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We present a new scheme for constructing initial data for the Einstein field equations using the

conformal thin-sandwich formulation that does not assume conformal flatness or approximate Killing
vectors. This includes a method for determining free data based on superposition, as well as a way to
handle black hole singularities without excision. We numerically solve the constraint equations using a
multigrid algorithm with mesh refinement. We demonstrate the efficacy of the method with initial data
solutions for several applications: a quasicircular binary black hole merger, a dynamical capture black
hole-neutron star merger, and an ultrarelativistic collision.
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I. INTRODUCTION

The purview of numerical relativity has extended to
include not only relativity theory but also a wide range of
other topics. Motivated by current and upcoming efforts to
detect gravitational waves [1-5], there has been extensive
work on mergers of binary compact objects [6] including
binary black holes (BH-BH) [7-10], binary neutron stars,
and black hole-neutron star (BH-NS) systems [12,13]. In
addition to binaries in quasicircular orbits, there have also
been studies of eccentric binaries [14-24] as may arise, for
example, from dynamical capture. Other works of interest
to astrophysics include gravitational collapse of stars
[25,26], black hole accretion [27], and the nature of cos-
mological singularities [28,29]. Aside from astrophysical
systems, numerical relativity has also emerged as a useful
tool to explore various concepts in gravity and high energy
physics [30], such as critical collapse [31], ultrarelativistic
collisions [32-36], the gauge/gravity duality [37-41], grav-
ity and black holes in higher dimensions [42-44], and the
(in)stability of anti-de-Sitter spacetime [45]. In all these
applications, a necessary ingredient is a good method for
constructing initial data (ID). Here we present a new initial
data solver, based on the conformal thin-sandwich (CTS)
[46] formulation, which we have designed to be more
generally applicable to a range of physical scenarios by
avoiding symmetry or simplifying assumptions.

There has been extensive research on the problem of
constructing ID for general relativity, and detailed reviews
can be found in Refs. [47-50]. Early attempts at solving
the initial data problem relied on certain assumptions to
make the mathematical formulation of the problem more
tractable, such as conformal flatness and maximal slicing.
The widely used Bowen-York solution [51] is one such
example. These assumptions are restrictive since, for ex-
ample, the isolated Kerr black hole does not admit con-
formally flat slices [52], and consequently the Bowen-York
solution cannot be used to construct black holes with
spin higher than S/M3p, = 0.928 [53,54]. Other ex-
amples include the use of quasiequilibrium assumptions
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for constructing ID for binary systems (such as approxi-
mate helical Killing vectors or the like, and approximate
hydrostatic equilibrium for any matter in the system); see,
for example, Refs. [55-70]. This serves as a good approxi-
mation for astrophysically motivated quasicircular inspiral
sufficiently far from merger, though it is not valid for
eccentric mergers (except possibly near the turning points
of the orbit [71]) or the ultrarelativistic scattering problem.
Many of these studies made further simplifying assump-
tions, such as conformal flatness, which does not have an
astrophysical motivation. Attempts to supply more realis-
tic conformal initial data include superposition of isolated
black hole spacetimes [54,72-77], and in addition using
post-Newtonian solutions [78,79] and matched asymptotic
expansions to supply an initial outgoing radiation field
[80-82]. Using superposed data allowed evolution of
binary black holes in quasicircular orbits with spins
exceeding the Bowen-York limit [83]. A further alternative
approach, initially applied to binaries including neutron
stars, involves solving the full Einstein-Euler system of
equations with a waveless and/or near-zone helical sym-
metry approximation [67,84—87].

Since our goal is to have a more general purpose
numerical initial data solver that can be used for a range
of applications, as outlined in the first paragraph, we will
use the CTS formalism with arbitrary conformal metric and
other free data to be chosen as needed for the particular
application. For our first version of the code, as presented
here, we restrict to four-dimensional, asymptotically flat
spacetimes, with application to binary compact object
interactions. For the free data we use superposed, boosted
single CO spacetimes. At large separation this is a good
approximation for the physical metric of dynamical capture
binaries and the ultrarelativistic scattering problem, and the
nonlinear corrections from solving the CTS equations are
small. For quasicircular binaries, again at large separation
this is a good approximation. However, unlike the scatter-
ing problems, at practical (because of limited computa-
tional resources) initial separations to allow evolution
through merger, the simple superposition we use at present
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will not give improved astrophysically relevant ID com-
pared to current quasiequilibrium approaches. Compared
to existing studies using superposed data, a couple of
novel aspects about our work is we include the matter
and metric in the superposition of COs involving fluid stars
(as opposed to solving the Euler equations on a flat back-
ground in the studies mentioned earlier, or conformal to a
single black hole solution [69]) and the consideration of
ultrarelativistic initial boosts with Lorentz factors up to 10.

