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We investigate the cosmological reconstruction in an anisotropic universe for both the homogeneous

and inhomogeneous content of the universe. Special attention is given to three interesting cases:

Bianchi type I, Bianchi type III, and Kantowski-Sachs models. The de Sitter, power-law, and general

exponential solutions are assumed for the scale factor in each spatial direction and the corresponding

cosmological models are reconstructed. Moreover, for the general exponential solutions—from which

the de Sitter and power-law solutions may be obtained—we obtain models which reproduce the early

Universe (assuming inflation) and the late-time accelerated expanding Universe. The models obtained

for the late-time Universe are consistent with a known result in the literature where a power-law type

correction in T is added to a power-law type of fðTÞ for guaranteeing the avoidance of the big rip and

the big freeze.
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I. INTRODUCTION

The probable presence of an unknown form of energy in
the Universe, called dark energy, and the evidence supplied
by a large number of observations (including the initial
data from Type IA supernovae in 1998 [1]) has lead to
explorations of the possible theoretical origin of this fluid.
Since it is directly responsible for the present accelerating
expansion of the Universe, a negative pressure is required,
which leads to a negative equation of state parameter. The
most popular candidate, the cosmological constant [which
possesses a constant equation of state (EOS), p� ¼ ���],
can explain the cosmological evolution quite well.
However, the open possibility that the EOS is not com-
pletely constant but rather evolves dynamically (even
crossing the phantom barrier further), and the quite large
difference between the observed dark energy density and
the vacuum energy density predicted by quantum field
theories, has lead to the exploration of other possibilities,
such as the existence of scalar fields, vector fields, or
modifications of general relativity (GR) (for a review on
dark energy candidates, see Ref. [2]).

In the context of modified gravities a wide range of
possibilities has been explored, the most popular (due to
its simplicity) being fðRÞ gravity, as it generalizes the
Hilbert-Einstein action to a more complex function of the

Ricci scalar (for a review of fðRÞ gravity, see Refs. [3,4]).
Nevertheless, other kinds of theories have been suggested
which include other curvature invariants, such as the
Gauss-Bonnet gravity. In this paper, we study the so-called
fðTÞ gravity, which [analogous to fðRÞ gravity] consists in
a generalization of the action of teleparallel gravity theory
(TT)—a theory that assumes the Weitzenböck connection
instead of the Levi-Civita connection—and which yields a
null curvature and a nonvanishing torsion (for a review, see
Ref. [5]). In this gravitational theory, the main field is
represented by the so-called tetrads, instead of the metric
as in GR. This kind of theory has recently become very
popular as it can explain the accelerated expansion of the
Universe, and even the inflationary epoch, with no need for
dark energy (see Refs. [6–13]). A wide number of aspects
have been studied in the context of fðTÞ gravity, such as its
local Lorentz invariance [14], static solutions [15], non-
diagonal tetrads [16], and the presence of wormholes [17],
as well as other aspects [18,19]. A large effort has also been
taken to study cosmological solutions for this class of
theories, as well as possible cosmological predictions
(see Refs. [20–23]).
In the present work, we are interested in studying some

particular cosmological solutions in fðTÞ gravity, where
the appropriate action is reconstructed for each case.
Specifically, the Bianchi type I, Kantowski-Sachs (KS),
and Bianchi type III models are considered, and in particu-
lar some important solutions—such as power-law and de
Sitter expansion—and more complex ones—such as expo-
nential functions for the scale factor in each direction of the
space—are also studied. Since power-law and de Sitter
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solutions can provide a good description for some specific
phases of the Universe’s evolution, their reconstruction
in fðTÞ gravity becomes a crucial point in order to
consider this class of theories as serious candidates for
explaining the whole cosmological history. In addition,
here we assume more general cosmological metrics than
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metrics—
in particular, anisotropic universes described by the
Bianchi type I, KS, and Bianchi type III metrics—in order
to provide the most general description of the cosmological
evolution in the context of fðTÞ gravity. Moreover, expo-
nential solutions are also considered: these kinds of expan-
sions have become very popular recently as they may
evolve the universe to a nonsingular state where some
bounded systems may be broken. Such a state—called a
‘‘little rip’’ (suggested in Ref. [24])—has already been
studied in fðRÞ gravity (see Ref. [25]), as well as in fðTÞ
theories [26]. Moreover, the possible occurrence of a little
rip has been also explored in the context of the so-called
viable modified gravities (see Ref. [27]). Note that aniso-
tropic cosmological metrics have already been studied in
the context of GR with the presence of isotropic and
anisotropic fluids, as well as the stability of the solutions
[28,29].

Furthermore, the use of an auxiliary scalar field—in
analogy to the equivalence of Brans-Dicke theories for
fðRÞ gravity (see, for instance, Ref. [30])—is also imple-
mented, from which may result a useful tool to reconstruct
the appropriate action as well as for studying the properties
of fðTÞ gravity.

The main motivations of the assumption of a model with
anisotropic geometry are based on several physical aspects:
the famous problem of the CMB quadrupole can be solved
by considering a universe with planar symmetry [31] where
eccentricity in decoupling is generated by a uniform cosmic
magnetic field whose current strength, Bðt0Þ � 10�9 Gauss,
should be close to edec � 10�2; the Bianchi type models in
loop quantum cosmology [32]; 4He abundance [33]; cosmic
parallax [34,35]; small anisotropic pressures [36]; cosmo-
logical solutions of the low-energy string effective action
[37]; an anisotropic inflationary universe [38]; and others
[39]. In fðRÞ theory there are already some good results
[40,41]; therefore, we propose to establish the equations
here and achieve the first results in fðTÞ gravity for the
Bianchi type I, type III, and KS models.

The paper is organized as follows. In Sec. II, the basic
concepts of fðTÞ gravity are introduced. In Sec. III, the
equations for general Bianchi type I, type III, and KS
models are deduced in a particular coordinate system and
with diagonal tetrads. Section IV deals with the reconstruc-
tion of the fðTÞ action for some relevant solutions, and
several techniques are considered, including a kind of
scalar-tensor theory for torsion gravity. Finally, Sec. V is
devoted to a conclusion and discussion about the results
found in the paper.

