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One of the greatest theoretical challenges in the buildup to the era of second-generation gravitational-

wave detectors is the modeling of generic binary waveforms. We introduce an approximation that has the

potential to significantly simplify this problem. We show that generic precessing-binary inspiral wave-

forms (covering a seven-dimensional space of intrinsic parameters) can be mapped to a two-dimensional

space of nonprecessing binaries, characterized by the mass ratio and a single effective total spin. The

mapping consists of a time-dependent rotation of the waveforms into the quadrupole-aligned frame and is

extremely accurate (matches>0:99 with parameter biases in the total spin of�� � 0:04), even in the case

of transitional precession. In addition, we demonstrate a simple method to construct hybrid post-

Newtonian–numerical relativity precessing-binary waveforms in the quadrupole-aligned frame and

provide evidence that our approximate mapping can be used all the way to the merger. Finally, based

on these results, we outline a general proposal for the construction of generic waveform models, which

will be the focus of future work.
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I. INTRODUCTION

The second-generation laser interferometric gravitational-
wave detector Advanced LIGO is planned for first commis-
sioning in 2014 and to reach design sensitivity in subsequent
years [1–3]; Advanced Virgo [4,5] and Kagra [6] are
expected to follow soon after. Current estimates of astrophys-
ical event rates predict that the first direct detection of
gravitational waves will occur in that time frame [7]. The
coalescence of two black holes is among the strongest known
gravitational-wave sources and a likely candidate for one of
the first detections. The detection and subsequent analysis of
gravitational waves rely strongly on the accuracy and com-
pleteness of theoretical waveform models. For black-hole
binaries, this includes the inspiral, merger and ringdown
of the final black hole, and current models combine infor-
mation fromanalytic approximationmethods and numerical-
relativity (NR) simulations [8].

To date, a number of theoretical inspiral-merger-ringdown
(IMR) waveform models exist for nonspinning binaries
and configurations where the spin angular momentum is
either aligned or antialignedwith the orbital angularmomen-
tum (a summary of these models is given in Ref. [8]). But
most astrophysical binary systems are expected to have
arbitrary spin configurations, which lead to complicated
precession effects. Although there does exist one preliminary
precessing-binary IMR model [9], the modeling of generic
binaries remains a serious challenge.

The complicated structure of precessing-binary wave-
forms suggests that in order to construct accurate IMR
waveform models, we may need to produce numerical
simulations that densely sample a seven-dimensional pa-
rameter space. At first glance, this does not seem feasible

on the timescale of second-generation gravitational wave
(GW) detectors (i.e., within the next ten years), although
valiant efforts are underway [10].
In this paper we introduce an approximation that has

the potential to dramatically simplify the modeling of
precessing-binary waveforms. Motivated by the results of
our previous work [11], we show that the seven-dimensional
space of intrinsic physical parameters of generic precessing-
binary waveforms can be mapped to a two-dimensional
space of nonprecessing waveforms, parametrized by the
mass ratio and an effective total spin parameter. Themapping
consists of transforming the precessing-binary waveforms
into a ‘‘co-precessing’’ frameof reference, describedby three
rotation angles f�ðtÞ; �ðtÞ; �ðtÞg. This is the ‘‘quadrupole-
aligned’’ (QA) frame that we introduced in Ref. [11].
The waveform modeling problem is then factorized into
two much smaller problems: (1) the construction of a
nonprecessing-binary model (and candidates for such a
model already exist [12–14]) and (2) the construction of
a model for the rotation angle functions f�ðtÞ; �ðtÞ; �ðtÞg
with respect to the binary’s seven physical parameters, which
we expect can itself be further simplified. In this paper we do
not address the (still very large) task of producing amodel for
the rotation angle functions, and we leave the behavior of the
signal during the ringdown for future work. Here we restrict
ourselves to an outline of the approximate mapping between
precessing-binary and nonprecessing-binary waveforms and
test its validity on a series of inspiralwaveforms generated by
post-Newtonian (PN) theory.
Generic binary systems undergoing quasicircular inspi-

ral are characterized by nine intrinsic physical parameters:
the binary’s total mass M ¼ m1 þm2, the mass ratio
q ¼ m2=m1 (we adopt the convention that m1 <m2), and
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the six spin components ~S1 and ~S2. The total mass of the
system sets the overall scale and can be factored out. The
individual masses m1 and m2 are uniquely determined
given M and q.

In the most simple cases, the two black holes are either
not spinning, or their spin angular momenta are (anti-)

aligned with the orbital angular momentum ~L. In these cases
the inspiral motion is confined to a fixed, time-independent
plane. The orbital frequency of the motion then grows
monotonically with time and, when the GW signal is
decomposed into spin-weighted spherical harmonics, most
of the emitted gravitational energy is contained in the domi-
nant harmonics, the (l ¼ 2, jmj ¼ 2)-modes. In the most
general configurations, however, the two black-hole spins
are not aligned with the orbital angular momentum vector.
Now the inspiral motion is no longer confined to a fixed
plane. In these cases precession occurs, specifically two
types: precession of the instantaneous orbital plane as well
as precession of the spin vectors. The now far more complex
motion is reflected in the emitted radiation in the form of
strong amplitude modulations, which depend on the relative
orientation of the binary toward the observer, and as a
contribution to the binary’s phase evolution. These effects
are illustrated further in Sec. IIA.

We have previously shown that precessing-binary wave-
forms take a far simpler form when transformed into the
QA frame [11]. In a nutshell, the QA frame approximately
follows the instantaneous orbital plane of the binary. In this
frame the binary is essentially viewed ‘‘face-on’’ throughout
the course of its evolution. Note that this frame corresponds
to a corotating, accelerated frame of reference. In this
‘‘co-precessing’’ frame, the amplitudes of the waveform
modes as well as their frequency evolution are signi-
ficantly simplified and most of the energy is emitted in the
(l ¼ 2, jmj ¼ 2)-modes, just as in a nonprecessing binary. In
fact, in this accelerated frame the mode structure of a non-
precessing binary appears to be restored (see Fig. 12 in
Ref. [11] for a NR example). It was this observation that
suggested the idea that we pursue in this paper, that QA- and
nonprecessing-binary waveforms may agree well in both
amplitude and phase. Note that a related frame, defined by
the direction of the Newtonian orbital angular momentum,
was introduced in Ref. [15], along with the observation that
the precession-induced phase oscillations can be removed
in this ‘‘precessing frame.’’ The key new result in this paper,
beyond the use of the QA frame (which can be determined
from the GW signal alone), is the simple mapping between
precessing-frame waveforms and nonprecessing-binary
waveforms, as we describe below.

In the context of gravitational-wave searches and
parameter estimation, waveforms from different binary
configurations are most strongly characterized by their
phase evolution, i.e., their rate of inspiral. When the black
holes are widely separated, their motion can be described
well by PN methods, and in PN theory we see that the

leading-order influence of the spin on the inspiral rate and
the phase evolution is the spin-orbit coupling, which is due
to a sum of the components of the black-hole spins parallel
to the orbital angular momentum [16]. If the binary pre-
cesses, then the precession will introduce both secular and
oscillatory changes in the phase, but in the QA frame,
where the precession has been removed to some extent,
we expect to recover the underlying orbital phase evolu-
tion, which will be similar to that for a nonprecessing
binary. Since the leading-order spin effects on the phase
arise from the total black-hole spin, it is possible to make
an approximate parametrization of nonprecessing binaries
by a single effective total spin parameter, �eff , and this idea
has been used in both inspiral [17] and IMR [13] models. In
this work we focus on inspiral PN models, and so we will
use the same effective spin parameter as in Ref. [17]; see
Sec. III. For complete IMR waveforms, other parametriza-
tions have been found to work better [12,13], but in this
work we restrict ourselves to PN inspiral waveforms.
Our hypothesis, then, is that precessing-binary waveforms

can be approximately mapped to nonprecessing-binary
waveforms, and that the equivalent nonprecessing-binary
signal is parametrized by the mass ratio and �eff . It is the
goal of this paper to quantify the accuracy of that approxi-
mation. Our approach is to consider a selection of PN inspiral
precessing-binary waveforms, and to match them against a
family of nonprecessing-binary signals, to determine the
best-match value of �eff . We can then see how well these
values agreewith our expectation, and the level of agreement
with the best-match waveform. We use PN waveforms
because they allow us to study the long inspiral regime, and
they are far more computationally convenient to produce
than numerical simulations of only the last �10 orbits
before merger.
In Sec. II Awe will describe some of the general features

of precessing-binary systems before giving a brief sum-
mary of the PN inspiral waveforms in Sec. II B. We provide
a technical summary of the quadrupole-alignment proce-
dure in Sec. II C. We perform our study of PN waveforms
in Sec. III and demonstrate the efficacy of our approximate
mapping not only for a large number of cases that exhibit
simple precession, but also for an example configuration
that undergoes transitional precession. In Sec. IV we show
that the QA frame greatly simplifies the construction of
hybrid PN-NR waveforms for precessing configurations
and discuss the potential extension of our approach to
full IMR waveforms. Finally, we sketch a procedure to
construct generic IMR models and discuss the issues that
must first be overcome.