Another notable aspect of this work is how we handle
black hole singularities. Most existing approaches either
use some form of boundary condition on a trapped surface
on or inside each black hole (see, for example,
Refs. [47,55,64]) or use a slice that maps the interior region
of the computational domain for each black hole to either
part (so-called “‘trumpets” [88-91]) or all (“punctures”
[92]) of a different asymptotically flat region spanned by an
Einstein-Rosen bridge (for a novel variant that does not
require separation of the metric into a background piece and
conformal factor see Ref. [93]). Here we follow an alter-
native approach where some distance inside the apparent
horizon of each black hole we replace the vacuum interior
with an (unphysical) distribution of stress energy to regu-
larize the interior metric. This is similar to a ““stuffed black
hole” [94] or the ““turduckening” evolution scheme [95,96]
(see also Ref. [97]). However, since we use excision to
subsequently evolve the initial data, with the excision sur-
face chosen to entirely contain the unphysical matter, here it
is merely a device to set up a simple initial data problem
without explicit interior boundary conditions or singular-
ities. Note, however, that if we were to solve the ID on a
domain with traditional excision surfaces inside each black
hole, we would (assuming a well-posed elliptic problem)
obtain the same solution exterior with appropriate excision
boundary conditions, though the mapping between some
unphysical interior and appropriate boundary conditions
would be nontrivial and in general nonunique.

An outline of the rest of the paper is as follows. In Sec. 11
we review the CTS formulation, describe our method for
choosing the metric and fluid free data, outline the scheme
for regularizing black hole solutions, and describe how we
numerically solve the constraint equations using a multi-
grid solver. In Sec. III we present examples of initial data
obtained with our solver for quasicircular, eccentric, and
ultrarelativistic mergers of compact objects. Finally, we
comment on our results and discuss possible future
improvements in Sec. IV. In the Appendix we give some
details on how we treat mesh refinement boundaries in our
multigrid algorithm. We use geometric units where
Newton’s constant G = 1 and the speed of light ¢ = 1.

II. COMPUTATIONAL METHODOLOGY

A. Conformal thin-sandwich equations

To formulate the initial data problem for general rela-
tivity, we start by foliating spacetime with a family of
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spacelike hypersurfaces 3, parametrized by ¢. The normal
vector to these surfaces n* and the generator of time
translations t# satisfy

" = an* + B*, (1)

where « is the lapse and B8# is the shift, which is tangent to
3, (n P B* = 0). We use the standard convention where
Greek indices run through {0, 1, 2, 3} and represent the full
spacetime coordinates, while Latin indices run through
{1, 2, 3} and represent coordinates intrinsic to a given spa-
tial hypersurface. Using the orthogonal projection operator
1» = 6, 4+ n*n,, we obtain the induced metric on %,,,
Yij = 8uv» L*; L7 ;, where g, is the four-dimensional
spacetime metric. The line element can be written in terms
of these quantities as

ds* = —a?di* + y,;(dx' + Bid)(dx) + pidr).  (2)

The extrinsic curvature of a slice X, can be written in terms
of a Lie derivative as
1
K;; = _§£n7ij' (3)
Projecting the Einstein equations onto the hypersurface 2,
one obtains the constraint equations

R+ K? + K;;K'/ = 167E, 4)

D,K'i — D'K = 8mp, (5)

where K = yYK;;, R, and D; are the Ricci scalar and
covariant derivative associated with y;;, respectively, and
E and p' are the energy and momentum density as mea-
sured by an Eulerian observer, respectively.

In the language of the 3 + 1 decomposition, initial data
for the Einstein field equations (and any matter evolution
equations) are a set of 20 functions representing the com-
ponents of a, B', y;;, K;;, E, and p' on the initial slice 3,
that together satisfy the constraints (4) and (5). Though, in
principle, there are numerous conceivable ways of coming
up with consistent initial data, it is challenging to separate
freely specifiable versus constrained degrees of freedom in
a manner where the underlying physical interpretation of
the free data is transparent, and where the choice of the free
data leads to a well-posed set of constraint equations. The
CTS method [46] is a prescription for this separation of
degrees of freedom that begins with a conformal decom-
position of the spatial metric and the extrinsic curvature.
Introducing the conformal factor W, we define

¥i=Y"1y, (6)
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where ¥ = W4(y" — Ly, ¥*) is defined to be trace-
less, the overdot indicates a time derivative, @ = ¥ °q,
and R and D; are the Ricci scalar and covariant derivative
associated with y;;, respectively. With these definitions we
can rewrite (4) and (5) in the CTS form as

N R 1. oa K? .
DiDl\If - *\If + *Al'jA[/\P77 - 7\1,5 == _27T\P73E,
8 8 12
3)
DAY~ 2wopiK = gmpi ©
j g =omp, )

with p! = W0pi E = W3E, Initial data are obtained by
solving this system of four elliptic equations for ¥ and S’
[upon substitution of (7) into (9)], where ¥;;, ¥", K, &, E,
and p' are the “free data™ that can be freely specified to
reflect the physical system under investigation.

