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The CPðN � 1Þ �model on finite interval of length R with Dirichlet boundary conditions is analyzed in

the 1=N expansion. The theory has two phases, separated by a phase transition at R� 1=�, and � is a

dynamical scale of the CPðN � 1Þ model. The vacuum energy dependence of R, and especially Casimir-

type scaling 1=R, is discussed.
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I. INTRODUCTION

The largeN expansion is suitable to study nonperturbative
behavior of a variety of models in different physical situ-
ations (see Ref. [1] for a review).Within this techniquemany
important features such as dynamical mass generation,
asymptotic freedom, and an absence of spontaneous con-
tinuous symmetry breaking in two dimensions could be seen.

In what follows, we will consider two-dimensional non-
linear CPðN � 1Þ � model on a finite interval of length R
with Dirichlet boundary conditions, that is, on a ribbon. In
infinite space it was solved by D’Adda, Di Vecchia, and
Lüscher [2] (and later independently by Witten [3]) by
means of the large N expansion. The theory is asymptoti-
cally free and possesses dynamical mass generation via
dimensional transmutation:

�2 ¼ �2
uv exp

��4�

g2

�
; (1)

where � is a dynamical scale, �uv is an ultraviolet cutoff,
and g is a bare coupling constant. It is well known that the
CPðN � 1Þ model is the effective low-energy theory on a
non-Abelian string worldsheet [4]. Therefore, such a ge-
ometry with two Dirichlet boundary conditions can be
thought of as a non-Abelian string between two branes.

In this article, we will obtain the following results.
The theory has nontrivial R dependence: at R � 1=� it
is in the ‘‘confining phase’’ and the mass gap is present; at
R � 1=� it is in the ‘‘Higgs phase’’ and there is no mass
gap. Very similar behavior occurs in the ‘‘twisted mass’’
deformed CPðN � 1Þ model, where the twisted mass
parameter plays the role of R (see Ref. [5] where the names
of the phases were taken). Despite the existence of the
mass gap, the vacuum energy has Casimir-type behavior
1=R. We will discuss it in the light of the works [6,7].

II. GAP EQUATION

The considerations below are very similar to those in
Ref. [5]. We start with the action

L ¼ N

g2
ð@� � iA�Þnið@� þ iA�Þn�i � �ðn�i ni � 1Þ; (2)

where � and A� are Lagrange multipliers. � impose the

constraint n�i ni ¼ 1, and A� are just dummy fields that

could be eliminated by equation of motion A� ¼ in�i @�ni

but make U(1) invariance obvious. All the fields live on
a finite interval of length R with Dirichlet boundary
conditions:

n1ð0Þ ¼ n1ðRÞ ¼ 1; nið0Þ ¼ niðRÞ ¼ 0; i¼ 2; :::;N:

(3)

Note that this boundary conditions break translation
invariance.
To solve the theory in the large N limit we should

integrate over nk in the path integral to obtain effective
action for �, A�,

Z¼
Z
DAD�DniDn�i

�exp

�
i
Z
d2x

�
�N

g2
nið@�þiA�Þ2n�i��ðnin�i�1Þ

��
:

(4)

It will be useful to separate ni into n1 ¼ �, (N � 1)
component ni and integrate over only the last ones. After
rescaling ni, Gaussian integration leads us to

Z ¼
Z

DAD�D�

� exp

�
ð�ðN � 1ÞTr logðð�ð@� þ iA�Þ2 �m2ÞÞ

þ i
Z

d2x

�
ð@��Þ2 �m2��� þ Nm2

g2

��
; (5)

where m2 ¼ �g2

N .

Now we will use the steepest descent method with the
uniform saddle point: A� ¼ 0, m ¼ const, � ¼ const, and

in the leading order we can neglect the difference between
N and N � 1. Also, although the translation invariance is
broken, it is reasonable to expect that we will describe the*milekhin@itep.ru
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behavior correctly at least at the qualitative level. Varying
action with respect to m2, ��, we obtain saddle-point
equations:

g2Tr
1

ð�@�Þ2�m2þ i�
þ i

Z �
1�g2�2

N

�
d2x¼0; (6)

m2� ¼ 0: (7)

The second equation implies that � ¼ 0 or m ¼ 0. Let us
consider the case � ¼ 0. Then the first equation reads
[the trace should be computed with respect to (3)]:

iþg2
Xþ1

n¼1

Z þ1

�1
dk

2�R

1

k2�ð�nR Þ2�m2þ i�
¼0: (8)

Using the identity

X
Z

1

ð�nR Þ2 þ!2
¼ 2R

!

