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We consider axially symmetric solutions of SUð2Þ Yang-Mills-Higgs theory in globally AdS spacetime

and a fixed Schwarzschild-AdS black hole background. The solutions are characterized by two integers

ðm; nÞ where m is related to the polar angle and n to the azimuthal angle. Two types of finite-energy,

regular configurations are considered: solutions with net magnetic charge n > 1, and monopole-

antimonopole pairs and chains with zero net magnetic charge. The configurations are endowed with an

electric charge and also carry a nonvanishing angular momentum density.
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I. INTRODUCTION

The study of solutions to the SUð2Þ Yang-Mills-Higgs
(YMH) equations with an adjoint representation Higgs
field is a subject of long-standing interest. This model
has a nontrivial vacuum structure which gives rise to a
variety of regular, nonperturbative finite-energy solutions,
such as magnetic monopoles [1,2], multimonopoles [3,4]
and composite configurations, containing both monopoles
and antimonopoles [5–9]. Moreover, solutions which do
not possess any continuous symmetry are also known to
exist [10]. (A review of these aspects can be found in
Ref. [11].) All these configurations can be generalized to
include an electric charge, which further enriches the
pattern of the solutions, leading, in the axially symmetric
case, to a simple relation between the angular momentum,
electric charge and total magnetic charge [12–14].

When including the effects of gravity, a branch of grav-
itating solutions emerges smoothly from the corresponding
flat-space configurations (see the review in Ref. [15]).
Moreover, these solutions allow for black hole general-
izations. A complicated picture is emerging whose details
depend mainly on the presence or not of a global magnetic
charge [16–19].

The magnetic monopole and dyon solutions of the YMH
system have enjoyed recently some renewed interest in the
context of the AdS/CFT conjecture [20]. It has been argued
that, if the bulk AdS spacetime contains non-Abelian mag-
netic monopoles, new interesting phenomena may result,
including spontaneous breaking of translational symmetry
in the dual theory [21] (see also Ref. [22]). The effects
of the inclusion of an electric charge on the spherically
symmetric magnetic monopoles have been discussed in
Ref. [23]. For black hole solutions with a planar horizon
topology and possessing YMH hair, it has been shown
in Refs. [24,25] that the dual system defined in 2þ 1
dimensions undergoes a second-order phase transition
and exhibits the condensation of a composite charge
operator. Moreover, it has been suggested in Ref. [26]

that the dual field theory is generally a field theory with a
vortex condensate.
These results have motivated us to consider the question

of how the inclusion of a negative cosmological constant
would affect the properties of the axially symmetric YMH
configurations studied so far in a Minkowski spacetime
background only. This work is intended as a preliminary
study in this direction, since, for simplicity, we are working
in the probe limit, i.e., for a fixed (Schwarzschild-)AdS
geometry, without including the effects of the backreaction
on the spacetime metric. Moreover, we are restricting our-
selves to a foliation of the background geometry leading to
a (2þ 1)-dimensional Einstein universe boundary metric.

II. THE MODEL

A. The action and field equations

We consider the action of the SUð2Þ YMH theory

S ¼ � 1

4�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Tr

�
1

2
F��F

�� þ 1

4
D��D��

þ �

8
ð�2 � �2Þ2

��
; (1)

with the SUð2Þ field strength tensor F�� ¼ @�A� �
@�A� þ ie½A�; A�� (A� being the gauge potential) and

the covariant derivative of the Higgs field � in the adjoint
representation D�� ¼ r��þ ie½A�;��. Here e denotes

the gauge coupling constant, � denotes the vacuum expec-
tation value of the Higgs field, and � represents the strength
of the scalar coupling.
Under SUð2Þ gauge transformationsU, the gauge poten-

tials and the Higgs field transform as

A0
� ¼ UA�U

y þ i

e
ð@�UÞUy; �0 ¼ U�Uy: (2)

Variation of Eq. (1) with respect to the gauge field A�

and the Higgs field � leads to the field equations of the
model
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while the variation with respect to the metric g�� yields the

energy-momentum tensor
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As usual, the nonzero vacuum expectation value of the
Higgs field breaks the non-Abelian SUð2Þ gauge symmetry
to the Abelian Uð1Þ symmetry. The particle spectrum of
the theory then consists of a massless photon, two massive
vector bosons of massMv ¼ e�, and a massive scalar field

Ms ¼
ffiffiffiffiffiffi
2�

p
�.