II. PRELIMINARY DEFINITIONS AND
EQUATIONS OF MOTION

As previously mentioned, the fðTÞ theory of gravity is
defined in the Weitzenböck spacetime, in which the line
element is described by

dS2 ¼ g��dx
�dx�; (1)

where g�� are the components of the metric, which is

symmetric and possesses ten degrees of freedom. One
can describe the theory in the spacetime or in the tangent
space, which allows us to rewrite the line element (1) as
follows:

dS2 ¼ g��dx
�dx� ¼ �ij�

i�j; (2)

dx� ¼ ei
��i; �i ¼ ei�dx

�; (3)

where �ij ¼ diag½1;�1;�1;�1� and ei
�ei� ¼ ��

� or

ei
�ej� ¼ �j

i . The square root of the metric determinant

is given by
ffiffiffiffiffiffiffi�g

p ¼ det½ei�� ¼ e and the matrix ea� are

called tetrads and represent the dynamic fields of the
theory.
By using theses fields, one can define the Weitzenböck

connection as

��
�� ¼ ei

�@�e
i
� ¼ �ei�@�ei

�: (4)

The main geometrical objects of the spacetime are con-
structed from this connection. The components of the
tensor torsion are defined by the antisymmetric part of
this connection,

T�
�� ¼ ��

�� � ��
�� ¼ ei

�ð@�ei� � @�e
i
�Þ: (5)

The components of the contorsion are defined as

K��
� ¼ � 1

2
ðT��

� � T��
� � T�

��Þ: (6)

In order to make more clear the definition of the scalar
equivalent to the curvature scalar of GR, we first define a
new tensor S�

��, constructed from the components of the
tensor’s torsion and contorsion as

S�
�� ¼ 1

2
ðK��

� þ �
�
�T��

� � ��
�T

��
�Þ: (7)

We can now define the torsion scalar by the following
contraction:

T ¼ T�
��S�

��: (8)

The action of the theory is defined by generalizing the
teleparallel theory as

S ¼
Z

e½fðTÞ þLMatter�d4x; (9)
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where fðTÞ is an algebraic function of the torsion scalar T.
Making the functional variation of the action (9) with
respect to the tetrads, we get the following equations of
motion [14,15,21]:

S�
��@�TfTT þ ½e�1ei�@�ðeei�S���Þ þ T�

	�S�
�	�fT

þ 1

4
��
�f ¼ 4
T �

�; (10)

where T �
� is the energy-momentum tensor, fT ¼

dfðTÞ=dT and fTT ¼ d2fðTÞ=dT2. By setting fðTÞ ¼
a1T þ a0, the equations of motion (10) are the same as
that of the teleparallel theory with a cosmological constant,
and this is dynamically equivalent to the GR. These equa-
tions clearly depend on the choice of the set of tetrads [19].

The contribution of the interaction with the matter fields
is given by the energy-momentum tensor which, in this
case, is defined as

T �
� ¼ diagð1;�!x;�!y;�!zÞ�; (11)

where the !i (i ¼ x, y, z) are the parameters of equations
of state related to the pressures px, py, and pz.

III. FIELD EQUATIONS FOR BIANCHI TYPE I,
TYPE III, AND KANTOWSKI-SACHS MODELS

Let us first establish the equations of motion of a set of
diagonal tetrads using the Cartesian coordinate metric for
describing Bianchi type I, type III, and KS models. We
propose starting with the Bianchi type III case, from which
the Bianchi type I and KS cases can be recovered. For the
Bianchi type III case, the metric reads

dS2 ¼ dt2 � A2ðtÞdx2 � e�2�xB2ðtÞdy2 � C2ðtÞdz2;
(12)

where � is a constant parameter. Note that the Bianchi type
I case is recovered by setting � ¼ 0 in the Bianchi type III
case, while the KS case is recovered when one takes � ¼ 0
and BðtÞ ¼ CðtÞ. Let us choose the following set of diago-
nal tetrads related to the metric (12):

½ea�� ¼ diag½1; A; e��xB; C�: (13)

The determinant of the matrix (13) is e ¼ e��xABC. The
components of the tensor torsion (5) for the tetrads (13) are
given by

T1
01 ¼

_A

A
; T2

02 ¼
_B

B
; T2

21 ¼ �; T3
03 ¼

_C

C
;

(14)

and the components of the corresponding tensor contorsion
are

K01
1 ¼

_A

A
; K02

2 ¼
_B

B
;

K12
2 ¼

�

A2
; K03

3 ¼
_C

C
:

(15)

The components of the tensor S�
�� in Eq. (7) are given by

S0
01 ¼ S3

31 ¼ �

2A2
; S1

10 ¼ 1

2

� _B

B
þ

_C

C

�
;

S2
20 ¼ 1

2

� _A

A
þ

_C

C

�
; S3

30 ¼ 1

2

� _A

A
þ _B

B

�
:

(16)

By using the components (14) and (16), the torsion scalar
(8) is given by

T ¼ �2

� _A _B

AB
þ

_A _C

AC
þ _B _C

BC

�
: (17)

The equations of motion are given by

16
� ¼ fþ 4fT

� _A _B

AB
þ

_A _C

AC
þ _B _C

BC
� �2

2A2

�
; (18)

�16
px ¼ fþ 2fT

� €B

B
þ

€C

C
þ

_A _B

AB
þ

_A _C

AC
þ 2

_B _C

BC

�

þ 2

� _B

B
þ

_C

C

�
_TfTT; (19)

�16
py ¼ fþ 2fT

� €A

A
þ

€C

C
þ

_A _B

AB
þ 2

_A _C

AC
þ _B _C

BC

�

þ 2

� _A

A
þ

_C

C

�
_TfTT; (20)

�16
pz ¼ fþ 2fT

� €A

A
þ €B

B
þ 2

_A _B

AB
þ

_A _C

AC
þ _B _C

BC
� �2

A2

�

þ 2

� _A

A
þ _B

B

�
_TfTT; (21)

�

2A2

�� _A

A
� _B

B

�
fT � _TfTT

�
¼ 0; (22)

�

� _A

A
� _B

B

�
fT ¼ 0: (23)

