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We prove the existence of general relativistic perfect fluid black hole solutions, and demonstrate the

phenomenon for the P ¼ w� class of equations of state. While admitting a local timelike Killing vector on

the event horizon itself, the various black hole configurations are necessarily time dependent (thereby

avoiding a well known no-go theorem) away from the horizon. Consistently, Hawking’s imaginary time

periodicity is globally manifest on the entire spacetime manifold.
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I. INTRODUCTION

There is by now abundant evidence that our Universe
is expanding on average. Nevertheless, much of the works
on black holes, which play a central role in modern astro-
physics, focus on stationary and asymptotically flat situ-
ations. It is therefore desirable to have black hole models
embedded in a cosmological environment to see if those
objects can reveal some unexpected features of the under-
lying theory of gravity. Historically, an investigation of the
effects of the cosmological expansion on local systems was
motivated by the question of whether an atom, a star, solar
system, galaxy or any other bounded system expand fol-
lowing the rest of the Universe. Although this question has
a long history dating back to the 1933 paper by McVittie
[1] introducing a spacetime metric that represents a point
mass embedded in a Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) universe, one still lacks an affirmative
answer to this open problem in general relativity. In fact,
the physical properties of the McVittie solution are an
active field of research and discussed by several authors,
e.g., Refs. [2–6]. Later work by Einstein and Straus [7]
describes a patchwork of Schwarzschild black holes with a
FLRW universe, while subsequent generalizations of their
ideas [8] replace the external FLRW metric by the inho-
mogeneous Lemaı̂tre-Tolman-Bondi dust time-dependent
solution [9] and by its non-spherically symmetric general-
ization [10]. The former, however, are time symmetric
black hole solutions and so they do not describe at a
satisfactory level any phenomenon associated with a dy-
namical black hole in an evolving Universe. Such pro-
cesses are expected to play a significant role in black
hole formation, gravitational collapse, evolution of primor-
dial black holes, etc. This has invoked numerous studies,
e.g., Refs. [11–15], where new nonstatic solutions have

been considered. Overall the references to the inhomoge-
neous solutions in general relativity are quite extensive;
e.g., see Refs. [16,17] and references within. In this work
we are mainly motivated by the question of if an evolving
and nonstationary Universe can host a static event horizon.
The event horizon is a central object in the description

of a black hole, with the Schwarzschild solution being its
most prominent representative. The near horizon structure
of the latter is a product of a Rindler space and a two
sphere, which we write as Rindler� S2, and defines the
corresponding causal structure. Specifically, the Rindler
piece in the metric typically characterizes the event hori-
zon as a boundary of regions in spacetime from behind
which no causal signals can reach the observers sitting
far away at infinity. The Euclidean Rindler metric that
is obtained by substituting t ¼ �itE yields flat two-
dimensional Euclidean metric written in polar coordinates,
provided the angular variable has the correct periodicity. If
the periodicity is different, then the geometry would have a
conical singularity at the would-have-been horizon x ¼ 0.
Finally, the relation � ¼ ℏ�� between the periodicity ��
in Euclidean time tE, and the inverse temperature �, leads
towards the celebrated Hawking-Bekenstein black hole
temperature. Even though we discussed the temperature
in the context of vacuum Schwarzschild black holes, the
concept of a black hole temperature that owes its life to the
‘‘no conical singularity’’ demand is true even in the pres-
ence of matter because the near horizon geometry is always
Rindler-like. In this work we take one step further and
assume that a horizon and its underlying Rindler-like
structure in the near-horizon limit also exists in the time-
dependent and spherically symmetric case. In particular
we will assume that on the horizon itself the metric is
static; i.e., we postulate the existence of a local timelike
Killing field. This is in contrast to the Schwarzschild,
or Schwarzschild–de Sitter black holes where timelike
Killing fields are manifest in any point.
The rest of this work is organized as follows. First, we

shortly discuss the McVittie solution, analyze the general
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structure of the perfect fluid energy-momentum tensor,
the emerging baryon number conservation and the Euler
relativistic equations. Then we introduce the perfect fluid
isotropic condition and the perfect fluid equation of state
which constitute our basic equations for the corresponding
spherically symmetric metric components. Their solution
yields the corresponding spherically symmetric configura-
tion in the presence of a perfect fluid. We solve those
equations perturbatively, order by order, with a dimension-
less radial coordinate serving as an expansion parameter,
around the local Killing horizon. The Rindler metric on
this static surface serves as a boundary condition in our
iterative series solution, and defines the corresponding
causal structure.

A. The McVittie solution

One of the most prominent representatives of nonhomo-
geneous and nonstationary exact solutions of Einstein field
equations (adopting from this point onward the natural
units 16�GN ¼ c ¼ 1)

R �� � 1

2
g��R ¼ � 1

2
T �� (1)

is the McVittie line element, in its special k ¼ 0 case,
explicitly given by

ds2 ¼ �
�
1��

1þ�

�
2
dt2 þ ð1þ�Þ4aðtÞ2ðdr2 þ r2d�2Þ:

(2)

Here, � is a dimensionless quantity defined by

� ¼ m

2aðtÞr ; (3)

r is the radial coordinate and d�2 ¼ d�2 þ sinð�Þ2d�2 is
the solid angle on a 2-sphere. The corresponding metric is
an exact solution of Einstein field equations for any con-
stant m, provided the corresponding energy density is a
function of the time coordinate alone. It approaches the
FLRW universe in the � � 1 limit, and tends to the
Schwarzschild solution in the static case. Although admit-
ting those two tenable limit cases, it does not cover other
cases of interest in the interface between cosmology and
local black hole physics, and cannot be regarded as a
general problem solution for the following reasons:

(i) Although McVittie’s solution tends to the pure
FLRW solution in the far region, it falls short to
match the standard description in terms of a perfect
fluid in the near region. Specifically, any barotropic
equation of state P ¼ Pð�Þ, where � and P are the
energy density and isotropic pressure as measured in
the instantaneous rest frame of the fluid at the cor-
responding point, is incompatible with this solution.
In particular, assuming that the underlying matter is
described by the perfect fluid energy-momentum
tensor given by

T �� ¼ �ð�þ PÞU�U� � Pg��; (4)

whereU� is the four-velocity vector that satisfies the
normalization condition

U�U� ¼ �1; (5)

one is led towards � which is a function of time t,
implying that there is no P ¼ Pð�Þ equation of state.

