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For the past decade, gravitational lensing in the strong gravitational field has been studied eagerly. It is

well known that, for the lensing by a black hole, an infinite number of Einstein rings are formed by the

light rays which wind around the black hole nearly on the photon sphere, which are called relativistic

Einstein rings. This is also the case for the lensing by a wormhole. In this paper, we study the Einstein ring

and relativistic Einstein rings for the Schwarzschild black hole and the Ellis wormhole, the latter of which

is an example of traversable wormholes of the Morris-Thorne class. Given the configuration of the

gravitational lensing and the radii of the Einstein ring and relativistic Einstein rings, we can distinguish

between a black hole and a wormhole in principle. We conclude that we can detect the relativistic Einstein

rings by wormholes which have the radii of the throat a ’ 0:5 pc at a Galactic center with the distance

10 Mpc and which have a ’ 10 AU in our Galaxy using the most powerful modern instruments which

have the resolution of 10�2 arcsecond such as a 10-meter optical-infrared telescope. The black holes

which make the Einstein rings of the same size as the ones by the wormholes are galactic supermassive

black holes and the relativistic Einstein rings by the black holes are too small to measure with the current

technology. We may test the hypotheses of astrophysical wormholes by using the Einstein ring and

relativistic Einstein rings in the future.
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I. INTRODUCTION

Gravitational lensing is a very useful tool for astrophys-
ics and cosmology. At first the gravitational lensing mainly
was investigated on a theoretical basis in the weak gravi-
tational field. Using the gravitational lensing, we determine
the cosmological constant, the distribution of dark matter
and the Hubble constant, the existence of extrasolar plan-
ets, and so on (see Schneider et al. [1] and Perlick [2,3] for
the detail of the gravitational lens, and references therein).

For the past decade, gravitational lensing in the strong
gravitational field has been studied eagerly (see Virbhadra
and Keeton [4], Virbhadra [5], Bozza [6], Bozza andMancini
[7], and references therein). Frittelli et al. [8], Virbhadra and
Ellis [9,10], and Bozza et al. [11] studied the gravitational
lensing in the strong field with the Schwarzschild spacetime
and found the infinite Einstein rings which are too close to
each other to separately resolve. In this paper, we call these
rings relativistic Einstein rings. The gravitational lensing in
the strong field on the spherically symmetric static spacetime
was investigated by Bozza [12], Hasse and Perlick [13], and
Perlick [14]. They showed that the relativistic Einstein rings
are formed not only in the Schwarzschild spacetime but also
in the other spherically symmetric static spacetime.

General relativity permits nontrivial topology of the
spacetime such as wormhole spacetimes (see Visser [15]
for the details of wormholes). Some hypotheses of astro-
physical wormholes have been investigated [16–18]. For
example, Kardashev et al. suggest that some active galactic
nuclei and other compact astrophysical objects may be

explained as wormholes [19]. We may test these hypoth-
eses by using the gravitational lensing in the future.
Kim and Cho [20] and Cramer et al. [21] pioneered

gravitational lensing effects by wormholes. Since then,
the gravitational lensing effects by various wormholes
have been investigated [21–27].
The Ellis spacetime which was investigated by Ellis [28]

is an example of traversable wormholes of the Morris-
Thorne class [29,30]. The deflection angle of light in the
Ellis wormhole geometry was studied by Chetouani and
Clément [31] and recently Nakajima and Asada [32]. The
gravitational lensing on the Ellis geometry was studied by
Dey and Sen [33], Abe [34], and Toki et al. [35] in the weak
gravitational field and Perlick [14], Nandi et al. [22], and
Tejeiro and Larranaga [36] in the strong gravitational field.
Perlick [14], Nandi et al. [22], and Tejeiro and