In the particular case where fðTÞ ¼ T � 2�, the
Eqs. (18)–(23) are identical to that of GR [42]. The equa-
tion of constraint (23) appears in both GR and in fðRÞ
gravity [41], but here we have a second equation of
constraint (22), which appears as a generalization of the
previous one, because here we have a contribution of a
term of the second derivative of the function fðTÞ with
respect to T.
By setting � ¼ 0, the Bianchi type I case is recovered

and the equations of motion read
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16
� ¼ fþ 4fT

� _A _B

AB
þ

_A _C

AC
þ _B _C

BC

�
; (24)

�16
px ¼ fþ 2fT

� €B

B
þ

€C

C
þ

_A _B

AB
þ

_A _C

AC
þ 2

_B _C

BC

�

þ 2

� _B

B
þ

_C

C

�
_TfTT; (25)

�16
py ¼ fþ 2fT

� €A

A
þ

€C

C
þ

_A _B

AB
þ 2

_A _C

AC
þ _B _C

BC

�

þ 2

� _A

A
þ

_C

C

�
_TfTT; (26)

�16
pz ¼ fþ 2fT

� €A

A
þ €B

B
þ 2

_A _B

AB
þ

_A _C

AC
þ _B _C

BC

�

þ 2

� _A

A
þ _B

B

�
_TfTT: (27)

The equations of motion corresponding to the KS model
are obtained by setting � ¼ 0 and B ¼ C, yielding

16
� ¼ fþ 4fT

�� _B

B

�
2 þ 2

_A _B

AB

�
; (28)

�16
px ¼ fþ 4fT

� €B

B
þ
� _B

B

�
2 þ

_A _B

AB

�
þ 4

_B

B
_TfTT; (29)

�16
py ¼ fþ 2fT

� €A

A
þ €B

B
þ

� _B

B

�
2 þ 3

_A _B

AB

�

þ 2

� _A

A
þ _B

B

�
_TfTT; (30)

py ¼ pz:

In the next section we will perform the reconstruction
scheme of the action of the system for some particular
cases.

IV. RECONSTRUCTING fðTÞ GRAVITY IN
INHOMOGENEOUS UNIVERSES

Let us now consider the reconstruction of the fðTÞ action
for some particular solutions of the class of metrics
explored in the previous section. Specifically, we consider
de Sitter, power-law, and general exponential solutions.
Note that de Sitter and power-law solutions have been
widely explored in other contexts of modified gravity,
such as fðRÞ and Gauss-Bonnet gravities (see Ref. [43]),
since they can provide a good description of the cosmo-
logical evolution along its particular phases.

We start by considering for simplicity Bianchi type I and
Kantowski-Sachs (� ¼ 0) metrics. Then, the conservation
equation for the energy-momentum tensor (11) can be
easily obtained:

_�þ ðHx þHy þHzÞ�þHxpx þHypy þHzpz ¼ 0;

(31)

where we have defined Hx ¼ _A
A Hy ¼ _B

B Hz ¼ _C
C . We can

now analyze de Sitter and power-law solutions and expo-
nential expansion in the Bianchi type I metric on one side,
and in the Kantowski-Sachs metric on the other, where
B ¼ C, which implies that py ¼ pz.

A. de Sitter solutions

de Sitter solutions are well known in the context of
cosmology since the current epoch, where the Universe’s
expansion is being accelerated, can be described approxi-
mately with a de Sitter solution. These kinds of solutions
consist of an exponential expansion of the scale factor,
which yields a constant Hubble parameter. In the case of
the Bianchi type I and Kantowski-Sachs metrics (� ¼ 0) in
Eq. (12), we may assume an exponential expansion for
each spatial direction,

A ¼ A0e
at B ¼ B0e

bt C ¼ C0e
ct; (32)

and the rates of the expansion for each direction can be
defined as,

Hx ¼
_A

A
¼ Hx0; Hy ¼

_B

B
¼ Hy0; Hc ¼

_C

C
¼ Hz0;

(33)

where fHx0 ¼ a;Hy0 ¼ b;Hz0 ¼ cg are constants. The tor-
sion scalar defined in Eq. (17) is given by

T0 ¼ �2ðHx0Hy0 þHx0Hz0 þHy0Hz0Þ: (34)

Then, by assuming px ¼ py ¼ pz ¼ p and an equation of

state p ¼ w�, the conservation equation (31) can be easily
solved for the ansatz (32):

� ¼ �0e
�ðHx0þHy0þHz0Þð1þwÞt: (35)

Hence the field equations (24)–(27) become

16
�0e
�ðHx0þHy0þHz0Þð1þwÞt

¼ fðT0Þ þ 4½Hx0Hy0 þHz0ðHx0 þHy0Þ�fTðT0Þ; (36)

� 16
w�0e
�ðHx0þHy0þHz0Þð1þwÞt

¼ fðT0Þ þ 2ðHy0 þHz0ÞðHx0 þHy0 þHz0ÞfTðT0Þ;
(37)

� 16
w�0e
�ðHx0þHy0þHz0Þð1þwÞt

¼ fðT0Þ þ 2ðHx0 þHz0ÞðHx0 þHy0 þHz0ÞfTðT0Þ;
(38)
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� 16
w�0e
�ðHx0þHy0þHz0Þð1þwÞt

¼ fðT0Þ þ 2ðHx0 þHy0ÞðHx0 þHy0 þHz0ÞfTðT0Þ:
(39)

Note that the only possible solution in the presence
of a perfect fluid is one with w ¼ �1, as the rhs of
Eqs. (36)–(39) is independent of time—according to the
expression of the scalar torsion for a pure de Sitter solution
(34)—unless Hx0 þHy0 þHz0 ¼ 0, which would imply a

decelerating expansion in a particular direction, namely
Hi0 < 0. Moreover, for a particular fðTÞ action, the system
of equations (34)–(39) reduces to an algebraic system of
equations for the variables fHx0; Hy0; Hz0g. Since the

system of equations (34)–(39) is composed of four
equations while there are only three variables, the above
four-equation system has to be reduced. However, even in
the case of the Kantowski-Sachs metric, where BðtÞ ¼
CðtÞ ! Hy0 ¼ Hz0, the system (34)–(39) still possesses

three independent equations with two variables. Hence,
the only possible solution imposes the condition that