(ii) McVittie’s line element is over-restrictive since it
prevents the hole from accreting, and enforces its
energy density to be exactly homogeneous on some
set of spatial slices.

Additional analysis of McVittie’s solution may be per-
formed by using the concept of the apparent horizon [18].
The latter is defined as a locus of vanishing geodesic
expansion, which in the context of the McVittie’s metric
[3] yields

1� 2m

r
�H2r2 ¼ 0; (6)

which expresses r as a function of t through the time
dependence of the Hubble parameter H. As time goes on
the area of the apparent horizon changes, in such a way so
that r� [the smaller root of Eq. (6)] moves inward as H
decreases with time towards its asymptotic de Sitter value,
while the larger root moves outward. In the limit t ! 1 as
the Hubble parameter tends to some asymptotic positive
value H ! H0 > 0, one may show that r ¼ r�, t ¼ 1 is a
regular event horizon. In the particularH0 ¼ 0 case, on the
other hand, the r ¼ r� surface does not acquire a straight-
forward meaning as an event horizon, due to soft singular-
ities of scalars constructed from quantities that involve two
derivatives of the Riemann tensor. In this work we deal
with a static event horizon.
To summarize, although the McVittie solution describes

a black hole, at least for positive H0, it still does not
encompass some effects and properties one would expect
for a physical black hole in a Universe full of matter or
radiation.

B. Setup and field equations

We now describe our basic assumptions and main equa-
tions that we follow below. In this work we consider a time-
dependent and spherically symmetric solution of Einstein
field equations (1) in the presence of perfect fluid Eq. (4).
We adopt the isotropic coordinates and consider, without
loss of generality, the following line element:

ds2 ¼ �Tðt; rÞdt2 þ Rðt; rÞðdr2 þ r2d�2Þ; (7)

where Tðt; rÞ and Rðt; rÞ are functions of the time t and the
radial coordinate r. Introducing a dimensionless variable x
and the characteristic mass scale m via

r ¼ m

2
ð1þ xÞ (8)
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we may rewrite the line element (7) as

ds2 ¼ �Tðt; xÞdt2 þm2Rðt; xÞ
4

ðdx2 þ ð1þ xÞ2d�2Þ;
(9)

where for simplicity we still follow the same notation
for the metric components as in Eq. (7). Recognizing the
fact that near a Schwarzschild black hole event horizon
the metric acquires a typical Rindler� S2 structure, we
assume that as we approach towards the surface x ¼ 0
the metric tends to

ds 2x!0 ’ � x2

4
dt2 þ 4m2ðdx2 þ d�2Þ; (10)

thereby capturing the causal structure associated with the
corresponding Rindler line element in the close vicinity to
the x ¼ 0 event horizon. We can easily convince ourselves
that the constant m coincides with the mass in the
Schwarzschild solution. The latter is obtained by replacing
aðtÞ in Eq. (2) with unity and tends to Eq. (10) in the x ! 0
limit. As we see below, in more general cases the constant
m does not acquire such simple meaning.

The line element (10) has no conical defects in its
Euclidean regime, once we have assumed that its
Euclidean time coordinate has the correct periodicity ��
given by

�� ¼ 8�m: (11)

Formally, the metric given by Eq. (10) serves as a boundary
condition and also as the zeroth order in our series solution

Tðt; xÞ ¼ x2

4
ð1þ xf1ðtÞ þ x2f2ðtÞ þ � � �Þ;

Rðt; xÞ ¼ 16ð1þ xg1ðtÞ þ x2g2ðtÞ þ � � �Þ;
(12)

where fnðtÞ, gnðtÞ (n ¼ 1; 2; . . . ) are yet undetermined
functions (to be referred to below as harmonics). An ex-
pansion around a black hole horizon, in a noncosmological
context, has been performed in Ref. [19]. Interestingly, as
we show below, under the assumption that the line element
(10) on the horizon has no conic singularity, i.e., satisfies
Eq. (11), the subsequent terms in the expansion must
respect no conic singularity as well. In other words, assum-
ing Eq. (11) for n ¼ 0 terms is sufficient to make all other
n > 0 terms periodic in the Euclidean time coordinate.

We now derive our main equations given by Eqs. (17)
and (18) below, utilized to obtain the analytic expressions
for the functions fnðtÞ, gnðtÞ which were already defined in
the metric expansion (12). The obtained solution corre-
sponds to a time-dependent and spherically symmetric
radial flow of a perfect fluid, such that the four-velocity
vector has a nonvanishing radial component Ur � 0, and
may be parametrized according to

U� ¼
�
� coshð’ðt; rÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

Tðt; rÞp ;
sinhð’ðt; rÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðt; rÞp ; 0; 0

�
(13)

once the rapidity ’ðt; rÞ has been introduced. Plugging
the latter into Eq. (4) one obtains explicit expressions for
the corresponding components of the perfect fluid energy-
momentum tensor, expressed through the following useful
combinations A, B, C, D, defined by

A ¼ �2Gt
t ¼ T t

t ¼ �cosh2ð’ðt; rÞÞ þ Psinh2ð’ðt; rÞÞ;
B ¼ 2Gr

r ¼ �T r
r ¼ �sinh2ð’ðt; rÞÞ þ Pcosh2ð’ðt; rÞÞ;