Larranaga [36] pointed out that the qualitative features of
the gravitational lensing in the Ellis spacetime are very
similar to the ones in the Schwarzschild spacetime for their
photon spheres and their asymptotic flatness.
In this paper, we will consider the Einstein ring and

relativistic Einstein rings in the Ellis spacetime and the
Schwarzschild spacetime, both of which are static and
spherically symmetric ones. We ask whether we can dis-
tinguish the Einstein-ring systems on the Schwarzschild
spacetime and on the Ellis spacetime. To answer this
question, we focus on the relations between the Einstein
ring and the relativistic Einstein rings.
This paper is organized as follows. In Sec. II we will

review the deflection angle on the Ellis wormhole space-
time. In Sec. III we give the radii of the Einstein ring and
relativistic Einstein rings in the Ellis spacetime. In Sec. IV*11ra001t@rikkyo.ac.jp
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we will compare the Einstein ring and the relativistic
Einstein rings in the Ellis spacetime to the ones in the
Schwarzschild spacetime. In Sec. V we summarize and
discuss our result. In this paper we use the units in which
c ¼ 1.

II. ELLIS WORMHOLE SPACETIME AND
DEFLECTION ANGLE

In this section, we review the deflection angle on the
Ellis wormhole spacetime [31,32]. The line element in the
Ellis wormhole solution is written in the following form:

ds2 ¼ �dt2 þ dr2 þ ðr2 þ a2Þd�2; (2.1)

where d�2 ¼ d�2 þ sin2�d�2 and a is a positive con-
stant. Introducing �2 ¼ r2 þ a2, we can rewrite this into

ds2 ¼ �dt2 þ
�
1� a2

�2

��1
d�2 þ �2d�2; (2.2)

where � ¼ �a corresponds to the wormhole throat.
The spacetime has the Killing vectors t�@� ¼ @t and

��@� ¼ @� for stationarity and axial symmetry.

We can concentrate ourselves on the equatorial plane
because of spherical symmetry. Using the conservation
of the energy E � �g��k

�t� and angular momentum

L � g��k
��� and k�k� ¼ 0, where k� is the photon

wave number, the photon trajectory is then given by

1

�4

�
d�

d�

�
2 ¼ 1

b2

�
1� a2

�2

��
1� b2

�2

�
; (2.3)

where b � L=E is the impact parameter of the photon.
We can see that the photon is scattered if jbj> a,

while it reaches the throat if jbj< a. Since we are inter-
ested in the scattering problem, we assume jbj> a. Using
u ¼ 1=�, we find

�
du

d�

�
2 ¼ 1

b2
ð1� a2u2Þð1� b2u2Þ: (2.4)

Putting

GðuÞ ¼ a2ða�2 � u2Þðb�2 � u2Þ; (2.5)

the azimuthal angle � can be given as a function of u by

� ¼ �
Z b�1

u

duffiffiffiffiffiffiffiffiffiffi
GðuÞp : (2.6)

Here we have set �ðb�1Þ ¼ 0. The deflection angle � is
then calculated to give

� ¼ 2
Z b�1

0

duffiffiffiffiffiffiffiffiffiffi
GðuÞp � �: (2.7)

In the present case, we findZ b�1

0

duffiffiffiffiffiffiffiffiffiffi
GðuÞp ¼

Z �=2

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðabÞ2sin2�

q ¼ K

�
a

b

�
; (2.8)

where we have transformed u ¼ b�1 sin� and KðkÞ
denotes the complete elliptic integral of the first kind (for
example, see Ref. [37]), which is defined as

KðkÞ ¼
Z �=2

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2�

p : (2.9)

Hence, the deflection angle is given by

� ¼ 2K

�
a

b

�
� �: (2.10)

Since KðkÞ admits a power series

KðkÞ ¼ �

2

X1
n¼0

�ð2n� 1Þ!!
ð2nÞ!!

�
2
k2n; (2.11)

where n!! denotes the double factorial of n and ð�1Þ!! ¼ 1,
we get the deflection angle

� ¼ �
X1
n¼1

�ð2n� 1Þ!!
ð2nÞ!!

