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In this work we analyze how effects of finite size may modify the thermodynamics of a system of

strongly interacting fermions that we model using an effective field theory with four-point interactions at

finite temperature and density and look in detail at the case of a confining two-layer system. We compute

the thermodynamic potential in the large-N and mean-field approximations and adopt a zeta-function

regularization scheme to regulate the divergences. Explicit expansions are obtained in different regimes of

temperature and separation. The analytic structure of the potential is carefully analyzed, and relevant

integral and series representations for the various expressions involved are obtained. Several known results

are obtained as a limiting case of general results. We numerically implement the formalism and compute

the thermodynamic potential, the critical temperature, and the fermion condensate showing that effects of

finite size tend to shift the critical points and the order of the transitions. The present discussion may be of

some relevance for the study of the Casimir effect between strongly coupled fermionic materials with

interlayer interactions.
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I. INTRODUCTION

The simplest example of an interacting fermion field
theory is the Gross-Neveu model in 1þ 1 dimensions
[1]. Its Lagrangian takes the form

L ¼ �c i��@
�c þ g

2N
ð �c c Þ2; (1)

where N is the number of flavors and g the coupling
constant. The model (1) enjoys a SUðNÞ flavor-like
symmetry and it is invariant under discrete (chiral)
Z2-symmetry, c ! �5c . Despite its simple form, the
Gross-Neveu model has remarkable properties. It features
asymptotic freedom, chiral symmetry breaking, and dy-
namical mass generation, making the model a valuable test
ground for the more complex case of QCD. Its phase
structure, originally studied in Ref. [2], is extraordinarily
rich and many of its properties were understood only
comparatively recently (see, for example, Refs. [3–6]).
A very nice review of its phase diagram can be found in
Ref. [7]. Here, we will limit ourselves to recall some of the
most salient features of the chiral version of the model, and
restrict our considerations to the case of homogeneous
phases, for which the phase structure can be discussed in
terms of the thermodynamic potential U. This, using path
integrals, can be expressed (we will give details later) as a
function of a scalar condensate,�� h �c c i, that essentially
represents a mass terms for the fermions. Minimizing U
with respect to � reveals the necessary information on the
thermodynamics and symmetry breaking patterns of the
model. At low temperature, for g exceeding a critical
value, chiral symmetry is broken and fermions acquire a
mass through the appearance of a nonvanishing conden-
sate. Once the temperature overcomes a critical value, Tc, a
phase transition occurs and chiral symmetry is restored,

signaled by the vanishing of �. Depending on the value of
the temperature T and of the chemical potential �, U has
one or two local minima. In the small density-high tem-
perature region, the system is in a phase of restored chiral
symmetry and U has a single minimum at � ¼ 0. When
the temperature drops below Tc, chiral symmetry sponta-
neously breaks and U develops a nontrivial minimum.
A second order phase transition line separates the two
phases. The transition changes to first order for larger
values of the chemical potential and lower values of the
temperature. The point where these two lines merge is a
tricritical point, from which two lines of metastability
depart. Entering (exiting) the region of metastability pro-
duces deformations in the thermodynamic potential that
acquires (loses) a minima. (The above description is valid
in the approximation of spatially constant condensates. We
should mention, however, that inhomogeneous phases are,
in fact, favored in some region of the phase diagram where
the homogeneous approximation becomes too restrictive.
Substantial efforts were carried out to include such spa-
tially varying phases, and the interested reader may consult
Refs. [3–6] for details and additional bibliography. In the
following, we will restrict our analysis to the case of
spatially constant phases and leave the inhomogeneous
case for future work. (We will discuss this point in the
concluding part of the paper.)
It is difficult to mention the Gross-Neveu model with-

out referring to its 3þ 1-dimensional precursor, the
Nambu-Jona Lasinio (NJL) model [8] (see Refs. [9,10]
for reviews). In fact, apart from situations in which the
relevant spatial dimensionality reduces to 1, it seems inevi-
table to consider extensions of the Gross-Neveu model to
3þ 1 dimensions [in 3þ 1-dimensions the model (1) be-
comes a special case of the Nambu-Jona Lasinio one with
the pseudoscalar contribution suppressed. On the other
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hand, in 1þ 1-dimensions, the model (1) augmented by a
pseudoscalar term is referred to as the NJL2-model, invari-
ant under a continuous chiral symmetry]. Extending the
Gross-Neveu model to higher dimensions is not straight-
forward due to the fact that such a dimensional lift-up is
accompanied by a loss of renormalizability. If, at the level
of specific applications, this is not a problem per se, and it
can be overcome by a procedure of phenomenological
matching (i.e., fixing the cutoff scale by tuning the model
to some experimentally measured quantity), the lack of a
natural cutoff scale is often considered as a limitation of
fundamental nature. Two of the other commonly discussed
limitations of the Gross-Neveu model in 1þ 1-dimensions
are related to its exact integrability, property related to the
complete elasticity of the S matrix [11,12], and to the
impossibility of having spontaneous symmetry breaking
in 1þ 1 dimensions, as stated by the Coleman-Mermin-
Wagner theorem [13,14]. Working at lowest order in the
approximation of large-N may circumvent the restrictions
posed by the Coleman-Mermin-Wagner theorem, while
dimensional lift-up to 2þ 1-dimensions allows one also
to maintain renormalizability (see Ref. [15] for a thorough
review).