B. The ansatz

1. The metric background

All YMH solutions in this work are studied in the probe
limit, in which the backreaction of the matter field on the
spacetime geometry is ignored. This approximation, which
is valid as long as the dimensionless coupling constant
�2 ¼ 4�G=�2 is very small (with G the Newton’s con-
stant), greatly simplifies the problem but retains most of
the interesting physics. For example, the nonlinear inter-
action between gauge fields and scalars is retained; also,
the background geometry may possess a horizon.

For the background metric, we take first the AdS4 space-
time, written in global coordinates

ds2 ¼ dr2

1þ r2

‘2

þ r2ðd�2 þ sin2�d’2Þ �
�
1þ r2

‘2

�
dt2; (5)

where r, t are the radial and time coordinates, respectively
(with 0 � r <1), while � and ’ are angular coordinates
with the usual range, parametrizing the two-dimensional
sphere S2. Also, ‘ is the AdS length scale, which is fixed by
the cosmological constant, � ¼ �3=‘2.

Since we want to study the effects of an event horizon
on the YMH solutions, we shall consider as well a
Schwarzschild-AdS (SAdS) black hole background, with
a line element

ds2¼ dr2

NðrÞþr2ðd�2þsin2�d’2Þ�NðrÞdt2; with

NðrÞ¼1�2M

r
þ r2

‘2
;

(6)

M> 0 being a parameter which fixes the Arnowitt-Deser-
Misner mass of the solution. For � ! 0, one recovers the
usual Schwarzschild solution. This black hole has an event
horizon at r ¼ rh, with rh the solution of the equation

NðrhÞ ¼ 0. However, in practice it is more convenient to
take rh, ‘ as input parameters, the function NðrÞ being
written as

NðrÞ ¼
�
1� rh

r

��
1þ 1

‘2
ðr2 þ rrh þ r2hÞ

�
: (7)

With this parametrization, the mass M, Hawking tempera-
ture TH and event horizon area of the SAdS black hole are
given by M ¼ rhðr2h þ ‘2Þ=ð2‘2Þ, TH ¼ ð1=rh þ 3rh=‘

2Þ=
ð4�Þ and AH ¼ 4�r2h, respectively.

2. The matter fields

The axially symmetric YMH configurations we study
in this work are less symmetric than the backgrounds of
Eqs. (5) and (6), being invariant under the action of the
Killing vectors @=@’ and @=@t only. The construction of
a YMH ansatz with these symmetries has been discussed
by many authors, starting with the pioneering papers by
Manton [27] and Rebbi and Rossi [3].
In what follows, we shall use a parametrization of the

general ansatz which was employed in the previous studies
on axially symmetric YMH solutions in an asymptotically
flat spacetime. This ansatz is characterized by two integers
m and n, where m is related to the polar angle and n to the
azimuthal angle [6], and it reads

A�dx
� ¼

�
B1

	ðn;mÞ
r

2e
þ B2

	ðn;mÞ
�

2e

�
dt

þ
�
K1

r
drþ ð1� K2Þd�

�
	ðnÞ’

2e

� n sin�

�
K3

	ðn;mÞ
r

2e
þ K4

	ðn;mÞ
�

2e

�
d’;

� ¼ �ð�1	
ðn;mÞ
r þ�2	

ðn;mÞ
� Þ; (8)

where the only ’-dependent terms are the SUð2Þ matrices

	ðn;mÞ
r , 	ðn;mÞ

� , and 	ðnÞ’ . These matrices are defined as prod-

ucts of the spatial unit vectors

êðn;mÞ
r ¼ ðsinðm�Þ cosðn’Þ; sinðm�Þ sinðn’Þ; cosðm�ÞÞ;
êðn;mÞ
� ¼ ðcosðm�Þ cosðn’Þ; cosðm�Þ sinðn’Þ;�sinðm�ÞÞ;
êðnÞ’ ¼ ð�sinðn’Þ; cosðn’Þ; 0Þ; (9)

with the Pauli matrices 	a ¼ ð	x; 	y; 	zÞ, i.e.,

	ðn;mÞ
r ¼ sinðm�Þðcosðn’Þ	x þ sinðn’Þ	yÞ þ cosðm�Þ	z,

	ðn;mÞ
� ¼ cosðm�Þðcosðn’Þ	xþsinðn’Þ	yÞ�sinðm�Þ	z, and

	ðnÞ’ ¼ � sinðn’Þ	x þ cosðn’Þ	y. As we shall see, this

choice of the SUð2Þ matrices has the advantage of greatly
simplifying the possible boundary conditions. The four
magnetic gauge field functions Ki, two electric gauge
functions Bi and two Higgs field functions �i depend on
the coordinates r and � only. All profile functions are even
or odd with respect to reflection symmetry, � ! �� �.
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The symmetry of the gauge field under the spacetime
Killing vectors @=@’ and @=@t means that their action
can be compensated by a suitable gauge transformation
[28,29]. For the time-translational symmetry, we have
chosen a natural gauge such that @A=@t ¼ 0. However, a
rotation around the z axis can be compensated by a gauge
rotation L’A ¼ D� (with � ¼ n	z=2e), and therefore

F�’ ¼ D�W, D’� ¼ ie½W;��, where W ¼ A’ ��.