�
1

2
þ 1

expð2R!Þ � 1

�
; (9)

and after the Wick rotation, we arrive at

1� g2

2�R

Z þ1

0
dk

�
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p þ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

� 1

ðexpð2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ � 1Þ �

1

k2 þm2

�
¼ 0: (10)

III. ANALYSIS

Let x ¼ 1=m and

Q

�
x

R

�
¼

Z þ1

0

2dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ R2

x2

q 1�
exp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ R2

x2

q �
� 1

� : (11)

If �uv is an ultraviolet cutoff, (10) leads to

1� g2

2�R

�
R logð�uvxÞ þ RQðx=RÞ � �x

2

�
¼ 0: (12)

It is more convenient to rewrite it as, recalling (1),

2�

g2
� logð�uvRÞ ¼ � logð�RÞ

¼ logðx=RÞ þQðx=RÞ � �x

2R
: (13)

If x � R, Q could be calculated using a saddle-point
approximation, with k ¼ 0 as a saddle-point,

Qðx=RÞ �
ffiffiffiffiffiffiffi
�x

p
e�2R

xffiffiffiffi
R

p ; x � R; (14)

so Q is exponentially suppressed and so negligible. In the
limit R ! þ1, �x2R is also negligible and we repeat the well-

known result [2,3]:

2�

g2
¼ logð�uvx0Þ: (15)

It is interesting to find 1=R corrections. If x0 ¼ 1=m0, �0

are solutions for R ¼ þ1, then trivial calculation yields

x ¼ x0 þ �x20
2R

þ 3�2x30
8R2

þOð1=R3Þ: (16)

Therefore,

m2 ¼ g2�

N
¼ 1

x2
¼ 1

x20
� �

x0R
þOð1=R3Þ; (17)

m ¼ m0 � �

2R
� �2

8m0R
2
þOð1=R3Þ: (18)

In the next section, we will use this expansion to calcu-
late 1=R corrections to vacuum energy.
Another mode is x � R. Qðþ1Þ ¼ þ1, because the

integral is divergent at lower bound. This mode is much
more difficult to deal with; therefore, we calculated the
right side of (13) numerically. The result is shown in the
Fig. 1. The thick curve is the right side of (13), while the
thin one is without Qðx=RÞ. At large x=R it has an asymp-
totic value �1:26, so

Qðx=RÞ��x

2R
� log

�
x

R

�
�1:26þ��� ; x�R: (19)

It is possible to calculate the next order term:

Qðx=RÞ ¼ �x

2R
þ log

�
R

x

�
� ðlogð2�Þ � �Þ

� �ð3Þ
2�2

�
R

x

�
2 þOððR=xÞ3Þ; (20)

where � � 0:577 . . .—the Euler-Mascheroni constant.
Recalling that 1=x ¼ m,

m2 ¼ 2�2

R2�ð3Þ ðlogð�RÞ � ðlogð2�Þ � �ÞÞ: (21)

Note that the gap equation has a solution only when R is
large enough.
Let us consider the other case: m ¼ 0, � � 0. Then (6)

reads

�g2

�R

X
n¼1

Z þ1

0

dk

k2 þ ð�nR Þ2
� g2j�j2

N
þ 1 ¼ 0: (22)

Again using (9), we obtain

g2j�j2
N

¼1� g2

2�R

Z þ1

0
dk

�
2R

k

�
1

2
þ 1

expð2RkÞ�1

�
� 1

k2

�
:

(23)

Note that the integral is not divergent in infrared, as one
might expect recalling the Mermin-Wagner-Coleman theo-
rem. Indeed, there is no spontaneous symmetry breaking at
all: boundary conditions break SUðNÞ to SUðN � 1Þ from
the very beginning and SUðN � 1Þ remains unbroken in all
phases. Because of Dirichlet boundary conditions, we have
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a natural IR cutoff �=R [see Eq. (8)]. Using (20) (if m ¼ 0
then x ¼ 1), we can write explicitly

g2j�j2
N

¼ 1� g2

2�
ðlogð�uvRÞ þ �� logð2�ÞÞ; (24)

or

j�j2
N

¼ � logð�RÞ þ logð2�Þ � �: (25)

IV. VACUUM ENERGY

Above we found the following effective action:

Seff ¼ iN Tr log

�
�@2 � �g2

N

�
þ

Z
d2x�: (26)

From now on, we will work in Euclidian space, so

Seff;Eucl ¼ N Tr log

�
�@2 þ �g2

N

�
�

Z
d2x�: (27)

However, (3) breaks translation invariance and so
h0jT��j0i � �	��, and to calculate vacuum energy we

will just calculate the effective action. Using Pauli-
Villars regularization [8]

S
reg
eff;Eucl ¼ N

X2
i¼0

ci Tr logð�@2 þm2 þm2
i Þ �

Z
d2x�;

(28)

m0¼0; c0¼1; c1¼ m2
2

m2
1�m2

2

; c2¼ �m2
1

m2
1�m2

2

: (29)

At the end we should take limits m1 ! þ1, m2 ! þ1.
Regularized action should be stationary for � found

above, so

Z
d2x

1

g2
¼ X2

i¼0

ci Tr
1

�@2 þm2
i þm2

: (30)