In this paper, we will be concerned with interacting
fermion field theories of the form (1) inDþ 1 dimensions,
and the aspect we aim to analyze is the inclusion of
boundaries and finite size effects. Aside from being a
natural situation to consider in many concrete realistic or
semirealistic applications, it provides a natural possibility
to equip these models with a physical cutoff scale.

The simplest example where finite size and boundary
effects can be introduced is the n sphere. Strictly speak-
ing, this is not a confining cavity, since, in this case,
fermions propagate over the surface of the sphere and
the effect of boundaries is introduced simply via period-
icity conditions on the fields. Similar sorts of examples
can be easily arranged by considering toroidal geome-
tries. A number of papers have discussed, in specific
contexts, the inclusion of finite size effects in the Gross-
Neveu and Nambu-Jona Lasinio models on topologically
nontrivial geometries and with the fields forced to
obey periodic or antiperiodic boundary conditions
(see Refs. [16–19]). More precisely, Ref. [16] considered
the case of the Nambu-Jona Lasinio model at nonzero
chemical potential � and zero temperature on S1 � S1 �
S1 and R2 � S1 and discussed how finite size effects
modify the formation of fermion and difermion conden-
sates and the generation of a superconducting phase. In
Ref. [17], the phenomenon of pion condensation was
investigated within the Nambu-Jona Lasinio model at
finite density in R1 � S1. Reference [18] considered
the Gross-Neveu model in three dimensions, on
S2 � S1 and H2 � S1, where S2 is a 2-sphere and H2 is
a 2-dimensional hyperbolic space. Reference [19] ex-
tended the study of finite size effects within similar class

of models to geometries with toroidal and compactified
directions. See Ref. [20] for earlier results.
Examples of a different sort can be designed by taking a

confining enclosure, in which case boundaries are effec-
tively present, and here we will be concerned with the
simplest realization of such possibility, namely that of
two parallel layers. This example, in comparison with
those discussed in Refs. [16–19], presents several compli-
cations, as it will become clear following the computations
reported in the subsequent pages. In fact, while the case of
geometries with topologically nontrivially circular direc-
tions is amenable of a direct analogy with finite tempera-
ture quantum field theory [21,22], for the case of parallel
layers the same analogy is much less transparent, due to the
nontrivial mixing of thermodynamical and geometrical
effects.
Our goal here is to discuss a general method that allows

one to include boundary and finite size effects in the
computation of the thermodynamic potential for a system
of interacting fermions. The formalism we will present
applies to any nonsingular geometry, as long as the bound-
ary is smooth, not necessarily connected, and the problem
separable. A general introduction to the method and a
discussion of the assumptions will be presented in
Sec. IIA. In Sec. II B we will explicitly perform the com-
putation of the thermodynamic potential for the case of two
parallel layers with the fermion fields obeying bag bound-
ary conditions at the confining surfaces. Formulas will be
given for any dimensionality, at nonzero temperature and
density, and an explicit expression for the expansion of the
thermodynamic potential, i.e., the Ginzburg-Landau expan-
sion, for small condensates will be presented up to fourth
order. The cases of exactly vanishing or large condensates
can be treated separately without additional effort. We will
work in the approximation of mean-field and at leading
order in the large-N limit. Regularization will be performed
using a zeta-function regularization scheme. Several re-
marks will be made in Sec. III and various limiting cases
will be considered as check on the general results. Details of
the numerical implementation and explicit results will be
presented in Sec. IV for the case of two parallel layers in 3
dimensions. We close the paper with our remarks and a
brief discussion of a concrete physical system where the
present analysis may be of some relevance, namely that of
the fermionic Casimir effect.
Results are expressed, as one may expect from the

generic form of the effective action, in terms of some series
of integrals over elliptic functions convoluted with rational
functions. Relevant representations and necessary techni-
cal results are collected in Appendices A and B. In
Appendix C we will briefly discuss how different enclo-
sures can be considered within essentially the same formal
scheme in a straightforward, although computationally
nontrivial, way and we will discuss in some details the
high temperature and large condensate cases.
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II. STRONGLY INTERACTING FERMIONS IN
BOUNDED ENCLOSURES