The gauge transformation U ¼ expfi�ðr; �Þ	ðnÞ’ =2g
leaves the ansatz form invariant [30]. Thus, to construct
regular solutions we have to fix the gauge. In this work, we
have mainly used the modified form of the gauge condition
[6], which can be applied in the case of a (Schwarzschild-)
AdS background: 2rN@rK1 þ rK1@rN � 2@�K2 ¼ 0.

With this ansatz and gauge choice, the equations of
motion reduce to a set of eight coupled partial differential
equations to be solved numerically, subject to the set of
boundary conditions discussed below.

C. Global charges and the vacuum structure

1. The mass-energy, the angular momentum, and the
magnetic and electric charges

Let us define the total mass-energy E of the solutions as
the integral over the three-dimensional space of the energy
density 
 ¼ �Tt

t :

E¼� 1

4�

Z
Tt
t

ffiffiffiffiffiffiffi�g
p
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0
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ffiffiffiffiffiffiffi�g
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Tr
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r�þFr’F
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þF�’F
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rt�F�tF
�t�F’tF
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þ1

4
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þ�

8
ð�2��2Þ2

�
: (10)

In the above relation, one takes r0 ¼ 0 for solutions in AdS
spacetime and r0 ¼ rh for a SAdS black background, in
which case E corresponds to the total mass-energy of the
fields outside the horizon.

Our solutions also possess a nonvanishing angular
momentum density, since Tt

’ � 0. The total angular

momentum of the configuration is given by the integral

J¼ 1

4�

Z
d3x

ffiffiffiffiffiffiffi�g
p

Tt
’

¼ 1

4�

Z
d3x

ffiffiffiffiffiffiffi�g
p

2Tr

�
Fr’F

rtþF�’F
�tþ1

4
D’�Dt�

�
:

(11)

As proven in Ref. [12], the angular momentum density can
be written as a total derivative in terms of Yang-Mills
potentials only:

Tt
’ ¼ 2Tr

�
1ffiffiffiffiffiffiffi�g

p @�ðWF�t ffiffiffiffiffiffiffi�g
p Þ

�
: (12)

As a result, the total angular momentum stored in the
YMH fields outside the horizon can be expressed as a
difference between a term at infinity and an inner boundary
contribution:

J ¼ J ðr ¼ 1Þ � J ðr ¼ r0Þ; (13)

with J ðRÞ the field angular momentum inside a sphere of
radius R, defined as

J ðRÞ ¼ 1

4�

I
r¼R

2TrfWF�tgdS�

¼ 1

2

Z �

0
d� sin�r2½WðrÞFrtðrÞ þWð�ÞFrtð�Þ

þWð’ÞFrtð’Þ�jr¼R: (14)

The YMH solutions may also possess magnetic and
electric charges. A gauge-invariant definition of these
quantities is found by employing the Abelian ’t Hooft
tensor [1]

F �� ¼ Tr

�
�̂F�� � i

2e
�̂D��̂D��̂

�

¼ �̂aFa
�� þ 1

e
�abc�̂

aD��̂
bD��̂

c; (15)

where the Higgs field is normalized as j�̂j2 ¼
ð1=2ÞTr�̂2 ¼ P

að�̂aÞ2 ¼ 1. Then the ’t Hooft tensor
yields the electric current j�el, with r�F �� ¼ �4�j�el
and the magnetic current j�m, with r�

�F �� ¼ 4�j�m, where
�F represents the dual field strength tensor. Then jtel and j

t
m

correspond to the electric and magnetic charge densities,
respectively. The electric and magnetic chargesQe,Qm are
given by the integrals

Qm ¼ 1

4�

I
S21

�F �’d�d’; Qe ¼ 1

4�

I
S21

F �’d�d’:

(16)

2. The ground states of the model

In the presence of the Higgs field, the behavior of the
matter field as r ! 1, as imposed by finite energy require-
ments, is similar to the asymptotically flat case.1 The
assumption that the Higgs field asymptotically approaches
a constant value j�j ! �, together with the finite energy
condition D��D�� ! 0, leads to two different sets of

fundamental solutions which define the ground states of

1Note that without a Higgs field, the Yang-Mills-AdS solutions
exhibit a very different behavior than in the � ! 0 limit (see
e.g., Ref. [31]). In particular, one finds finite-mass, stable
configurations [32].
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the model. (In this discussion, we set At ¼ 0 and view the
electric fields as excitations.)

