, i.e., if (k� k0) is odd. If the modes k and
k0 have the same parity the first-order coefficients relating
these two modes vanish identically and statements about
the violation of inequality (8) can only be made for given
mode numbers and the answers will depend on the particu-
lar cavity motion. We will therefore employ (8) to first
order in h as witness for the detection of genuine multi-
partite entanglement.
In fact, (9) is not only a witness, but also a lower bound

to a measure of genuine multipartite entanglement, the
generalization of the concurrence to multipartite entangle-
ment. This type of concurrence is based on the linear
entropy, which, in turn, is chosen in this context only to
write the witness in a compact form. However, any lower
bound on a measure based on the linear entropy supplies a
lower bound to that same measure based on the physically
more intuitive Rényi-2 entropy [22]. The Rényi-2 entropy
can finally also be related to the average minimal mutual
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information across any bipartition, minimized over all
possible decompositions. Moreover, to first order in the

Maclaurin expansion �B
ARC is a pure state for which the

bound is tight, as shown in Ref. [21].
In this respect the bounds provided by the witness

inequality offer an immense advantage with respect to the
direct computation (if possible) of entropy-based mea-
sures, which require the perturbative corrections to be
calculated at least to second order in h, see Ref. [10]. The
reason for this lies in the dependence of entropic measures
on the quantification of the mixedness of the subsystems.
The introduction of mixedness due to the Bogoliubov
coefficients occurs only at second order of the perturbative
expansion, which renders entropy-based measures incapa-
ble of detecting such changes to first order in h.

Conceptually the creation of multipartite correlations in
the scenario with three, initially pairwise, bipartite en-
tangled cavities, could be interpreted in the following
way: The nonuniform motion correlates the noninteracting
modes k and k0 in Rob’s cavity, such that all bipartitions of
the four-mode system become entangled. As expected, the
reduced two-mode state of Alice’s and Charlie’s cavities is
unaffected by themotion of Rob’s cavity and, consequently,
the modes A and C are still uncorrelated in the out-region.
The reduced state of the modes k and k0 on the other hand
becomes entangled, i.e., to first order in h the negativityN
of ~��

kk0 ¼ TrA;Cð~��
Akk0CÞ is given by N ¼ j�ð1Þ

kk0 j=4. The
negativity

N ¼ X
i

j
ij � 
i

2
; (10)

which captures how the eigenvalues 
i of the partially
transposed density matrix fail to be positive, see Ref. [23],
is a useful measure in the context of the perturbative calcu-
lations at hand. It allows the quantification of bipartite
entanglement at leading order, while entropic measures of
entanglement rely on the quantification of mixedness,
which is not altered to first order in h and thus requires
the perturbative calculations to be extended to higher or-
ders. The fact that both the genuine multipartite entangle-
ment of ~��

Akk0C and the bipartite entanglement of ~��
kk0 are

controlled by �ð1Þ
kk0 supports the interpretation above.

However, we shall see that this naive view does not hold
for the corresponding fermionic scenario in Sec. II B.

Nonetheless, the entanglement of the four-mode system
is genuinely multipartite, which demonstrates once again
that genuine multipartite entanglement provides a richer
structure than simple combinations of bipartite correla-

tions. Moreover, the responsible coefficient j�ð1Þ
kk0 j can be

resonantly enhanced, within the limitations of the pertur-
bative regime, by appropriate travel scenarios when a
massless scalar field is contained within the cavity [10].

Such resonances can occur if the chosen travel scenario
consists of N identical building blocks of two or more

different, inertial or uniformly accelerated, trajectory seg-
ments. If the overall proper time 	 of one such building
block, measured at the center of the box, satisfies the
necessary resonance condition

	 ¼ 2n�

kþ k0
; (11)

where n is a positive integer, and the coefficient ð�1Þð1Þkk0

of a single such building block is nonzero, then the corre-
sponding coefficient afterN repetitions scales linearly with
N, i.e.,

ð�NÞð1Þkk0 ¼ Nð�1Þð1Þkk0 : (12)

