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Rainbow, glory and orbiting scattering are usually described by the properties of the classical deflection

function related to the real part of the quantum mechanical scattering phase shift or by the diffractive

pattern of the quantum mechanical cross sections. Here we show that the case of orbiting scattering of

massless spin 0, 1 and 2 particles from Schwarzschild black holes can be characterized by a sudden rise in

jRlj2 at a critical angular momentum lC, which we show corresponds to the unstable circular orbits of

these particles. For the cases s ¼ 0, 2, we attempt a new interpretation of the Regge-Wheeler potential by

identifying the quantum mechanical corrections to the effective potential of massless particles. We probe

into the black hole scattering by using numerical and semi-analytical methods which give very good

agreements with the exact numerical results. The limitations of previously used approximations as

compared to the exact and semi-analytical results are discussed.
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I. INTRODUCTION

Over the last four decades, the physics of particle scat-
tering from different kinds of black holes was one of the
most active topics of strong gravitational fields. Apart from
the quasinormal modes which, in principle, can be identi-
fied as the poles of the corresponding black hole scattering
matrix, the behavior of the cross section with respect to the
scattering angle is one of the most interesting features in
this area. The key issues around which the physics of black
hole scattering centers are related to phenomena such as
glory, orbiting (or spiralling), rainbow and super-radiant
scattering. One should note that these features are observed
experimentally and studied extensively theoretically in
nucleus-nucleus scattering. It is gratifying to see similar
phenomena occurring in black hole scattering [1]. In the
pioneering papers of Ford and Wheeler [2], using semi-
classical arguments, a connection between the classical
rainbow, glory and orbiting phenomena was made with
their quantum mechanical counterparts. Starting with a
procedure as proposed by Mott and Massey [3] which
gave the classical cross section �cl ¼ �semicl, the authors
noticed that the classical deflection function can be written
in terms of the quantum mechanical scattering phase shift
as�ðlðbÞÞ ¼ 2d½<e�l�=dl, where l is the angular momen-
tum and b the impact parameter. For particles scattered into
the solid angle �ð�;�Þ, the cross sectional area can be
written as, d� ¼ bdbd�, so that the differential cross
section is proportional to jdb=d�j= sinð�Þ. The classical
angular momentum is L ¼ bp. Going over to the quantum
mechanical case, if we now consider the de Broglie wave-
length � ¼ k�1 of the particle to be small compared to the

range of the force, we may write, b ¼ L=p ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=k.
In fact, while working with semiclassical approximations
such as the Wentzel-Kramers-Brillouin (WKB), one must
replace lðlþ 1Þ ! ðlþ 1=2Þ2. In the article of Ford and

Wheeler, the authors thus obtain the differential cross
section proportional to ðd�=dlÞ= sinð�Þ, which is divergent
when the scattering angle � is 0 or �. Glory is character-
ized by �ðlÞ passing with finite slope through 0, ��, etc.,
and rainbow by the maxima or minima in �ðlÞ. If the
deflection function displays a singularity at a certain criti-
cal value lC of l, they show that �ðlÞ will vary logarithmi-
cally near l ¼ lC. For values of l below and above lC, the
particle would have spiralling trajectories and l ¼ lC
would give the limit of an unstable circular orbit. For a
particle incident with energy E and for an effective poten-
tial, Veff , which is the sum of an actual interaction potential
and a centrifugal term, the condition corresponding to such
an orbit was shown to be VeffðrC; lCÞ ¼ E (which as we
shall see later is VeffðrC; lCÞ ¼ !2 for massless particles
withE2 ¼ !2), where rC is the position of the maximum of
the effective potential and E the available energy. Quantum
mechanically, one does not get divergent cross sections.
One rather observes peaks in the cross sections as a func-
tion of angle in the backward directions for glory and
orbiting scattering.
Based on the works of Ford and Wheeler, the character-

ization of the above phenomena in black hole scattering is
mostly done in literature by noting the behavior of the real
part of the scattering phase shift or by looking at the
oscillating patterns in the cross sections at backward
angles. In the present work, we relate the phenomenon of
orbiting scattering to the imaginary part of the scattering
phase shift. To be specific we evaluate the reflection coef-
ficient in black hole scattering from Schwarzschild black
holes by solving the corresponding Riccati equation nu-
merically. Finding a sudden rise of the reflection coeffi-
cient, jRlj2 ¼ expð�4�I

l Þ plotted as a function of l, at a
certain critical value of l for different energies and different
spins (s ¼ 0, 1, 2) of the massless scattering particles, we
show that this critical l is nothing but the lC corresponding
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to the unstable circular orbit. We also find that the normal-
ized jRlj2 always passes through a value of 1=2 at the
critical value lC.