A. Basics

Consider an interacting fermionic system that can be
described by the following action:

S ¼
Z

dtdvD

�
�c i��@

�c þ g

2N
ð �c c Þ2

�
; (2)

where dvD is the volume element in D spatial dimensions.
Assume that the system is confined within a region M
of D-dimensional flat space, bounded by some generic,
D� 1 dimensional (co-dimension one) hypersurface,
�, where boundary conditions, Bc j� ¼ 0 are imposed.
The boundary � is assumed to be smooth and may or may
not be connected. (If the boundary is not connected, e.g.,
� ¼ �1 [ �2 [ � � � , the boundary conditions may differ at
each �i). Assuming that the Dirac equation is separable
(i.e., a sufficient degree of symmetry of the system), one
may decompose its solutions in positive and negative
frequency modes, and express the boundary conditions as

a quantization condition for the momenta ~k? perpendicular
to the boundary,

�ðjk?jÞ ¼ 0:

Boundary conditions should be imposed consistently with
the requirement of self-adjointness, ensuring the solutions
to the above eigenvalue equations to be real and positive.
This is not the most general case, but simple enough to be
analyzed analytically. In general, when it is not possible to
find an appropriate coordinate system allowing for separa-
tion, some sophistication of the approach we present here
becomes necessary. More general, nonseparable cases can
be dealt with using spectral methods, and we will be
concerned with this situation somewhere else [23].

Using the path integral formalism, the partition function
can be expressed as a functional integral,

� ¼
Z

D½ �c ; c � exp
�
{
Z

d�dvDL
�
; (3)

where L is the Lagrangian associated with the action (2).
In the above expression the time direction t has beenWick-
rotated, t ! {� with � 2 S1 of radius � ¼ 1=T, with T
being the temperature and antiperiodicity along the S1

imposed on the fermion fields. It is convenient to remodel
the theory by making explicit, by means of a Hubbard-
Stratonovich transformation, the presence of the conden-
sate, � ¼ �gh �c c i=N,

� ¼
Z

D½ �c ; c ; �� exp
�
{
Z

d�dvDLeff

�
;

where Leff ¼ �c i��@
�c � N

2g �
2 � � �c c . The path inte-

gral has to be evaluated consistently with the boundary
conditions imposed on the fields. Sufficiently for our pur-
poses, we can proceed analytically by using the background

field method and expand the condensate around its classical
expectation value, ��. Using the large-N and mean-field
approximations, an expansion of the path integral gives,
at leading order,

� ¼ �
Z

dvD

��2

2g
þ lnDetði��@� � ��Þ þOð1=NÞ; (4)

with the trace taken over Dirac and coordinate spaces. The
above expression is formal (and independent on the bound-
ary conditions that have to be specified at the moment of any
concrete computation), and it is valid for spatially varying
condensates. For the subsequent computation, it is conve-
nient to reexpress (4) by squaring the Dirac operator,

�¼�
Z

dvD

��2

2g
þ 1

2

X1
n¼�1

lnDet½ð!n � i�Þ2 ��þ ��2�

þOð1=NÞ; (5)

where finite density and temperature effects are made ex-
plicit and the condensate �� restricted to be spatially con-
stant. In the above expression !n ¼ 2�

� ðnþ 1
2Þ are the

Matsubara frequencies, � is a chemical potential, and �
the Laplacian. In order to explicitly compute �, the use of
zeta regularization techniques is particularly advantageous
for the present case, since it does not require any extra effort
when boundary and finite size effects are taken into account.
In general, the thermodynamic potential can be expressed in
terms of the analytically continued values at s ¼ 0 of a
generalized zeta function, �ðsÞ, and its derivative (see, for
instance, Refs. [24,25]):

U ¼ ��2

2g
þ 1

2

1

Vol� �
ð� 0ð0Þ þ �ð0Þ ln‘�2Þ: (6)

In the present case the function �ðsÞ is associated with the
squared Dirac operator appearing in (5) and ‘ is a renor-
malization scale. The quantity Vol represents the volume of
the geometrical enclosure that confines the system. We have
discussed details of the zeta-function formalism for interact-
ing fermion field theories in curved spacetimes in a previous
publication, Ref. [26], and the reader is addressed to that
paper for details and additional bibliography.
The requirement of self-adjointness constrains the form

of the boundary conditions and, in turn, the form of the
function �. The simplest (allowed) choice for fermions is
that of bag boundary conditions,

ð1þ in̂i�
iÞc j� ¼ 0; (7)

where n̂ is a unitary vector normal to the boundary. A
general discussion on the boundary conditions can be
found in Ref. [27]. For the case at hand, starting from
(5), it is straightforward to show that
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�ðsÞ ¼ 2
Dþ1
2 S

ð2�ÞD�1

X
n

X
k?