C ¼ 2G�
� ¼ 2G�

� ¼ �T �
� ¼ �T �

� ¼ P;

D ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðt; rÞ
Rðt; rÞ

s
Gt

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðt; rÞ
Rðt; rÞ

s
T t

r

¼ ð�þ PÞ sinhð’ðt; rÞÞ coshð’ðt; rÞÞ: (14)

Here, we also utilized Einstein equations, i.e., proportion-
ality between the Einstein tensor G�

� and the energy-
momentum tensor T �

� . The specific algebraic structure
of the perfect fluid energy momentum tensor implies that
the emerging combinations A, B,C,D are not independent.
In fact, they are related by

AB�D2 ¼ CðA� Bþ CÞ: (15)

Now, assuming the spacetime metric admits the form given
by Eq. (9), one views Eq. (15), as an equation for the metric
components Tðt; xÞ and Rðt; xÞ. Formally speaking, by elim-
inating �, P, and ’ we have inverted the equations (14)
and then by using the Einstein equations we ended up with
the so-called perfect fluid isotropic condition. This condition
was originally obtained by Walker [20], and expresses the
necessary condition on the metric to describe spherically
symmetric flow of a perfect fluid. Other works where time-
dependent spherically symmetric configuration have been
studied may be found at Refs. [21–23]. We should mention
that in case we insist on the comoving solutions, which in
principle are always possible for a single-component
perfect fluid, Eq. (15) is solved for T t

r ¼ 0 and T r
r ¼ T �

�

which lead to Ur ¼ 0. In this work, however, we consider
solutions which are easier to obtain and study in noncomov-
ing coordinates. Numerous works, including the Lemaı̂tre-
Tolman-Bondi dust solution [9], where the comoving
coordinates are considered may be found in the literature.
The perfect fluid isotropic condition is supplemented by

a matter equation of state, which in this work is chosen
as the linear barotropic

P ¼ w�; (16)

where w is some constant usually bounded between plus
and minus unity. By utilizing the combinations that were
defined in Eq. (14), the equation of state (16) may be
rewritten as
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C ¼ wðA� Bþ CÞ; (17)

while the isotropic condition (15) acquires a simpler form

AB�D2 ¼ C2

w
; (18)

for w � 0. Clearly, the w ¼ 0 case should be tackled
with Eq. (15). Together the Eqs. (17) and (18) constitute
a system of two basic coupled equations for the two
unknown functions Tðt; xÞ and Rðt; xÞwhich describe radial
perfect fluid flow subject to the corresponding equation of
state. Those equations are difficult to solve even numeri-
cally and in the remainder of the paper we will solve them
perturbatively order by order around the local horizon,
according to the scheme mentioned near Eq. (12).

Finally, let us consider the underlying dynamics of the
perfect fluid matter, which is governed by the inherent
Bianchi identity and the corresponding energy-momentum
conservation equation

r�T �� ¼ 0: (19)

In case of perfect fluid energy-momentum tensor (4) the
latter may be rewritten as follows:

ð�þ PÞðU�r�U
� þU�r�U

�Þ
þ r�ð�þ PÞU�U� þr�Pg

�� ¼ 0: (20)

The particular form of the energy-momentum tensor Eq. (4)
implies that its divergence, given explicitly by Eq. (20), is a
sum of two terms. Specifically, one term is parallel to the
four-velocity vector while the other is normal to it. In fact,
projecting Eq. (20) on U� we find the component that is
parallel to the vector U�

r�ð�U�Þ þ Pr�U
� ¼ 0; (21)

which is known as the baryon number conservation
equation. The other term, known as the relativistic Euler
equation, is orthogonal to the four-velocity and is explicitly
given by

ð�þ PÞU�r�U
� þr�PðU�U� þ g��Þ ¼ 0: (22)

Let us notice that Eq. (21) can be written as a vanishing
divergence of the current j�

r�j
� ¼ 0; (23)

once we have introduced the proper density n (number of
particles per volume)

j� ¼ nU� (24)

according to

n ¼ e
R

d�
�þPð�Þ: (25)

In the particular case of a linear barotropic equation of state
given by Eq. (16), the proper density n acquires the follow-
ing simpler form:

n ¼ �
1

1þw: (26)

As a final remark we note that once the metric and the
corresponding Einstein tensor have been worked out, the
following expressions for the rapidity ’ðt; rÞ

sinh2ð’ðt; rÞÞ ¼ B� C

A� Bþ 2C
;

cosh2ð’ðt; rÞÞ ¼ Aþ C

A� Bþ 2C
;

(27)

may be utilized to determine the perfect fluid radial flow.

II. NO-GO THEOREM FOR THE STATIC CASE

We now prove that the only perfect fluid P ¼ w� static,
spherically symmetric black hole solution is the
Schwarzschild solution with vanishing P and �. For sim-
plicity, we discuss first the w ¼ 0 case and turn to w � 0
case afterwards. Then, we also consider the static case limit
which proves to be useful when compared to the time-
dependent case in the following.