For an even value m ¼ 2k of the winding number with
respect to �, the ground state of the model corresponds to
a gauge-transformed trivial solution, and the magnetic
charge vanishes as

� ¼ �U	zU
y; A� ¼ i

e
ð@�UÞUy: (17)

The situation is different for odd values m ¼ 2kþ 1 ¼
1; 3; . . . of the winding number with respect to �. The
solutions in the sector with topological charge n will
asymptotically approach a ground state with

� ¼ U�ð1;nÞ
1 Uy; A� ¼ UAð1;nÞ

�1 Uy þ i

e
ð@�UÞUy;

(18)

where

�ð1;nÞ
1 ¼ �	ð1;nÞr ;

Að1;nÞ
�1 dx� ¼ 	ðnÞ’

2e
d�� n sin�

	ð1;nÞ�

2e
d’

(19)

is the solution describing a multimonopole with charge n.

Note that U ¼ expf�ik�	ðnÞ’ g for both even and odd m.
From these asymptotic behaviors, one gets the magnetic

charge Qm of the solutions

Qm ¼ n

2
½1� ð�1Þm�; (20)

i.e., solutions in the topologically trivial sector m ¼ 2k
have no magnetic charge (Qm ¼ 0), whereas solutions
in the nontrivial sectors m ¼ 2kþ 1 have magnetic
charge Qm ¼ n.

D. The boundary conditions

To obtain finite-energy solutions with the proper sym-
metries, we must impose appropriate boundary conditions.
Without a horizon, these boundary conditions are similar
to those used in the previous work in the flat-space
limit [6,33].

The large-r behavior of the YMH solutions is fixed by
the requirement that the ground states [Eqs. (17) and (18)]
be approached asymptotically. In terms of the functions
K1-K4 and �1, �2, these boundary conditions read

K1 ¼ 0; K2 ¼ 1�m; K4 ¼ sinðm�Þ
sin�

; (21)

while for K3 we impose

K3 ¼ cos�� cosðm�Þ
sin�

for odd m; and

K3 ¼ 1� cosðm�Þ
sin�

for even m:

(22)

We further impose the following boundary conditions at
infinity for the electric gauge field potentials and the Higgs
field functions, respectively:

B1 ¼ V0; B2 ¼ 0; �1 ¼ 1; �2 ¼ 0; (23)

where the constant V0 corresponds to the electrostatic
potential of the configurations.
The boundary conditions of the matter fields on the

event horizon result from the requirement of regularity at
r ¼ rh, together with an expansion of the field variables as
a power series in (r� rh). Here one should remark that the
numerical study of solutions in a fixed SAdS background
is simplified by introducing a new radial coordinate

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2h

q
, such that the event horizon resides at

�r ¼ 0. [The corresponding expression of the SAdS line
element follows directly from Eqs. (6) and (7).] Also, the
boundary conditions at the horizon take a simpler form
in this case: the magnetic functions Ki and the Higgs
functions �1, �2 are requested to satisfy the Neumann
boundary conditions

@rK1j �r¼0 ¼ @rK2j �r¼0 ¼ @rK3j �r¼0 ¼ @rK4j �r¼0

¼ @r�1j�r¼0 ¼ @r�2j�r¼0 ¼ 0; (24)

while the electric field functions satisfy the Dirichlet
boundary conditions

B1ð �r ¼ 0; �Þ ¼ B2ð�r ¼ 0; �Þ ¼ 0: (25)

The corresponding sets of boundary conditions in the
AdS background limit rh ! 0 are more complicated and
do not result directly from Eqs. (24) and (25). Regularity of
the solutions at the origin (r ¼ 0) requires that the mag-
netic gauge field functions Ki satisfy

K1ð0; �Þ ¼ K3ð0; �Þ ¼ K4ð0; �Þ ¼ 0; K2ð0; �Þ ¼ 1:

(26)

For the electric components of the gauge field, we impose
instead

sinðm�ÞB1ð0; �Þ þ cosðm�ÞB2ð0; �Þ ¼ 0;

@r½cosðm�ÞB1ðr; �Þ � sinðm�ÞB2ðr; �Þ�jr¼0 ¼ 0;
(27)

the Higgs field functions �i satisfying a similar set of
boundary conditions,

sinðm�Þ�1ð0; �Þ þ cosðm�Þ�2ð0; �Þ ¼ 0;

@r½cosðm�Þ�1ðr; �Þ � sinðm�Þ�2ðr; �Þ�jr¼0 ¼ 0:
(28)

The boundary conditions along the z axis (� ¼ 0 and
� ¼ �) are determined by the symmetries and regularity
requirements, and read

K1 ¼ K3 ¼ �2 ¼ 0; @�K2 ¼ @�K4 ¼ @��1 ¼ 0;

@�B1ðr; 0Þ ¼ 0; B2ðr; 0Þ ¼ 0: (29)
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Additionally, regularity on the symmetry axis requires that
K2ðr; � ¼ 0Þ ¼ K4ðr; � ¼ 0Þ. We use this condition as an
additional test of the numerical output.