The present work differs from others [1] in view of the
points mentioned above. The reflection coefficient is eval-
uated exactly using the variable amplitude method as
compared to approximate calculations (third reference in
Ref. [1]) [4]. We also find a potential proportional to
cosh�2ð�x� �Þ which gives remarkably good results
when compared with the numerical ones. For this potential,
the transmission coefficients can be found analytically.
Parametrizing the cosh�2 potential to fit the Regge-
Wheeler potential, we find semi-analytical results for black
hole scattering. Even though the scattering off black holes
is a widely explored area, not much attention has been paid
to the orbiting phenomenon (mostly the glory and rainbow
effects have been discussed). Here we supplement the
existing literature with a detailed study of how the exis-
tence of a classical orbit gets reflected in the quantum
mechanical expressions of the scattering of a massless
particle from a black hole. This leads to a conjecture
regarding quantum corrections to the classical effective
potential for massless particles.

In the next section, we provide briefly the formalism for
black hole scattering in general and go on to discuss the
critical parameters relevant to orbiting and glory scattering.
In Sec. III, we discuss the calculation of the reflection
coefficient and present results regarding its connection to
orbiting scattering. We also present a conjecture related
to these phenomena. In Sec. IV we discuss how the Regge-
Wheeler potential can be reinterpreted as an effective
potential plus quantum corrections proportional ℏ. In
Sec. V we summarize our findings.

II. BLACK HOLE SCATTERING

We start by presenting some generalities in black hole
scattering. Consider the propagation of a massless scalar
field � ¼ �ðt; r; #; ’Þ governed by the wave equation
g	
r	r
� ¼ 0 where g	
 denotes a static, spherically

symmetric black hole metric whose line element is

ds2 ¼ fðrÞdt2 � dr2

fðrÞ � r2ðd#2 þ sin2#d’2Þ:

Using the following ansatz:

�ðt; r; #; ’Þ ¼ ei!t 1

r
c n‘!ðrÞY‘mð#;’Þ; Reð!Þ> 0;

(1)

it is standard [5] to reduce the above equation to a
Schrödinger-like equation for the radial part

�
� d2

dr2�
þ VðrÞ

�
c n‘! ¼ !2c n‘!; (2)

where in principle! � !n, but we shall drop the subscript
for convenience in what follows. Moreover, VðrÞ ¼
fðrÞUðrÞ (with the form of fðrÞ depending on the metric
under consideration) and

UðrÞ ¼ lðlþ 1Þ
r2

þ f0ðrÞ
r

: (3)

Here, a prime denotes differentiation with respect to r
whereas r� is a tortoise coordinate defined through

dr�
dr

¼ fðrÞ�1:

A. Scattering from a Schwarzschild black hole

In case of the Schwarzschild metric which we shall
consider in the present work, fðrÞ ¼ 1� 2M=r where M
is the mass of the black hole and the tortoise coordinate is
given by

r� ¼ rþ 2M ln

�
r

2M
� 1

�
; r > 2M:

Equation (2) can also be obtained for other spins. The
corresponding Regge-Wheeler potential for spins s ¼ 0,
1, 2 is given as [6]

Vðrðr�ÞÞ ¼
�
1� 2M

r

��
lðlþ 1Þ

r2
þ 2Mð1� s2Þ

r3

�
; (4)

where l � s. Note that as we move from r ¼ r0 ¼ 2M at
the event horizon to r ¼ 1, the tortoise coordinate varies
from �1 to 1. Since the scattering problem with the
radial coordinate r in the three-dimensional (3D) case
gets mapped into a one-dimensional (1D) one with the r�
coordinate, the Schrödinger-like equation (2) in black hole
scattering can be solved using standard techniques for 1D
tunneling in quantum mechanics. The asymptotic solutions
of the Schrödinger equation (2) are

c ðr�Þ ¼ Að!Þeþi!r� þ Bð!Þe�i!r� ; r� ! �1;

c ðr�Þ ¼ Cð!Þeþi!r� þDð!Þe�i!r� ; r� ! þ1:

For waves incident on the black hole from the right
(i.e., þ1), we have Bð!Þ ¼ 0, the reflection amplitude
Rð!Þ ¼ Dð!Þ=Cð!Þ and the transmission amplitude
Tð!Þ ¼ Að!Þ=Cð!Þ, so that

c ðr�Þ ¼ Tð!Þei!r� ; r� ! �1;

c ðr�Þ ¼ ei!r� þ Rð!Þe�i!r� ; r� ! þ1:

B. Critical parameters for black hole orbiting

An anomalous large angle scattering, called ALAS, was
observed often in nuclear reactions between �-like nuclei
such as 12C-16O, 16O-28Si, etc., [7] and has been attributed
to the orbiting mechanism in scattering. The origin of this
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mechanism can be traced back to classical dynamics,
where a particle approaching the potential center can get
trapped in a circular orbit of radius r0 if its energy equals
the maximum of the effective potential at r0. Ford and
Wheeler [2] found the connection of this phenomenon with
the classical deflection function which becomes singular at
a critical value of the angular momentum for which the
circular orbit can exist and leads to divergent cross sec-
tions. The analogous effect in quantum mechanical scat-
tering corresponds to the appearance of a diffraction
pattern (or peaks) in the scattering cross section in the
backward direction.

1. Deflection function in glory and orbiting

It was shown in Ref. [2] that as long as the classical
deflection function �ðlÞ remains between 0 and ��, the
semiclassical cross section can be entirely described by the
classical cross section. If the deflection function passes
smoothly through 0 or ��, it leads to the phenomenon
named glory. Though classically it corresponds to a singu-
larity in the cross section, quantum mechanically one
expects only a prominent peak in the cross section. Ford
and Wheeler related the deflection function to the real part
of the quantum mechanical scattering phase shift. Detailed
discussions on the topic can be found in Refs. [2,8]. Here
we directly state their conclusion, namely,

�ðlÞ ¼ 2
d�R

l

dl
(5)

connecting the deflection function with the real part of the
phase shift. There exists a critical value lg corresponding to

backward glory scattering. The deflection function at back-
ward angles can be approximated as

�ðlÞ ¼ �þ aðl� lgÞ: (6)

Orbiting occurs when the effective potential as a function
of the radial coordinate r possesses for some angular
momentum lC, a relative maximum equal to the available
energy.

For massive particles in classical general relativity, this
means Vm�0

eff ðrC; ‘CÞ ¼ E. Veff enters the geodesic equation

in the form _r2=2þ Veff ¼ const. For massless particles,
the same condition with Veff from the geodesic equation of
motion is�

dVeffð‘CÞ
dr

�
rC

¼ 0; VeffðrC; ‘CÞ ¼ !2; (7)

with

VeffðrÞ ¼ ‘2

2r2
�M‘2

r3
; (8)

where ‘ has the dimension of angular momentum per
mass which makes Veff dimensionless. Replacing ‘2 with
lðlþ 1Þ we return back to the quantum mechanical picture.

Note that part of V [i.e., the first term of VðrÞ in (4)] is
proportional to Veff and in the case of s ¼ 1, the entire VðrÞ
is proportional to Veff . We shall come back to this point
later. Under such a condition, the deflection function was
shown to vary logarithmically:

�ðlÞ ¼ �1 þ b ln

�
l� lC
lC

�
; l > lC;

�ðlÞ ¼ �2 þ 2b ln

�
lC � l

lC

�
; 0 � l < lC;

(9)

where �1, �2 and b are constants. The particle is expected
to spiral below or above the barrier depending on the value
of l being greater or less than lC, respectively. If l ¼ lC, the
particle is trapped in a circular orbit and �ðlÞ is singular.
With�ðlÞ being related to the real phase shift as in (5), one
expects a steep jump down in the real part of the phase shift
at the critical value of l.

2. Radius of the unstable orbits and critical l

In black hole scattering with s ¼ 1, Eq. (4) is propor-
tional to the classical Veff from general relativity. Here one
expects an unstable photon orbit at rC ¼ 3M. Considering
the potential Vð3MÞ ¼ !2 with the semiclassical prescrip-
tion of lðlþ 1Þ ! ðlþ 1=2Þ2, it is easy to see that the
critical value of the angular momentum l is given by

lC ¼ ð3 ffiffiffi
3

p
=2Þ!r0 � 1=2, where r0 ¼ 2M. If one uses

lCðlC þ 1Þ instead, one of course ends up with a quadratic
equation for lC. The two values of lC should however
be quite close for large values of l. One could try to find
the critical lC for the occurrence of circular orbits in the
scattering of spin 0 and 2 particles in the same way too.
Considering VðrÞ in (4) at r ¼ 3M leads to

lWKB
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

4
!2r20 �

2

3
ð1� s2Þ

s
� 1

2
; (10)

in the semiclassical approximation and

lQM
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

4
!2r20 �

2

3
ð1� s2Þ þ 1

4

s
� 1

2
(11)

quantum mechanically. In Table I we list the two sets of lC
for different values of !r0. As expected, the difference

TABLE I. Critical values of l obtained using Vðr ¼ 3MÞ. The
numbers outside parentheses correspond to lWKB

C and those

inside to lQM
C .