A. The w¼0 case

Let us first consider the simpler static case with a
vanishing proper pressure P ¼ 0, which corresponds to
the w ¼ 0 case. Assuming the spherically symmetric line
element given by Eq. (7) let us define for convenience the
functions fðrÞ, gðrÞ

TðrÞ ¼ efðrÞ; RðrÞ ¼ egðrÞ (28)

and their derivatives with respect to the radial marker r

f0ðrÞ ¼ FðrÞ; g0ðrÞ ¼ GðrÞ: (29)

Substituting now the corresponding metric components
into our basic equations (15) and (17) we are driven
towards the following first order differential equations for
FðrÞ and GðrÞ

2Fð2þ rFÞ þ 2ðGþ rðF0 þG0ÞÞ ¼ 0;

2Fð2þ rGÞ þGð4þ rGÞ ¼ 0:
(30)

Solving those gives rise to

FðrÞ ¼ 8m

4r2 �m2
; GðrÞ ¼ � 4m

rðmþ 2rÞ ; (31)

and the corresponding Schwarzschild line element

ds2Sch ¼ �
�
1� m

2r

1þ m
2r

�
2
dt2 þ

�
1þ m

2r

�
4ðdr2 þ r2d�2Þ:

(32)

This proves that the only static, spherically symmetric
solution with dust perfect fluid is the dustless
Schwarzschild solution.
Notice that in this simple case the proof did not rely on

the assumption that a local Killing horizon exists. In the
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following w � 0 case, however, we are not able to prove
our theorem without assuming the existence of a local
Killing horizon.

B. The w � 0 case

Now let us consider the more interesting w � 0 static
case, with a nonvanishing pressure. In such case our basic
equations (17) and (18) are more involved, and we are not
able to solve our basic equations analytically. Nevertheless,
assuming the existence of a local Killing horizon at x ¼ 0
dictates the Rindler� S2 metric given by Eq. (10) as x ! 0.
This fixes the zeroth order terms in the expansion (12) and
proves to be useful for a construction of our solution as a
power series in x, around x ¼ 0. Specifically, we assume
that the functions FðrÞ, GðrÞ, defined above, admit the
following expansion:

F ¼ 	�1

x
þ 	0 þ 	1xþ 	2x

2 þ � � � ;
G ¼ �0 þ �1xþ �2x

2 þ � � � ;
(33)

where 	n�1 and �n (n ¼ 0; 1; 2; . . . ) are the corresponding
constants that we find order by order by plugging the series
(33) into our basic equations (17) and (18). The latter may
be written as

Pð1ÞðrÞ þ wPð2ÞðrÞ ¼ 0; P2
ð1ÞðrÞ þ wPð3ÞðrÞ ¼ 0;

(34)

respectively, where Pð1ÞðrÞ, Pð2ÞðrÞ, Pð3ÞðrÞ are w indepen-

dent quantities that are defined according to

Pð1ÞðrÞ ¼ ð2þ rFÞFþ 2ðGþ rðF0 þG0ÞÞ;
Pð2ÞðrÞ ¼ ð2� rFÞFþ 10Gþ 2rðFGþG2 � F0Þ þG0;

Pð3ÞðrÞ ¼ ð4ðFþGÞ þ 2rFGþ rG2Þð8Gþ rG2 þ 4rG0Þ;
(35)

where the prime denotes derivative with respect to r. We can
straightforwardly show that the previous solution in the
w ¼ 0 case is still a solution of Eq. (34) for any w � 0.
Furthermore, using the small x expansion we can verify that
in fact this is the only solution, implying that Pð1ÞðrÞ, Pð2ÞðrÞ
and Pð3ÞðrÞ all vanish. Having solved Eq. (34) for the lowest
order, i.e., 	�1 and �0, we proceed to the next, and so on
solving each time for the leading terms. Following this
procedure we are able to solve for all the following orders,
and we bring here some of the terms

	�1 ¼ 1

m
; 	0 ¼ � 1

2m
; 	1 ¼ 1

4m
;

	2 ¼ 2

m
; �0 ¼ � 1

m
; �1 ¼ 3

2m
;

�2 ¼ � 7

4m
:

(36)

From this expansion we can learn that it is w independent
and thus describes a Schwarzschild black hole. To summa-
rize, we have proven that any static metric with a Killing
horizon in the presence of a perfect fluid is necessarily a
Schwarzschild solution with a vanishing proper energy den-
sity and a vanishing proper pressure. Interestingly, in the
w ¼ 0 case, considered before, this claim holds even if we
do not assume the Killing horizon exists at x ¼ 0.

C. Perfect fluid in a static black hole background

Now let us consider the perfect fluid flow in the static
case limit [24], which provides some useful insights into
the time-dependent case that follows afterwards. In the
static case the relativistic Euler equation (22) is character-
ized by the time-independent metric components Tðt; xÞ ¼
TðxÞ and Rðt; xÞ ¼ RðxÞ and by the fact that the fluid is
static. This dictates that the four-velocity vector U� is
purely timelike

U0 ¼ ð�g00Þ�1
2; U
 ¼ 0 for 
 � 0 (37)

and also leads to the following identity:

��
00 ¼ � 1

2
g�� @g00

@x�
: (38)

Utilizing now Eqs. (37) and (38) one may rewrite the
relativistic Euler equation given by Eq. (22), for the space
components � ¼ i (i ¼ 1, 2, 3), as the following:

P;i ¼ ��þ P

T
T;i (39)

(for � ¼ 0 the relativistic Euler equation is satisfied trivi-
ally in the static case). The latter is nothing but the non-
relativistic equation for hydrostatic equilibrium in static
gravitational field and has few interesting implications. In
particular, assuming that such a spacetime is also inhabited
by a static black hole, then its event horizon (which also
coincides with its Killing horizon in this static case) is
identified by Tjrh ¼ 0 where rh stands for the horizon’s

coordinate. We notice now that under the assumption that
ð�þ PÞjrh � 0 and finite T;ijrh on the horizon rh, Eq. (39)

implies that the pressure gradient is necessarily divergent.
Therefore, avoiding this unphysical divergence calls for a
vanishing of the combination

ð�þ PÞjrh ¼ 0 (40)

on the horizon rh. In case we also insist on the equation of
state (16), then we are also driven towards a vanishing
proper energy density on the horizon

�jrh ¼ 0: (41)

As we will see below, the severe restriction given by
Eq. (40) is elegantly removed once the time dependence
is introduced.
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III. DYNAMICS: HARMONIC EXPANSION