This scaling is valid within the perturbative regime, i.e., as
long as Nh � 1. A detailed derivation of the condition in
Eq. (11) can be found in Ref. [10] but the discussion of the
continuous variable techniques necessary for the proof lies
beyond the scope of this paper. See Fig. 2 for an illustration
of the resonances for different mode pairs.
The physical reason for the occurrence of these reso-

nances lies in the phasesGm that are acquired by the modes
during the free time evolution in the travel segments. The
Bogoliubov transformations that switch between segments
of inertial and uniformly accelerated motion act as pair-
wise two-mode squeezing operations on all modes of
opposite parity, see Ref. [9,10]. When at least two such
switches are combined to a building block, the magnitude
of the corresponding overall squeezing parameter depends
on the proper time between these switches as measured at
the center of the cavity. The quantities Gm are functions of
this time and the mode numbers m. In particular, if, and
only if, the quantum field in question is massless, all
frequencies are integer multiples of some basic frequency
and the phases can combine constructively to facilitate the
resonance.

B. Dirac fields

Let us now consider the analogous scenario for cavities
containing fermionic rather than bosonic quantum fields.
In particular, let us assume that Alice’s, Rob’s and
Charlie’s cavities confine Dirac fields, as discussed in
Refs. [7,8]. In the in-region the field in Rob’s cavity
satisfies the Dirac equation ði��@� �mÞc ¼ 0 and the

mode functions obey the boundary conditions

ðc y
!�0�1c !0 Þx¼a ¼ ðc y

!�0�1c !0 Þx¼b ¼ 0: (13)

Here �� (� ¼ 0, 1, 2, 3) are the usual Dirac matrices
satisfying the anticommutation relations f��; ��g ¼
2���. Due to the boundary conditions the field modes
can be labelled by an integer n and the field can be
decomposed as

c ¼ X
n�0

bnc n þ
X
n<0

cync n: (14)

The operators bn and cn annihilate particles and antiparti-
cles respectively. The vacuum state of the cavity is defined
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by bnk0ii ¼ cnk0ii ¼ 08n, while the single particle and
antiparticle states, k1miiþ and k1nii�, are created from the

vacuum by bym and cyn respectively. The fermionic opera-

tors further satisfy fbm; byn g ¼ fcm; cyn g ¼ �mn, while all
other anticommutators vanish.

In analogy to the bosonic states (3) we select initially
bipartite entangled fermionic states that correlate the
cavities of Alice and Rob, as well as Rob and Charlie
respectively, i.e.,

k��iiAR ¼ 1ffiffiffi
2

p ðk0ii � k1Aii�k1�iiþÞ; (15a)

k��iiRC ¼ 1ffiffiffi
2

p ðk0ii � k1�0 ii�k1CiiþÞ; (15b)

where we have chosen particle and antiparticle modes in
agreement with charge superselection rules. The multipar-
ticle states in Eq. (15) are elements of antisymmetrized
tensor product spaces of single particle mode functions
c i, i.e.,

k1piiþk1qii� :¼ kc piiþ ^ kc qii� :¼ bypcyqk0ii; (16)

where A ^ B ¼ ðA � B� B � AÞ= ffiffiffi
2

p
denotes the antisym-

metrized tensor product. For the purpose of quantum
information procedures one can map this ‘‘wedge product’’
structure to the usual tensor product structure by defining a
convention for partial tracing. Our choice here is to trace
out operators ‘‘from the inside’’, i.e.,

Trpðby�bypk0iihh0kbpÞ ¼ by�k0iihh0k: (17)

In the spirit of this convention we reverse the ordering
of the states in the adjoint space, i.e., hh0kbpb� ¼
þhh1pkþhh1�k. Different conventions can generally intro-

duce ambiguities in the resulting fermionic states, which
has been the subject of an ongoing debate, see Ref. [24].
However, we have verified that no ambiguities appear in
our results to second order in the perturbative calculations.
For the symmetrized tensor product structure of bosonic
modes analogous mappings have to be performed.
However, no sign ambiguities occur for bosons and the
results are therefore independent of the chosen mapping.