!r0 s ¼ 0 s ¼ 1 s ¼ 2

0.5 � � � 0.799 (0.892) 1.4203 (1.484)

1 1.966 (2.017) 2.098 (2.145) 2.458 (2.5)

2 4.632 (4.656) 4.696 (4.720) 4.885 (4.908)

2.5 5.944 (5.963) 5.995 (6.014) 6.147 (6.166)

3 7.251 (7.267) 7.294 (7.310) 7.422 (7.437)
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between the semiclassical lWKB
C and lQM

C is little for large

values of l. Note that for s ¼ 0, there exists a critical !r0
below which one cannot find a real lC.

Instead of taking the value of the potential at r ¼ 3M
which corresponds to the maximum in the classical effec-
tive potential, we now find VðrCÞ (where rC corresponds to
the point where the maximum in VðrÞ occurs) and use it to
find the critical lC. Thus, setting dV=dr ¼ 0, we find

rC ¼ 3r0
4

�
1� ð1� s2Þ

L2

�241�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

9

L2ð1� s2Þ
ðL2 � 1þ s2Þ2

s 3
5;

(12)

where L2 ¼ lCðlC þ 1Þ. Evaluating VðrCÞ, one can now
find lC by looking for the zeros of the function r20VðrCÞ �
!2r20. In Table II, we list the values of critical lC evaluated

as above for the scattering of spin 0, 1 and 2 particles. The
reader will note that apart from the value of lC which
cannot be determined for !r0 ¼ 0:5 (s ¼ 0) in Table I,
the remaining values are quite close to those in Table II.
What appears at a first glance as a curious coincidence
will be explained in the next section by analyzing the form
of VðrÞ.

In what follows, we shall present an exact numerical
calculation of the reflection coefficient and study its behav-
ior as a function of l in context with orbiting scattering.

III. REFLECTION COEFFICIENT AND
CHARACTERIZATION OF CIRCULAR ORBITS

In this section we will compare and discuss three differ-
ent methods to calculate the reflection coefficient: a
semi-analytical result, numerical results using the variable
amplitude method, and the approximation of a rectangular
barrier adjusted to the problem of black hole scattering.
We will see that the semi-analytical result gives a very
good overall description of the problem. The reflection
amplitude in black hole scattering has also been calculated
in literature [4] using semiclassical approximations.

A. Semi-analytical results

Before we go over the details of the calculations of the
reflection coefficient, let us briefly examine the nature of
the potential in black hole scattering and what results one
can expect. The potential in the Schwarzschild case as
given in Eq. (4) is made up of two functions, namely,

UðrÞ [see Eq. (3)] and fðrÞ, such that VðrÞ ¼ fðrÞUðrÞ.
UðrÞ consists of a l dependent term which resembles the
centrifugal barrier in standard problems in quantum me-
chanics. The form of fðrÞ depends on the metric under
consideration. In Fig. 1, we plot the potential as a function
of the coordinate r as well as r� and note the following
features: (i) The potential looks very different when taken
as a function of r or r�. (ii) If we plot the function UðrÞ
only, the steep rise of the centrifugal barrier is evident,
however, only when plotted as a function of r and not r�.
(iii) Due to the presence of fðrÞ, the potential plotted as a
function of r� resembles a Gaussian barrier and the cen-
trifugal term is not explicitly seen in the shape of the
potential. However, as evident from Fig. 2 the height of
the potential rises with l.
New insights can be often gained by searching for

analytical and semi-analytical results. To this end we
notice that the reflection coefficients for the potential

UðxÞ ¼ U0

cosh2ð�xÞ (13)

(or modification of the above by a shift of the argument)
can be obtained analytically (we refer the reader for details
to Ref. [9]). The relevance of this potential to our problem

TABLE II. Critical values of l obtained using Vðr ¼ rCÞ.
!r0 s ¼ 0 s ¼ 1 s ¼ 2

0.5 0.618 0.892 1.497

1 2.016 2.145 2.504

2 4.656 4.720 4.909

2.5 5.963 6.014 6.167

3 7.267 7.310 7.438

−10 −5 0 5 10 15
 r*/r0

0

1

2

3

r 02  V
(r

(r
* ))