AðtÞ ¼ BðtÞ ¼ CðtÞ ! Hx0 ¼ Hy0 ¼ Hz0 ¼ H0; (40)

and the metric (12) reduces to the well known Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) metric with an expo-
nential expansion, AðtÞ ¼ A0e

H0 t. Hence, the only solution
for a pure de Sitter expansion in Bianchi type I and
Kantowski-Sachs metrics gives an FLRW universe [44],
and the system of equations (34)–(39) now reduces to a
unique independent equation,

16
�0 ¼ fðT0Þ þ 12H2
0fTðT0Þ: (41)

The roots of the algebraic equation (41) then give the de
Sitter points of a particular fðTÞ action. In order to illus-
trate such possibility, let us consider the action

fðTÞ ¼ ð�TÞn; (42)

where n is a real constant. Then Eq. (41) is rewritten as

16
�0 ¼ ð1� 2nÞð6H2
0Þn; (43)

whose solution is given by

H2
0 ¼

1

6

�
16
�0

1� 2n

�
1=n

: (44)

Hence the only physical solution (�0, H
2
0 � 0) imposes

n � 1=2. The de Sitter solution is then a direct conse-
quence of the energy density �0, which can be interpreted
as a cosmological constant according to the condition
imposed above for its equation of state, w ¼ �1.
Nevertheless, in vacuum Eq. (43) reduces to 0 ¼
ð1� 2nÞð6H2

x0Þn, whose only solution is given by n ¼
1=2, resulting in the action fðTÞ ¼ ffiffiffiffiffiffiffiffi�T

p
, which posses

an infinite number of de Sitter points. Moreover, we may
consider in vacuum the action

fðTÞ ¼ C1T þ C2ð�TÞn; (45)

where fC1; C2g are the coupling constants and n is a real
constant. The field equation (41) in vacuum yields

0 ¼ C16H
2
0 þ C2ð1� 2nÞð6H2

0Þn: (46)

So the roots of this equation give the de Sitter points
allowed by the class of theories expressed in Eq. (45).
Note that now the exponential expansion is a direct con-
sequence of the action instead of the contribution of a kind
of cosmological constant, as in the case shown above. For
instance, n ¼ 2 yields the solution

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
C1

18C2

s
; (47)

while for higher powers of n, more de Sitter points can be
obtained for the action (45). Note that in fðRÞ theories, de
Sitter points constitute the critical points of the dynamical
system, which may be (un)stable, and could explain both
the inflationary and dark energy epochs (see Ref. [45]),
which may also be the case in fðTÞ gravity.

B. Power-law solutions

Now let us explore a cosmological evolution described
by a power law in each direction of the space expansion. In
such a case, the scale parameters for the Bianchi type I and
Kantowski-Sachs metric (12), where we set (� ¼ 0), can
be expressed as

AðtÞ ¼ A0t
a; BðtÞ ¼ B0t

b; CðtÞ ¼ C0t
c; (48)

where fa; b; cg and fA0; B0; C0g are constants to be deter-
mined by the field equations and initial conditions, respec-
tively. The expansion rates are given by

Hx ¼ a

t
; Hy ¼ b

t
; Hz ¼ c

t
; (49)

while the expression for the torsion scalar (17) yields

T ¼ �2

�
ab

t2
þ ac

t2
þ bc

t2

�
: (50)

Then, introducing the above quantities into the field
equations (24)–(27), we get the following system of dif-
ferential equations in fðTÞ:

16
�ðTÞ ¼ fðTÞ � 2TfTðTÞ; (51)

�16
w�ðTÞ ¼ fðTÞ þ ðbþ cÞð1� a� b� cÞ
bcþ aðbþ cÞ TfTðTÞ

þ 2
ðbþ cÞ

bcþ aðbþ cÞT
2fTTðTÞ; (52)
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�16
w�ðTÞ ¼ fðTÞ þ ðaþ cÞð1� a� b� cÞ
bcþ aðbþ cÞ TfTðTÞ

þ 2
ðaþ cÞ

bcþ aðbþ cÞT
2fTTðTÞ; (53)

�16
w�ðTÞ ¼ fðTÞ þ ðaþ bÞð1� a� b� cÞ
bcþ aðbþ cÞ TfTðTÞ

þ 2
ðaþ bÞ

bcþ aðbþ cÞT
2fTTðTÞ; (54)

where we have assumed for simplicity that px ¼ py ¼
pz ¼ p and an EOS p ¼ w�. Hence, the system
(51)–(54) is a set of differential equations in fðTÞ with
the torsion scalar T as the independent variable.

Firstly, let us consider the vacuum case, or in other
words, the homogeneous part of the first Eq. (51), which
becomes fðTÞ � 2TfTðTÞ ¼ 0 and whose solution is
given by

fðTÞ ¼ C1

ffiffiffiffiffiffiffiffi�T
p

; (55)

where C1 is an integration constant. In order to satisfy the
remaining Eqs. (52)–(54), the condition a ¼ b ¼ c must
be imposed so that the Hubble parameters (49) reduce to
the usual FLRW-cosmology-reproducing power-law
solution.

In the presence of a kind of isotropic perfect fluid
p ¼ w�, we can first solve the continuity equation (31)
in order to obtain � ¼ �ðTÞ, which yields

� ¼ �0t
�ðaþbþcÞð1þwÞ

¼ �0

�
� T

2ðabþ acþ bcÞ
�ðaþbþcÞð1þwÞ

2
: (56)

Hence, the solution for the set of equations (51)–(54) is
given by fðTÞ ¼ fhðTÞ þ fpðTÞ, where fhðTÞ is the solu-

tion of the homogeneous equation, which coincides with
the vacuum solution (55), and fpðTÞ is the particular

solution. Then, by using Eq. (56) in Eq. (51), the particular
solution can be easily found:

fpðTÞ ¼ �T
ð1þwÞðaþbþcÞ

2 ; (57)

where � is a constant given by

�¼ 24�ð1þwÞðaþbþcÞ=2
�0

½�1þð1þwÞðaþbþcÞ�½�bc�aðbþcÞ�ð1þwÞðaþbþcÞ
2

:

(58)

Note that the condition ð1þ wÞðaþ bþ cÞ ¼ 2n, with n
being any natural number, has to be imposed in order to
avoid a complex gravitational action that would lack any
physical sense [recall that T < 0 for an expanding universe
according to Eq. (50)]. In order to satisfy the complete set
of equations (51)–(54), we introduce the solution (57) into

the field equations (52)–(54), and the following solutions
for the parameters fa; b; cg are found:
(i) c ¼ 1�wðaþbÞ

w , where w � 0. This provides an aniso-

tropic solution in fðTÞ gravity with AðtÞ, BðtÞ, and
CðtÞ being different functions in Eq. (48), and recall-
ing that the perfect fluid assumed is an isotropic
fluid. This does not hold in GR or teleparallel theory,
but it is possible here due to the presence of second
derivatives of the function fðTÞ with respect to the
torsion scalar T in Eqs. (51)–(54). Note that field
equations may be rewritten as the usual equations in
teleparallel theory:

HxHy þHxHz þHyHz ¼ 16
ð�þ �fðTÞÞ;
� _Hy �H2

y � _Hz �H2
z �HyHz

¼ 8
ðw�þ px
fðTÞÞ;

� _Hx �H2
x � _Hz �H2

z �HxHz

¼ 8
ðw�þ py
fðTÞÞ;

� _Hx �H2
x � _Hy �H2

y �HxHy

¼ 8
ðw�þ pz
fðTÞÞ: (59)

Here, the extra terms coming from fðTÞ are defined
as an energy density �fðTÞ and pressures

fpx
fðTÞ; p

y
fðTÞ; p

z
fðTÞg, which are the origin of the an-

isotropic evolution. In this case, we have to fix
C1 ¼ 0 in Eq. (55) in order to satisfy the whole
system.

(ii) a ¼ b ¼ c. The cosmological evolution expressed
by Eq. (48) reduces to an FLRW metric, as in the
homogeneous part of the equations, so that C1 � 0.

(iii) c ¼ �ab=ðaþ bÞ. Despite that fact that this sat-
isfies Eqs. (51)–(54), once Eq. (57) is substituted
into the equations, it gives T ¼ 0, and the rhs of
Eqs. (51)–(54) becomes null while the lhs is not
[since � ¼ �ðtÞ, as given in Eq. (56)], so this is not
a real solution.

Therefore, we have obtained a complete set of power-
law solutions for the Bianchi type I and Kantowski-Sachs
metrics in the context of fðTÞ gravity. Nevertheless, the
action is clearly dependent on the EOS parameter w. Note
also that in vacuum the only possible solution reduces to an
FLRW metric.

C. General exponential solutions

In this subsection we consider a more general exponen-
tial expansion for each spatial direction:

A ¼ A0e
gxðtÞ; B ¼ B0e

gyðtÞ; C ¼ C0e
gzðtÞ; (60)

where the function giðtÞ is assumed as

giðtÞ ¼ hiðtÞ lnðtÞ; i ¼ x; y; z; (61)
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and A0, B0, and C0 are positive constants. Note that the de
Sitter solutions and power-law solutions can be recovered
from this one by setting hiðtÞ ¼ ait=ðlnðtÞÞ and hiðtÞ ¼ ai,
respectively, where faig ¼ fa; b; cg. In what follows, we
will use an adiabatic approximation for the expansion in
each spatial direction and neglect the derivatives of hiðtÞ,
i.e., we set ( _hi � €hi � 0). The expansion rates in this case
are given by

Hx ¼ hxðtÞ
t

; Hy ¼
hyðtÞ
t

; Hz ¼ hzðtÞ
t

: (62)

Thus the torsion scalar (17) becomes

T ¼ �2

�
hxðtÞhyðtÞ

t2
þ hxðtÞhzðtÞ

t2
þ hyðtÞhzðtÞ

t2

�
: (63)

The acceleration in each direction is given by

€A ¼ hxðhx � 1Þ
t2

A;

€B ¼ hyðhy � 1Þ
t2

B;

€C ¼ hzðhz � 1Þ
t2

C:

(64)

Since A, B, and C are positive, the acceleration is guaran-
teed in each direction when hi > 1, while for 0< hi < 1
the universe is in deceleration.
The simplest example of hiðtÞ is

hiðtÞ ¼ hiin þ hioutqt
2

1þ qt2
; (65)

where hiin, hiout, and q are positive constants, and q is
assumed to be small enough to make hiðtÞ vary slowly.
Thus, the torsion scalar is always negative. From Eq. (65)
we see that at early time t ¼ 0, hi ! hiin, and for the late
universe hi ! hiout. By using Eqs. (65) and (63), one gets
the following equation:

q2Tt6 þ ð2qT þ 2q2XÞt4 þ ðT þ 2qYÞt2 þ 2Z ¼ 0;

X ¼ hxouthyout þ hxouthzout þ hyouthzout;

Y ¼ hxinhyout þ hxouthyin þ hxinhzout

þ hxouthzin þ hyinhzout þ hyouthzin;

Z ¼ hxinhyin þ hxinhzin þ hyinhzin;

(66)

whose solutions read

t2 ¼ f�0ðTÞ;��ðTÞg;
�0ðTÞ � �1=3 þ �0�

�1=3 þ �1 ��ðTÞ � e�2i
=3�1=3 þ e�2i
=3��1=3 þ �1;

� ¼
ffiffiffiffiffiffi
�1

p
q2T2

� �2; �0 ¼ qTð8X� 6YÞ þ 4q2X2 þ T2

9q2T2
; �1 ¼ � 2qXþ 2T

3qT
;

�1 ¼ 1

27qT
½27qT2Z2 þ ½ð�36q2TX � 36qT2ÞY þ 16q3X3 þ 48q2TX2 þ 30qT2X � 2T3�Z

þ 8q2TY3 þ ð�4q3X2 � 8q2TXþ 8qT2ÞY2 þ ð�4q2TX2 � 8qT2X þ 2T3ÞY � qT2X2 � 2T3X�;