III. THE RESULTS

Axially symmetric solutions of the YMH equations have
been extensively studied in a Minkowski spacetime back-
ground, starting with the pioneering work of Ref. [3].
However, relatively little is known about the AdS counter-
parts of the � ¼ 0 configurations. Unlike the flat space-
time case, in an AdS spacetime there are no analytic
solutions that might be used as a guiding line. Moreover,
when a cosmological constant is included (no matter how
small j�j is), no solution close to the BPS configuration
can be found [23]. Some numerical results supporting the
existence of multimonopoles and monopole-antimonopole
pairs with Qe ¼ 0 in an AdS background are reported
in Ref. [34], while a discussion of the basic properties of
electrically charged m ¼ 1 solutions is given in Ref. [12].
However, the effects induced by the presence of the event
horizon have not yet been studied in the literature, except for
m ¼ 1, n ¼ 1 spherically symmetric configurations [25].

Before discussing the properties of the solutions, let
us mention that the dependence on the massive boson
vector mass Mv ¼ e� is removed by using the rescaling
r ! r=ðe�Þ, � ! �e2�2, rh!rh=ðe�Þ and Bi!Bi=ðe�Þ.
Also, to simplify the picture, we restrict our study in this
work to the Prasad-Sommerfield limit � ¼ 0. Thus, apart
from the value of the event horizon radius rh, the configu-
rations will depend on thewinding numbersm and n, on the
parameter V0 which fixes the value of the electric potential
of the gauge field at spatial infinity, and on the value of the
cosmological constant �. The numerical calculations are
performed with the help of the package FIDISOL, based on
the Newton-Raphson iterative procedure [35].

Our numerical results indicate that all known axially
symmetric YMH solutions admit generalizations in an
AdS background. Moreover, one can also put a small
SAdS black hole inside these configurations. Qualitatively,
the Higgs field and Yang-Mills field behavior is very similar
to that corresponding to Minkowski spacetime monopoles.
In particular, we notice a similar shape for the functions Ki,
Bi and�i, and also for the energy density.

The most important new feature of the AdS solutions is
that the magnitude V0 of the electric potential B1 at infinity
is no longer restricted. In an asymptotically Minkowski
spacetime, this constant is restricted to V0 � 1, i.e.,
jAtj � j�j. For V0 > 1, some gauge field functions
become oscillating instead of asymptotically decaying,
which leads to an infinite mass in the solutions. However,
in an AdS spacetime, finite-energy solutions with arbitrary
V0 are allowed; i.e., there are no limits on the value of the
electrostatic potential.

For any value of � � 0, the electric charge Qe can be
read from the asymptotics of the electric potential B1:

B1 ¼ V0 �Qe

r
þ � � � : (30)

After replacing the asymptotic expressions of the solutions
in the general expression [Eq. (13)], one finds that the
contribution to the total angular momentum from the
boundary integral at infinity can be written as

J 1 ¼ ½1þ ð�1Þm� nQe

2
: (31)

Therefore, the total angular momentum [Eq. (13)] of
m ¼ 2kþ 1 solutions, i.e., with a net magnetic charge, is
given entirely by the contribution of the inner boundary
term, J ¼ �J ðe:h:Þ. However, that term vanishes as rh ! 0.
As a result, the solutions in an AdS background with
Qm � 0 have zero total angular momentum.2 The situation
is different for configurations with m ¼ 2k, i.e., for a
vanishing magnetic charge, Qm ¼ 0. The total angular
momentum of such solutions in an AdS spacetime is
proportional to the electric charge, J ¼ nQe. However,
due to the event horizon contribution to the general relation
[Eq. (13)], this simple relation does not hold for their
generalization in a SAdS background.