A. First harmonic

We now turn to discuss the time-dependent solutions.
As we have mentioned above we hereby assume that our
spacetime hosts a local Killing horizon, implying that as
x ! 0 the components of our metric (9) admit the expan-
sion given by Eq. (12). In particular, in the leading order
the corresponding line element is given by Eq. (10). The
governing equations for the first harmonics, f1ðtÞ and g1ðtÞ,
are found once we plug the expansion (12) into our basic
equations (17) and (18) and keep the leading order in each
one accordingly. This way, we obtain the following equa-
tions for the first harmonics:

1þ wþ ð1� wÞf1ðtÞ þ wg1ðtÞ � 16m2g001 ðtÞ ¼ 0; (42)

1þ f1ðtÞ � 16m2g001 ðtÞ ¼ 0; (43)

which are valid for any choice of the parameter w. The
latter are linear and admit an analytical solution explicitly
given by

g1ðtÞ ¼ �1þ pe!t þ qe�!t;

f1ðtÞ ¼ �2þ pe!t þ qe�!t;
(44)

where the Euclidean angular frequency ! has been intro-
duced according to

! ¼ 1=4m: (45)

Here we notice that in order for our expansion to stay valid,
it is actually needed that the following product remains
small:

xe�!t � 1: (46)

From the first order terms (44) given above, we can already
learn about one of the major features of our time-dependent
solution which holds to higher harmonics as well.
Particularly, it has no conical singularity once continued
to the Euclidean time via t ¼ �itE. In fact, keeping in
mind that the correct periodicity (11) of the Euclidean
metric (10) is assumed to hold, we can check by substitu-
tion that a shift ��,

� i!ðtE þ��Þ ¼ �i!tE � 2�i (47)

gives rise to the 2�i shift.
Dropping the time dependence by considering the p ¼

q ¼ 0 case simply brings us back to the Schwarzschild,
and only p � 0, q � 0 can go beyond. In fact, calculating
the proper energy density � on the horizon up to the first
order yields

� ¼ � 24!2pqð1� 3wÞ
1þ w

þOðxÞ (48)

that depends on the product pq. This just reflects the fact
that our solution describes a static horizon, and therefore

any shift of the time coordinate t ! tþ �t results in p !
pe!�t, q ! qe�!�t so that the product pq ! pq stays
unchanged. The nonvanishing proper energy density on
the horizon, in this time-dependent case, is in contrast
with our previous comment near Eq. (41), where we have
indicated that the proper density � should vanish in a static
case.
Interestingly, the first harmonic may be fixed by an

alternative demand that � and P are nonsingular on the
horizon, without providing any particular equation of state.
To this end, let us calculate to the leading order the proper
energy density, the pressure, and the perfect fluid isotropic
condition (15)

� ¼ 4!2ð�1þ f1ðtÞ � g1ðtÞÞ
x

þOðx0Þ; (49)

P ¼ 4!2ð1þ f1ðtÞ � 1
!2 g

00
1 ðtÞÞ

x
þOðx0Þ; (50)

AB�D2 � CðA� Bþ CÞ

¼ � 16!4ð�1þ f1ðtÞ � g1ðtÞÞð1þ f1ðtÞ � 1
!2 g

00
1 ðtÞÞ

x2

þOðx�1Þ; (51)

respectively. Assuming now the leading terms in Eqs. (49)
and (50) vanish, we are guaranteed that perfect fluid iso-
tropic condition is satisfied. The perfect fluid is nonstatic
by construction; see Eq. (13). Furthermore, Eq. (27) then
tells us that associated with our solution is the rapidity

sinhð2’ðt; rÞÞ ¼ p2e2!t � q2e�2!t

2pq
þOðxÞ: (52)

The important point is not that T�� is nondiagonal, but that

there is a radial current or flow represented by this rapidity.
But this is not all there is; the physical quantities such as

proper energy density � are related to the Ricci tensor,
which involves second order metric derivatives. Therefore,
it seems that we must go even further, at least to the second
harmonic for additional contribution.

B. Second harmonic

Before we consider the full set of equations for the
second order terms f2ðtÞ and g2ðtÞ, let us try to learn how
the restriction (40) is removed once the time dependence is
introduced. To this end, we consider the expansion Eq. (12)
up to the second order, with the first harmonic (44) plugged
in. This way, we can learn about the role of just the perfect
fluid constraint (18), but still without specifying an equa-
tion of state. Of particular interest are the proper energy
density, and the proper pressure that may be expressed up
to the second order terms, according to
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� ¼ 12!2

�
11

4
� pe!t � qe�!t � pqþ f2ðtÞ � g2ðtÞ

�
;

(53)

P ¼ 4!2

�
� 23

4
þ 9p

2
e!t þ 9q

2
e�!t � 3pqþ 3f2ðtÞ

þ g2ðtÞ � 1

!2
g002 ðtÞ

�
: (54)

Keeping in mind that the sum �þ P is significant in the
static case, we bring here the corresponding expression up
to the second order

�þ P ¼ 2!2

�
5þ 3pe!t þ 3qe�!t � 12pqþ 12f2ðtÞ

� 4g2ðtÞ � 2

!2
g002 ðtÞ

�
(55)

and also the static case limit of the expressions given by
Eqs. (53)–(55)

� ¼ 3!2ð11þ 4f2 � 4g2Þ;
P ¼ !2ð�23þ 12f2 þ 4g2Þ;

�þ P ¼ 2!2ð5þ 12f2 � 4g2Þ:
(56)