The Bogoliubov transformation that relates the in-region

modes c n and the out-region modes ~c m is given by

~c m ¼ X
n

Amnc n; (18)

where n 2 Z and the fermionic Bogoliubov coefficients
can be expanded in a Maclaurin series in the parameter h as

A mn ¼ Að0Þ
mn þAð1Þ

mn þOðh2Þ; (19)

where the superscript ðnÞ again denotes the power of h, and

we haveAð1Þ
nn ¼ 0 andAð0Þ

mn ¼ �mnGm (no summation). In
the fermionic case the subscripts m and n can take positive
as well as negative values, representing particle and anti-
particle modes respectively. Furthermore, the splitting into

particle and antiparticle modes is controlled by an addi-
tional parameter in the Bogoliubov coefficients, see
Ref. [7]. We set this parameter to zero, in which case the
phase factors Gm coincide for bosons and fermions.
We continue, as previously, by transforming the initial

state k��ii ¼ k��iiA�k��ii�0C with the corresponding
density operator %�

ARC ¼ k��iihh��k, to the out-region

states, i.e., we use the series expansions [7]

k0ii ¼ k~0ii þX
p;q

G�
qA

ð1Þ�
pq

~byp~c
y
qk~0ii þOðh2Þ;

(20a)

k1�iiþ ¼ G�
�k~1�iiþ þ X

m�0

Að1Þ�
m� k~1miiþ

þG�
�

X
p;q

G�
qA

ð1Þ�
pq

~byp~c
y
qk~1�iiþ þOðh2Þ;

(20b)

k1�0 ii� ¼ G�0 k~1�0 ii� þ X
n<0

Að1Þ
n�0k~1nii�

þG�0
X
p;q

G�
qA

ð1Þ�
pq

~byp~c
y
qk~1�0 ii� þOðh2Þ;

(20c)

k1�iiþk1�0 ii� ¼ G�0G�
�k~1�iiþk~1�0 ii� þG�0Að1Þ�

�0� k~0ii
þG�0G�

�

X
p;q

G�
qA

ð1Þ�
pq

~byp~c
y
qk~1�iiþk~1�0 ii�

þG�0
X
m�0

Að1Þ�
m�0 k~1miiþk~1�0 ii�

þG�
�

X
n<0

Að1Þ
n�0 k~1�iiþk~1nii� þOðh2Þ;

(20d)

wherewe have used the convention fromEqs. (16) and (17),
to obtain the transformed state ~%�

ARC.

Subsequently we trace over all particle and antiparticle
modes except � � 0 and �0 < 0, which leaves us with the
reduced state ~%�

A��0C. To first order in the parameter h no

new diagonal elements are generated in the state trans-
formation, which makes it easy to identify an inequality
that acts as a witness for genuine multipartite entangle-
ment. However, due to the Pauli exclusion principle, we
cannot employ a witnesses of the type of Eq. (8) for the
fermionic system. Instead we construct the witness

j�hh~1�0kþhh~1�k~%�
A��0Ck~1�0 ii�k1Ciiþj

þjþhh1Ck�hh1Ak~%�
A��0Ck~1�0 ii�k1Ciiþj�Oðh2Þ�0;

(21)

which we can express as

1

2
jAð1Þ

��0 j �Oðh2Þ � 0: (22)
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The complete form of the witness can be found in the
appendix, see Eq. (A2). As with its bosonic counterpart
(9) the inequality (22) is always violated if the modes � and

�0 have opposite parity, in which case Að1Þ
��0 � 0. In the

case where (�þ �0) is even the first-order coefficient
vanishes identically, see Ref. [7], and the usefulness of
the witness has to be evaluated for each selection of mode
numbers and travel scenarios individually.