B. Superposed free data

Under the conformal thin-sandwich method one is free
to choose any values for ¥;;, ¥, &, K, E, and p' for which
a solution can be found. In this section we outline our
method for determining these free data in order to construct
initial data representing binary systems. The basic idea is
as follows. Since solutions to the Einstein equations rep-
resenting isolated compact objects (black holes, stars, etc.)
are well known, and since if the separation between the
objects is not too small the solution describing two com-
pact objects is well-approximated by superposing the two
isolated solutions, we therefore set our free data using such
a superposed solution and then solve the constraint equa-
tions in order to obtain the nonlinear correction.

There are many ways to combine the metrics represent-
ing isolated compact objects. The method we use is based
on the 3 + 1 splitting. Let 75}), 75}), aV, and BV repre-
sent the spatial metric, time derivative of the spatial metric,
lapse, and shift, respectively, of the first isolated solution
(e.g., a boosted black hole or neutron star solution) and
similarly for the second isolated solution. Then, we con-
struct the following quantities:

1 2
yg;up) _ ,ygj) + ,ygj) _ fij’ (10)
. . (1 (2
yf;up) _ ,ygj) + ')’Sj)’ (1D
a(sup) — a(l) + a(z) -1, (12)
ﬁi(sup) — Bi(l) + l[-}i(z), (13)

where f;; is the flat-space metric. This particular construc-
tion will break down if a®") < 0 or det[ygj_um] = 0 any-
where in the domain, which would then require some other

way of combining the metrics, for example, using distance-
weighted attenuation functions as in Ref. [98]. (In Ref. [76]
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it was also found necessary to enforce a desired asymptotic
falloff of the superposed metric, owing to the use of a
corotating frame.) However, these conditions are not
violated for the cases considered here. From the above
quantities, we then calculate the free data we will use
when solving the CTS equations from the usual relations:

i =y, (14)
" —a 1 up) o

yii = —7”‘7’1(723“") —37 753‘,‘1")71(;), (15)
&= abw, (16)

1 : . .
K == Q08" + ¥y, + yI B0, 3,). (A7)

For initial data with matter we use a similar method. We
set £ and p’ by superposing the energy and momentum
density of the two objects (we do not consider situations
where they would both be nonzero at the same point). For
some cases (in particular for the ultrarelativistic boosts),
we rescale the momentum density so that its magnitude
with respect to the superposed metric ¥;; is equal to the
magnitude of the original momentum density with respect

to the metric of the isolated object (yﬁ}) or yﬁf)). This
ensures that £ and p' p; have the same ratio as the isolated
objects. This is important since the choice of conformal
scaling of the energy E = EW?® was designed to ensure that

if the conformal quantities satisfy the dominant energy

condition, 4/¥;;p'p/ = E, then so will the rescaled quanti-
ties following the solution of the constraints.

C. Regularizing black hole solutions

In cases where black holes are a part of the physical
system, the divergences at the black hole’s singularity must
be addressed. As discussed in the Introduction, there are
several ways to deal with this issue in the initial data
problem; the approach we take here is to explicitly modify
the metric of an isolated (prior to superposition) black hole
solution inside the horizon to take a prescribed, regular
form. The regularized region will not in general satisfy the
vacuum constraint equations, and to avoid a singular con-
formal factor and shift vector components when solving
the constraints with such background data, we introduce
unphysical energy momentum in the union of black hole
interiors so that these regions automatically satisfy the
constraints, albeit with the unphysical interior matter
source.

We start with a single, unboosted spinning black hole
spacetime in horizon penetrating coordinates (for the
results described here we use the harmonic form of Kerr
derived in Ref. [99], though we have also tried it using
Kerr-Schild coordinates without difficulty), so that the only
divergences in the metric components are well within the
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horizon. We then choose a surface that encloses the sin-
gular region, yet is strictly inside the event horizon. The
interior of this surface we call the regularization region.
Outside the regularization region we do not modify the
metric. Inside, there are many conceivable ways to alter the
metric to eliminate the divergences. The simple approach
we take is to promote the black hole mass M and spin a
constants to functions of space and smoothly decrease
them from their bare values at the regularization surface
to zero at some surface interior to this.
Specifically, we introduce a regularization function

