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We present Hilbert space representation for a relatively broad class of minimum-length deformed

quantum mechanical models obtained by incorporating a space-time uncertainty relation into quantum

mechanics. The correspondingly modified field theory is used for estimating the deviation of the light

incoherence rate from distant astrophysical sources from the standard case.

DOI: 10.1103/PhysRevD.86.104066 PACS numbers: 04.60.Bc

I. INTRODUCTION

In the framework of general relativity, a gravitational
field is described by the space-time metric ([1], Sec. 82).
Thus, the measurement of the gravitational field is tanta-
mount to the measurement of space-time distances. Taking
into account the quantum-mechanical fluctuations, it was
shown in a number of papers that there inevitably exists
intrinsic uncertainties in measuring the space-time dis-
tances [2–10]. Otherwise speaking, a space-time metric
undergoes inherent quantum-mechanical fluctuations.
Simply put, on the dimensional grounds one could get
an idea that in the Minkowski background, the rate of
fluctuation of a length scale l should have the form
�l ¼ �l�Pl

1��, since lP is the only quantity with dimen-
sions of length that one can construct from the quantities c,
GN , ℏ [11] (here� is a numerical factor of order unity). For
a relatively recent review we refer the reader to Ref. [12].
(In what follows we will use a natural system of units:
c ¼ ℏ ¼ 1.) As to the parameter �, one cannot be very
strict in defining its proper value. One can just require the
values of � to be such that �l � l for l � lP. In what
follows, we will be interested in length scales much greater
than the Planck length. The purpose of this paper is (1) to
develop a systematic way for incorporating the relation
�l ¼ �l�Pl

1�� into field theory and (2) to use the modified
field theory for estimating the coherence rate for the light
coming from distant astrophysical sources. The idea pro-
posed in Ref. [13] to estimate the phase fluctuation accu-
mulated by the plane wave expði½!t� kx�Þ (! ¼ k) over
the time t as t�!, where �! is calculated by means of the
relations ! ¼ 2�=�, �� ¼ �l�P�

1��, is clearly very dubi-
ous. So, an alternate idea is to assume that over the length
scale l the path fluctuation for an electromagnetic wave
caused by the background metric fluctuations should be
estimated irrespective to its wavelength as �l ¼ �l�Pl

1��

thus implying the phase fluctuation of the order of �l=�
[14]. What one can say definitely on the bases of the above
discussion is that the fluctuation in wavelength should be
estimated as �� ¼ �l�P�

1��; however, the question of how

this fluctuation adds up over a length scale l requires a
theoretical framework (one may naturally expect the wave-
length to have some bearing on this question).
We will abandon the above-mentioned ‘‘imaginative’’

concepts and will try to incorporate the relation �l ¼
�l�Pl

1�� into quantum mechanics (QM) and hence into
the field theory.

II. INCORPORATING THE RELATION
�l¼�l�Pl

1�� INTO THE QUANTUM MECHANICS

We start off with a Minkowskian background, the spatial
distance of which undergoes the fluctuations quantified by
the relation �l ¼ �l�Pl

1��. The question of the possible
space-time structure at the Planck scale is beyond the scope
of our discussion, so that from the outset we assume that
l � lP. As a concomitant of these fluctuations, the position
uncertainty in the Heisenberg uncertainty relation gets
increased as

�X � 1

2�P
þ �l�P�X

1��: (1)

This modification can be understood as an immediate
result of fluctuations (uncertainty) �� ¼ �l�P�

1�� in the
de Broglie wavelength of the incident particle by means of
which we are measuring the position of the observed
particle. So long as �X � lP we can rewrite Eq. (1) in
the form

�X�P � 1

2
þ �l�P�P

�: (2)

A. Hilbert space representation of Eq. (2)

To find a concrete Hilbert space representation of the X̂,

P̂ operators, we start off with the deformed QM

½X̂; P̂� ¼ ið1þ �l�PP̂
�Þ; (3)

which is dictated by the form of Eq. (2) (numerical factors
of order unity are absorbed in �). This sort of QM is
characterized with a minimum position uncertainty of the
order of [15]*maziashvili@gmail.com
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�X ’
�Z 1

0

dP

1þ �l�PP
�

��1 ¼ �1=�lPR1
0

dq
1þq�

:

So, in the case �< 1 the position uncertainty can reach
zero while for �> 1 it exhibits a nonzero minimum
uncertainty in a position that is seen immediately from
Eq. (2) as well.