II. PRECESSING-BINARY WAVEFORMS

A. General features

In this section we summarize the main features of
precessing-binary systems and illustrate the effects of
precession on the gravitational-wave signal. For a
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comprehensive discussion of precessing-binary systems,
we refer the reader to Refs. [16,18], which remain the
standard references in the field.

In nonspinning or spin-aligned cases the normal to the
orbital plane, i.e., the Newtonian orbital angular momen-

tum L̂N , is well defined and does not evolve and provides a
useful direction with which to characterize the dynamics.
In the presence of precession, any such characteristic di-
rection becomes time dependent. But one nearly fixed
direction in the binary configuration does exist: the direc-
tion of the total angular momentum remains close to its
limit when the binary has infinite separation. We denote
this as the ‘‘asymptotic total angular momentum direction’’

Ĵ�1 � Ĵðt ! �1Þ. (We will use a hat to denote unit
vectors.) This is analogous to standard Newtonian solid-
body mechanics, where the system rotates about the axis
defined by the total angular momentum, which is a natural
fixed direction. This is still true for Newtonian and first-
order post-Newtonian binary systems. When spin effects
are included, starting at 1.5 PN order, and in full general
relativity, this natural direction of rotation still exists, but
it is no longer fixed. The direction of the total angular
momentum is now time dependent. It evolves, but in cases
with small precession, and for large separations, it
describes a precession cone that is rather small compared
to all of the other time-dependent directions, like the
orbital angular momentum or the spin directions [19]. In
a few special cases, where the orbital and spin angular
momenta are nearly equal and opposite and the total
angular momentum passes through zero during the inspiral,
the direction of the total angular momentum changes
rapidly; this is called transitional precession.

The complex dynamics in precessing systems is reflected
in the gravitational-wave signal. The precession introduces
amplitude modulations but also contributes to the phasing.
Furthermore, the power contained in various gravitational-
wave spherical harmonic modes, defined with respect to a
fixed coordinate system, is significantly affected by preces-
sion, as power is transferred to the modes that were subdo-
minant in the nonprecessing configurations. Nonetheless,
since the GW signal is to first approximation produced by
the acceleration of the two bodies in orbit, the bulk of the
energy is emitted along the direction of the orbital angular

momentum L̂. This is the idea behind quadrupole-alignment:
if we track the direction of the maximum energy emission,
then we will also be tracking the orbital precession.

This also provides insight into the signal observed from a

fixed direction. The orbital angular momentum L̂ precesses

around Ĵ�1, and on average we expect the bulk power to be
radiated in the direction of Ĵ�1. This point is discussed in
more detail in Ref. [20]. If a generic precessing binary now
happens to be ideally oriented toward some static observer,

i.e., the line of sight and Ĵ�1 coincide, only small amplitude
modulations will be observed in the gravitational waveform,
since the relative orientation between the observer and the

least-precessing axis of the binary does not change much.
On the other hand, if the observer’s orientation does not
coincide with this most stable axis, then they will observe
strong modulations.
To illustrate this point, we consider a single-spin binary

system with mass ratio 1:10, where the larger black hole
has an initial spin of ~�2 ¼ ð0:75; 0; 0Þ and the smaller one
is nonspinning. We expect to see only very few oscillations

from directions close to Ĵ�1. This is illustrated in Fig. 1:
the first panel shows the real part of the post-Newtonian
(2,2)-mode of the GW strain h (see Sec. II B for details) of
the precessing binary as seen along the direction of the
binary’s initial total angular momentum. The second panel
shows the real part of the (2,2)-mode for the same configu-
ration, but for an observer whose line of sight does not
coincide with the direction of the initial total angular
momentum. In this case, the line of sight coincides with
the direction of the Newtonian angular momentum at the
beginning of the waveform. This direction varies with time
and crosses the observer’s line of sight after each preces-
sion cycle. The amplitude peaks are observed when the
maximal emission direction points toward the observer.
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FIG. 1 (color online). The first panel shows the real part of the
(‘ ¼ 2, m ¼ 2) mode with Ĵ initially aligned with ẑ, for the 1:10
binary described in the text. The second panel shows the same
quantity, but now with L̂ initial aligned with ẑ. It is clear that if
we are searching for signals with a monotonically increasing
amplitude (as with nonprecessing binaries), we may easily class
the signal in the lower panel as a glitch in the data.
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(Note that since the line of sight coincides with ~L at t ¼ 0,
the amplitude has a maximum at this time.)

The detectability of a signal in a matched-filter GW
search can be estimated based on its best match against all
of the theoretical signals in the template bank; the match is
unity if the template bank contains precisely that signal, and
is zero if the signal is orthogonal to all of the template-bank
waveforms. (Match calculations will be described in more
detail in Sec. III.) For the two waveforms shown in Fig. 1,
the first has a match against a nonprecessing-binary template
bank of over 0.97 (which means that more than 90% of such
signals would be found in a search), while the second has a
best match below 0.7, meaning that it would most likely
either be missed, or classed as a glitch in the data. These
illustrations provide a useful perspective on the results in
Ref. [17], where it was shown that spin-aligned GW
searches are very likely to miss a large number of generic
signals at high mass ratios. We see that these signals are lost
not simply because precessing-binary signals are very differ-
ent from nonprecessing-binary signals. Rather, for some
orientations they look very similar, but the fraction of those
orientations decreases as the precession effects increase.

These examples demonstrate the dramatic difference in
the precessing-binary waveforms with respect to relative

orientation. But we have seen that even in the Ĵ�1 direc-
tion modulations remain in the waveform, and we will see
in Sec. II C that these are further reduced when we go to the
QA frame.

B. Post-Newtonian waveforms

In order to produce the precessing post-Newtonian
inspiral waveforms used in this analysis, we evolved the
full PN equations of motion, which were integrated using
a MATHEMATICA package. In many studies of precessing
binaries and in GW search work, it is common to use
adiabatic inspiral models, for example the ‘‘SpinTaylor’’
equations, which are the precessing-binary extension of
TaylorT4. But, in order to capture as much of the full physics
as possible, we prefer to use instead an evolution of the full
PN equations of motion, formulated as the Hamiltonian
equations of motion in the standard Taylor-expanded form,
as we have done previously [21–23]. More specifically, we
use the nonspinning 3PN accurate Hamiltonian [24–26]
(see also Refs. [27–29]) and the 3.5PN accurate radiation
flux [30–32]. We add both leading-order [16,33–37] and
next-to-leading-order [38–40] contributions to the spin-orbit
and spin-spin Hamiltonians, and the spin-induced radiation
flux terms as described in Ref. [41] (see also Refs. [16,37]).
In addition we include the flux contribution due to the
energy flowing into the black holes, which appears at the
relative 2.5PN order, as derived in Ref. [42].