�2 ¼ qT2ð27Z� 18Y þ 15XÞ þ q2Tð24X2 � 18XYÞ þ 8q3X3 � T3

27q3T3
:

(67)

We see from Eq. (67) that there is one real positive solu-
tion, �0ðTÞ, and two complex solutions, ��ðTÞ. By using
Eqs. (62)–(64) the system of equations of motion (24)–(27)
becomes

16
� ¼ f� 2TfT; (68)

�16
px ¼ fþ 2fT

�ðhy þ hzÞ2 � ðhy þ hzÞ � hyhz
�0ðTÞ � T

2

�

þ 4

�
hy þ hz
�0ðTÞ

�
TfTT; (69)

�16
py ¼ fþ 2fT

�ðhx þ hzÞ2 � ðhx þ hzÞ � hxhz
�0ðTÞ � T

2

�

þ 4

�
hx þ hz
�0ðTÞ

�
TfTT; (70)

�16
pz ¼ fþ 2fT

�ðhx þ hyÞ2 � ðhx þ hyÞ � hxhy
�0ðTÞ � T

2

�

þ 4

�
hx þ hy
�0ðTÞ

�
TfTT; (71)

hi ¼ hiin þ hioutq�0ðTÞ
1þ q�0ðTÞ : (72)
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1. A special case

Here, we assume that the expansion rates are equal in the
three spatial directions (hx ¼ hy ¼ hz), and the system

(68)–(71) reduces to

16
� ¼ f� 2TfT; (73)

� 16
px ¼ f� 2fT

�
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2T

3�0ðTÞ

s �
þ 4T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2T

3�0ðTÞ

s
fTT;

(74)

px ¼ py ¼ pz;

which means that the assumption of having the same rate in
the three spatial directions leads to an isotropic matter
content. By combining Eqs. (73) and (74), one gets

4T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2T

3�0ðTÞ

s
fTT�2fT

�
ð1þ!ÞTþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2T

3�0ðTÞ

s �
þð1þ!Þf

¼0; (75)

where we have used the barotropic equation px ¼ !�. Let
us consider an asymptotic analysis, looking for the early-
(small time) and late-time universe (large time), for which
the function hiðtÞ yields hiin and hiout, respectively. Thus,
for the early universe Eq. (75) reduces to

4T2fTT þ 6TfT½3hiinð!þ 1Þ � 1� � 3hiinð!þ 1Þf ¼ 0;

hiin ¼ hxin ¼ hyin ¼ hzin; (76)

whose general solution reads

fðTÞ ¼ C3T
�þ þ C4T

�� ; �� ¼ 5� 9hxinð1þ!Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 78hxinð1þ!Þ þ 81h2xinð1þ!Þ2

q
4

; (77)

where C3 and C4 are integration constants. From Eq. (77), by writing the radicand as ½5�9hxinð1þ!Þ�2þ12hxinð1þ!Þ,
one observes that for any!>�1, �þ > 0 and �� < 0. Moreover, in this context of asymptotic analysis, we observe from
Eq. (63) that for small t, the torsion scalar T is large, while for large t, the torsion is small. Thus, for small t with hxin > 1,
corresponding to the inflation, the algebraic expression of fðTÞ is given by

fðTÞ ¼ C3T
�þ : (78)

Since hxðtÞ reduces to hxout in the late universe, the model corresponding to the late accelerated universe can be obtained by
replacing hxin by hxout. Precisely, for large t, the torsion scalar is small, and for hxout > 1, the dominant term in Eq. (77),
corresponding to the model of the late-time universe, is

fðTÞ ¼ C4T
�0� ; �0� ¼ 5� 9hxoutð1þ!Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25� 78hxoutð1þ!Þ þ 81h2xoutð1þ!Þ2p
4

: (79)

This model is equivalent to teleparallel gravity for C4 ¼ 1
and hxout ¼ 2=ð5þ 5!Þ. It is easy to see from this that, for
any ordinary matter, i.e., !> 0, one gets hxout < 1, mean-
ing that teleparallel gravity without a cosmological con-
stant cannot provide the late acceleration of the universe
(remembering that the acceleration is guaranteed for
hxout > 1, and that 0< hxout < 1, characterizing a deceler-
ated expanding universe). Thus, the contribution of the
fðTÞ terms play the role of the dark energy.

Looking for the expression of fðTÞ for large cosmic time
t, i.e., the expression (77) (replacing hxin by hxout), a
similarity can be observed with a result of Bamba et al.
in Ref. [26]. In that work, they studied fðTÞ theory in the
FLRW metric, first assuming a power-law expression for
fðTÞ [their Eq. (4.6)] for investigating what type of finite
future-time singularities may appear. Later, they intro-
duced a correction term, still in the form of a power law
[their Eq. (4.22)], in order to analyze the possible avoid-
ance of the singularities. Then, they obtained the global
expression (4.23) of Ref. [26]. Note that this expression is
equivalent to our Eq. (77). Moreover, they showed in their

‘‘TABLE II’’ that the big rip and the big freeze can be
removed if the product of the exponents is negative. This is
exactly our result, since �0þ and �0� are always positive and
negative, respectively (�0� are obtained from �� by replac-
ing hxin by hxout). This means that for both Bianchi type I
and KS, if the expansion of the universe occurs with the
same rate in all directions, models that can realize the late-
time accelerated expansion of the universe, and that are
able to prevent the big rip and the big freeze, can be
reconstructed.