A multidimensional generalization of Eq. (3) can be
written in the form

½X̂i; X̂j� ¼ 0; ½P̂i; P̂j� ¼ 0;

½X̂i; P̂j� ¼ if�ðP̂2Þ�ij þ�ðP̂2ÞP̂iP̂jg;
(4)

the Hilbert space representation of which can be
constructed in terms of the standard x̂, p̂ operators as

X̂i ¼ x̂i; P̂j ¼ p̂j�ðp̂2Þ: (5)

Let us work in the eigen representation of operator p̂:
x̂i ¼ i@=@pi, p̂j ¼ pj. The simplest ansatz would be

to take

� ¼ 2�l�P
P̂2��

;

thus, from Eqs. (4) and (5), we get�
@

@pi pj�ðp2Þ � pj�ðp2Þ @

@pi

�
c ðpÞ

¼
�
�ij�ðp2Þ þ 2pipj

d�ðp2Þ
dp2

�
c ðpÞ

¼
�
�ðp2�2Þ�ij þ 2�l�P

pipj

p2��
��

�
c ðpÞ;

that is,

d�ðp2Þ
dp2

¼ �l�P
��

p2��
;) �ðp2Þ

¼
�
1� 2�ð�� 1Þ

�
l�Pp

�

� 1
1��

: (6)

So we get

X̂i¼ x̂i; P̂j¼ p̂j

�
1�2�ð��1Þ

�
l�Pp̂

�

� 1
1��

; (7)

or in the eigen representation of operator p̂

X̂j¼ i
@

@pj

; P̂j¼pj

�
1�2�ð��1Þ

�
l�Pp

�

� 1
1��

; (8)

with a scalar product containing a cutoff on p when �> 1,

hc 1jc 2i ¼
Z
p�<�=2�ð��1Þl�P

d3pc �
1ðpÞc 2ðpÞ;

and without a cutoff on p when �< 1,

hc 1jc 2i ¼
Z

d3pc �
1ðpÞc 2ðpÞ:

In the case � ¼ 2 one recovers the well-known result; see
Refs. [16,17]. Let us notice that the above-mentioned cut-
off p� < �=2�ð�� 1Þl�P when �> 1 arises merely from
the fact that when small p runs over this region then largeP
covers the whole region from 0 to 1; see Eqs. (7) and (8).
In what follows we will use the abbreviation PLQM
for the Planck-length deformed quantum mechanics,
Eqs. (4) and (7).

III. FIELD THEORY IN LIGHT OF THE PLQM

Before proceeding let us notice that for the stellar inter-
ferometry one usually deals with the natural light; there is
no preferential polarization direction for the emitted field.
So, we treat the light signal as a scalar quantity (that means
to take account of the scalar potential only), and consider
the scalar field instead of the electromagnetic one.
Let us first consider PLQM with � ¼ 2. In this case we

have [16,17]

Xi ¼ xi; Pi ¼ pi

1� �l2Pp
2
:

Its Hilbert space realization in the p representation has the
form

Xic ðpÞ ¼ i@pi
c ðpÞ; Pic ðpÞ ¼ pi

1� �l2Pp
2
c ðpÞ;

with the scalar product

hc 1jc 2i ¼
Z
p2<1=�l2P

d3pc �
1ðpÞc 2ðpÞ:

The modified field theory,

A½�� ¼ �
Z

d4x
1

2
½�@2t �þ�P2��

¼ �
Z

d4x
1

2

�
�@2t �þ�

��

ð1þ �l2P�Þ2
�

�
; (9)

results in the equation of motion of the form

ð@2t þ P2Þ� ¼
�
@2t � �

ð1þ �l2P�Þ2
�
�

¼
�
@2t ��

X1
n¼0

ðnþ 1Þð��l2P�Þn
�
� ¼ 0:

(10)