The precessing PN waveforms were then generated
making use of the explicit formulae for the waveform
modes h‘m as given by Eqs. (B1) and (B2) in Ref. [43].
The expression for the (2,0)-mode was provided by

G. Faye and the ð2;�mÞ-modes where constructed accord-
ing to Eq. (4.15) in Ref. [43]. The positions, momenta and
spins of the masses were read off the full PN solution and
used to generate the parameters for the construction of
the precessing waveform modes h2m. These modes con-
tain only the leading-order spin contributions but higher-
order corrections are contained in the dynamics, since
the Hamiltonian is known to higher order (see above).
Therefore, even if the h‘m expressions were evaluated
only at quadrupole-order, the waveforms would still show
many features of precession, since the dominant contribu-
tion to the waveforms is from the motion itself. Note
that the dynamical calculations are performed in the
Arnowitt-Deser-Misner transverse-traceless gauge, while
the mode expressions are written in the harmonic gauge.
This inconsistency will introduce errors into the wave-
forms, but we do not expect these to be larger than those
due to the neglect of higher-order PN contributions.
We have set up the source coordinate system as in

Ref. [43], where Ĵ0 ¼ ð0; 0; 1Þ and defines the total angular
momentum direction at the initial separation. To achieve

this, the PN initial data f ~q; ~p; ~S1; ~S2gwere rotated by apply-
ing a standard rotation matrix about the y- and z-axes in the
Cartesian source frame. This is purely a convention as all
of the physics is invariant with respect to rotations. The
system was evolved for 15 M to reduce eccentricity (as
done previously in numerical applications [21–23]), and
then from an initial separation of Di ¼ 40 M down to a
final separation of Df ¼ 6 M.

The orbital frequency of the motion is given by the
general expression

~!orb ¼ ~q� _~q

k ~qk2 ; (2.1)

where ~q is the relative separation of the point masses and _~q
the relative velocity. The Newtonian orbital angular mo-
mentum is given by

~LN ¼ �ð ~q� _~qÞ; (2.2)

where � denotes the reduced mass

� ¼ m1 �m2

m1 þm2

: (2.3)

The general PN orbital angular momentum vector ~L is
given by

~L ¼ ~q� ~p: (2.4)

Note that ~LN and ~L differ significantly in the case of

precession since _~q and ~p are no longer strictly parallel to
each other, as explained in Refs. [11,16] unless the two
masses m1 and m2 are far apart. In the case of precession,

the directions of ~L, ~LN , ~Si and ~J are all time-dependent. We
will see in Sec. III B, and in particular in the left panel of
Fig. 6, an example that illustrates that during simple pre-

cession Ĵ evolves on a much smaller precession cone than
the orbital angular momentum.
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The Newtonian orbital angular momentum ~LN is defined
by its polar coordinates f�ðtÞ; �ðtÞg, which are measured
with respect to the z-axis of our Cartesian source system.
The evolution of these two angles describes the dynamics
of the instantaneous orbital plane. They are defined by

�ðtÞ ¼ arccos

 
LNz

k ~LNk

!
; (2.5)

�ðtÞ ¼ arctan

�
LNy

LNx

�
: (2.6)

The total phase of the binary is then constructed from the
following integral [43]:

�ðtÞ ¼
Z t

0
ð!orbðt0Þ � _�ðt0Þ cos�ðt0ÞÞdt0: (2.7)

The physical interpretation of the integral is as follows: the
phase seen by an observer on the z-axis (which is the axis
that defines our mode decomposition of the GW signal) is a
combination of the actual motion of the orbital plane and
its projection onto the xy-plane of the source frame. This
can be better understood if we first consider a simplified
example, where � is constant (the orbital plane is tilted by
a fixed angle with respect to ẑ), and _� is also constant

( ~LN precesses around ~J with a constant frequency). Then
we see that the average observed frequency of the objects’
motion will be larger or smaller than!orb depending on the
sign of _�. It is the phase from this observed frequency that
� describes.

The symmetric and antisymmetric spin combinations
are constructed directly from the solution data:

~�s ¼ 1

2
ð ~�1 þ ~�2Þ; (2.8)

~�a ¼ 1

2
ð ~�1 � ~�2Þ; (2.9)

where the dimensionless spins ~�i are defined from the spin

angular momenta ~Si of each black hole by

~� i ¼
~Si
m2

i

: (2.10)

Once all time-dependent dynamical parameters are con-
structed, the waveform modes, hlm, are evaluated. These
are most commonly derived by expanding the complex
polarization h,

h ¼ hþ � ih�; (2.11)

in the basis of spin-weighted spherical harmonics sYlm with

spin-weight s ¼ �2 due to the nature of the gravitational
field:

hlm ¼
Z

hð�;’Þ�2Y�
lmð�; ’Þd�; (2.12)

where� denotes complex conjugation. For a nonprecessing
binary this means that if the source frame was chosen such

that L̂N is parallel to ẑ, the quadrupole contributions are h22
and h2;�2. For precessing binaries, L̂N is not in general

parallel to ẑ, and hence modes withm � j2j appear even at
quadrupole order. They only vanish when � ¼ 0 and
� ¼ 	.
Schematically, the hlm-modes can be written as

hlmðtÞ ¼ fðM; r;�;!orb; �; �;�; ~�s; ~�aÞ: (2.13)

The expressions are evaluated for a constant luminosity
distance r, which is scaled out of our results. Figure 2
shows the magnitude of the (2,2)-mode for the same pre-
cessing case as described in Sec. I. Despite this being a

strongly precessing case ( ~S � ~L ¼ 0), long-timescale mod-
ulations are hardly noticeable. This is because a preferred
frame was already chosen for the evolution, as described
previously. Only an observer whose line of sight coincides

with Ĵ0 will see a signal of this form. The appearance and
strength of amplitude modulations strongly depends on the
relative viewing angle, as illustrated in Sec. II A.
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FIG. 2 (color online). The top panel shows the magnitude of
the (2,2)-mode for the same strongly precessing case as in Fig. 1
over the whole length of the evolution, and over a length of the
first 10000 M in the lower panel. The source frame was chosen
such that Ĵ0 ’ ð0; 0; 1Þ, and ~L and ~�2 are initially orthogonal to
each other with k ~�2k ¼ 0:75; the smaller black hole is not
spinning. The close-up of the waveform magnitude over a
shorter timescale reveals strong amplitude modulations.
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C. Quadrupole alignment

The idea of quadrupole alignment is to track the direc-
tion of the dominant radiation emission. This means that, to
leading order, it follows the precessing motion of the
instantaneous orbital plane. This allows us to significantly
simplify the gravitational-wave signature by artificially
removing the precession of the instantaneous orbital plane
and describing the signal in a corotating way. In a previous
study we have found evidence that the quadrupole-aligned
direction actually tracks the full PN angular momentum
direction, which differs slightly from the normal to the
orbital plane. We will discuss this further in an upcoming
publication [44].

We introduced the idea of the QA frame in Ref. [11]
and illustrated its properties with reference to numerical-
relativity waveforms. We also specified an explicit algo-
rithm to determine the two time-dependent rotation angles
f�ðtÞ; �ðtÞg that specify the direction that maximizes the
amplitude of the (‘ ¼ 2, jmj ¼ 2)-modes. A third angle,
"ðtÞ, which adjusts the phase, was ignored in our original
prescription, but its importance was pointed out in
Ref. [45], particularly in whenever � is close to zero and
� changes rapidly. An alternative algorithm to calculate
these angles was later given in Ref. [46].