A. Axially symmetric solutions in
globally AdS spacetime

Let us start by recalling that the configurations we are
discussing here are characterized by two integers,m and n,
wherem is related to the polar angle and n to the azimuthal
angle. For both Minkowski and AdS backgrounds, the
regular solutions of the system [Eq. (3)] correspond to
electrically charged (multi)monopoles (m ¼ 1, n � 1)
with magnetic charge Qm ¼ n, while the configurations
with m ¼ 2, n ¼ 1, 2 correspond to electrically charged
monopole-antimonopole pairs with zero net magnetic
charge. In general, configurations with m � 2, n ¼ 1, 2
correspond to chains of m monopoles and antimonopoles
with a net electric charge. Here, the Higgs field vanishes at
m isolated points along the symmetry axis z ¼ r cos�.
The topological reason for the appearance of these

saddle-point solutions of the YMH equations is related to
the existence of noncontractible loops in the configuration
space of the model; minimization of the energy functional
along such a loop yields an equilibrium state in the middle
of the loop, where the constituents are in stationary equi-
librium [36]. Since in this case we have a complicated
pattern of short-range interactions between the constituent
monopoles, it is instructive to use a simplified picture of
the effective electromagnetic interaction between the poles
and electric current rings which, according to the equations
of the ’t Hooft field tensor [Eq. (15)], both generate the

2Note that these solutions possess a nonvanishing angular
momentum density, Tt

’ � 0. (This holds for configurations in
the Prasad-Sommerfield limit as well.)
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Abelian magnetic field which is supporting equilibrium.
(See Ref. [37] for a detailed discussion of these aspects.)

The results for � ¼ 0 show that, as the winding num-
ber n increases further, i.e., n � 3, instead of isolated
nodes on the symmetry axis in the flat-space limit, vortex
ring solutions arise, where the Higgs field vanishes on
one or more rings centered around the symmetry axis
[6–8]. However, the coupling of the matter fields to
gravity and/or an increase of the electric charge of the
configurations [9,18,33] can change the situation drasti-
cally, since the structure of the nodes of the Higgs fields
depends strongly on the scalar coupling, the magnitude of
the electric charge of the system, and the gravitational
constant. Therefore, the information about the structure
of the nodes becomes less important. Furthermore, new
branches of solutions may appear at critical values of the
parameters [18,33,38,39].

We have found that all basic features of these nongravi-
tating solutions with � ¼ 0 repeat in the case of an AdS
background. As the winding number n increases, the
attraction between the constituents increases, so for
n � 2 the energy density distribution is deformed to the
system of m tori centered around the symmetry axis.
A negative cosmological constant introduces an attractive

force, which reduces the typical size of the configurations.
Then, for large enough j�j, the additional AdS gravita-
tional attraction makes it difficult to classify the individual
constituents according to the position of the nodes of the
scalar field, as is possible in flat space.
We illustrate the AdS solutions with a few examples in

Fig. 1. There we exhibit the distribution of the electric and
magnetic charge densities jtel, j

t
m, and the energy isosurfa-

ces for the spherically symmetric dyon (m ¼ n ¼ 1), the
two-dyon pair (m ¼ 2, n ¼ 1), and a chain of three dyons
(m ¼ 3, n ¼ 1). In these solutions, the m individual con-
stituents are located on the symmetry axis, with roughly
equal distances between them. (There we fix the values
� ¼ �1=3 and V0 ¼ 1 for the cosmological constant and
the electric potential, respectively; a similar picture has
been found, however, for other values of these parameters.)
In Fig. 2, we show the mass-energy of (m ¼ 3, 4; n ¼ 1)

YMH chain solutions with fixed electric charge (left) and
fixed electric potential (right) as a function of the cosmo-
logical constant. One can notice the existence of AdS
solutions with V0 > 1; however, as expected, the mass-
energy of such configurations diverges as� ! 0. A similar
picture has been found for solutions withm ¼ 1 andm ¼ 2
(see also Refs. [13,34]).
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FIG. 1 (color online). The electric charge density (left panels) and the magnetic charge densities (middle panels) are shown at
V0 ¼ 1, � ¼ �1=3 as functions of the coordinates 
 ¼ r sin�, z ¼ r cos� for the following: (a) n ¼ 1, m ¼ 1 spherically symmetric
AdS dyon (first set); (b) n ¼ 1, m ¼ 2 AdS dyon pair regular solution (middle set); (c) n ¼ 1, m ¼ 3 three dyon chain. Energy
isosurfaces of these configurations are exhibited in the right panels.
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B. Axially symmetric solutions in the
Schwarzschild-AdS background

According to the standard arguments, one expects these
solutions to possess generalizations in a SAdS background.
This is indeed confirmedby the numerical analysis.However,
for all solutions reported in this work, there is an upper

bound on the event horizon radius, typically with rðmaxÞ
h <‘.

The possible existence of large SAdS black holes with
YMH hair is an open question and may require considering
a region of the parameter space not covered by our numerical
study (e.g., very large values of the electric charge).