1, x> 1,
x3(6x* —15x+10), 1>x>0, (18)
0, 0>x,

freg (x) =

chosen to be twice continuously differentiable so that the
consequent unphysical energy is well behaved. We use a
Cartesian grid' and define ?)(x, y, z) = x> + y2 + 2% as
the Euclidean radius for a point with coordinates x, y, z.
We then replace the mass M and the spin parameter a with
&(x, v, z)M and &(x, y, 7)a, respectively, in all the metric
components, where

(FO(x, y, 2)/r'P (%, ,2) = gin
qout — Yin

£xy,2) = freg( ) (19)

r(f) (x, v, z) is the Euclidean radius for the point on the event
horizon at the same angular direction as (x,y, z), Gou
defines the outer surface of the regularization region, and
¢in 1s the inner surface inside of which the metric is
Minkowski, with 1> g.y > ¢is > 0. The shape of the
regularization region, namely a shrunken form of the inte-
rior of the event horizon, was motivated by the similar
volume excised during evolution (though that is based on
the apparent horizon, and the excision surface is a best-fit
ellipsoid rather than the exact shape of the apparent
horizon). The particular values of g, and g;, are not too
important (i.e., give essentially the same solutions), the
only practical requirements being that g, represents a
surface within the excision surface we will use during
evolution and that g;, is not to be too close to g,,; otherwise
excessive resolution is needed to resolve the transition.

Once we have an everywhere-regular metric, we super-
pose it with any other COs to construct the free data as
described in Sec. II B. We then compute the unphysical
energy and momentum we will add to the regularization
regions simply by evaluating (4) and (5) with the back-
ground, superposed data

"Note that in the harmonic coordinates of Ref. [99] only the
region with rg > M is represented on the Cartesian grid r = 0,
where r is the radial coordinate of the the metric in ingoing null
Kerr form. Hence the physical singularity is not on the grid;
however, the metric components are discontinuous at x =y =
7 =0 (rx = M), and hence regularization is still required.
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1 .
Eunphys = E(R + K? + Kinlj)(Sup)’ (20)

. 1 - .

Phngigs = 5= (DK = DK™, 1)
Eunphys and pl o are then added to E and p' within the
regularization regions, and we can then solve the CTS
equations as usual without any additional special treatment
of these regions. It is also possible to calculate the unphys-
ical energy momentum before the superposition and add
E\nphys and pfmphys directly. The former method gives a
small discontinuity of E\;,y, and mephys at the boundary of
the regularization region, whereas the latter one gives
continuous quantities. Either approach leads to similar
results, but the former gives more rapid relaxation of the
elliptic equations and is the choice for the cases presented
here.

During evolution, we choose black hole excision sur-
faces that entirely contain the regularization regions and
unphysical matter. Thus, one can think of the unphysical
matter as serving as a proxy for what would otherwise be
boundary conditions for ¥ and B’ on excision surfaces.
Given a solution to the constraints with regularized interi-
ors, it is trivial to read off what the equivalent (Dirichlet)
boundary conditions would have been, though the inverse
problem of mapping some set of desired boundary con-
ditions to interior sources is less trivial and likely not well
posed in general.

D. Fluid solutions

For the applications with (physical) matter considered
here we use Tolman-Oppenheimer-Volkov (TOV) star
solutions in isotropic coordinates to construct the metric
free data quantities as well as £ and p’. Such solutions are
derived by assuming a relationship between the pressure
and density P(p), e.g., as given by a polytropic condition.
Once the constraint equations have been solved and E and
p' found, we determine the new density and pressure pro-
files using this same relationship and solving the equation

(E+ P(p)(E —p)—pip' =0, (22)

for p, which follows directly from the expressions for the
energy and momentum density of a perfect fluid. For the
applications considered here, we do not explicitly impose
any additional constraints on the fluid quantities (e.g., that
the fluid be in hydrostatic equilibrium). We leave that to
future extensions.

E. Multigrid elliptic solver

To numerically solve the CTS equations we discretize
(8) and (9) using standard second-order finite difference
operators and solve them using a full approximation
storage implementation of the multigrid algorithm with
adaptive mesh refinement (AMR) as described in
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Ref. [100]. A multigrid algorithm is characterized by a
smoothing operation and by a choice of restriction and
prolongation operators. We use Newton-Gauss-Seidel
relaxation for smoothing, and half-weight restriction and
linear interpolation for the restriction and prolongation
operators, respectively. These latter operators require
special treatment on mesh refinement boundaries, which
we outline in the Appendix. Unlike in the evolution code,
we do not use a compactified coordinate system extending
to spatial infinity. Rather, the initial data numerical grid
extends to a large but finite radius. This is to avoid
numerical problems attributable to large Jacobian factors
needed in compactification, which become especially
problematic near the corners of the boundary. At the outer
boundaries we impose boundary conditions that ¥ = 1
and B! = Bi)_Since the use of mesh refinement enables
us to put the outer boundary far away from the compact
objects, these boundary conditions can be made suffi-
ciently accurate compared to numerical error (though for
future applications they could also be replaced with, e.g.,
Robin boundary conditions). Any points outside this
domain on the evolution grid are initialized via extrapola-
tion, assuming a leading order 1/r approach to an asymp-
totically flat spacetime.