The alignment itself is based on the general transforma-
tion behavior of spin-weighted spherical harmonics under
coordinate transformations. This allows us to find the
instantaneous, average direction of maximal emission by
transforming the (‘ ¼ 2, jmj ¼ 2)-modes and averaging
over the dominant harmonics. This direction is uniquely
defined by two angles, � and �, which are determined by
the maximization algorithm presented in Ref. [11]:

ð�MAX; �MAXÞ ¼ max
�;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~h22ð�; �Þk2 þ k~h2;�2ð�; �Þk2

q
;

(2.14)

where ~h22 and ~h2;�2 are given by

~h22ð�;�Þ ¼
X2

m0¼�2

e�im0�ðtÞd2m02ð��ðtÞÞh2m0 ðtÞ; (2.15)

~h2;�2ð�; �Þ ¼
X2

m0¼�2

e�im0�ðtÞd2m0;�2ð��ðtÞÞh2m0 ðtÞ; (2.16)

where d2m0m denote the Wigner d-matrices [47,48]. The

maximization determines the two Euler angles �MAX and
�MAX. In general, the transformation of spin-weighted
spherical harmonics involves three degrees of freedom
and, as noted in Ref. [45], the third angle can be provided
by the analog of Eq. (2.7), given the other two angles:

"ðtÞ ¼ �
Z

_�MAXðt0Þ � cos�MAXðt0Þdt0: (2.17)

We may set "ð0Þ ¼ 0 without loss of generality.

Once all three time-dependent angles ð�MAX; �MAX; "Þ
have been determined, the dominant quadrupole-aligned
mode can then be written as

hQA22 ðtÞ ¼ e�2i"ðtÞ X2
m0¼�2

e�im0�MAXðtÞd2m02ð��MAXðtÞÞh2m0 ðtÞ:

(2.18)

All other QA modes can be constructed as well, as long as
the hlm-modes for a given l are known. One may see that
this transformation differs slightly from the one presented
in Ref. [11]. This is because the numerical-relativity wave-
forms presented there are related to the PN waveforms in
this work by an overall complex conjugation.
The three angles f�;�; "g define a standard Euler rotation

of the reference frame: a rotation by � about the z-axis,
followed by a rotation by � about the y-axis, followed by
another rotation by " about the (new) z-axis. This is impor-
tant to bear in mind if we consider the reverse procedure to
‘‘wrap up’’ a QAwaveform back into its original precessing-
binary form. In that case, the reverse procedure consists of
applying the rotations in the opposite order, i.e., the same
procedure but with f�;�; "g ! f�";��;��g.
Although we expect QAwaveforms to be useful tools in

standardizing the representation of precessing waveforms
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FIG. 3 (color online). The two panels show the angles found in
an example of the maximization routine. The first panel shows
the inclination angle �MAX vs time, the second panel shows the
azimuth �MAX vs time over the full length of the PN inspiral.
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for comparison purposes (as in, for example, Ref. [49] for
equal-mass nonspinning waveforms), and in waveform
modeling, they do not correspond to a signal seen by a
gravitational-wave detector. The QA waveforms are the
waves as seen in a very specific accelerated ‘‘co-precessing’’
frame. One of the consequences of this frame choice is that

the usual relationship �4 ¼ � €h no longer holds, as can be
seen by inspection of Eq. (2.18). Hence, in order to obtain
quadrupole-alignedWeyl scalar modes, one has to construct
the precessing modes first and then transform them into the
quadrupole-aligned counterparts. Note also that the QA
angles will differ slightly when calculated from either h or
�4 (this point is also made in Ref. [50]; the �4 angles tend
to be smoother than the h angles).

To leading PN order, the recovered angles correspond to
the inverse Newtonian angles ð�; �Þ, but higher order con-
tributions in the wave amplitudes lead to a deviation from
those angles, which is consistent with the results from the
pure numerical analysis in Ref. [11]. From that work we
expect the angles we find to correspond to the smooth

evolution of L̂ in the limit of a complete description. The
angles found by the maximization routine are shown in
Fig. 3. They deviate slightly from the inverse Newtonian
ones ð��;��Þ due to higher-order PN contributions to the
mode amplitudes but this difference is not visible over the

scale of the plots. If we were to use only the quadrupole
contribution of the h‘m expressions, then we would recover

the direction of L̂N .
Once the three Euler angles are determined, those are

then used to reconstruct the QA modes. Figure 4 shows
the quadrupole-aligned (2,2)-mode for the configuration
shown in Figs. 1 and 2.
In the next section we will present a detailed study of

how these simplified QA waveforms compare with corre-
sponding nonprecessing cases.

III. RESULTS

The aim of this section is to test and quantify the accuracy
of our hypothesis that generic inspiral signals can bemapped
onto nonprecessing counterparts (see Sec. I). Numerical-
relativity waveforms are too short for a real inspiral com-
parison and, moreover, it is computationally very expensive
to produce a large number of accurate numerical precessing
waveforms. Instead, we have restricted this analysis to PN
waveforms to allowamoredetailed study for a large subset of
the precessing parameter space.
First, we will take a look at simple precession and

consider a range of spin configurations for two mass ratios.
The first is q ¼ 3 and includes the configuration of the
numerical case that we studied in Ref. [11]. The second is
q ¼ 10, motivated by the observation that precession ef-
fects become more significant for higher mass ratios; see,
for example, Eq. (2.11) in Ref. [16], and the results pre-
sented in Ref. [17]. We will show that the mapping works
extremely well; the nonprecessing waveforms that agree
best with each QA-transformed precessional configuration
follow closely the �eff parameter that we discussed in
Sec. I (and will elucidate further below) and agree with
them with matches above 0.99. Finally, as the most chal-
lenging test of our hypothesis, we look at a case of transi-
tional precession.
This study covers only a small range of the full

precessing-binary parameter space, but the configurations
were carefully chosen to test the hypothesis for varying
spin magnitudes and for two mass ratios within the range
that is likely to be treated in IMRmodels in the near future,
i.e., cases which can also be realized in current numerical
simulations to high accuracy.
From the PN expressions for the phase evolution of the

binary [16], we see that the dominant spin contribution is
proportional to the projection of each spin vector onto the

orbital angular momentum, ð ~Si � ~LÞ. We characterize the
degree of spin-alignment with 
i, which is defined as

the angle between ~Si and ~L,


i ¼ arccos

 
~Si � ~L

k ~Sikk ~Lk

!
: (3.1)

When the spin interaction is restricted to the leading order
spin-orbit coupling and radiation reaction is switched off,
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FIG. 4 (color online). QA magnitude for the q ¼ 10 configu-
ration considered in Figs. 1 and 2. The top panel shows the
complete waveform, while the lower panel zooms in on the first
10000 M. We see that the oscillations in the amplitude have been
reduced and simplified from those in Fig. 2.
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each 
i is conserved and is a constant of the motion [16].
When radiation reaction is included and, to a lesser degree,
when higher order spin interactions are included, 
i has
been observed to show only small variation in time.

The agreement or disagreement between two waveforms
is mainly due to their phasing. If the inspiral rate is
significantly different, two waveforms are not expected to
agree very well. For the QA waveforms, the precession of
the orbital plane has been factored out, but the physical
spins are, of course, present and contribute to the phase
evolution. Thus, in general, we expect the best comparison
waveform to be from a spinning-black-hole binary. At
leading PN spin-order, where only the leading order spin-
orbit terms contribute, each spin contribution is propor-
tional to cos
i, and thus by looking at the leading-order
terms, we expect that all waveforms with cos
i ¼ 0 map
onto nonspinning counterparts, while all waveforms with
cos
i � 0 map onto spinning waveforms, which can be
parametrized by an effective total-spin parameter. This
2-part leading-order spin term can be represented by a
single reduced spin parameter [17]:

�eff ¼ �sz þ ðm1 �m2Þ
m

�az � 76�

113
�sz; (3.2)

where � is the symmetric mass ratio. Note that this pa-
rameter is not the same effective spin parameter as intro-
duced in Ref. [36]. In this work the effective total spin used
is the reduced spin parameter as defined by Eq. (3.2).

In our study the nonprecessing-binary comparison
modes were parametrized by ~�1 ¼ ~�2 ¼ ð0; 0; �Þ. For
each of these cases we have �eff ¼ �ð1� 76�=113Þ.