The witness employed in Eq. (22) is again a lower bound
to the minimal average mutual information across any
bipartition [22], although, this time, it is not tight for
pure states as Eq. (8). However, there are other concep-
tually intriguing features appearing for the fermionic four-
qubit state ~%�

A��0C. First, we notice that the unperturbed

reduced density operators %�
AC and %�

��0 are both maximally

mixed. This means that, in contrast to the bosonic case, no
bipartite entanglement between the fermionic modes � and
�0 can be generated from the initial state %�

ARC by small

perturbations. The negativity, which is nonzero for all
entangled two-qubit states, requires (at least) one of the
degenerate eigenvalues 1=4 of the partial transpose to
become negative. This cannot happen within the perturba-
tive regime. This behaviour can be readily understood
in terms of the monogamy of entanglement (see, e.g.,
Ref. [25]): To first order in the small parameter expansion
the reduced states of the initially maximally entangled
modes, A and � or �0 and C, respectively, remain unper-
turbed up to relative phases due to the time evolution.
In particular, the bipartite entanglement between A and �,
as well as between �0 and C is maximal to first order in h,
see Ref. [7], which excludes the possibility of first-order
correlations between � and �0. This remarkable difference
between the scalar field and the Dirac field highlights once
more (see, e.g., Refs. [12–14]) the contrast of fermionic
and bosonic particle statistics in the context of Bogoliubov
transformations.

Furthermore, we can straightforwardly classify the en-
tanglement of the four-qubit state. We notice that, to first
order, the state ~%�

A��0C can be decomposed as

~%�
A��0C ¼ kDiihhDk þOðh2Þ; (23)

where kDii is a Dicke state [26,27], given by

kDii ¼ 1

2
ðk~0ii �G�

�k1Aii�k~1�iiþ �G�0k~1�0 ii�k1Ciiþ

þG�0Að1Þ�
��0 k~1�iiþk~1�0 ii� �G�

�A
ð1Þ
��0 k1Aii�k1Ciiþ

�G�
�G�0 k1Aii�k~1�iiþk~1�0 ii�k1CiiþÞ; (24)

where Gm are mode-dependent phase factors of unit mag-
nitude, i.e., jGmj ¼ 1, that are determined by the specific
travel scenario, see, e.g., Ref. [7]. The usual form of the
Dicke state can be obtained from Eq. (23) by local uni-
taries, e.g., bit flips in the modes A and �0.

III. SINGLE-CAVITY ENTANGLEMENT

Let us now modify our previous setup and consider only
Rob’s cavity on its own, as in Ref. [8]. In particular, let us
assume for simplicity that the initial state of the in-region
modes in that cavity is the vacuum. We want to investigate
the genuine multipartite correlations that might possibly be
generated between three selected modes by performing a
Bogoliubov transformation to the out-region modes.

A. Scalar fields

The in-region vacuum j0i of a real scalar field � can be

related to the out-region vacuum j~0i by j0i ¼ MeW j~0i,
where M is a normalization constant and W :¼ 1

2

P
i;j

Vij~a
y
i ~a

y
j . The coefficients Vij form a symmetric matrix

that can be expressed as V ¼ �����1, where � ¼ ð�mnÞ
and it is implicitly assumed that � ¼ ð�mnÞ is invertible.
We then apply the small parameter expansion for the

Bogoliubov coefficients and find V ¼ Vð1Þ þOðh2Þ and
the normalization constant M ¼ ð1� 1

4

P
i;jjVijj2Þ þ

Oðh3Þ, see Ref. [8].
Having transformed the initial vacuum state j0i to the

out-region, we continue by tracing over all out-region
modes except three chosen modes k, k0 and k00. We denote
the transformed, reduced state by ~�kk0k00 , where we keep
terms up to second order in h. At this stage we further
assume that the modes do not all have the same parity,
e.g., let us choose (k� k0) and (k0 � k00) to be odd, which
implies (k� k00) is even. This further means that

j�ð1Þ
kk0 j � 0, j�ð1Þ

k0k00 j � 0, while j�ð1Þ
kk00 j ¼ 0. With this con-

vention in mind we select a witness for genuine multi-
partite entanglement, i.e.,

2jh~0j~�kk0k00 j~1kij~2k0 ij~1k00 ij �Oðh3Þ � 0; (25)

which can be rewritten as

2
ffiffiffi
2

p j�ð1Þ
kk0 jj�ð1Þ

k0k00 j �Oðh3Þ � 0: (26)