�
2
�
a

b

�
2n
: (2.12)

Thus, the deflection angle is approximately given in the
weak-field regime jbj � a by

� ’ �

4

�
a

b

�
2
: (2.13)

In general, the deflection angle is always greater than its
weak-field approximation and is diverging as jbj ! a.

III. EINSTEIN RING AND RELATIVISTIC
EINSTEIN RINGS OF ELLIS WORMHOLE

In this section, we examine the diameter angles of
the Einstein ring and the relativistic Einstein rings on the
Ellis spacetime. Now we will consider the case that both
the observer and the source object are far from the lensing
object, or Dl � b and Dls � b, where Dl and Dls are the
separations between the observer and lens and between
the lens and source, respectively. The configuration of the
gravitational lensing is given in Fig. 1. Then, the lens
equation is given by

Dls �� ¼ Dsð���Þ; (3.1)

where �� ¼ ð�mod 2�Þ is the effective deflection angle, �
and� are the angles of the lensed image and the real image
from the observer, respectively, and Ds ¼ Dl þDls is the
separation between the observer and source. Note that we
have assumed j ��j � 1, j�j � 1, and j�j � 1. The deflec-
tion angle can be expressed � ¼ ��þ 2�n, where n is a
non-negative integer, denoting the winding number of the
light ray.
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The ring image corresponds to the image angle � for
vanishing real angle� ¼ 0. By the symmetry, the image is
necessarily a ring with the diameter angle �.

Since b ¼ Dl�, we find that the ring image is given by

�n ¼ a

Dl

1

kn
; (3.2)

where kn 2 ð0; 1Þ is a unique root of the transcendental
equation,

2KðkÞ � �

k
¼ ð2nþ 1Þ�; (3.3)

� ¼ Ds

DlDls

a: (3.4)

We should note that 2KðkÞ � �=k is monotonically
increasing with respect to k and changes from �1 to 1
as k increases from 0 to 1. The uniqueness of the
root follows from the monotonicity. Moreover, we can
conclude that kn monotonically increases and approaches
1 as n ! 1 and hence the image angle �n monotonically
decreases and approaches a=Dl.

In the weak-field regime jbj � a, the winding number n
should be n ¼ 0. Using the deflection angle (2.13), we can
solve the equation (3.3) approximately and get the diameter
angle of the Einstein ring:

�0’
�
�

4

Dls

DsD
2
l

a2
�1
3

’2:0 arcsecond

�
Dls

10Mpc

�1
3

�
20Mpc

Ds

�1
3

�
10Mpc

Dl

�2
3

�
a

0:5 pc

�2
3
:

(3.5)

This approximation is good for Dl � a and Dls � a.
The relative error is �10�2 for a ¼ 0:5 pc and Dl ¼
Dls ¼ 10 Mpc.
In the especially strong-field regime, where the winding

number n becomes n � 1, we can easily check that a ’ b
or kn ’ 1 satisfies the transcendental equation (3.3) in
numerical calculations. Physically this means that the light
rays which wind around the wormhole nearly on the photon
sphere make the relativistic Einstein rings [12,14]. Then
the diameter angles of the relativistic Einstein rings are
approximately given by

�n�1 ’ a

Dl

’ 1:0� 10�2 arcsecond
�
10 Mpc

Dl

��
a

0:5 pc

�
:

(3.6)

Regardless of the values ofDls,Dl, and a, the relative error
of the above approximation to the direct numerical solution
of the outermost relativistic Einstein ring (n ¼ 1) is�10�3

and those of the other relativistic Einstein rings (n � 2) are
smaller than 10�5. This implies that it is difficult to resolve
each relativistic Einstein ring separately.
Thus, we conclude that there is one Einstein-ring image

and countably infinite relativistic Einstein-ring images, the
latter of which accumulate to form the apparently single
ring image of the throat with the diameter a=Dl. This
conclusion does not depend on the value of �.
If we are given the distance Ds to the source from the

observer, the distanceDl to the lens from the observer, and
the radius �0 of the Einstein ring, we can determine the
radius of the throat a from Eq. (3.5). Then, we can use �n�1