The first set of configurations was chosen such that
i ¼ 0
for the spinning hole, yielding an effective spin of zero. The
second set was chosen such that all configurations have the
same theoretical effective spin of �eff ¼ 0:5, but with vary-
ing 
1 ¼ 
2. The details are listed in Tables I and II. The PN
comparison family with (anti-)aligned spins was generated

by the same method as the precessing ones, solving the full
PN equations of motion and using the same h‘m expressions
[43], where � ¼ 	 and � ¼ 0. This ensures that the results
are not contaminated by differences due to the choice of the
PN approximant.
The agreement between two waveforms can be quanti-

fied by a single number, the match M, which corresponds
to a noise-weighted inner product (overlap) between them
[51]. Since QAwaveforms are not in an inertial (detector)
frame, and we are interested in quantifying the difference
between two waveforms independently of a detector, we
primarily use the white-noise spectrum SnðfÞ ¼ 1. Match
calculations are performed in the frequency domain and
hence the Fourier transforms of the time-domain waveform
modes have to be computed first. The best match between
two frequency-domain waveforms h1ðfÞ and h2ðfÞ is
defined as their normalized inner product maximized
over time and phase shifts (�t and ��):

M ¼ max
�t;��

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; (3.3)

where the inner product is defined by

hh1jh2i :¼ 4Re

�Z fmax

fmin

~h1ðfÞ~h�2ðfÞ
SnðfÞ df

�
: (3.4)

In our examples the PN waveforms are defined in the
frequency range fM 2 ½0:0018; 0:01�. The upper fre-
quency corresponds to M! 	 0:06, which is typical of
the frequency at which we would start using NR results
in full IMR hybrids; in this study we are not interested
in the performance of the PN waveforms beyond that

TABLE I. PN configurations with constant 
i ¼ 90
 for the
spinning hole and varying spins. The best matches, not neces-
sarily for the predicted �eff ¼ 0 but for the values displayed in
column 4, are all well above 0.999 for q ¼ 3 and above 0.995 for
q ¼ 10. M0 denotes the match with the counterpart waveform
that has �eff ¼ 0. The last two columns show the best match for
two potential Advanced LIGO noise curves, evaluated for a
20M� binary. For all cases the best match is above 0.999 for
both detector noise curves.

q ~�1 ~�2 �BM M0 ð�BMÞearly ð�BMÞzdethp
3 (0,0,0) (0.75,0,0) 0.02 0.9815 0.02 0.02

3 (0.75,0,0) (0,0,0) 0.00 0.9997 0.00 0.00

3 (0.75,0,0) (0.75,0,0) 0.03 0.9576 0.04 0.03

10 (0,0,0) (0.75,0,0) 0.03 0.8209 0.03 0.03

10 (0.75,0,0) (0,0,0) 0.00 0.9999 0.00 0.00

10 (0.75,0,0) (0.75,0,0) 0.03 0.8075 0.03 0.03

TABLE II. PN configurations with the same effective spin
value �eff ¼ 0:5 but varying 
1 ¼ 
2 for the two mass ratios
1:3 and 1:10. �BM denotes the effective �eff-value yielding the
best match. In all cases the best matches are above 0.999 for
q ¼ 3 and above 0.997 for q ¼ 10.M0:5 denotes the match with
the counterpart waveform that has �eff ¼ 0:5. Column 5 lists the
match for the predicted �eff-value. The last two columns show
the best match for two potential Advanced LIGO noise curves,
evaluated for a 20M� binary.

q ~�1 ¼ ~�2 
1 ¼ 
2 �BM M0:5 ð�BMÞearly ð�BMÞzdethp
3 (0.050,0,0.572) 5
 0.50 0.9998 0.50 0.50

3 (0.101,0,0.572) 10
 0.50 0.9998 0.50 0.50

3 (0.208,0,0.572) 20
 0.50 0.9992 0.51 0.50

3 (0.330,0,0.572) 30
 0.51 0.9975 0.51 0.51

3 (0.480,0,0.572) 40
 0.52 0.9917 0.52 0.52

3 (0.682,0,0.572) 50
 0.52 0.9719 0.52 0.52

10 (0.093,0,0.529) 10
 0.50 0.9986 0.50 0.50

10 (0.193,0,0.529) 20
 0.50 0.9996 0.50 0.50

10 (0.306,0,0.529) 30
 0.50 0.9965 0.51 0.50

10 (0.444,0,0.529) 40
 0.51 0.9771 0.51 0.51

10 (0.631,0,0.529) 50
 0.52 0.8925 0.53 0.52
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frequency. Since the matches are calculated with a flat
noise spectrum, they are independent of the binary’s mass.

Although the QA waveforms are not in a detector’s
frame of reference, it is also instructive to calculate
matches with respect to realistic detector noise curves. In
this case different choices of binary mass correspond to
giving extra weight to different frequency ranges in the
waveforms, and provide a more stringent test on the robust-
ness of our results. We repeated the match calculation for
every configuration with the early Advanced LIGO [52]
and the zero-detuned high-power [53] noise curves. The
matches were calculated for masses between 20M� and
50M� in the frequency range between 20 Hz and 8 kHz.

The idea of the comparison is to find the nonprecessing
waveform as a function of � that gives the best match with
eachQAwaveformof our study. If our hypothesis holds, then
the best-match spin �BM will be close to the effective spin
�eff . We present our results in the following subsections.

A. Simple precession

The first two sets of PN configurations are cases of simple
precession. For most arbitrary binary configurations, simple
precession will occur and only a small set of configurations
will undergo ‘‘transitional precession,’’ as it requires fine-
tuned physical parameters (see Ref. [18] and Sec. IIIB
below). In the case of simple precession, the total spin

angular momentum ~S precesses around the orbital angular

momentum vector ~L and both of these vectors precess
around the centre of the rather small precession cone

described by ~J0. This is illustrated in the left panel of Fig. 6.
Each precessing time-domain waveform was generated

with respect to a source frame where Ĵ0 is initially parallel
to the z-axis. The quadrupole-alignment algorithm was
then applied to determine the time series of the two Euler
rotation angles f�MAXðtÞ; �MAXðtÞg. Given those, the third
angle, "ðtÞ, was determined and Eq. (2.17) applied to
reconstruct the time-domain quadrupole-aligned (2,2)-
mode.1

The first set of configurations tests the mapping hypothe-
sis for a vanishing proposed theoretical effective spin
�eff ¼ 0, for various spin configurations for the two mass
ratios 1:3 and 1:10. The results in Table I suggest that the
hypothesis works very well for single-spin systems with
only the smaller black hole spinning. In these cases, we
obtain best matches � 0:99 for the theoretical �eff-value
for both mass ratios. In the reversed cases, i.e., now the
larger black hole is spinning, the maximal matches are still
� 0:99 but we see a small parameter bias of �� ¼ 0:02. If
both black holes are spinning with the same spin magni-
tude and the spins initially parallel to each other (
1 ¼ 
2),
the parameter bias increases slightly to �� ¼ 0:03. Note
that in all of these cases the match has a sharp peak at its

maximum, but the match at the theoretical �eff-value is
well above 0.97 in many cases.
The results do not change appreciably when the calcu-

lations are repeated with the Advanced LIGO noise curves.
The matches improve slightly as the mass is increased, but
so does the bias in �eff . However, the bias never increases
by more than �� ¼ 0:01. The results for the 20M� bin are
displayed in the last two columns of Tables I and II. We
would like to emphasize again that QAwaveforms are not
in a detector frame: the matches using the detector noise
curves are only to rule out the possibility of spurious results
with the white-noise curve.
The second set was chosen such that all configurations

have the same theoretical �eff-value, but that the amount of
precession changes due to a varying 
1 ¼ 
2 � 
 angle.
All configurations in this set are equal spinning, i.e., the
spins are initially equal in magnitude and parallel to each
other. The results are given in Table II. We see for both
mass ratios q ¼ 3 and q ¼ 10 that the best-match �BM

agrees with �eff for small 
. A bias appears as 
 increases
beyond 30
, but is again never more than �� ¼ 0:02.
It is important to note that the parameter that describes

the rate of inspiral, i.e., the phasing of the binary, is given
by Eq. (3.2) and that the geometric quantity that defines the
amount of precession is quantitatively described by the

spin components perpendicular to ~L, which are propor-
tional to sin
i. We have looked at various other cases with
varying relative azimuth angle between the spin vectors as