For some applications we wish to solve for initial data
with axisymmetry. To efficiently solve the constraint equa-
tions in these situations, we have implemented a modified
version of the Cartoon method [101] similar to that used in
Ref. [102]. Letting the y axis be the axis of symmetry, we
restrict our computational domain to a subset of the half-
plane (x, y) € (—o0, 00) X [0, 00). We use the existence of
an axisymmetric Killing vector to express derivatives in the
z direction in terms of derivatives in the x and y directions.
On the y axis we impose regularity, which gives the follow-
ing conditions for the constrained variables: 9,"¥ = 0 and

9,8 = 9,8’ = B =0.

III. APPLICATIONS

A. Quasicircular binary black holes

As a first application of our technique, we generate and
evolve ID for the (approximate) quasicircular inspiral of
two nonspinning, equal-mass black holes. Our present
method for providing free data is not designed to easily
give initial data for quasicircular inspiral (though presum-
ably with sufficient fine-tuning of the boost vectors this
could be achieved), and this basic example is mainly to
provide a relatively low eccentricity binary, a couple of
orbits before merger, for comparison to past studies.
Specifically, we are interested in seeing how close the
masses, etc., of the black holes obtained following the
solution of the constraints are to the corresponding
parameters used in constructing the free data, and how
much ““spurious’ gravitational radiation is present in the
initial data.

PHYSICAL REVIEW D 86, 104053 (2012)

For the initial data, we use free data set by superposing
two boosted nonspinning equal mass black holes at a coor-
dinate separation of 10M, where M is the sum of the isolated
black hole masses (which in general will be different from
the irreducible masses of the black holes once the constraint
equations are solved). The black holes are given purely
tangential boost velocities chosen so that, when evolved,
the black holes undergo a few orbits with monotonically
decreasing proper separation. The initial data grid extends
to =2048M in all three directions. For convergence studies
of the initial data solver, we use three base grid sizes of 333,
653, and 1293 and 12 levels of mesh refinement with iden-
tical grid structures in each case. As expected, the conformal
factor and shift vector exhibit second-order convergence as
shown in Figs. 1 and 2, as does the residual of (4) and (5).
For evolution, we use the highest resolution initial data.
The ID is evolved using the generalized harmonic formu-
lation of the field equations, choosing harmonic coordinates
at t+ = 0 and transitioning to a damped harmonic gauge as
described in Ref. [103]. The eccentricity is estimated to be
e = (.05 based on the evolution of the coordinate distance
between the centers of the apparent horizons as shown in
Fig. 3. Though the orbital eccentricity could presumably
be reduced further by tuning the initial velocities using
methods such as the one proposed in Ref. [104] or using
the post-Newtonian approximation as in Ref. [105], we did
not attempt to do so for this basic comparison. Because of
corrections from solving the constraints, the sum of the
masses of the isolated black holes whose spacetimes we
superpose M is different from the sum of irreducible masses

", >
'\'\n‘u.m"'f

0 |- 4
—_ ‘Pl/zz_\yum
5t === (qjl/64_lPI/l28)><4 |
-8 -6 —4 -2 0 2 4 6 8
x (M)

FIG. 1 (color online). The conformal factor ¥ from BH-BH
ID. Upper: V¥ on the x axis, which lies on the orbital plane and
goes through the centers of the black holes. Lower: Differences
in W with resolution on the x axis, scaled assuming second-order
convergence.
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FIG. 2 (color online). Differences in the shift component S”
with resolution on the x axis from BH-BH ID, scaled assuming
second-order convergence.

computed from their apparent horizons at the beginning of
the evolution M;,,.. For this particular case M;,/M = 1.21.
The ID is constructed using free data with nonspinning
black holes, and the initial spin calculated from the apparent
horizons is zero to within truncation error (|S/M3zy| < 6 X
1073). The ratio of the irreducible mass of the final black
hole after the merger to the sum of the irreducible masses
of the initial black holes is Mimf/ M;,. = 0.885, and the
dimensionless spin parameter of the final black hole is
ap/M; = 0.678. Both of these values are in good agree-
ment (considering the mild initial eccentricity here) with the
high accuracy results of 0.88433 and 0.68646, respectively,
from Ref. [106]. In Fig. 4 we show the gravitational waves
from the BH-BH merger. The initial spurious part of the

754 , : : : :

N, e data
7t Q

° -==fit |

6.5 i 1

1rr)

d (M.
w

3'540 60 80 100 120 140 160

time (Mm)