0 5 10 15
r/r0

0

1

2

3

V(r) = U(r)

V(r) = f(r)*U(r)

l=1

(a)

(b)

FIG. 1. The Schwarzschild black hole potential for spin s ¼ 0
and l ¼ 1. (a) Potential plotted as a function of the dimension-
less coordinate r=r0. (b) r�=r0, where r� is the tortoise coordi-
nate and r0 the Schwarzschild radius.
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is its similarity to the Regge-Wheeler potential in the
tortoise coordinate. Indeed,

r20Vðrðr�ÞÞ 	
r20V0

cosh2ðr�=ar0 � bÞ (14)

fits the Regge-Wheeler potential quite well for s ¼ 0, 1, 2
provided we choose a ¼ 2:4, b ¼ 0:4 and the height V0 to
be the Regge-Wheeler potential at r ¼ 3M, i.e., V0 ¼
Vðr ¼ 3MÞ which is different for different choices of s
and l dependent. For instance, in the cases s ¼ 0, 1, 2 we
obtain

r20V0 ¼ 1

27

�
4lðlþ 1Þ þ 8

3

�
; s ¼ 0;

r20V0 ¼ 4

27
4lðlþ 1Þ; s ¼ 1;

r20V0 ¼ 1

27
½4lðlþ 1Þ � 8�; s ¼ 2:

(15)

The comparison between the Regge-Wheeler and the pa-
rametrized cosh�2 potential is shown in Fig. 2. Evidently,
one would expect some quantitative agreement in both
cases for the reflection coefficient for tunneling at higher
energies, i.e., where the two potentials almost overlap.
We will see that this is indeed the case. To be able to
use the analytical results from Ref. [9] we use: k2 ¼ !2,
� ¼ 1=ar0 and 2mU0 ¼ V0. This gives the following
transmission coefficients:

jTlj2 ¼ sinh2ða�!r0Þ
sinh2ða�!r0Þ þ cos2

�
�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4V0a

2r20Þ
q � ;

(16)

if 4V0a
2r20 < 1 and

jTlj2 ¼ sinh2ða�!r0Þ
sinh2ða�!r0Þ þ cosh2

�
�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4V0a

2r20 � 1Þ
q � ;

(17)

for 4V0a
2r20 > 1. The Pöschl-Teller potential defined in

Eqs. (13) and (14) has been used to extract quasinormal
modes of black holes, either as an approximation [10] or
in obtaining exact results in the Nariai spacetime [11] for
which the scalar field equation reduces to the radial equa-
tion with the Pöschl-Teller potential.

B. The rectangular barrier approximation

In Ref. [1] Handler and Matzner used a rectangular
barrier as an approximate solution to obtain the transmis-
sion coefficients corresponding to the black hole scattering
problem of spin 1 particles. Their choice of the height of
the barrier is V0 with the same definition as explained
above. The width b is energy and l dependent, b ¼ l=!.
The standard analytical results for the rectangular barrier
read for ð!r0Þ2 < r20V0,

jTlj2 ¼ 1

1þ r4
0
V2
0
sinh2ðyÞ

4½r4
0
V0!

2�!4r4
0
�
; (18)

with y � l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20V0=!

2r20 � 1
q

. For r20V0 < ð!r0Þ2, one

obtains

jTlj2 ¼ 1

1þ r40V
2
0 sin

2ð~yÞ
4½!4r4

0
�r4

0
V0!

2�
; (19)

with ~y � l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20V0=!

2r20

q
. Notice that with this prescrip-

tion one cannot calculate T for l ¼ 0 which as far as the
results of Handler and Matzner are concerned is a valid
assumption as they restrained themselves to s ¼ 1 and
therefore via l � s to l > 0.

C. The variable amplitude method

In this section, Rlð!Þ will be evaluated numerically via
the variable amplitude method. The variable amplitude
method was first introduced in Ref. [12] and has been
widely used to evaluate the reflection and transmission
coefficients for different potentials in literature [13].
This method involves writing the solution of the
Schrödinger equation as a superposition of the reflected
and transmitted waves, namely, c lð!; r�Þ ¼ Tlð!; r�Þ

½ei!r� þ Rlð!; r�Þe�i!r� �, which leads to the following
equation for Rl:

dRlð!; r�Þ
dr�

¼ �Vðr�Þ
2i!