Interestingly, there is a close relation between the perfect
fluid isotropic condition (18) and the vanishing of the
mentioned combination �þ P ¼ 0. Specifically, as may
be verified with the help of the MathTensor package (some
of the expressions are too long to be written here explicitly)
the perfect fluid isotropic condition is equivalent to the
condition ð�þ PÞjrh ¼ 0 in the static case. In such case

characterized by f2ðtÞ ¼ f2 and g2ðtÞ ¼ g2, where f2 and
g2 are some constants, those two conditions imply

g2 ¼ 5

4
þ 3f2; � ¼ �P ¼ 6!2ð3� 4f2Þ; (57)

still without specifying a concrete equation of state. An
attempt to impose on top of it an equation of state of the
type P ¼ w� will take us back to Eq. (36) and to the
corresponding coefficients given f2 ¼ 3

4 and g2 ¼ 7
2 , which

brings us back to Eq. (41).
Once t dependence is introduced, imposing �þ P ¼ 0

leaves us with a full differential equation for g2ðtÞ. Had we
imposed also P ¼ w� we would have faced another full
differential equation. In fact, the relevant equations for
g2ðtÞ and f2ðtÞ are obtained by substituting the near horizon
expansion (12) with already known first order terms (44),
into our basic equations (17) and (18). Keeping the leading
terms up to the second order we derive the equations for the
corresponding f2ðtÞ and g2ðtÞ. Quite generally, Eq. (17)
does not comprise any derivatives of the function f2ðtÞ,
which allows us to express the latter through g2ðtÞ and its
derivatives according to

f2ðtÞ ¼ 1

12ð�1þ wÞ
�
�23� 33!þ 6pð3þ 2wÞe!t

þ 6qð3þ 2wÞe�!t þ 12pqð�1þ wÞ
þ 4ð1þ 3wÞg2ðtÞ � 4

!2
g002 ðtÞ

�
: (58)

Plugging this relation into the corresponding leading order
of the perfect fluid isotropic condition (18), we are led
towards the following differential equation for g2ðtÞ:
� ws00ðtÞ2 þ 2!2ð1þ wÞ2sðtÞs00ðtÞ �!2ð1� wÞ2s0ðtÞ2

� 4!4ð1þ wÞ2sðtÞ2 ¼ 0; (59)

where

sðtÞ ¼ 14� 10ðpe!t þ qe�!tÞ þ 3ðp2e2!t þ q2e�2!tÞ
� 4g2ðtÞ: (60)

In a particular case of a dust perfect fluid, associated with
w ¼ 0, the latter can be furthermore simplified

d2

dt2

ffiffiffiffiffiffiffiffi
sðtÞ

p
¼ !2

ffiffiffiffiffiffiffiffi
sðtÞ

p
: (61)

The solution of Eq. (59) is evidently given by

sðtÞ ¼ �4	0ð2ð1� wÞ þ ð1þ wÞ2e2!ðt��0Þ

þ e�2!ðt��0ÞÞ; (62)

which according to Eqs. (58) and (60) yields explicit
expressions for the second order terms

f2ðtÞ ¼ 3

4
þ pq

�
1� �

1þ 3w

2ð1þ wÞ
�
� 3

2
ðpe!t þ qe�!tÞ

þ 3

4
k

�
p2

�
e2!t þ q2

1� �
e�2!t

�
;

g2ðtÞ ¼ 7

2
þ �pq

3ð1� wÞ
2ð1þ wÞ �

5

2
ðpe!t þ qe�!tÞ

þ 3

4
k

�
p2

�
e2!t þ q2

1� �
e�2!t

�
; (63)

where the constants k, �, and � have been introduced
according to

2	0 ¼ 3

2
�pq

4	0

3
e�2!�0 ¼

�
k

�
� 1

�
2
p2

4	0

3
e2!�0 ¼

�
k

1� �
� 1

�
2
q2: (64)

The coefficients k, �, � are not independent and, in fact,
are found to respect the following consistency relation:

�2 ¼ 1� ð1� kÞk
ð1� �Þ� : (65)
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We now discuss the physical quantities, such as the
energy density and the rapidity associated with our solu-
tion. In fact, the latter is nontrivial since we allow an
accreting solution with nonvanishing radial component of
the four-velocity vector, as specified by Eq. (13). The
proper energy density on the horizon and the rapidity are
given now by

� ¼ � 24!2�pq

1þ w
þOðxÞ; (66)

sinhð2’ðt; rÞÞ

¼ q2�ð1� k� �Þe�2!t þ p2ð�� kÞð�� 1Þe2!t

2�pq�ð�� 1Þ
þOðxÞ; (67)

respectively. As expected, since the proper density and the
rapidity depend on the second derivatives of the metric, the
obtained relations (66) and (67) differ from the previously
obtained expressions (48) and (52).

From expressions (66) and (67) we learn that (i) The
local Killing horizon is nonsingular at x ¼ 0 for any con-
stant w (except w ¼ �1). (ii) The local Killing horizon
hosts nonvanishing energy density. (iii) The combination
which appears to be of physical significance is �pq and not
just pq. While (i) and (ii) are evident from Eq. (66),
(iii) has additional implications and deserves further dis-
cussion. In fact, as we demonstrate below, various scalar
invariants are all proportional to �pq implying also that the
physical quantities � and P are proportional to this combi-
nation as well. This suggests that the expression pe!t þ
qe�!t which appears in Eq. (44) can in fact be gauged
away completely, i.e., p, q ! 0, provided we insist �pq !
const. Specifically, after taking this limit, the first order
term given by Eq. (44) turns into

f1ðtÞ ¼ �1; g1ðtÞ ¼ �2: (68)

In the second harmonic, given by Eq. (63), taking the
product p, q ! 0 but insisting on keeping the product �pq
constant we are driven towards �� 1

pq , that should agree

with the consistency relation (65) between �, p and q.
Under the redefinition

� ! �

pq
;

1� �

�
!