As previously, the witness (25) presents a lower bound to
the convex roof extension of the minimal average mutual
information across all bipartitions [22] and its complete
form is given by (A3) of the appendix. It can be immedi-
ately noticed that that the previously discussed bosonic
resonances [10] allow the linear enhancement of the indi-

vidual coefficients, j�ð1Þ
kk0 j or j�ð1Þ

k0k00 j, for particular basic

travel times 	 ¼ 2n�=ðkþ k0Þ and 	 ¼ 2m�=ðk0 þ k00Þ,
n, m 2 Nþ, respectively. Interestingly, these resonances
coincide for n ¼ pðkþ k0Þ andm ¼ pðk0 þ k00Þ, i.e., when
the travel time, as measured at the center of the cavity, for a
single cycle of the repeated basic travel scenario is
	 ¼ 2p�, p 2 Nþ, see Fig. 2.
At this mode-independent resonance the lower bound on

the genuine multipartite entanglement increases quadrati-
cally with the number N of repetitions of the basic travel
block. At the same time the mixedness that is introduced
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to the system by tracing out the other modes contains

second-order terms f�
k:k0 , f

�
k0:k;k00 and f

�
k00:k0 , where f

�
m:p ¼

1
2

P
n�pj�ð1Þ

mnj2, which all exhibit quadratic scaling at the

mode-independent resonance. The validity of the perturba-
tive approach is ensured since all second-order terms are at
most proportional to N2h2 � Nh.

However, the classification of the bosonic genuine
multipartite correlations remains an unsolved problem.
To first order the transformed state can be written as a
pure Dicke state [27], but since the genuine multipartite
entanglement is detected at second order this is of no
significance. To second order the modes effectively be-
come qutrits, for which generally little is known about
entanglement classes.

B. Dirac fields

Let us again consider the fermionic counterpart to the
bosonic situation. The in-region vacuum k0ii of the Dirac

field c is related to the out-region vacuum k~0ii by k0ii ¼
MeW k~0ii, where W :¼ P

p�0
q<0

V pqb
y
pc

y
q and M is a nor-

malization constant. Working perturbatively in the parame-
ter h the coefficient matrix V can be expanded in a

Maclaurin series as V ¼ V ð1Þ þOðh2Þ and V ð1Þ
pq ¼

GqA
ð1Þ�
pq (no summation), where the Gm are mode-specific

phase factors, i.e., jGmj ¼ 1, that depend on the chosen

travel scenario, see Ref. [7]. The normalization constant

can be found to be M ¼ 1� 1
2

P
p�0
q<0

jV ð1Þ
pqj2 þOðh3Þ.

We can then perform the Bogoliubov transformation of
the in-region vacuum k0ii to the out-region state and trace
over all modes except three chosen modes � � 0, �0 � 0
and �00 < 0, obtaining the state ~%��0�00 . Since we do not
expect any coherence effects between modes of the same
charge when we start from the vacuum, see Ref. [8], we
further assume that (�þ �0) is even, while (�þ �00) and
(�0 þ �00) are odd. Specializing to the massless case

this implies that jAð1Þ
��00 j � 0 and jAð1Þ

�0�00 j � 0, while

jAð1Þ
��0 j ¼ 0.

For the state ~%��0�00 we can form a witness for genuine
multipartite entanglement using the techniques from
Ref. [28]. The violation of the inequality

jhh~0k~%��0�00 k~1�iiþk~1�00 ii�jþjhh~0k~%��0�00k~1�0 iiþk~1�00 ii�j
�½hh~0k~%��0�00k~0iið�hh~1�00kþhh~1�k~%��0�00k~1�iiþk~1�00 ii�
þ�hh~1�00kþhh~1�0 k~%��0�00k~1�0 iiþk~1�00 ii�Þ�12�Oðh2Þ�0

(27)

detects genuine multipartite entanglement. The complete
form without perturbative expansion is given by Eq. (A4)
in the appendix. It can be expressed in the simple form

jAð1Þ
��00 jþ jAð1Þ

�0�00 j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAð1Þ

��00 j2þjAð1Þ
�0�00 j2

q
þOðh2Þ� 0:

(28)

Using the triangle inequality this can be easily seen to be

violated whenever both Að1Þ
��00 and Að1Þ

�0�00 are nonzero.