Let us start with a discussion of the fundamental con-
figurations with m ¼ 1. In this case, an important role is
played by the Abelian dyon solution (with V0 ¼ Qe=rh):

K1 ¼ K2 ¼ K3 ¼ K4 ¼ 0; B1 ¼ V0 �Qe

r
;

B2 ¼ 0; �1 ¼ 1; �2 ¼ 0:
(32)

This solution exists for all values of rh and has a finite
mass-energy E ¼ ðn2 þQ2

eÞ=2rh and a vanishing angular
momentum J ¼ 0.

We have found numerical evidence that, for a given value
of the electric charge, a branch ofm ¼ 1, n � 1 non-Abelian
solutions bifurcates from the Abelian configuration of
Eq. (32), for a critical value of the event horizon radius rh.
Close to the bifurcating point, the YM potentials and the
Higgsfields arewritten as a sumof the solution [Eq. (32)] and
a small perturbation �F ¼ ð�Ki; ��i; �BiÞ. Linearizing the
YMH equations with respect to these perturbations leads
to an eigenvalue matrix equation for rh of the form��

@rr þ 1

r2NðrÞ@��
�
I8�8 þMr@r þM�@� þM0

�
�F ¼ 0;

(33)

where Mr, M� and M0 are 8� 8 matrices, depending only
on the Abelian solution [Eq. (32)] and the metric function
NðrÞ, with a complicated expression. The above equation

simplifies only for the spherically symmetric solutions, in
which case�F ¼ 0 (the higher-order terms, however, are not
zero), except for �K2 ¼ �K4 ¼ w1ðrÞ, which solves the
equation

w00
1 þ

N0

N
w0

1þ
1

r2N

�
1�r2þr2ðQe

rh
�Qe

r Þ2
N

�
w1¼0; (34)

with the boundary conditions w1ðrhÞ ¼ b > 0, w1ð1Þ ¼ 0.
The critical values of rh found in this way for given electric
charges (or, equivalently, for given electrostatic potentials
V0) are in very good agreement with those found by directly
solving the set of YMH equations.
The respective branch of non-Abelian solutions continues

inwards in rh, joining smoothly for rh ¼ 0 the correspond-
ing (m ¼ 1, n) dyonic solution in a fixed AdS background
discussed in the previous subsection. As expected, along this
branch, the mass of YMH solutions is smaller than the mass
of the corresponding Abelian configurations, i.e., they are
thermodynamically favored.3 This feature appears to be
universal, being recovered for all considered values of �.
To illustrate this behavior, we exhibit in Fig. 3 (left) the

mass-energy and the value of the magnetic gauge poten-
tial K2 at r ¼ rh, � ¼ 0 for m ¼ 1 dyons with n ¼ 1, 2
versus the horizon radius rh. (These results are found for
fixed values of the electric charge and cosmological
constant, Qe ¼ 1:5 and � ¼ �1, respectively.) The dot-
ted curve corresponds to the branch of Abelian solutions
with the same values of Qe, n and rh. One can see that a
fundamental branch of dyons emerges from the corre-
sponding AdS solution with rh ¼ 0 and extends up to

a maximal value of the horizon radius rðmaxÞ
h , where it

merges with the Abelian branch. Similar results are found
when studying instead solutions with a fixed electric
potential V0 (i.e., in a grand canonical ensemble), with
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FIG. 2. The mass-energy E is shown as a function of the cosmological constant for m ¼ 3, 4 AdS YMH chains with a fixed electric
charge (left) and a fixed electric potential (right).

3Here we are comparing solutions in a canonical ensemble,
i.e., with the same electric charge.
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the YMH configurations emerging again as perturbations
of the Abelian solution [Eq. (32)].

A different picture is found for solutions with m ¼ 2,
i.e., electrically charged monopole-antimonopole pairs. In
this case, there are no branches of YMH solutions emerg-
ing as perturbations of a critical (electrically charged and
magnetically neutral) Abelian configuration. As a result,
one finds a different dependence on the horizon radius,
which is illustrated in the right-hand side of Fig. 3. Again, a
lower branch of non-Abelian solutions (labeled ‘‘1’’ on the
right of Fig. 3) emerges in the limit of small rh from the
regular AdS chain configuration. This branch extends in rh
and bifurcates with a second branch at somemaximal value
of the horizon radius. (For example, for the n ¼ 1 pair of

dyons with V0 ¼ 1, � ¼ �1=3, one finds rðmaxÞ
h ’ 0:16.)