Let us look at the spherical solutions�ðt; rÞ. Recalling that
the radial part of the Laplace operator in spherical coor-
dinates has the form

��ðt; rÞ ¼ 1

r2
@

@r

�
r2

@�

@r

�
;

after making the substitution � ¼ ’=r one finds

�
’

r
¼ 1

r

@2’

@r2
; �2 ’

r
¼ 1

r

@4’

@r4
; �n ’

r
¼ 1

r

@2n’

@r2n
:
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Considering a monochromatic wave

� ðt; rÞ ¼ e�ið!t�krÞ

r
;

from Eq. (10) we find the modified dispersion relation

!2 ¼ k2

ð1� �l2Pk
2Þ2 ; ) k2 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�l2P!

2
q

� 1

�
2

4�2l4P!
2

:

(11)

Now let us look at PLQM with � ¼ 1=2. In this particu-
lar case, from Eq. (7) one gets

X̂i ¼ x̂i; P̂j ¼ p̂jð1þ 2�l1=2P p̂1=2Þ2: (12)

Hence the field equation of motion gets modified as

ð@2t þ P2Þ� ¼ ð@2t � �½1þ 2�l1=2P ð��Þ1=4�4Þ� ¼ 0:

Following the above discussion, now for the spherical,
monochromatic-wave solution

� ðt; rÞ ¼ e�ið!t�krÞ

r
;

we find

! ¼ k½1þ 2�l1=2P k1=2�2; ) k ¼
�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�
ffiffiffiffiffiffiffiffiffi
lP!

pp �
2

16�2lP
:

(13)

IV. THE DEGREE OF LIGHT COHERENCE
FROM DISTANT CELESTIAL OBJECTS:
VAN CITTERT-ZERNIKE FORMALISM

The light from the astrophysical source certainly cannot
be strictly monochromatic for even the spectral lines for
isolated atoms have finite widths. In addition, the broad-
ening of the spectral lines are caused because of the motion
of atoms (Doppler broadening) and also because of inter-
action (collisions) between the atoms. In the case of real
sources it is appropriate to talk about the wave packet

�ðt; rÞ ¼
Z

d!að!Þ e
i½kð!Þr�!t�

r
; (14)

where kð!Þ is defined by Eq. (11) and the function að!Þ is
understood to differ appreciably from zero only within a
narrow range around a mean frequency �!,

�!� �!

2
� ! � �!þ �!

2
;

�!

�!
� 1:

If �! is sufficiently small, the wave packet Eq. (14) can be
interpreted as a plane wave with frequency �!, wave num-
ber kð �!Þ, and variable amplitude

Aðt; rÞ ¼
Z �!þ�!=2

�!��!=2
d!að!Þeif½kð!Þ�kð �!Þ�r�½!� �!�tg; (15)

� ðt; rÞ ¼ Aðt; rÞ e
i½kð �!Þr� �!t�

r
: (16)

The width �! determining the duration of the wave packet
�t ’ �!�1 is an important characteristic for the interfer-
ence effect. Namely, the interference effect takes place
when the path difference between the overlapping quasi-
monochromatic beams, Eq. (16), is less than the coherence
length �t.
Now we are in a position to follow van Cittert-Zernike

theory to the mutual coherence of light from an extended
quasimonochromatic source [18]. A screen A is illumi-
nated by an extended quasimonochromatic incoherent
source � taken for simplicity to be a portion of a plane
parallel to A; see Fig. 1. The points P1 and P2 on the screen
correspond to the interferometer slits. Before going on let
us adopt the following natural assumptions. The linear
dimensions of � are small compared to the distance OO0
between the source and the screen, and the angles between
OO0 and the line joining a typical source point, S to P1 and
P2, are small. Dividing the source into elements d�m

centered on points Sm and denoted by �m1ðtÞ and �m2ðtÞ,
the disturbances at P1 and P2 due to element d�m, for total
disturbances at these points, one finds

� 1;2ðtÞ ¼
X
m

�m1;2ðtÞ:

The correlation function between the light signals
�1ðtÞ and �2ðtÞ takes the form (brackets hi denote time
averaging)

h�1ðtÞ��
2ðtÞi ¼

X
m

h�m1ðtÞ��
m2ðtÞi þ

X
m�n

h�m1ðtÞ��
n2ðtÞi:

The light signals coming from different elements of the
source are mutually incoherent; that is, there is no corre-
lation between �m1ðtÞ and �n2ðtÞ when m � n,

FIG. 1. A screen A illuminated by an extended quasimono-
chromatic incoherent source �.
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h�m1ðtÞ��
n2ðtÞi ¼ 0 for m � n:

Using an explicit expression

�m1;2ðtÞ ¼ Amðt; rm1;2Þ e
�i½ �!t�kð �!Þrm1;2�

rm1;2

; (17)

where rm1;2 denote distances between the elements d�m

and the points P1;2 for the correlation function, one finds

h�m1ðtÞ��
m2ðtÞi ¼ hAmðt; rm1ÞA�

mðt; rm2Þi e
ikð �!Þðrm1�rm2Þ

rm1rm2

:

(18)

If the condition

jrm2 � rm1j � jkð �!þ �!Þ � kð �!Þj�1 (19)

is satisfied, then one can write

Amðt; rm1ÞA�
mðt; rm2Þ � Amðt; rm1ÞA�

mðt; rm1Þ
� Amðt; rm2ÞA�

mðt; rm2Þ: (20)

Namely, using Eq. (15) one observes that (�r 	 r2 � r1),

Amðt; rm1ÞA�
mðt; rm2Þ

¼
Z �!þ�!=2

�!��!=2
d!d!0að!Þa�ð!0Þe�ið!�!0Þt


 ei½kð!Þ�kð!0Þ�rm1e�i½kð!0Þ�kð �!Þ��r

�
Z �!þ�!=2

�!��!=2
d!d!0að!Þa�ð!0Þe�ið!�!0Þtei½kð!Þ�kð!0Þ�rm1

¼ Amðt; rm1ÞA�
mðt; rm1Þ;

and analogously one finds that this expression is pretty
much the same as Amðt; rm2ÞA�

mðt; rm2Þ. It is worth noticing
that if Eq. (19) is satisfied in the case of the standard
dispersion relation, then it is automatically satisfied
for the dispersion relations, Eqs. (11) and (13), for
dk=d!< 1 in both cases when �> 0. Thus, assuming
the condition (19) is satisfied, we may write

h�1ðtÞ��
2ðtÞi ¼

X
m

hAmðt; rm1ÞA�
mðt; rm1Þi e

ikð �!Þðrm1�rm2Þ

rm1rm2

:

(21)

The quantity hAmðt; rm1ÞA�
mðt; rm1Þi characterizes the inten-

sity of the radiation from the source element d�m. So the
correlation function, Eq. (21), takes the form

h�1ðtÞ��
2ðtÞi ¼

Z
�
d�Ið�Þ e

ikð �!Þðr1�r2Þ

r1r2
; (22)

where IðsmÞd�m ¼ hAmðt; rm1ÞA�
mðt; rm1Þi. In most appli-

cations the intensity Ið�Þmay be assumed to be uniform on
�. Towork out the integral, Eq. (22), let us denote by ð�;	Þ
the coordinates of a point S, referred to axes at O, and let
ðx1; y1Þ and ðx2; y2Þ be the coordinates of P1 and P2

referred to parallel axes at O0; see Fig. 1. Retaining only

leading terms in x=r, y=r, �=r, 	=r, where r is the distance
OO0, one finds

r1�r2�x21þy21�x22�y22þ2�ðx2�x1Þþ2	ðy2�y1Þ
2r

:

Denoting

p ¼ x1 � x2
r

; q ¼ y1 � y2
r

;

c ¼ kð �!Þðx21 þ y21 � x22 � y22Þ
2r

;

(23)

Eq. (22) takes the form

h�1ðtÞ��
2ðtÞi�

eic

r2

Z
�
d�d	Ið�;	Þeikð �!Þðp��q	Þ: (24)