½ei!r� þ Rlð!; r�Þe�i!r� �2: (20)

The absence of reflection behind the potential at r� ! �1
imposes the boundary condition Rlð!;�1Þ ¼ 0 on the

−10 −5 0 5 10 15 20
r*/r0

1

2

3

4r 02  V
(r

(r
*)

) 1

2

3

4

−10 −5 0 5 10 15 20
r*/r0

1

2

3

4

 Regge−Wheeler
Parametrized cosh−2

s=0

l=3

l=5

l=3

l=5

s=1

s=2
l=5

l=3

FIG. 2. The Regge-Wheeler potential compared with the
cosh�2 potential from Eq. (14) for different spins and angular
momentum. The discrepancy between the two cases is more
prominent at smaller energies where the Regge-Wheeler poten-
tial displays an asymmetric tail. Notice also that increasing l
results in an increasing height.
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above equation. The reflection coefficient is given by
jRlj2 ¼ jRlð!;1Þj2.

D. Comparison of the methods and discussion
of the results

When we calculate the reflection coefficient, we expect
it to be large and close to unity for energies much below the
height of the barrier (where transmission is a quantum
mechanical possibility and hence very small). Since trans-
mission increases with energy, the reflection coefficient
falls and at high energies (above the barrier) where trans-
mission becomes the classical phenomenon and reflection
a quantum mechanical effect, the reflection coefficient is
negligibly small. In Fig. 3, we show the reflection coeffi-
cient as a function of energy for black hole scattering. On
the left is shown the exact numerical result using the
Regge-Wheeler potential and on the right the reflection
coefficient evaluated from the expressions for jRlj2 ¼ 1�
jTlj2 discussed in the previous sections for a rectangular
barrier and parametrized cosh�2 potential (which is similar
in shape to a Gaussian barrier [14]). In Fig. 3 we have
plotted the results in two separate boxes since the numeri-
cal results would almost overlap with the results obtained
from the cosh�2 potential. This agreement is remarkable.
In contrast to that, the results obtained via the rectangular
potential differ from the exact (numerical) results.

In Fig. 4, we plot the numerically evaluated reflection
coefficient as function of l for different values of !r0 and
for different spins of the scattering particles. It is interest-
ing to note that jRlj2 goes through a sudden rise at the
critical values of l listed in the tables and connected to the
orbiting phenomenon. The fact that the reflection coeffi-
cient for a given energy rises as a function of l can be
understood by examining the plot of the potential for
different l values at the same energy. In Fig. 2, we see
that the effect of increasing l is to increase the height of the
barrier. Hence, for example, an energy close to the top of

the barrier for l ¼ 3 will lead to little reflection but at the
same energy, the barrier for l ¼ 7 is much higher leading to
larger reflection. For s ¼ 2, we made a comparison with
the corresponding cosh�2 potential. For small energies, the
agreement is still not perfect, but improves rapidly with
growing energies as is evident from the plots. This behav-
ior is to be expected since the Regge-Wheeler potential
differs from the fitted cosh�2 case if the energy of the
particle is much below the height of the potential where
the Regge-Wheeler displays an asymmetric tail. This small
mismatch between the the results obtained from the two
potentials should be also present for the cases s ¼ 0, 1, but
will not be so prominent as for s ¼ 2. The reason is that
jRlj2 for s ¼ 0, 1 saturates at smaller value of l. As a result
the difference between the small energy and the height is
less then in the case s ¼ 2 where the saturation sets in at
higher l. Indeed, as one can infer from Fig. 5 the agreement
between the exact results for the Regge-Wheeler and the
cosh�2 potential is remarkably good for s ¼ 1 even for
small energies.
An approximate calculation of the magnitude of the

reflection amplitude was done in the third reference in
Ref. [1] (article by Handler and Matzner). For the case of
s ¼ 1, the authors approximated the potential by a rectan-
gular barrier as explained before in the text and studied the
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FIG. 3. Reflection coefficient as a function of energy for s ¼ 0
and for different values of l in black hole scattering. On the left
we plot the numerical results and on the right the reflection
coefficient for an adjusted rectangular barrier (see text) of height
V0 (dashed line) and for the parametrized cosh�2 potential (solid
line). Since the results for the latter almost coincide with the
numerical ones we plot them in two different boxes.
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FIG. 4. Reflection coefficient or the scattering amplitude
squared as a function of l for the scattering of massless scalar
(s ¼ 0), electromagnetic (s ¼ 1) and gravitational (s ¼ 2)
waves from a black hole. For comparison, we plot also for
s ¼ 2 the results obtained from the parametrized cosh�2 poten-
tial. As expected the agreement with numerical results improves
with energy. For s ¼ 1, the same comparison is done in the next
figure. For s ¼ 0, we just mention that here the agreement
between the numerical and the semi-analytical results is the
best among the three cases.
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features of the corresponding reflection amplitude as a
function of the angular momentum l. The magnitude of
the reflection amplitude for the various values of !r0
studied here started saturating to unity at a certain value
of lwhich the authors referred to as lg, the critical value for