FIG. 3 (color online). Coordinate separation of the centers of
the two black holes fitted to a function (A — B(r — 15))"/* +
Ccos(w(t — ty) + ¢). This function combines the decaying
orbit attributable to quadrupole radiation with the effects of
eccentricity, given by e = C/d(t = t;) = 0.05. Because of
early-time gauge effects (a transition from harmonic to damped
harmonic gauge) we exclude the first # = 40M;,, from the fit.
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FIG. 4 (color online). The real and imaginary components of
the [ =2, m = 2 spin-weight —2 spherical harmonic of rW,
extracted at a radius of 105M. Time is measured from the
beginning of the simulation.

signal is of comparable magnitude to other ID approaches
that do not attempt to include gravitational waves from the
prior inspiral; see, for example, Ref. [82].

B. Eccentric compact object mergers

As another application of this technique, we consider
constructing initial data describing a dynamical capture
BH-NS binary. We set the free data using a boosted har-
monic black hole solution and a neutron star with the
equation of state labelled HB in Ref. [107]. Let M be the
sum of the masses of the isolated black hole and neutron
star. We construct initial data for a 4:1 BH-NS binary by
setting the boost velocities to correspond to a Newtonian
orbit with eccentricity e = 1 and periapse distance r, =
SM at various initial separations d. We keep the mass and
spin that we use for the black hole component of the free
data fixed at 0.8M and —0.4M, respectively (where the
negative sign indicates that the spin is retrograde with
respect to the orbital angular momentum), and the mass
of the neutron star component of the free data fixed at
0.2M. The spin and masses will receive corrections from
solving the constraint equations, and with decreasing d
these will differ more and more from the input parameters
of the free data. The input parameters can, of course, be
tuned to achieve desired values in the final solution.
However, since here we are mainly interested in quantify-
ing this difference, we keep them fixed. We use a grid
extending from —1600M to 1600M in each dimension
where the base level is covered by 257° points and there
are nine additional levels of mesh refinement, each with a
refinement ratio of two. We solve for data with initial
separations d/M = 15, 25, and 50. In Table I we show
the maximum difference of the conformal factor from
unity as well as the actual ADM (Arnowitt-Deser-
Misner) mass, black hole mass and spin, neutron star rest
mass, and induced neutron star density oscillations for
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TABLE L.

PHYSICAL REVIEW D 86, 104053 (2012)

Characteristics of BH-NS initial data with Newtonian orbital parameters r, = SM

and e = 1 with three initial coordinate separations d. Here max(|¥ — 1]) is the maximum
deviation over the entire domain of the conformal factor from the background free-data value of
unity, My/My . is the rest mass of the neutron star compared to its isolated rest mass, Mpy/M
and agy/M are the black hole mass and spin parameters measured from the apparent horizon
relative to the initial total mass M of the free data, M spy/M is the relative ADM mass of the
solution, and p .y is the relative magnitude of the oscillation in time of the maximum rest-mass
density of the neutron star induced by the ID construction.

d/M max(|¥ — 1) My/My Myy/M agy/M Mapm/M Poscit (%)
15 0.0155 1.077 0.832 —0.398 1.051 14.3
25 0.0092 1.049 0.818 —0.402 1.030 9.0
50 0.0046 1.028 0.808 —0.399 1.017 4.5

these three different separations. We can see that even at a
separation of 15M the difference between input and final
parameters is small—at the level of a few percent. At such
separations, however, the oscillations induced in the neu-
tron star by the initial setup become large. This problem
could be remedied by adding additional constraints to the
matter, for example, requiring it to satisfy an equilibrium
version of the Euler equations.

We evolve the initial data past merger using the same
methods, gauge, and three different resolutions as in
Ref. [17]. Unless otherwise stated, all quantities are from
the high resolution runs. In Fig. 5 we show the norm of the
constraints throughout the evolution of the d = 15M ID at
the different resolutions. The single highest, resolution ID
i1s used for all evolution runs, so the fact that evolution
constraints are converging to zero indicates that the
truncation error of the ID is at least as small as that of
the highest resolution evolution. In Fig. 6 we plot the

T T T T

o Low Res.

2r - - - Med. Res.x (64/50)> ||

—— High Res.x (96/50)°

a

[IC,IIm

60 80 100

time (M)

FIG. 5 (color online). The L? norm of the constraint violation,
C, = H,— Ox,, in units of 1/M for the d = 15M BH-NS
merger in the 100M X 100M region around the center of mass
in the equatorial plane (i.e., \/f IC,II?d*x/ [ d*x). This is shown
for low, medium, and high resolutions where the latter two are
scaled assuming second-order convergence.

amplitude of the gravitational waves measured from the
three different evolutions to show the amount of spurious
gravitational radiation this method of constructing ID
introduces. The level of spurious gravitational radiation
decreases with increasing separation and in all three cases
is small—an order of magnitude or more below the physical
signal of interest. After the passage of the spurious gravi-
tational radiation, the gravitational wave signal from all
three initial separations is approximately the same, though
there are small differences owing to the changes in parame-
ters indicated in Table I, and because we are starting the
systems along different points of a Newtonian trajectory.