This second branch extends backwards in rh. Since the
upper two-dyon branch is axially symmetric, it is not
linked to the trivial Abelian branch anymore; instead, as
the horizon radius decreases to zero, it appears to approach
a solution of the Bartnik-McKinnon type [15], i.e., with a
trivial Higgs field and nonvanishing non-Abelian poten-
tials. (However, this upper limit is rather difficult to study
numerically.) Note also that the mass of these solutions in a

fixed SAdS background exhibits a loop close to rðmaxÞ
h when

plotted in terms of rh. Outside the loop, the second branch
possesses a higher mass than the first branch.

We have also constructed solutions withm ¼ 3, 4 and n ¼
1, 2, 3, although with a lower numerical accuracy. Not com-
pletely unexpectedly, these solutions follow the pattern found
for them ¼ 2 case above.Working againwith a fixed electric
potential V0, there is always a lower branch of configurations
smoothly emerging from the corresponding ðm; nÞ solutions
in a fixed AdS background, which extends up to a maximal
value of the horizon radius rh. There it joins a secondary
branch of solutions, which extends backwards in rh.

The reason why the m � 2 solutions show a different
pattern can be understood heuristically by noticing that

they are composite, saddle-point configurations. Thus, they
are unstable, and we cannot expect a (single-component)
Abelian solution to decay into them.

IV. FURTHER REMARKS AND CONCLUSIONS

We have given numerical evidence that, when the global
AdS spacetime replaces Minkowski spacetime as the
background geometry, all known YMH axially symmetric
solutions admit generalizations with rather similar proper-
ties. However, a more complicated picture emerges when
the solutions are studied in a fixed SAdS black hole back-
ground, with the configurations with the lowest winding
number m ¼ 1 emerging as perturbations of some critical
Abelian dyonic solutions.
One may ask if these solutions play some role in the

conjectured AdS/CFT correspondence [20]. Indeed, the
(m ¼ 1, n ¼ 1) spherically symmetric dyonic solutions
of the YMHmodel have found an interesting interpretation
in this context [24–26,40].
Since we have not started with a consistent truncation of

string theory, we do not have a detailed microscopic
description of the dual theory for the YMH action
[Eq. (1)]. Nevertheless, some basic elements of the
gravity/gauge duality dictionary [20] still allow us to say
the following: First, the dual theory is defined in an
Einstein universe in d ¼ 3 dimensions, with a line element
ds2 ¼ ‘2ðd�2 þ sin2�d’2Þ � dt2. In this approach, the
Hawking temperature of the SAdS black hole corresponds
to the temperature of the d ¼ 3 system. Also, the SUð2Þ
gauge symmetry of the bulk action corresponds to a global
SUð2Þ symmetry in the dual field theory. As usual in
models with an electric field, the chemical potential and
the electric charge density of the three-dimensional system
are defined from the asymptotics [Eq. (30)] of the bulk
electric gauge potential, the charge density operator being
proportional to Qe. Moreover, we have seen that, for odd
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FIG. 3. The mass-energy E is shown as a function of the event horizon radius rh for electrically charged YMH solutions in a fixed
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values ofm and any winding number n, the magnetic gauge
potential does not trivialize as r ! 1. In an AdS/CFT
context, this boundary value plays the role of a magnetic
source for the dual field theory. Concerning the Higgs field,
we notice that for the solutions in this work without a scalar
potential � ¼ 0, its generic asymptotic behavior is

�ðaÞ ¼ vðaÞ þ �ðaÞ

r3
þ � � � ; (35)

with vðaÞ a source for a triplet of operators �ðaÞ in the dual
theory. However, we can always choose a gauge such that

vðaÞ is constant on the boundary. In such a gauge, the mag-
netic field on the boundary corresponds to the field of vorti-
ces. For example, the axially symmetric multimonopole
corresponds to a vortex of magnetic flux nQm, whereas the
monopole-antimonopole pair in the bulk corresponds to a
system of vortices with opposite fluxes. Therefore, the tran-
sition betweenAbelian and non-Abelian branches in the bulk
at some critical value of the horizon radius, i.e., Hawking
temperature, is considered to be dual to the phase transition
on the boundary, related with the condensation of vortices.

As avenues for further research, it would be interesting
to extend the solutions in this work by including the effects
of the backreaction on the spacetime geometry, especially
in the black hole case. Here we expect that some features
revealed in Sec. III, in particular the existence of an insta-
bility of the Abelian dyon configurations, will remain
valid, translating into instabilities (and corresponding
new non-Abelian branches) of the Kerr-Newman-AdS
black hole. Another interesting possible extension of our
solutions would be to construct their counterparts for a
Poincaré patch of AdS, in which case the dual theory
will be defined in a boundary metric corresponding to
2þ 1-dimensional Minskowski spacetime.
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