(3.6) to test the assumption that the lens object is a
wormhole.
From Eqs. (3.5) and (3.6), we obtain the relation between

�0 and �n�1 by

�n�1 ’
�
4

�

Ds

Dls

�1
2
�

3
2

0: (3.7)

This relation generally holds in astrophysical situations, as
long as a � Dl and a � Dls are satisfied. If the lens is
identified with a wormhole, we can even estimate the
radius of the wormhole throat in terms of Ds, �0, and �n
through

a ’ �n�1

�
1� 4

�
��2
n�1�

3
0

�
Ds: (3.8)

This follows from Eqs. (3.6) and (3.7).

FIG. 1. The configuration of the gravitational lensing. The
light rays emitted by the source S are deflected by the lens L
(a wormhole or a black hole) and reach the observer O with the
angle of the lensed image �, instead of the real angle �. b and ��
are the impact parameter and the effective deflection angle,
respectively.Dl andDls are the separations between the observer
and the lens and between the lens and the source, respectively.
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IV. COMPARISON BETWEEN WORMHOLES
AND BLACK HOLES

In this section we compare the Einstein ring and the
relativistic Einstein rings in the Ellis spacetime to the ones
in the Schwarzschild spacetime and show that we can
distinguish between black holes and wormholes.

Now, wewill briefly review the deflection angle, Einstein
ring, and relativistic Einstein rings for the Schwarzschild
spacetime [9–11,13,38,39] and present the relation between
�0 and �n�1.

In the weak-field regime b � rg, where rg ¼ 2GM is

the Schwarzschild radius of the black hole of mass M, the
deflection angle is approximately given by

� ’ 2rg
b

: (4.1)

The diameter angle of the Einstein ring is given by

�0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dls

DlDs

rg

s

’ 2:0 arcsecond

�
Dls

10 Mpc

�1
2

�
M

1010M	

�1
2

�
�
10 Mpc

Dl

�1
2

�
20 Mpc

Ds

�1
2
: (4.2)

We can determine rg in the same way as the radius of the

throat a.
In the especially strong-field regime, where the winding

number n becomes n � 1, the impact parameter b that
satisfies the lens equation should be nearly the critical

impact parameter b ’ ð3 ffiffiffi
3

p
=2Þrg (see Refs. [9,11,12]).

Then the diameter angles of the inseparable relativistic
Einstein rings �n�1 are given by

�n�1 ’ 3
ffiffiffi
3

p
2

rg
Dl

’ 5:1� 10�5 arcsecond

�
M

1010M	

��
10 Mpc

Dl

�
: (4.3)

It is useful to remember that the leading term of the
deflection angle in the weak-field regime is the second
order of the small amount a=b on the Ellis geometry
(2.13), while it is the first order of the small amount rg=b

on the Schwarzschild geometry (4.1). So the relation
between �0 and �n�1 for the Schwarzschild spacetime,

�n�1 ’ 3
ffiffiffi
3

p
4

Ds

Dls

�20; (4.4)

is different from that on the Ellis spacetime (3.7). Figure 2
shows the angle of the relativistic Einstein ring �n�1 versus
the angle of the Einstein ring �0 for Dl ¼ Dls ¼ 10 Mpc.
Thus, we can distinguish between black holes and worm-
holes in principle if we are given Ds, Dl, �0, and �n�1.

If the lens is identified with a black hole, we can esti-
mate the Schwarzschild radius and, hence, the black hole
mass by

rg ’ 2

3
ffiffiffi
3

p �n�1

�
1� 3

ffiffiffi
3

p
4

�20�
�1
n�1

�
Ds (4.5)

in terms of �0, �n�1, and Ds. This follows from Eqs. (4.3)
and (4.4).