2. Using an auxiliary scalar field

In this subsection, we would like to use the reconstruc-
tion scheme, for which an auxiliary scalar field is intro-
duced in the action of the theory. By this method, the
functional form of fðTÞ can be found through two other
scalar functions P and Q (for more clarification on the
method, see the cases of fðRÞ gravity [46] and fðTÞ gravity
[16]). Here, we return to the general system (68)–(72),
where we introduce the auxiliary scalar field
 by defining
the algebraic function fðTÞ as
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fðTÞ ¼ Pð
ÞT þQð
Þ: (80)

By using Eq. (80) and varying the action (9) with respect to
the scalar field 
, one gets

P0ð
ÞT þQ0ð
Þ ¼ 0; (81)

which may be solved with respect to 
, yielding 
 ¼

ðTÞ. Here, the prime (0) denotes the derivative with respect
to 
. By using Eq. (80), one obtains

fTðTÞ ¼ Pð
ðTÞÞ; fTTðTÞ ¼ PTð
ðTÞÞ: (82)

Making use of Eq. (82), one can rewrite the system
(68)–(71) as

16
� ¼ Pð
ÞT þQð
Þ � 2TPð
Þ; (83)

�16
px ¼ Pð
ÞTþQð
Þ

þ 2Pð
Þ
�ðhy þ hzÞ2 � ðhy þ hzÞ � hyhz

�0ðTÞ � T

2

�

þ 4

�
hy þ hz
�0ðTÞ

�
TPTð
Þ; (84)

�16
py ¼ Pð
ÞTþQð
Þ

þ 2Pð
Þ
�ðhx þhzÞ2 �ðhx þhzÞ� hxhz

�0ðTÞ �T

2

�

þ 4

�
hx þhz
�0ðTÞ

�
TPTð
Þ; (85)

�16
pz ¼ Pð
ÞTþQð
Þ

þ 2Pð
Þ
�ðhx þhyÞ2 �ðhx þhyÞ�hxhy

�0ðTÞ �T

2

�

þ 4

�
hx þhy
�0ðTÞ

�
TPTð
Þ: (86)

Let us consider that py ¼ pz. Then, by equating Eq. (85)

with Eq. (86), one gets

TPTð
Þ ¼ � 1

2
Pð
Þðhx þ hy þ hz � 1Þ: (87)

Using Eq. (87), the system (83)–(86) reduces to

16
� ¼ Qð
Þ � TPð
Þ; (88)

� 16
px ¼ Qð
Þ þ TPð
Þ; (89)

px ¼ py ¼ pz; !x ¼ !y ¼ !z: (90)

By using Eq. (88), one can determine Qð
Þ as
Qð
Þ ¼ 16
�þ TPð
Þ; (91)

which, substituted into Eqs. (89) and (90), yields

� 16
ð!x þ 1Þ� ¼ 2TPð
Þ: (92)

As one can redefine the scalar field properly, we may
choose 
 ¼ t; then Pð
Þ ¼ PðtÞ ¼ �PðTÞ. Note that in
the case where !x ¼ �1, one gets �PðTÞ ¼ 0, and the
algebraic function fðTÞ ¼ QðtÞ ¼ 16
� ¼ �QðTÞ. But
this requires one to have the complete expression of �
depending on T, i.e., solving the equation of continuity.
Let us consider in general the case where!x � �1 and try
to solve the equation of continuity, which will help us to
determine �PðTÞ and �QðTÞ, leading to the reconstruction of
the algebraic function fðTÞ. We choose the case of KS
geometry (hy ¼ hz), where the equation of continuity is

written as

_�þ �ð1þ!xÞðHx þ 2HyÞ ¼ 0; (93)

which can be solved, giving

�ðtÞ ¼ C5 exp½G1ðtÞ þG2ðtÞ�; (94)

G1ðtÞ ¼
ð1þ!xÞðhxin þ 2hyinÞ

t
; (95)

G2ðtÞ ¼ ffiffiffi
q

p ½ð1þ!xÞðhxin � hxout þ 2hyin � 2hyoutÞ�
	 arctanð ffiffiffi

q
p

tÞ; (96)

where C5 is an integration constant. Making use of
Eq. (67), one can cast �ðtÞ in terms of T. Also, from
Eq. (92), one obtains PðtÞ in terms of T, and from Eq. (91)
one gets QðtÞ in terms of T. Therefore, we can reconstruct
the algebraic function fðTÞ, given in Eq. (80), as

fðTÞ ¼�16
C3!x exp

�
g1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðTÞ

p þg2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�0ðTÞ

q ��
;

(97)

where g1 ¼ ð1þ!xÞðhxin þ 2hyinÞ and g2¼ ffiffiffi
q

p ð1þ!xÞ	
ðhxin�hxoutþ2hyin�2hyoutÞ.
In principle, with Eq. (97) some cosmological models

can now be reproduced. We focus our attention on the early
universe (which may be characterized by the inflation), and
the late-time universe (characterized by its accelerated
expansion) in the three spatial directions.
At early time, i.e., for small t (or large T),�0ðTÞ is very

small, and the corresponding algebraic function is

fðTÞ ¼ �16
C3!x exp

�
g1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðTÞ

p
�
: (98)

At late time, the time t is large [corresponding to a small
torsion scalar and large �0ðTÞ], and the algebraic function
reads

fðTÞ ¼ �16
C3!x exp

�
g2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�0ðTÞ

q ��
: (99)

Thus we see that models corresponding to the inflation and
the late-time accelerated universe can be reconstructed
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within KS metrics where the matter content is partially
isotropic (py ¼ pz). Since in this work we fall in the

situation where !x ¼ !y ¼ !y one could use the

WMAP data and try to check if they fit with this aniso-
tropic model. Because ultimately px ¼ py ¼ pz and

hy ¼ hz, one can just use the first two equations of motion

of the KS case, i.e., Eqs. (28) and (29). In order to cancel
the contribution of the modified part of the algebraic
function fðTÞ, we cast it into the form fðTÞ ¼ T þ jðTÞ
[the teleparallel term plus the modified additive algebraic
function jðTÞ]. Thus, Eqs. (28) and (30) become

8
�eff ¼
� _B

B

�
2 þ 2

_A _B

AB
; (100)

� 8
pxeff ¼ 2
€B

B
þ

� _B

B

�
2
; (101)

where �eff and pxeff are the effective energy density and
effective pressure, respectively, and are defined by

�eff ¼ �� 1

16


�
jþ 4jT

�� _B

B

�
2 þ 2

_A _B

AB

��
; (102)

pxeff ¼pxþ 1

16


�
jþ4jT

� €B

B
þ
� _B

B

�
2þ

_A _B

AB

�
þ4

_B

B
_TjTT

�
:

(103)

By dividing Eq. (101) by Eq. (100), and using !eff ¼
pxeff=�eff , one gets

!eff ¼
2� 3hy
hy þ 2hx

: (104)

Since the observational data from the WMAP project do
not depend on the spacial direction, i.e., they are not based
on an anisotropic geometry, we have to impose hx ¼ hy in

Eq. (104) in order to get a suitable cosmological feature.
Thus, assuming that the accelerated expansion of the uni-
verse is realized with the same rate in all directions, hx ¼
hy ¼ hz > 1, and the universe is essentially filled by the

dark energy, where we can neglect the usual matter content
such that !eff �!DE. Therefore, using Eq. (104) we have
the possibility of regaining the well-known range of values
allowed by the current seven-year WMAP data for the
parameter of the equation of state of the dark energy,
!DE ¼ �1:1� 0:14 WMAP [47].