We can further classify the genuine multipartite entan-
glement in this case, since the state ~%��0�00 admits the
decomposition

~% ��0�00 ¼ kWiihhWk þOðh2Þ; (29)

where the class-defining W-state is

kWii ¼ k~0ii þG�00Að1Þ�
�0�00k~1�0 iiþk~1�00 ii�

þG�00Að1Þ�
��00k~1�iiþk~1�00 ii�: (30)

IV. CONCLUSIONS

We have studied genuine multipartite entanglement of
bosonic and fermionic modes of relativistic quantum fields
in nonuniformly moving cavities. We have used the per-
turbative approach of Refs. [6,7] to handle the Bogoliubov
transformations that feature in the transformation of the
cavity modes between the inertial in-region and out-region.
The nonuniform motion in between these regions popu-
lates modes and shifts preexisting excitations. The final
out-region states of a set of chosen modes is then obtained
by tracing over all other modes. In two qualitatively
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FIG. 2 (color online). Illustration of the bosonic resonances:

The linear coefficients j�ð1Þ
mnj for the bosonic Bogoliubov trans-

formations, are shown for a real, massless scalar field in (1þ 1)
dimensions. The travel scenario has N segments of uniform
acceleration h=� and duration 	=2 as measured at the cavity’s
center, separated by (N � 1) segments of inertial coasting of
the same duration (to first order in h), as illustrated in Fig. 1 for
N ¼ 2. The curves in Fig. 2 are plotted for N ¼ 15, ðm; nÞ ¼
ðk; k0Þ ¼ ð1; 2Þ (blue, solid) and ðm; nÞ ¼ ðk0; k00Þ ¼ ð2; 3Þ (red,
dashed) and u :¼ h	=½4� atanhðh=2Þ�. The vertical dashed lines
indicate the potential resonance times for ðk; k0Þ and ðk0; k00Þ
respectively. The explicit form of the Bogoliubov coefficients
can be found in Refs. [6,10].
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different scenarios we have shown that genuine multipar-
tite correlations are generated from initially biseparable or
separable states of the chosen modes.

We have employed witnesses for multipartite entangle-
ment that prove to be advantageous with respect to usual
entropicmeasures in the perturbative regime. Thewitnesses
for the bosonic correlations provide lower bounds to mea-
sures of genuine multipartite entanglement that are based
on convex roof extensions of the minimal average mutual
information over all bipartitions [22]. We find that the
numerical value of the perturbative corrections to these
lower bounds can be resonantly enhanced for any chosen
triple of bosonic modes with varying parities. However, the
classification of the arising correlations is hindered by the
unknown classification structure beyond qubits.

For the fermionic systems, on the other hand, we can
detect the genuine multipartite entanglement in the trans-
formed states and, subsequently, assign the entangled
states originating from initially biseparable and separable
states to the classes of four-qubit Dicke states, which can
be used in quantum secret sharing [29], and three-qubit
W-states respectively.

The creation of specific entangled states in our setup
can be considered as the realization of quantum gates by
motion in spacetime. In particular, we complement the
findings of Refs. [9,10], where two-mode squeezing gates
are implemented as a result of the nonuniform cavity
motion, with the creation of the Dicke and W states for
fermionic systems.

Indeed, the cavity setups studied here and in Refs. [8–10]
share intriguing features with the models for frequency
combs, which are known to produce cluster states, a vital
resource for universal quantum computation [30]. Future

work is being directed towards the investigation of this
connection as well as to the extraction of the cavity mode
entanglement with suitable detector models [31].
Additionally, the presence of the genuine multipartite

correlations in these relativistic settings can be used for
high-precision tests of the quantumness of correlations and
might have significant advantages in identifying the sig-
natures of quantum phenomena where relativistic effects
are notoriously small. The resonant behavior of the bosonic
multipartite entanglement presented here can be a keystone
countermeasure to this problem and allows precise control
and, hopefully, experimental testing of such effects.
Finally, we believe that these observations offer a fun-

damentally new viewpoint on Bogoliubov transformations:
The Bogoliubov coefficients are not mere indicators of
average particle numbers, they are responsible for genuine
multimode coherence in genuinely-multipartite entangled
quantum systems.
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APPENDIX: WITNESS INEQUALITIES