Similar traces appeared above [Eq. (6)] and they contained
a nasty integral such as (11). From now on, we will
consider the case R ! þ1 in which the calculation is
simplified significantly. In this case (14) is correct
and the nasty integral is of no interest due to the

expð�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þm2
q

RÞ factor. After these remarks, the trivial

calculation yields

1

g2
¼ 1

2�R

0
@R
2
log

�
m2þm2

2

m2

�
þ Rm2

2

2ðm2
1�m2

2Þ
log

�
m2þm2

2

m2þm2
1

�

� �

2m
� �m2

2

2ðm2
1�m2

2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þm2
1

q

þ �m2
1

2ðm2
1�m2

2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þm2
2

q
1
A: (31)

Setting m2
1 ¼ xM2, m2

2 ¼ M2 and taking

x ! 1; M ! þ1; (32)

we obtain

1

g2
¼ 1

2�R

�
�R

2
� �

2m

�
¼ � 1

4�
� 1

4mR
: (33)

The regularized action (28) contains Tr logð�@2 þm2Þ.
It is well known that this is the Casimir energy for a
massive complex scalar field [9]. In 1þ 1

E ¼ �m

2
� Rm2

�

Xþ1

n¼1

K1ð2RmnÞ
Rmn

; (34)

where K1 is the modified Bessel function.
The first term corresponds to the energy of boundary

excitations. Usually it is omitted and the second term is
called ‘‘the Casimir energy,’’ but in our case m depends on
R, so the first term is important. If mR � 1, then the sum
has the asymptotic behavior expð�2mRÞ and so is negli-
gible. Expressions (28) and (33) are free of divergences.
Trlog in (28) could be calculated exactly via Schwinger
proper-time representation, but the expression is rather
long and we will not give it here. After taking (32), we
obtain � Nm

2 [the expð�2mRÞ term is dropped]. Therefore,

Evac ¼ �Nm

2
þ NRm2

4�
þ Nm

4
¼ NRm2

4�
� Nm

4
; (35)

where (33) was used. There is no ‘‘interference’’ between
the two terms in (28), and the limit (32) can be taken
separately.
Note that there is no mass parameter in the original

Lagrangian. The mass is dynamically generated. Therefore,
to study R dependence in full, we should take into account

FIG. 1. The thick curve is the right side of Eq. (13); the thin
curve is with Qðx=RÞ omitted.
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that m depends on R. We will return to this fact in the next
section. Substituting (17) and (18) into (35), we arrive at

Evac ¼ Nm2
0R

4�
�m0N

2
þ N�

8R
þOð1=R2Þ; R ! þ1:

(36)

V. DISCUSSION

In Ref. [6], Shifman and Yung argued that for the
CPðN � 1Þ model, the Lüscher coefficient follows a rich
pattern of behavior, equal to �N

12 when R � ��1 because ni

could be considered massless, and approaches a value
of 0 because ni are massive when R � ��1. Indeed, we
have seen that there is phase transition when R� 1=�
[Rcrit ¼ expðlogð2�Þ � �Þ=� to be precise] and below
this value ni are massless. But above 1=� we explicitly
see Casimir-type behavior despite the existence of the
mass gap.

However, in this situation, the mass depends on R and
the Lüscher term comes not from a modified Bessel func-
tion in (34) (as in the massless case) but from the first term
that is often of no physical meaning, but not in this case.
The considerations above led us to � �N

8 when R � ��1.

Note that the sign is opposite to the one in a usual Casimir
energy expression [9].

In recent works [7,10], Thomas and Zhitnitsky studied
deformed QCD [11] on S1 � S3. By means of the mono-
pole gas and the Sine-Gordon representations, they argued
that despite the existence of the mass gap the vacuum
energy obeys Casimir-type behavior �1=L (L is the radius
of a 3-sphere) also with opposite sign. They relate it with

the fact that the mass is not present in the theory from the
very beginning but emerges as a result of some dynamics.
Obviously, it is the case of the CPðN � 1Þ model.
One can also analyze Neumann boundary conditions

@nið0Þ ¼ @niðRÞ ¼ 0. In this case, the sign of �x=2R in
the gap equation (13) is different because now we have to
sum from n ¼ 0 in Tr log, so the equation always has a
unique solution; therefore, there is no phase transition.
This is consistent with the Mermin-Wagner-Coleman theo-
rem because boundary conditions do not break SUðNÞ !
SUðN � 1Þ. A simple calculation shows that in this case we
have again N�=8R in the vacuum energy. Indeed, one can
obtain mðRÞ just by changing the sign of a � in (18). Also,
one has to change the sign before m=2 in (34) and before
1=4mR in (33) due to the sum from n ¼ 0 in Tr log. So we
obtain þNm=4 in (35).
The Casimir scaling with the ‘‘wrong sign’’ might be

related with the topological properties of the theory, as, for
example, the wrong sign in topological susceptibility of the
2d pure U(1) can be related with the existence of the
different topological sectors [10]. However, the question
of instanton configurations in the model is rather subtle and
needs an individual paper for the thorough discussion. We
will note only that one may add the 
 term to the action:
i


R
d2x���@�A� ¼ i
q. In infinite space hqi
 / m2
 [2]

so the 
-dependent portion of the vacuum energy also
receives 1=R corrections.
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