well as varying relative inclination between ~S1 and ~S2, i.e.,

1 � 
2. For equal spin magnitudes we find that the azi-
muth has no effect on the best-match �BM. For unequal 
i

but equal spin magnitude we find that the best-match bias
increases with increasing 
i but that the relative inclination
angle between the two spin vectors does not have a sig-
nificant influence on the results.
The approximation that �eff is constant becomes less

accurate as the binary approaches merger. Remarkably, the
effective spin value associated with the initial �eff-value
seems to characterize the best-match nonprecessing-binary
system in all cases. Even when using detector noise
curves and choosing masses such that the late inspiral
(when �eff changes fastest) is in the most sensitive part of
the detector band, the best-match �eff varies by only
�� � 0:04 from the value predicted by our hypothesis.
However, it is likely that when we move to full IMR
configurations, some other appropriate effective total spin
will be more appropriate, as was found for the full IMR
waveforms in Ref. [12].
When interpreting these results, one should bear in mind

that the phasing of a PN waveform can change significantly
with respect to the choice of PN approximant. The matches
that we calculated between QA and nonprecessing wave-
forms are in general far better than those between, for
example, the same nonprecessing configuration produced
with TaylorT1 and TaylorT4; see Fig. 6 in Ref. [54]. In this

1Higher modes can be reconstructed as well but here we
consider only the dominant harmonic in the match calculations.
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sense, our approximation can be considered to hold, well
within the level of accuracy of our PN waveforms.

We also emphasize once again that the QA waveforms
do not correspond to the waveforms as seen by a detector,
since the QA frame is accelerating, and would not be
directly employed in a GW search; the matches as shown
therefore do not constitute a study of the efficacy of these
waveforms for either searches or parameter estimation.
What they do tell us, however, is that if we were to take
the nonprecessing waveforms used in this study and apply
the reverse QA procedure to them, i.e., ‘‘wrap them up’’
into mock precessing waveforms, using the inverse QA
angles calculated for each of these configurations, then we
would expect them to agree well with the original
precessing-binary waveforms. This study also suggests
that if we were to construct a waveform model from
‘‘wrapped up’’ nonprecessing waveforms, then it is pos-
sible that this model could be used to measure the effective
total spin �eff with only a small bias. However, the true
behavior of such a model in a parameter estimation exer-
cise requires an exhaustive study that is beyond the scope
of this paper.

To back up this claim, we performed the following
exercise: from the first case in Table I we took the �eff

waveform, which is nonspinning q ¼ 3, and wrapped it
up with the reverse QA angles that we calculated for the
fq ¼ 3; �1 ¼ 0; �2;x ¼ 0:75g configuration. The resulting

waveform is shown in Fig. 5; we have plotted the absolute
value of the GW strain, constructed from all ‘ ¼ 2-modes,
at an arbitrarily chosen inclination of 2.8 rad from the

initial direction of the total angular momentum, Ĵ0. Also
shown is the same quantity for the ‘‘true’’ precessing-
binary waveform, and for comparison we also show the
original nonprecessing-binary waveform, constructed

from only the (‘ ¼ 2, jmj ¼ 2)-modes. We see that the
twisted-up, nonprecessing-binary waveform captures the
main features of the amplitude of the true precessing-
binary waveform extremely well; how well the phases
agree can be judged by calculating the match between
the two waveforms. This we did, once again over the
frequency range of fM 2 ½0:0018; 0:01�. Note that now
we are considering waveforms as they would be observed
in a detector.
We find that the match between the true precessing-

binary waveform and the mock-precession waveform
have a match greater than 0.97 for all masses and binary
orientations. By contrast, the match between the unmodi-
fied nonprecessing q ¼ 3 waveform and the true precess-
ing waveform is below 0.97 even for the best-performing
orientation. These results provide an important cross-check
that we can indeed mimic the original PN precessing-
binary signal by suitably transforming the signal from a
nonprecessing binary.
As an aside, note that there is one mode of the

precessing-binary signal that we cannot fully model in
this way, the (‘ ¼ 2, m ¼ 0)-mode. In the nonprecessing
waveforms, the (2,2)- and ð2;�2Þ modes are complex
conjugates of each other. When this is true, the transformed
(2,0)-mode will always be real. This can be seen from
inspection of Eq. (2.18). But in the true precessing-binary
waveform the (2,0)-mode has real and imaginary parts; it is
straightforward to produce an example to illustrate this
from Sec. IVof Ref. [43]. In order to capture these effects,
we would need to break the symmetry between the non-
precessing h‘m-modes, which would require that our model
include unequal spins; this is, therefore, one limitation of a
single-effective-spin model. In practice, however, the rela-
tive signal power in the imaginary part of the (2,0)-mode
(that part that our model cannot reproduce) will always be
small, and we expect the other errors in this approximate
waveform, for example in the phasing, will be more
significant in practice.

B. Transitional precession

In the previous section we have seen that our mapping
works extremely well in cases of simple precession; in fact
it can be considered to be an exact mapping within the error
bars of the PN phasing. In this section, we demonstrate that
it also works in the more extreme case of transitional
precession [18]. This second type of precession occurs

when ~L and ~S are almost opposite and equal in magnitude

and so j ~Jj is small. During the inspiral, the magnitude of ~S
hardly changes but since orbital angular momentum is

radiated away, the magnitude of ~L decreases with time.
With the appropriate choice of parameters, the total angu-

lar momentum ~J is initially small and positive, but due to
the loss of orbital angular momentum, decreases until it
crosses the xy-plane of the Cartesian source frame, where it
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FIG. 5 (color online). The absolute value of the GW strain for
a precessing binary, as viewed at an arbitrary inclination of
2.8 rad from Ĵ0. The signal includes all ‘ ¼ 2-modes. The true
signal (black) has the finer structure; the signal with the lower-
amplitude high-frequency oscillations (red) was generated by
twisting a nonspinning q ¼ 3 waveform with the inverse QA
angles. The dotted line shows the amplitude of the original
nonspinning waveform.
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changes sign. See Ref. [18] for an extensive discussion of
transitional precession.

As opposed to simple precession, where Ĵ0 represents the
least evolving axis in the binary’s geometry, this direction
changes significantly during the transitional phase, as shown
in Fig. 6. In order to test the validity of our precessing !
nonprecessing mapping for a transitional-precession case,
we have chosen one specific configuration with PN parame-
ters q ¼ 10, initial separation Di ¼ 53 M, and initial spins
~�1 ¼ ð0; 0; 0Þ and ~�2 ¼ 0:65 � ð0;� sinð3
Þ;� cosð3
ÞÞ.
This is a single-spin configuration, where the initial spin is
3
 from complete antialignment and the generated inspiral
waveform is about 2� 106 M long, terminating at a final
separation of Df ¼ 6 M.

It is worth mentioning that in order to produce a transi-
tional phase, the parameters have to be fine-tuned such that
~J changes sign. If ~S and ~L were completely antialigned, no
precession would occur at all. The transitional phase is not
brief: it takes up most of the duration of the inspiral that we
have calculated, and, as noted in Ref. [18], cases where a
binary undergoes transitional precession within the sensi-
tivity band of ground-based detectors are expected to be
very rare.

The dramatic change of the direction of ~J is reflected
in the GW signal and the transitional waveforms in the
standard source frame look particularly distorted when the
total angular momentum crosses the xy-plane, as is shown
in Fig. 7.