For a uniform circular source of radius 
 with its center
at O, Eq. (24) reduces to

h�1ðtÞ��
2ðtÞi � eic

J1ðvÞ
v

; (25)

where v ¼ kð �!Þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and J1 stands for the first kind

and first order Bessel function. In most applications, the
quantity c is very small, so that one can neglect the
corresponding phase factor in Eq. (25). The function
J1ðvÞ=v decreases steadily from the value 0.5 when
v ¼ 0 to the value zero when v ¼ 3:83 indicating that
the degree of coherence steadily decreases and approaches
complete incoherence when P1 and P2 are separated by the
distance

P1P2 ¼ 0:61 ��r



;

where �� ¼ 2�=kð �!Þ. In experiments on interference and
diffraction a departure of 12% from the ideal value of
coherence that occurs at v ¼ 1 can be taken as a maximum
permissible departure that gives the following for the sepa-
ration of points P1 and P2:

P1P2 ¼ 0:16 ��r



: (26)

V. DISCUSSION

The present paper is a continuation of the discussion
started in Ref. [19]. We have constructed the Hilbert space
representation for a relatively broad class of minimum-
length deformed position-momentum uncertainty relations
(2), which in its turn can be understood as a modification
arising because of quantum-gravitational fluctuations of
the background Minkowski space. A particular case of
this sort of PLQM is a well-known example studied in
Refs. [16,17]. Following this construction, we have then
used PLQM for constructing the correspondingly modified
field theory, which can be used for estimating corrections
to various quantities. We have applied the minimum-length
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deformed field theory constructed this way for estimating
the corrections to the light coherence rate from distant
astrophysical objects. The rate of light (in)coherence is
estimated on the basis of van Cittert-Zernike formalism
(as pointed out in Ref. [20]). The picture arising from this
consideration looks as follows.

If all the assumptions required for light coherence are
satisfied in the case of standard dispersion relation, then
those conditions are automatically satisfied for modified
dispersion relations (11) and (13). Namely, if the require-
ment of the path difference jrm2 � rm1j to be smaller than
the duration of the wave packet �t 	 �!�1 is satisfied in
the standard case, that is, jrm2 � rm1j � �!�1, then
Eq. (19) is automatically satisfied for dispersion relations
(11) and (13) as dk=d!< 1 in those cases.

In the standard case, the phase c in Eq. (25) is usually
neglected as it is usually small in most applications. In the
cases of Eqs. (11) and (13), c becomes even smaller as
kð �!Þ< �!.

And finally, the maximum separation of points P1 and
P2 over which light is coherent, Eq. (26), becomes
enlarged as compared to the standard case as the wave
length �� is enlarged now: 1=kð �!Þ> 1= �!.

One can simply estimate the rate of the effect in both
cases: � ¼ 2 and � ¼ 1=2. Restricting ourselves to the
leading order corrections, in the former case (� ¼ 2)
one finds from Eq. (11) (as well as from the relation

�� ¼ �l�P�
1�� by which we started our discussion, see

the Introduction) that the wave-length increment takes the
form � �� ’ l2P �!. Let us see if the increment in separation
P1P2 can be made observationally perceptible, say of the
order of 1 cm. Even if we take �! ’ EP, from Eq. (26) one
gets r=
� 1033. To obtain such a huge ratio is absolutely
impossible, for the present horizon radius is about 1028 cm
and in its turn 
 is, by many orders of magnitude, greater
than 1 cm. So for the realistic values of �!, r, and 
 one gets
a minuscule effect.
Analogously, in the latter case � ¼ 1=2 one finds from

Eq. (13) (as well as from the relation �� ¼ �l�P�
1�� by

which we started our discussion, see the Introduction) that

� �� ’ ðlP ��Þ1=2. Let us again consider an extreme case
to demonstrate the smallness of the effect. Let us take
P1P2 ’ 106 cm and assume that we can measure this dis-
tance with accuracy �1 cm. Taking �� ’ 10�9 cm, from
Eq. (26) one finds

�ðP1P2Þ ’ P1P2

�
lP
��

�
1=2 ’ 10�6 cm:

So, in any realistic case we expect the effect to be tiny.
For other approaches describing the effect of quantum

gravity on the light coherence from distant astrophysical
objects (indicating that the effect is intangible), see
Refs. [21–23].
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