C. Ultrarelativistic initial data

As a final application, we consider the problem of
specifying ID for ultrarelativistic collisions. The study of
the collision of objects where kinetic energy dominates the
dynamics of the spacetime is of considerable interest to

— d=50 M
-300 =200 -100 0 100
M)

=t peak

FIG. 6 (color online). The log of the magnitude of the [ = 2,
m = 2 spin-weight —2 spherical harmonic of r¥, for BH-NS
simulations with different initial separations d. The value of W,
was extracted on a sphere of radius 100M and is shown starting
at the beginning of the simulation and continuing past merger.
The waveforms have been aligned so that the peaks occurs at
time 0.
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super-Planck scale particle collisions, as arguments sug-
gest classical Einstein gravity will be adequate to describe
the process [108—110]. The hoop conjecture [111] predicts
that the generic outcome of a sufficiently ultrarelativistic
collision will be black hole formation, and this, together
with suggestions of a tera-electron-volt Planck scale
[112,113], imply that, if such a scenario describes nature,
the Large Hadron Collider or cosmic ray collisions with
Earth could produce black holes [114—-116]. Though to
date no signs of black hole production have been observed
[117,118], the nature of the kinetic energy dominated
regime in general relativity is of interest in its own right
and has largely been unexplored.

Initial data describing such systems will be far from
equilibrium, and one cannot assume that the solution is
time symmetric or quasistatic. It is instructive to recall the
Aichelburg-Sex] [119] solution describing a gravitational
shock wave. The solution can be obtained from a boosted
Schwarzschild solution by simultaneously taking the mass
to zero and the boost parameter to infinity, while keeping
their product constant and finite. Two such oppositely
boosted solutions can be superposed to obtain a new
solution that is valid up until collision. Though it is not
clear how applicable this is to the nonlimiting case, this
suggests that superposition may be a good approximation
to describing such spacetimes.

Here we consider the specific example of the setup for a
head-on collision of two fluid star solutions. We use the
method described in Sec. II B to construct free data from
two I' =2 polytropic TOV star solutions that have
unboosted mass M, and a compactness (ratio of mass to
radius) of C = 0.01. The stars are boosted toward each
other with boost factor y = 10. We consider a sequence of
solutions at various initial coordinate separations d. We
take advantage of the axisymmetry of the problem and use
[—2000M, 2000M] X [0, 2000M] where M =2yM., as
our computational domain. The base level is covered by
1025 X 513 points, and there are nine additional levels
of mesh refinement. To test convergence we also consider
two lower resolutions with grid spacing 2 and 4/3 times
as coarse.

Using the method for specifying free data described in
Sec. II B, as d — oo we expect the corrections from solving
the constraints will go to zero: ¥ — 1, the magnitude of
the coordinate velocities of the stars |v| will approach

V1 — y72, the ADM mass Mapy will approach M, and
the total rest mass M will approach the sum of the rest
masses of the isolated stars M .. In Fig. 7 we show how all
these quantities change with coordinate separation. We can
see that it is possible to solve for ID where the stars are quite
close together, though the corrections become large, and in
particular the ADM mass decreases quite significantly.

To give an indication of the numerical errors on these
quantities, we can compare the values obtained at the
highest resolution to the Richardson extrapolated values
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FIG. 7 (color online). Various quantities from ultrarelativistic
collision ID with y = 10 made using the superposition method
for constructing free data. From top to bottom the quantities
shown are the maximum (over the entire domain) difference of
the conformal factor from unity, the maximum coordinate
velocity of the fluid, the total rest mass, and the ADM mass.
All quantities are shown as a function of d, the coordinate
separation between the two stars. For all these cases the maxi-
mum of |¥ — 1| occurs for values of ¥ that are less than unity.
One might expect these quantities to approach their infinite
separation limits as 1/d for large d; the dotted lines show such
1/d curves for each quantity matched to the d/M = 50 point.

using all three resolutions. For example, for the smallest
separation d = 1.56M, we have max(|¥ — 1|) = 0.05326
(0.05325) and max|v| = 0.530149 (0.530153) where the
values in parentheses are the Richardson extrapolated
quantities (which are consistent with approximately
second-order convergence).