We do not expect any of these features to be present in
the quadrupole-aligned waveform, since we now track the
direction of dominant emission, and this is completely

independent from any asymptotic direction of ~J. We see
in Fig. 7 that this is indeed the case. The angles found
by the maximization routine are shown in Fig. 8. The
zero-crossing of the total angular momentum occurs at

t ¼ 1:587� 106 M, which is indicated in the figures
with a vertical line.
If our hypothesis were correct, then the QA waveform

would be very close to a nonprecessing waveform with
�eff ¼ �0:572, from Eq. (3.2). As before, we compared
the QA mode with a series of nonprecessing waveforms
with varying spin parameter to locate the nonprecessing
configuration that agrees best with the QA waveform. We
find the best match to be 0.998 for a spin antialigned
waveform with effective spin parameter �eff ¼ �0:576.
This is remarkably close to the theoretically expected
value, with a bias of only �� ¼ 0:004!
On the other hand, naively using the nonaligned

transitional-precession waveform and calculating the
matches with the same comparison waveforms gives the

FIG. 6 (color online). Evolution of ~J (red) and ~L (blue) plotted on the unit sphere, where ~J is initially aligned with the direction (0,0,1).
The left panel shows the evolution of these two directions for a case of simple precession. The precession cone described by Ĵ is very
small in comparison to the one described by L̂, and appears on the figure as only a dot at the end of the vertical arrow. The right panel
shows the same characteristic directions for a case of transitional precession. In this case ~J clearly moves along the unit sphere away from
its initial direction (to the right side of the sphere) and separates from ~L, which moves to the left side of the sphere in the figure.
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FIG. 7 (color online). The panel shows the magnitudes of the
(2,2)-modes for the transitional precession case before (red;
lower curve) and after (blue; upper curve) the quadrupole align-
ment was applied. The change of the direction of Ĵ at t ¼
1:587� 106 M is indicated by the vertical line. A strong modu-
lation is introduced into the original waveform at that time,
which is completely removed after quadrupole alignment.
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same effective spin value, since the phase is dominated by
the inspiral rate, but yields a best match of only 0.940. Note
also that this is for the (2,2)-mode as seen from only one
orientation; for many other orientations that matches are
likely to be far worse.

This example demonstrates that even in the case of
transitional precession, our method proves to be accurate
(expected �eff-value) and robust (M> 0:99) for mapping
precessing waveforms onto single-spin-parametrized
nonprecessing-binary waveforms.

IV. PN-NR HYBRID WAVEFORMS

So far we have discussed only PN inspiral waveforms.
To produce complete waveforms that include the late
inspiral, merger and ringdown, we need to include results
from NR simulations. In this section we will show how the
quadrupole-alignment procedure simplifies the production
of hybrid PN-NR waveforms.

A variety of methods have been introduced to con-
struct hybrid waveforms for nonprecessing configurations
[13,55–59], and see Ref. [54] for a unified summary of the
methods in use. In all methods the PN and NR waveforms
are aligned at some time, or over a time or frequency
window, and then blended together. Such waveforms
have been used to produce phenomenological waveform
models [12,13,56,57,60], and are now also being used to

test GW search and parameter estimation tools [54]. A
number of studies have also been performed on the length
requirements of NR waveforms in order to produce suffi-
ciently physically accurate hybrids [59,61–63] and these
also include estimates of the influence of errors and ambi-
guities in the hybridization process on the physical fidelity
of the final waveform.
The construction of hybrids for precessing-binary con-

figurations is more complex: not only do the time and
phase of the PN and NR waveforms have to be aligned
but also, to some extent, the orientations of the spins and
orbital plane must agree as well. For the precessing-binary
hybrids that were used in Ref. [12], the hybrid waveforms
were constructed by matching the NR waveforms with PN
waveforms computed from the same PN evolution that was
employed to construct the initial data for the NR simula-
tions. This technique ignores mismatches in the binary
orientation and physical parameters due to the emission
of junk radiation [64,65] and gauge changes [66,67] in the
early stages of an NR simulation, although these effects are
expected to be small; see Ref. [13] for a detailed discussion
of this point in the context of nonprecessing-binary
hybrids.
These complications can be avoided through the use of

QA waveforms. The PN and NR waveforms, both con-
verted to the QA frame, can now be aligned exactly as in
the nonprecessing cases. In order to reverse the QA pro-
cess, it is also necessary to align the QA angles ð�;�; "Þ,
but this is straightforward, as we show below.
In the next section we will outline how we produce a QA

hybrid for the precessing-binary waveform that we used in
Ref. [11]. This corresponds to the first configuration dis-

cussed in Table I: q ¼ 3, �1 ¼ 0, �2 ¼ 0:75, and ~S� ~L¼0.
Having produced the QA hybrid, we will examine where
our nonprecessing-binary mapping hypothesis breaks
down as we approach merger. That the hypothesis must
break down is clear, because the spin of the final merged
black hole will be influenced by the black-hole spins in a
way that the orbital phase evolution is not, and the mass
and spin of the final black hole will not be the same as that
for the corresponding nonprecessing inspiral configuration.

A. Construction of QA hybrids

AQA hybrid can be produced by making use of the same
procedure as for a nonprecessing-binary hybrid. We will
briefly summarize the method that we used.
We start with a PN and an NR waveform, each for the

same physical configuration. The last requirement is
achieved to good approximation by using results from
the PN evolution to produce the initial parameters for the
NR evolution. The PN and NR waveforms are then put into
the QA frame by the procedure described in Sec. II C.
We will produce a hybrid of �4, and note that, since the

QA frame is noninertial, we cannot produce�QA
4 by taking

two time derivatives of hQA. We must first produce the
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FIG. 8 (color online). The two panels show the two Euler
angles � and � determined by the quadrupole-alignment proce-
dure for the transitional case. The time when the z component of
~J changes sign is indicated by the vertical line.
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�4;2m-modes from the original precessing-binary GW-

strain modes, h2m, and apply the QA algorithm to �4;2m.

We then choose a matching frequency !m, and locate
the times tPN and tNR when each waveform passes through
that frequency. For our q ¼ 3 configuration, !m ¼ 0:07.
We align the PN and NR frequencies around that time
such that both �PNðtPNÞ ¼ �NRðtNRÞ and !PNðtPNÞ ¼
!NRðtNRÞ ¼ !m. The hybrid waveform is then produced

by blending together �QA
4;PN and �QA

4;NR with a linear tran-

sition function of width �t ¼ 200 M around the matching
frequency. The final waveform is then

�QA
4;hybðtÞ¼a��

QA
4;PNðt� tPNÞþaþ�

QA
4;NRðt� tNRÞ; (4.1)

where a
 ¼ ð�t=2
 tÞ=�t when t 2 ½��t;�t� and zero
or one otherwise, and the time has been shifted such that
t ¼ 0 coincides with the point at which ! ¼ !m. This
constitutes the QA hybrid. Figure 9 shows the real part of
�4 around the time where the matching was performed,
which is at t ¼ 0. The figure shows the PN and NR wave-
forms, as well as the final hybrid, and we see that the
matching between the PN and NR waveforms is smooth.

To convert this into a physical precessing-binary hybrid,
we also require hybrids of the QA angles f�ðtÞ; �ðtÞ; �ðtÞg.
These are produced as follows. The two angles f�ðtÞ; �ðtÞg
define a vector ~nðtÞ ¼ fsinð��ðtÞÞ cosð��ðtÞÞ; sinð��ðtÞÞ
sinð��ðtÞÞ; cosð��ðtÞÞg, which traces out a path on the
unit sphere. The QA angles for the PN waveform define
~nPNðtÞ, while those for the NR waveform define ~nNRðtÞ. We
perform a fixed rotation RPN to ~nPNðtÞ (and another RNR to
~nNRðtÞ), such that both vectors are equal at the matching
frequency, ~nPNðtPNÞ ¼ ~nNRðtNRÞ. Since the angle � is ill-
defined when ~n ¼ f0; 0; 1g, we do not choose that as our
(arbitrary) matching direction, but rather the vector such that
�ðtPNÞ ¼ 0:1 rad. Specification of a third Euler angle allows
us to require that the vectors not only meet at the matching
time, but that the curves they trace out are parallel at that
time. To do this we simply measure the angle between the
two curves at the matching time, and then rotate ~nNRðtÞ

around the axis defined by the matching direction,
~nNRðtNRÞ. Figure 10 shows the first two angles at the times
close to the matching frequency, and the final PN and NR
curves are shown in the lower panel of Fig. 10. The hybrid
angles are constructed by smoothly blending between the
PN and NR angles, in the sameway as for the QAwaveform.
The precessing-binary hybrid can then be constructing by
performing the reverse QA procedure with f�;�; "g !
f�";��;��g.
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FIG. 9 (color online). The PN (red, from t ¼ �300M to
t ¼ 100M), NR (green, from �100M to 300M) and hybrid
(dashed black) waveforms near the matching time (t ¼ 0).
The PN and NR waveforms are blended together in the window
�t ¼ ½�100; 100�, indicated by the shaded region.
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FIG. 10 (color online). Hybridization of the QA angles � and
�. Upper two panels: the black (dotted) lines indicate the inspiral
PN values, the red (dashed) lines indicate the later NR values,
and the green (solid) lines indicate the hybrids. The lower figure
shows the evolution of the aligned QA directions, where here the
black line indicates long PN inspiral of duration 2:9� 105 M,
and the red line indicates the NR results up to merger.
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B. Breakdown of the nonprecessing-binary
equivalence