Multicavity witness: Scalar fields

The complete witness inequality that is employed in
Eq. (8) in Sec. II A is given by

2ðjh1Cjh~2k0 jh~2kjh1Aj~��
Akk0Cj~0ij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1Cj~��

Akk0Cj1Cih~2k0 jh~2kjh1Aj~��
Akk0Cj1Aij~2kij~2k0 i

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1Aj~��

Akk0Cj1Aih1Cjh~2k0 jh~2kj~��
Akk0Cj~2kij~2k0 ij1Ci

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~2k0 j~��

Akk0Cj~2k0 ih1Cjh~2kjh1Aj~��
Akk0Cj1Aij~2kij1Ci

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~2kj~��

Akk0Cj~2kih1Cjh~2k0 jh1Aj~��
Akk0Cj1Aij~2k0 ij1Ci

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1Cjh~2k0 j~��

Akk0Cj~2k0 ij1Cih~2kjh1Aj~��
Akk0Cj1Aij~2ki

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1Cjh~2kj~��

Akk0Cj~2kij1Cih~2k0 jh1Aj~��
Akk0Cj1Aij~2k0 i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1Cjh1Aj~��

Akk0Cj1Aij1Cih~2k0 jh~2kj~��
Akk0Cj~2kij~2k0 i

q
Þ � 0: (A1)

Multicavity witness: Dirac fields

The complete form of the witness of Eq. (21) from Sec. II B is given by

j�hh~1�0kþhh~1�k~%�
A��0Ck~1�0 ii�k1Ciiþj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þhh1Ck~%�

A��0Ck1Ciiþþhh1Ck�hh~1�0 k�hh1Ak~%�
A��0Ck1Aii�k~1�0 ii�k1Ciiþ

q

þ jþhh1Ck�hh1Ak~%�
A��0Ck~1�0 ii�k1Ciiþj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh~1�0k~%�

A��0Ck~1�0 ii�þhh1Ck�hh~1�0kþhh~1�k~%�
A��0Ck~1�iiþk~1�0 ii�k1Ciiþ

q

�

þhh1Ck�hh~1�0k~%�

A��0Ck~1�0 ii�k1Ciiþð�hh~1�0kþhh~1�k~%�
A��0Ck~1�iiþk~1�0 ii� þ þhh1Ck�hh1Ak~%�

A��0CkAii�k1CiiþÞ
q

� 0:

(A2)
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Single-cavity witness: Scalar fields

In Eq. (25) in Sec. III A we use the witness inequality

2ðjh~0j~�kk0k00 j~1kij~2k0 ij~1k00 ij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~1kj~�kk0k00 j~1kih~1k00 jh~2k0 j~�kk0k00 j~2k0 ij~1k00 i

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~1k00 j~�kk0k00 j~1k00 ih~2k0 jh~1kj~�kk0k00 j~1kij~2k0 i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~2k0 j~�kk0k00 j~2k0 ih~1k00 jh~1kj~�kk0k00 j~1kij~1k00 i

q
Þ � 0; (A3)

where the first term is quadratic in h while all other terms are of higher order.

Single-cavity witness: Dirac fields

Finally, for the entanglement between three fermionic modes in a single cavity, Sec. III B, the complete form of the
witness used in Eq. (27) is

jhh~0k~%��0�00k~1�iiþk~1�00 ii�j þ jhh~0k~%��0�00k~1�0 iiþk~1�00 ii�j
�


hh~0k~%��0�00 k~0iið�hh1�00kþhh1�k~%��0�00k~1�iiþk~1�00 ii� þ �hh~1�00kþhh~1�0k~%��0�00k~1�0 iiþk~1�00 ii�Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh~1�00k~%��0�00k~1�00 ii�þhh~1�0k~%��0�00k~1�0 iiþ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh~1�00 k~%��0�00k~1�00 ii�þhh~1�k~%��0�00 k~1�iiþ

q
� 0: (A4)

In contrast to Eqs. (A1)–(A3) this witness is constructed using the techniques from Ref. [28] but it presents a lower bound
for the same measures of genuine multipartite entanglement as Eqs. (A1)–(A3).
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