We can compare the above method of constructing free
data for this case to a conformally flat method. Specifically,
we set all the metric free data quantities to their flatspace
values and set E and p' for each star to a special-
relativistically boosted density and pressure profile taken
from the TOV solution. In Fig. 8 we show the same
quantities as in Fig. 7 but using this conformally flat
method. In this case the corrections from solving the con-
straints will not go to zero with infinite separation since all
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FIG. 8 (color online). Same as Fig. 7 but with conformally flat
data. For all these cases the maximum of |¥ — 1| occurs for
values of W that are greater than unity.

the nontrivial geometry is coming from the conformal
factor. Hence the energy momentum will be substantially
rescaled at any separation. Also in contrast to the first
method, the maximum of |¥ — 1| occurs for ¥ > 1 instead
of ¥ <1, which means E and p’ will be smaller than
their conformal counterparts. With conformally flat ID it
is also possible to solve for stars close together, though, as
in the previous method, the ADM mass decreases steeply.
It should also be noted that because of the large shift vector
obtained with the second method, the coordinate velocity is
substantially greater than one, which may make it more
challenging to numerically evolve.

A full characterization of this ultrarelativistic collision
ID requires evolution, which we present elsewhere [120].

IV. CONCLUSIONS

We have outlined a general method for constructing
initial data based on superposition and the CTS formu-
lation of the constraint equations, and demonstrated the
method with some example solutions. Though there are
numerous existing applications of the CTS method, and
superposition has been proposed before, some of the
notable aspects of the work presented here include adding

PHYSICAL REVIEW D 86, 104053 (2012)

the matter and metric of neutron stars to the prescription,
regularizing the interiors of black holes with (unphysical)
matter sources, and applying it to regimes not yet studied
before, namely, initial data for generic high-eccentricity
binary mergers and ultrarelativistic collisions. For astro-
physically relevant binaries we find that superposition of
single, isolated compact object solutions works well in the
sense that nonlinear correction from solving the constraints
are relatively small for larger initial separations, implying
that superposition is a good start to attain more astro-
physically realistic initial data (for example, by adding
prior gravitational wave information as in Ref. [82] to
the superposed background data for quasicircular or low
eccentricity inspirals). Including neutron stars, we find that
the superposition effectively induces oscillations in the
stars. This again is small for large separations and hence
a good approximation to dynamical capture binaries.
However, practical application to low eccentricity inspirals
will likely require that the CTS equations be supplemented
with some form of quasiequilibrium equations for the
hydrodynamics (as in many existing ID methods, for
example, Refs. [59,67,84]).

For the ultrarelativistic boost examples we are able to
obtain solutions to the CTS equations with superposed and
conformally flat data well into the kinetic energy domi-
nated regime (y = 10) for sufficiently large initial separa-
tions. At smaller separations we are still able to obtain
solutions. However, for these initial data sets the correc-
tions to the metric and fluid properties become large, and it
is less clear how to separate the total energy of the space-
time into kinetic energy, rest-mass energy, etc. This will
require evolution to resolve, and we leave that to future
work. Nevertheless, given that there are few results on the
uniqueness and existence of solutions to the conformal
constraint equations beyond constant mean curvature slic-
ing [121] (and in some cases, such as the extended CTS
equations [122], there are known examples of nonunique-
ness [123]), it is interesting that we are able to obtain
solutions in this highly nonlinear regime.
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APPENDIX: MULTIGRID AMR INTERPOLATION

A multigrid algorithm requires a restriction operator to
inject quantities from finer to coarser grids as well as a
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prolongation operator to interpolate corrections from
coarser grids to finer grids (see e.g., Ref. [124]). For our
multigrid algorithm we use half-weight restriction as our
restriction operator. In three dimensions half-weight
restriction can be written as

1
fHW = fi,j,k + E(Afxx + Afyy + Afzz)) (Al)

where

Avf = fivvjx = 2fijk T fimrjn (A2)

and similarly for the y and z directions. Note that A f
divided by h* (where h is the grid spacing) is a second-
order approximation for 92f. On AMR boundaries
where the full stencil is not available we must modify the
above expression. For example, on a negative x boundary

PHYSICAL REVIEW D 86, 104053 (2012)

we replace A,.f by a right-handed second derivative
stencil

Avf =2fiik —Sficvju Y 4fiojk — ficzju (A3)
and so on for the other directions. This ensures not only that
Sfuw 1s a second-order representation of f, but also that f
is smooth to O(h*) on AMR boundaries. Hence if second
derivatives of fypw are computed including restricted
boundary points in the stencil, the error will be O(h?).

We use linear interpolation as our prolongation operator.
However, after applying a correction from a coarse grid, we
reset the values on the AMR boundaries of the fine grid for
the points that do not exist on the coarse level with fourth-
order interpolation using those points that do. We found
this higher order interpolation to be beneficial as we do not
relax the points on the boundary.
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