�
1� �

�

�
q2

p2
;

k2

�ð1� �Þ !
k2

�ð1� �Þ
1

p2q2

(69)

the redefined consistency relation in the p, q ! 0 limit
reads

�2 ¼ k2

ð1� �Þ� (70)

for 0<�< 1. Furthermore, utilizing the freedom of
choice of coordinates t ! tþ �t, that does not change �,

without loss of generality we can always choose k
� e

2!�t ¼
k

1�� e
�2!�t. This way the second harmonic may acquire the

form

f2ðtÞ ¼ 3

4
� 1þ 3w

2ð1þ wÞ�þ 3

2
� coshð2!tÞ;

g2ðtÞ ¼ 7

2
þ 3ð1� wÞ

2ð1þ wÞ�þ 3

2
� coshð2!tÞ;

(71)

while the rapidity is given by

sinhð2’ðt; rÞÞ ¼ � sinhð2!tÞ þOðx2Þ: (72)

C. Third harmonic and curvature scalars

We may follow the general prescription to the third
(n ¼ 3) order. Specifically, let us substitute the metric
components given by Eq. (12), such that the only present
terms are of order 3 and lower. Keeping in mind that the
lower orders n ¼ 1 and n ¼ 2 are already known and are
given by Eqs. (68) and (71), respectively, we expect to
obtain equations for f3ðtÞ and g3ðtÞ. Similarly to what we
have done in the lower orders, Eq. (17) allows us to express
g3ðtÞ through f3ðtÞ and its derivatives. Plugging the result-
ing expression for g3ðtÞ into our second basic equation (18)
we end up with a second order differential equation for
f3ðtÞ. Solving this equation for f3ðtÞ yields

f3ðtÞ ¼
�
� 1

2
þ 1þ 3w

1þ w
�

�
� 1

3
ð1þ 3wÞðe!tð2p3ð1þ wÞ

þ q3ð1� wÞÞ þ e�!tðp3ð1� wÞ þ 2q3ð1þ wÞÞÞ
� 3� coshð2!tÞ þ 1

3
ð3þ wÞð1þ 3wÞ

� ðp3e
3!t þ q3e

�3!tÞ; (73)

g3ðtÞ ¼ �
�
11

2
þ 9ð1� wÞ

2ð1þ wÞ�
�
� ð1� wÞðe!tð2p3ð1þ wÞ

þ q3ð1� wÞÞ þ e�!tðp3ð1� wÞ þ 2q3ð1þ wÞÞÞ
� 9

2
� coshð2!tÞ þ 1

3
ð3þ wÞð1þ 3wÞ

� ðp3e
3!t þ q3e

�3!tÞ; (74)

where p3 and q3 are some constants.

IV. HIGHER ORDER INVARIANTS, BARYON
NUMBER CONSERVATION EQUATION, GENERAL

STRUCTURE

A. Higher order invariants

Is the horizon surface at x ¼ 0 singular? To answer this
question one may calculate some curvature scalars and
check their regularity on the horizon. In fact, utilizing the
MathTensor package we can work out the following
expressions for the various curvature scalars R,
R��R��, R��
R��
 along the metric Eq. (9):
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R ¼ 24!2�ð1� 3wÞ
1þ w

þ 32!2ð1� 3wÞWðtÞxþOðx2Þ;
(75)

R ��R�� ¼ 576!4�2ð1þ 3w2Þ
ð1þ wÞ2

þ 1536!4�ð1þ 3w2Þ
1þ w

WðtÞxþOðx2Þ;
(76)

R��
R��


¼ 252!4ð4�ð1þwÞ þ ð1þwÞ2 þ �2ð9þ 6wþ 9w2ÞÞ
ð1þwÞ2

þ 512!4ð2ð1þwÞ þ �ð9þ 6wþ 9w2ÞÞ
1þw

WðtÞx
þOðx2Þ; (77)

where WðtÞ is given by

WðtÞ ¼ p3ð2ð1þ wÞe!t þ ð1� wÞe�!tÞ þ q3ðð1� wÞe!t

þ 2ð1þ wÞe�!tÞ: (78)

As expected, those higher order invariants are regular on
the local Killing horizon x ¼ 0 and its close vicinity,
signaling that there is no physical singularity in our
solution.

B. Baryon number conservation equation

The perfect fluid isotropic condition (17) and the asso-
ciated equation of state (18) form the basic equations for
the metric components. The perfect fluid equations of
motion, on the other hand, are governed by the inherent
energy-momentum conservation (19) and the four-velocity
vector normalization condition (5). In fact, according to
our discussion above those lead to the Euler and baryon
number conservation equations, given by Eqs. (22) and
(23), respectively. Consequently, it is possible to perform
a consistency check, by plugging our solution into the
right-hand side of the baryon number conservation
equation

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
�

1
1þwU�Þ ¼ 0 (79)

keeping in mind that it should vanish along our solution. In
our case of study, the line element and the four-velocity
vector are given by Eqs. (7) and (13), respectively, and
Eq. (79) acquires the following form:

r2ð ffiffiffiffi
R

p
�

1
1þw coshð’ÞÞ;t þ ð ffiffiffiffi

T
p

r2�
1

1þw sinhð’ÞÞ;r ¼ 0: (80)

Plugging in now the harmonics up to third order, we arrive
at the following:

4p2q2ð�1þ �Þ2�2

�
�2 � 1þ ð�1þ kÞk

ð�1þ �Þ�
�
¼ 0; (81)

which holds thanks to Eq. (65) we obtained before. As
expected, we verify that our solution respects the baryon
number conservation equation and that the latter imposes
no further restrictions at the zeroth order.