the onset of glory scattering. It also showed a sudden rise
through 1=2 as a function of l (this l value however is
different for the rectangular and realistic Regge-Wheeler
case). However, no interpretation was attempted to explain
this fact. Indeed, here we have clearly connected it to the
orbiting effects. The findings in Ref. [1] are not similar to
those of the present work for the case s ¼ 1. A closer look
at Fig. 5 reveals the differences between the exact results
and the results from a rectangular barrier. Not only is the
shape of the reflection coefficients different, but also the
values at which the reflection coefficient makes a jump and
at which it saturates to unity.

A possible explanation for jRlC j2 ¼ 1=2 as seen in

Figs. 4 and 5 for the numerical results can be found by
examining the approximate expression of the reflection
coefficient as obtained in the WKB approximation [15].
In case of barrier penetration, when the energy !2 of the
incident particle lies below the top of the barrier, the
semiclassical reflection coefficient is given as

jRlj2 ¼ expð2KlÞ
1þ expð2KlÞ ; (21)

with

Kl ¼
Z r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðr�Þ �!2

q
dr�;

where r1 and r2 are the classical turning points. For very
small values of !2, jRlj2 approaches unity. However, when
!2 equals the maximum height of the barrier, r1 ’ r2,K!0
and jRlj2 ! 1=2. Thus one can relate the orbiting phenome-
non with a critical l value lC such that jRlC j2 ¼ 1=2.

E. Imaginary scattering phase shift

Finally an interesting observation in connection with
the orbiting is that the reflection coefficient which charac-
terizes the critical value lC is related to the imaginary part
of the scattering phase shift. If one relates the reflection
amplitude to the S matrix in 3D scattering, one can
write Rlð!Þ ¼ expð2i�lð!ÞÞ, where �lð!Þ ¼ �R

l ð!Þ þ
i�I

l ð!Þ, in general, is the complex scattering phase

shift. Thus, Rlð!Þ ¼ �lð!Þ expð2i�R
l ð!Þ, where �lð!Þ ¼

expð�2�I
l ð!ÞÞ is known as the inelasticity parameter

which can be less than or equal to 1. In the 1-dimensional
case, the S matrix is a 2
 2 matrix with two channels,
namely, transmission and reflection such that jTj2 þ
jRj2 ¼ 1. If �lð!Þ ¼ 1, it implies that jRlð!Þj2 ¼ 1 and
there exists complete reflection. However, �lð!Þ ¼
expð�2�I

l ð!ÞÞ< 1 corresponds to the existence of

the transmission channel. The reflection coefficient
jRlj2 ¼ j�lð!Þ expð2i�R

l ð!Þj2 ¼ �2
l ð!Þ, i.e., jRlð!Þj2 ¼

expð�4�I
l ð!ÞÞ and is related only to the imaginary part

of the phase shift. The sudden rise in jRlð!Þj2 at lC corre-
sponds to a peak in djRlj2=dl, where

1

jRlj2
djRlj2
dl

¼ �4
d�I

l

dl
: (22)

This should be contrasted with the semiclassical charac-
terization in Eq. (5) where the orbiting and glory parame-
ters are characterized using the real part of the scattering
phase shifts. This is also due to the fact that the scattering
phase shifts calculated within the semiclassical approaches
such as theWKB are always real. Using an exact numerical
evaluation of jRlj2 here, we find a connection of the orbit-
ing parameters with the imaginary part of the phase shift.