We expect the simple mapping between QA- and
nonprecessing-binarywaveforms tobreakdownnearmerger.
As we have seen, the effect of the spins on the inspiral rate
comes predominantly from the spin components parallel to
the orbital angular momentum; this is why our mapping
works. At merger, however, the spin of the final black hole

is, to first approximation, ~Jfin ¼ ~Lþ ~S1 þ ~S2, where the
orbital and spin angular momentum vectors are those at the
point of merger. (A far more sophisticated treatment of
the final spin ingredients is given in Ref. [68], and a number
of estimates of the final spin as a function of the initial
configuration exist in the literature [69–71].) All components
of the spin now become important and the appropriate pa-
rametrization may no longer be the effective total spin �eff .

It is instructive to investigate where the mapping breaks
down, and we can use the hybrid waveform constructed in
the previous section to do this. Figure 11 shows the match
between the QA hybrid constructed above, and a nonspin-
ning q ¼ 3 hybrid (which would be the appropriate non-
precessing configuration during the inspiral). The match is
calculated for a range of termination frequencies of the two
waveforms. For reference, the frequency fM ¼ 0:016 cor-
responds roughly to M! ¼ 0:1, and is close to the point
where PN waveforms are typically terminated in inspiral
searches. Below this frequency the white-noise match is
consistent with the results in Sec. III A. The peak of the
waveform occurs at fM ¼ 0:07, which is indicated by a
vertical line. The fiducial acceptable match of 0.97 is
indicated by a horizontal line. We see that the match is at
or above 0.97 through the merger and only degrades sig-
nificantly during the ringdown.

Once again we emphasize that these matches were com-
puted using a white-noise power spectrum. Nonetheless,
these provide evidence that the QA procedure is valid very

close to the merger, and perhaps even up to ringdown. We
will discuss the implications of this result for waveform
modeling in the final section.

V. DISCUSSION: A ROUTE TO GENERIC
BINARY WAVEFORM MODELS

We have extended previous work on the QA procedure to
show that it can be used not only to cast precessing-binary
waveforms in a simple form, but to map these waveforms
onto a subfamily of nonprecessing waveforms. We verified
that this subfamily is parametrized by onlymass ratio and an
effective total spin parameter, and that the nonprecessing
waveform that best matches each QA waveform (with
white-noise matches of at least 0.995), corresponds to our
predicted �eff-value to within �� � 0:04. The mapping
was tested on a range of inspiral PN waveforms with mass
ratios q ¼ 3 and q ¼ 10, and even on an example of transi-
tional precession; in all cases the approximations holds well
within the level of accuracy of the PN phasing. As a final
test, we used the reverse QA procedure to ‘‘wrap up’’ a
nonprecessing-binary waveform, and found that it matched
the corresponding true precessing waveformwith a match of
>0:97 for all binary orientations. We also showed that this
procedure can simplify the construction of hybrid PN-NR
waveforms, and that the approximate mapping seems to
hold all the way through to merger.
Our results suggest that generic precessing-binary wave-

forms can be generated with good accuracy by applying
the reverse of the quadrupole-alignment transformation
to a small class of nonprecessing-binary waveforms.
These waveforms appear to faithfully represent the
‘‘true’’ precessing-binary waveforms up to the point of
merger, and perhaps even up to the ringdown. The problem
of constructing a generic waveform model can then be
factorized into the smaller problem of modeling the two
rotation angles f�ðtÞ; �ðtÞg as a function of the black-hole
spins and the mass ratio.
More concretely, we propose the following strategy:

once the evolution of the Euler angles �ðtÞ and �ðtÞ has
been determined for a large sample of the configuration
space, these can be modeled as functions that depend on

some set of parameters ~


� ¼ �ð ~
ðtÞÞ; (5.1)

� ¼ �ð ~
ðtÞÞ: (5.2)

We emphasize that the ~
 should be physical parameters, or a
combination of physical parameters. The third angle "ðtÞ is
automatically determined given the two others. The rotation
angles are unique up to an overall rotation of the frame of
reference; we expect that they will assume the simplest form

if in the limit of infinite binary separation Ĵ�1 ¼ ð0; 0; 1Þ.
Since precessing inspiral-merger (IM) waveforms can be

mapped onto nonprecessing ones via quadrupole alignment,
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FIG. 11 (color online). Matches between QA and nonprecess-
ing hybrids, for our standard q ¼ 3 configuration. The horizontal
axis represents the frequency at which both waveforms are cut
off in the match calculation, and indicates that the two hybrids
agree well (match>0:97) right up to the merger, indicated by the
vertical line.
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using the angles f�ðtÞ; �ðtÞ; "ðtÞg, a phenomenological IM
model with (anti-) aligned spins can be used and ‘‘twisted
up’’ with the inverse angles f�"ðtÞ;��ðtÞ;��ðtÞg. This
will give us a phenomenological IM model,

hIMlm ðtÞ ¼ Rð�";��;��ÞhIMlm ð�;�eff ; tÞ: (5.3)

Needless to say, an inspiralmodel is not urgently needed:
we can already produce generic waveforms by integrating
the PN equations of motion, as we have done in this paper.
A simple closed-form approximation to these solutions
could significantly improve the efficiency of gravitational-
wave search and parameter-estimation pipelines, but there is
no barrier in principle to producing theoretical estimates of
any of these signals. The real need is for complete IMR
waveform models.

Given in addition a phenomenological model for the

ringdown, hR‘mð ~
R; tÞ, which is parametrized by some yet-

to-be-determined subset ~
R of the full binary parameters ~
,
we expect that we can produce a combined IMR model,
which can be indicated schematically as

hIMR
lm ðtÞ ¼ Rð�";��;��ÞhIMlm ð�;�eff ; tÞ � hR‘mð ~
R; tÞ:

(5.4)

For ease of use in GW searches, ideally this model would be
cast in closed-form expressions in the frequency domain.

We still have the problem of modeling a seven-
dimensional parameter space, but we now have to model
only two functions, and, as we can see from Fig. 3 (and
even Fig. 8 for transitional precession), they are smooth,
simple functions, that may be far easier to model than
the complicated amplitude and phase modulations that are
standard features of the physical waveforms. It is also likely
that many of the features of the full seven-dimensional
parameter space can be captured by a model that considers
only a subset of the parameters. It is also quite possible that
we will need to employ a nonprecessing model that treats
both black-hole spins, and/or the effective spin that proves
most useful will differ from that presented here. Our main
purpose is only to outline a general research program to
develop generic waveformmodels based on QAwaveforms.

In the short term, a number of issues deserve further
study. One is that the QA method, in all forms proposed
to date [11,45,46], has only been studied in detail
prior to merger. It is likely that in order to apply the
QA method optimally through the ringdown, it will
be advantageous to make use of spheroidal (rather
than spherical) harmonics, but that remains to be seen.
Another will be the appropriate blending between the
inspiral-merger regime and the ringdown, which is
likely to be parametrized by the final mass and spin,
and probably also the mass ratio and a second effective
spin parameter [72]. It would also be instructive to
explore the effectiveness of such signals for both GW
searches and parameter estimation across a wide volume
of the binary parameter space.
We consider all of these to constitute a promising strat-

egy for the construction of approximate generic waveform
models, and will pursue them further in future work.
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