C. General structure

Let us assume that we have calculated the terms in our
expansion (12) of order n� 1 and lower. Writing next the
equation of state (17) for fnðtÞ and gnðtÞ and analyzing it,
one can see it admits the following properties: (i) it doesn’t
comprise time derivatives of fnðtÞ and (ii) it is linear with
respect to fnðtÞ. Similarly to the expression (58) this allows
us to represent fnðtÞ through gnðtÞ and its derivatives.
Finally substituting the latter into the other Eq. (18) one
ends up with a linear equation for gnðtÞ. Carrying out this
step one may obtain the third order terms f3ðtÞ and g3ðtÞ in
the expansion (12). Those are given explicitly by Eqs. (73)
and (74), respectively.
At each order n of x two linear differential equations for

fnðtÞ and gnðtÞ are introduced. This suggests the following
double series structure:

Tðt; xÞ ¼ 1

4
x2

X1
n¼0

fnðtÞxn; Rðt; xÞ ¼ 16
X1
n¼0

gnðtÞxn;

(82)

such that

fnðtÞ ¼
Xn
m¼0

aðnÞm e�m!t; gnðtÞ ¼
Xn
m¼0

bðnÞm e�m!t: (83)

The above structure can be put into the alternative form

Tðt; xÞ ¼ 1

4
x2

X1
m¼0

amðxÞe�m!t;

Rðt; xÞ ¼ X1
m¼0

bmðxÞe�m!t:

(84)

Note that the explicit Euclidean t periodicity has not
really gone away; apart from the transformation itself, it
enters now to the circumferential radius.

V. SUMMARY

In this paper, we have proven the existence of general
relativistic solutions describing black holes embedded in
accreting perfect fluid, and demonstrated the phenomenon
for the class of P ¼ w� equations of state. Obviously, by
simply failing to respect the assumed equation of state, the
well known McVittie solution does not fall into this cate-
gory. A perturbative analysis has been performed, and
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explicit solutions for the corresponding metric components
have been obtained. While counterintuitively admitting a
local timelike Killing vector on the event horizon itself, the
various black hole configurations are necessarily time

dependent (thereby avoiding a well known no-go theorem)
away from the horizon. Consistently, Hawking’s imaginary
time periodicity is globally manifest on the spacetime
manifold.
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Quantum Gravity 28, 164002 (2011).

[18] S. A. Hayward, Phys. Rev. D 49, 6467 (1994).
[19] B. Krishnan, Classical Quantum Gravity 29, 205006

(2012).
[20] A. G. Walker, Q. J. Math os-6, 81 (1935).
[21] G. C. McVittie and R. J. Wiltshire, Int. J. Theor. Phys. 16,

121 (1977).
[22] D. Ray, Int. J. Theor. Phys. 17, 153 (1978).
[23] W.B. Bonnor and H. Knusten, Int. J. Theor. Phys. 32,

1061 (1993).
[24] S. Weinberg, in Gravitation and Cosmology: Principles

and Applications of the General Theory of Relativity
(John Wiley & Sons, New York, 1972).

AHARON DAVIDSON, SHIMON RUBIN, AND YOSEF VERBIN PHYSICAL REVIEW D 86, 104061 (2012)

104061-10

http://dx.doi.org/10.1103/PhysRevD.58.064006
http://dx.doi.org/10.1088/0264-9381/16/4/012
http://dx.doi.org/10.1088/0264-9381/16/4/012
http://dx.doi.org/10.1088/0264-9381/16/10/310
http://dx.doi.org/10.1103/PhysRevD.81.104044
http://dx.doi.org/10.1103/PhysRevD.81.104044
http://dx.doi.org/10.1103/RevModPhys.82.169
http://dx.doi.org/10.1103/RevModPhys.82.169
http://dx.doi.org/10.1103/PhysRevD.78.024008
http://dx.doi.org/10.1103/PhysRevD.78.024008
http://dx.doi.org/10.1016/j.physletb.2008.11.067
http://dx.doi.org/10.1103/PhysRevD.84.044045
http://dx.doi.org/10.1103/PhysRevD.84.044045
http://dx.doi.org/10.1103/RevModPhys.17.120
http://dx.doi.org/10.1103/RevModPhys.17.120
http://dx.doi.org/10.1103/RevModPhys.18.148
http://dx.doi.org/10.1086/151054
http://dx.doi.org/10.1086/151054
http://dx.doi.org/10.1088/0264-9381/17/14/309
http://dx.doi.org/10.1088/0264-9381/17/14/309
http://dx.doi.org/10.1023/A:1018855621348
http://dx.doi.org/10.1023/A:1018855621348
http://dx.doi.org/10.1073/pnas.20.3.169
http://dx.doi.org/10.1073/pnas.20.3.169
http://dx.doi.org/10.1007/BF01608547
http://dx.doi.org/10.1103/PhysRevD.12.2941
http://dx.doi.org/10.1103/PhysRevD.12.2941
http://dx.doi.org/10.1007/BF02872099
http://dx.doi.org/10.1007/s10714-005-0119-7
http://dx.doi.org/10.1007/s10714-005-0119-7
http://dx.doi.org/10.1103/PhysRevD.84.104047
http://dx.doi.org/10.1103/PhysRevD.84.104047
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1103/PhysRevD.81.044017
http://dx.doi.org/10.1103/PhysRevD.81.044017
http://dx.doi.org/10.1103/PhysRevD.81.124038
http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20617.x
http://dx.doi.org/10.1088/0264-9381/28/16/164002
http://dx.doi.org/10.1088/0264-9381/28/16/164002
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://dx.doi.org/10.1088/0264-9381/29/20/205006
http://dx.doi.org/10.1088/0264-9381/29/20/205006
http://dx.doi.org/10.1093/qmath/os-6.1.81
http://dx.doi.org/10.1007/BF01810774
http://dx.doi.org/10.1007/BF01810774
http://dx.doi.org/10.1007/BF00686957
http://dx.doi.org/10.1007/BF01215311
http://dx.doi.org/10.1007/BF01215311