V. DISCUSSION AND CONCLUSION

It is well known that the qualitative features of the
gravitational lensing on the Ellis spacetime are very similar
to the ones on the Schwarzschild spacetime for their pho-
ton spheres and their asymptotic flatness [14,22,36].
However, we realize that their quantitative features are
very different due to their different weak-field behaviors.
We consider the experimental situation where we know

the separation Ds between the observer and the source and
the separation Dl between the observer and the lens. We
assume that we do not know whether the lens object is a
black bole or a wormhole and do not know its parameter,
i.e., the mass M or the radius a of the throat in advance.
We need at least two observable quantities to determine

whether the lens object is a black hole or wormhole since
the lens system has one parameter in this situation. First,
we observe an Einstein ring and determine the parameter
for both possibilities. Second, we observe relativistic
Einstein rings and tell the wormhole from the black hole.
If the predicted relativistic ring angles by the black hole
and by the wormhole were of similar size, we could not
discern the difference. However, Eqs. (3.7) and (4.4) and
Fig. 2 show that we do not confuse them.
We conclude that we can detect the relativistic Einstein

rings by wormholes which have a ’ 0:5 pc at a Galactic
center with the distance Dl ¼ Dls ¼ 10 Mpc and which

FIG. 2 (color online). The angle of the relativistic Einstein ring
�n�1 versus the angle of the Einstein ring �0 for Dl ¼ Dls ¼
10 Mpc. The broken (green) and solid (red) lines plot the cases
where the lens objects are a wormhole and a black hole,
respectively.
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have a ’ 10 AU in our Galaxy with the distance
Dl ¼ Dls ¼ 10 kpc using the most powerful modern
instruments which have the resolution of 10�2 arcsecond
such as a 10-meter optical-infrared telescope. Note that the
corresponding black holes which have the Einstein rings of
the same size are galactic supermassive black holes with
1010M	 and 107M	, respectively, and that the relativistic
Einstein rings by these black holes are too small to measure
with the current technology.

In fact, our results imply that we can distinguish
between slowly rotating Kerr-Newmann black holes
and the Ellis wormholes with their Einstein-ring systems.
This is because the leading term of the deflection angle for
the lensing by the Kerr-Newmann black holes in the weak-
field regime is equal to the one for the lensing by the
Schwarzschild black holes, while the black hole charge
and small spin only slightly change the radii of the rela-
tivistic Einstein rings [12,40–43]. Moreover, this also sug-
gests that it is much more challenging to determine the
charge and/or small spin of black holes than to distinguish
between black holes and the Ellis wormholes.

We assumed that the observer, the lensing object, and the
source object are directly aligned, though such a configu-
ration is fairly rare. In general the strong gravitational
lensing effect is observed as broken-ring images which
are called relativistic images [9]. Therefore, a more real-
istic problem is to size the relativistic images. Our result
suggests that we can distinguish black holes and worm-
holes by using the relativistic images. To observe the
relativistic images is one of the challenging works with
many difficulties. Bozza et al. pointed out that relativistic
images are always very faint with respect to the weak field
images [11]. The very large telescope interferometer has
high resolution [44,45] but it will not work because of this
demagnifying effect.

We also assumed pointlike sources, although astrophys-
ical sources have their own size. If the source object is a
galaxy, it may conceal the relativistic Einstein rings, espe-
cially in the case that the lens object is a black hole. Testing
some hypotheses of astrophysical wormholes by using the
relativistic Einstein rings and the Einstein ring is left as
future work.
Tejeiro and Larranaga [36] investigated the gravitational

lensing effect of the wormhole solution obtained by con-
necting the Ellis solution as an interior region and the
Schwarzschild solution as an exterior region [46]. They
concluded that we cannot distinguish the Schwarzschild
black hole and the wormhole unless the discontinuity of the
magnification curve at the boundary is observed. This does
not contradict our results because their wormhole solution
behaves as the Schwarzschild solution in the weak-field
regime.
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