D. On Bianchi type III solutions

In this section, we present some comments on Bianchi
type III solutions. This case is quite exceptional since we
do not have the freedom of making cosmological recon-
struction, as in the case of Bianchi type I and KS, due to the
constraints equations (22) and (23).

From Eq. (23), since the parameter is different from zero
and the algebraic function cannot be a constant, one gets

_A

A
¼ _B

B
; (105)

which, when inserted into Eq. (22), leads to

_TfTT ¼ 0; (106)

meaning that one has _T ¼ 0 or fTT ¼ 0. The first case,
_T ¼ 0, implies that one has a constant torsion scalar, i.e.,

_A2

A2
þ 2

_A _C

AC
¼ K; (107)

where K is a positive constant. Let us consider A ¼ Cn,
with n bigger than zero or less than �2. Thus, Eq. (107)
can be solved, yielding

CðtÞ ¼ C0
0 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

nðnþ 2Þ

s
t

�
; (108)

leading to

AðtÞ ¼ BðtÞ ¼ ðC0
0Þn exp

�
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

nðnþ 2Þ

s
t

�
; (109)

where C0
0 is a positive constant. It is important to note that

in order to guarantee the expansion of the universe, one
needs to have

AðtÞ¼BðtÞ¼
8><
>:
ðC0

0Þnexp
�
�n

ffiffiffiffiffiffiffiffiffiffiffi
K

nðnþ2Þ
q

t

�
for n<�2;

ðC0
0Þnexp

�
n

ffiffiffiffiffiffiffiffiffiffiffi
K

nðnþ2Þ
q

t

�
for n>0:

(110)

In this case, we see that the rate of expansion is constant
for the three spatial directions: this is the de Sitter universe.
Now we can perform the reconstruction of the algebraic

function fðTÞ. One can cast Eqs. (18)–(21) in the following
system:

16
� ¼ fþ 4fT

�
K � �2

2A2

�
; (111)

� 16
!x� ¼ fþ 2KfT

�
2n2 þ 3nþ 1

nðnþ 2Þ
�
: (112)

� 16
!z� ¼ fþ 4KfT

�
2nþ 1

nþ 2

�
� 2

�2

A2
fT; (113)

px ¼ py: (114)

By combining Eq. (111) with Eq. (113), one can eliminate
the term containing �, obtaining

� 16
ð!z þ 1Þ� ¼ 4Kðn� 1Þ
nþ 2

fT: (115)

The energy density � can be eliminated by combining
Eq. (112) with Eq. (115), yielding the differential equation
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2K½2nðn� 1Þ!x � ð!z þ 1Þð2n2 þ 3nþ 1Þ�fT
� nðnþ 2Þð!z þ 1Þf ¼ 0; (116)

whose general solution is

fðTÞ ¼ C6 exp½RðnÞT�;

RðnÞ ¼ nðnþ 2Þð!z þ 1Þ
2K½2nðn� 1Þ!x � ð!z þ 1Þð2n2 þ 3nþ 1Þ� ;

(117)

where C6 is an integration constant. Note that for n ¼ 1
and !x ¼ !z, Eq. (40) is recovered.

The second case from Eq. (106), fTT ¼ 0, implies that
fT is constant: if we choose it to be minus two times the
cosmological constant �, then fðTÞ is written as

fðTÞ ¼ T � 2�; (118)

which is teleparallel gravity with a cosmological constant.

V. CONCLUSION

In this paper the Bianchi type I, Kantowski-Sachs, and
Bianchi type III metrics have been studied in the context of
fðTÞ gravities. Particularly, we have shown the reconstruc-
tion of some important cosmological solutions, obtaining
the corresponding fðTÞ action. We have initially assumed a
particular choice of coordinates and tetrads: specifically,
Cartesian coordinates and a diagonal set of tetrads have
been imposed in order to avoid the well-known constraint
fTT ¼ 0, which reduces trivially to the action of telepar-
allel gravity (see Ref. [48]).

Then, several important cosmological solutions have
been considered. In particular, de Sitter solutions, where
the scale factor is an exponential function of the cosmic
time, have been considered for Bianchi type I and
Kantowski-Sachs metrics by imposing a particular expo-
nential expansion in each direction of the space. We have
shown that the only possible solution turns out to be the
FLRW metric, such that no possible de Sitter anisotropic

evolution can be found in fðTÞ unless one considers an
anisotropic fluid. Nevertheless, in the case of power-law
solutions, we have found that in the presence of a perfect
isotropic fluid, an anisotropic cosmological evolution can
be found for a particular choice of the action fðTÞ, while in
vacuum the action reduces to the FLRW metric.
Moreover, we have extended the cosmological recon-

struction scheme to general exponential solutions, from
which the above de Sitter and power-law solutions are
particular cases. We have assumed an adiabatic approxi-
mation for the expansion in each spatial direction. We
studied two cases: a special case, and a second case where
an auxiliary field is used. In the both cases, we have shown
that the models can realize the early accelerated universe,
characterized by the inflation, and the late-time accelera-
tion of our current universe. In the special case, the model
presents an interesting aspect because it ensures the avoid-
ance of the big rip and the big freeze. In the case where the
auxiliary field is used, the model corresponding to the late-
time accelerated universe fits with the seven-year WMAP
data, confirming the consistency of the result.
The Bianchi type III case presents some constraints from

which only two forms of the algebraic function fðTÞ can be
obtained. The first is the well-known teleparallel gravity
with a cosmological constant, and the second is a de Sitter
type solution.
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