IV. REINTERPRETATION OF THE
REGGE-WHEELER POTENTIAL

For s ¼ 1 (Veff / V), rC obtained from (7) agrees
with the quantum mechanical calculation via
ðd2jRlj2=dl2Þl¼lC ¼ 0 (corresponding to the jump in

jRlj2). The same would be true for s ¼ 0, 2 if rC is
computed through Eq. (7), replacing therein Veff with V.
The argument for s ¼ 0, 2, namely, that lC is connected to
the classical unstable circular orbit, can be now maintained
if we attempt a reinterpretation of V. Restoring ℏ in our

expressions amounts to replacing ei!t with eiðE=ℏÞt or equiv-
alently! byE=ℏ. The Schrödinger-like equation then reads
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FIG. 5. Comparison of the reflection coefficients calculated
using numerical methods, the adjusted rectangular barrier and
the parametrized cosh�2 potential as a function of l for the case
s ¼ 1. Evidently the rectangular barrier (dash-dotted line) is not
a good approximation whereas the cosh�2 (dashed lines) gives a
very good agreement with exact numerical results (solid lines).
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�
�ℏ2 d2

dr2�
þ ℏ2VðrÞ

�
c n‘! ¼ E2c n‘!: (23)

Identifying ℏ2lðlþ 1Þ with L2, we can write

ℏ2V ¼ 2

�
~Veff þ ℏ2 Mð1� s2Þ

r3

�
1� 2M

r

��
;

~Veff ¼
�
1� 2M

r

�
L2

r2
: (24)

In identifying ℏ2lðlþ 1Þ by L2, we are going back from
quantum mechanics to classical physics. It is reasonable to
speculate that ℏ2V represents the full effective potential,
i.e., the classical part plus ℏ2 quantum mechanical correc-
tions. Indeed, ℏ2V would then be the correct tool to calcu-
late a classical unstable orbit. Recently, ℏ corrections to the
Newtonian potential, have been discussed in Ref. [16],
where it was found that the additional terms are propor-
tional to ℏM1M2G

2=r3 (G is the restored Newtonian con-
stant). The procedure to arrive at such a result is to consider
non-relativistic amplitudes with zero and higher-order loop
corrections. The difference from our case is that these
corrections were calculated for massive particles where
the Newtonian potential exists and the nonrelativistic limit
makes sense. In a massless case, such a procedure is not
well defined. Therefore our conjecture is well motivated but
remains open. Since the dimensions of Veff from general
relativity and ~Veff are different, let us be more specific. To
make ℏ2V dimensionless we divide it by the Planck mass
squared, E2

Pl and identify L2=E2
Pl ¼ ‘2. Thus,

ℏ2V

E2
Pl

¼ 2

�
Veff þ ℏ

2G2Mð1� s2Þ
r3

�
1� 2GM

r

��
: (25)

Our speculation is simply to say that Veff receives a small
quantum correction proportional to ℏ in the above equation.
This explains also the coincidences found in the previous
section. Indeed, calculating rC from Veff or Veff plus quan-
tum corrections will give very similar results. Therefore it

is not a surprise that lQM
C comes out quite close to the lC

evaluated from rC.

V. SUMMARY

The behavior of the reflection coefficient, jRlj2, which
enters the scattering cross sections is investigated for the
scattering of scalar, electromagnetic and gravitational
waves from a Schwarzschild black hole. We paid special
attention to the issue of orbiting effects in a quantum
mechanical scattering off black holes. Our investigation
displays the following features:
(1) For s ¼ 0, 1, 2, we found that jRlj2 jumps at a

certain critical value lC, i.e., its second derivative
with respect to l is zero. The Regge-Wheeler poten-
tial is proportional to the classical effective potential
for s ¼ 1 only. We find that lC is connected with the
unstable circular orbit at rC ¼ 3M for s ¼ 1.

(2) We find the lC values for s ¼ 0, 2, too. Here also we
would expect that the critical value lC is connected
to an unstable circular orbit at a critical rC.
Interestingly, the lC values calculated using VðrCÞ
lie very close to those using Vð3MÞ. This can be
explained if we reinterpret the Regge-Wheeler
potential as the classical effective potential with
ℏ corrections. Notice that with the values of lC
obtained via the rectangular potential, such a con-
clusion would be impossible as the jump occurs at a
different lC and the connection to the unstable cir-
cular orbit is lost.

(3) For all values of !r0 and spins 0, 1 and 2, we find
that jRlC j2 ¼ 1=2.

(4) We have shown that the transmission and reflec-
tion coefficients of the potential proportional to
cosh�2ð�x� �Þ (Pöschl-Teller) match very well
with the exact results. Since for this particular case
the transmission coefficient can be given analyti-
cally, this allows us to study the black hole scatter-
ing in a semi-analytical way and supplements the
conclusion that such a potential is a good approxi-
mate tool in black hole physics [10,11]. Both the
semi-analytical results and the numerical ones refine
approximate results obtained elsewhere and reveal
some deficiencies of the approximation methods.
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