Z
dkk½k2? þ k2k þ!2

n

þ ��2 ��2 � 2i�!n��s;

where D ¼ 3 in the case of three spatial dimensions.1

Integrating over the direction parallel to the boundaries,
one obtains

�ðsÞ ¼ 2
Dþ1
2 S

ð4�ÞD�1
2

1

�ðsÞ
Z 1

0
dtts�D�1

2 �1e�t ��2

�X
k?

e�tk2?
X
n

e�tð!n�i�Þ2 ; (8)

where the first sum is over the solutions of �ðk?Þ ¼ 0 and
the second sum is over the Matsubara frequencies. In the
above expression we have Mellin transformed the sum-
mand after integration over kjj. The last term in the inte-

grand can be expressed in terms of the elliptic function
#2ðu; vÞ, using the following identity:

X
n

e�tð!n�{�Þ2 ¼ �

2
ffiffiffiffiffiffi
�t

p F̂ �;�ðtÞ; (9)

where

F̂ �;�ðtÞ ¼
�
1þ 2

X1
n¼1

ð�1Þn coshð��nÞe��2n2

4t

�
(10)

is, in fact, a series representation for #2 [29]. The sum over
k? in (8) is, instead, recognized as the heat-kernel,

�ðtÞ ¼X
k?

e�tk2? : (11)

The function �ðtÞ encodes the dependence on the bound-
ary conditions and details of the geometry. Putting things
together, we obtain the following expression:

�ðsÞ ¼ 2
Dþ1
2 S�

ð4�ÞD=2

a2s�D

�ðsÞ
�
Z 1

0
dtts�D=2�1e�ta2 ��2

�ða2tÞF̂ �;�ða2tÞ; (12)

where, for convenience, we have rescaled t ! a2t. The
free energy can be obtained by suitable analytical continu-
ation of the above expression and its derivative, according
to (6), once the setup is precisely specified. In the next
subsection, we will consider the case of two parallel layers.

B. Two-layers setup

In this section we will focus on the case of parallel flat
layers that we assume to be located at z ¼ 0 and z ¼ a,
leaving the field unconstrained in the remaining directions.
For the time being, wewill specify the boundary conditions
to be of the form (7). We then may proceed by direct
computation. The eigenvalue equation may be expressed,
by decomposing the solutions of the Dirac equation in
positive and negative frequency modes and using (7), as
an implicit constraint for the momenta in the z direction,

�� sinðkzaÞ þ kz cosðkzaÞ ¼ 0: (13)

The roots of the above equation are real and positive,
consistently with the self-adjointness of the problem. For
vanishing ��, they can be found explicitly, kz ¼ k0 �
�ðnþ 1=2Þ=a with n 2 N. (A numerical test on the ana-
lytic approximations for the eigenvalues developed in this
and in the next section is reported in Appendix D).
As it should be clear from (12), the first necessary step

consists in constructing an explicit expression for the
function �ðtÞ. In general, this cannot be done in fully
resummed form. However, in several cases approximate
expressions can be obtained. Partial knowledge of the
phase structure can be obtained in the region of high
temperature, where it is possible to use the small-t asymp-
totics to get a suitable expansion for the thermodynamic
potential. Analogously, the case of large ��, can also be
treated using a similar approximation, since the exponen-
tial term in the integrand in (12) suppresses the large t
portion of the integration range. However, when finite size
effects are taken into account, the presence of an additional
length scale, the interlayer separation, complicates things,
since the relative size of �� with respect to a must be taken
into account. In the following we will construct the analo-
gous of the Ginzburg-Landau-type expansion in all rele-
vant regimes and the remaining part of this subsection will
be devoted to develop an appropriate scheme for this. We
will present explicit results up to fourth order, but the
procedure can be extended to higher orders systematically.
The two regimes of interest are those of large a, relevant

to take the infinite volume limit, and that of small a. We
will begin considering the latter case. The first step of our
scheme consists in solving the quantization condition for
the momenta k? given by Eq. (13) by perturbatively ex-
panding the eigenvalue equation for small �� and fixed a.
This leads to

k? ¼ k0 þ
�
��

a

�
1

k0
�
�
��

a

�
2 1

k30
þ 2

�
��

a

�
3 1

k30

�
1

k20
� 1

6
a2
�

�
�
��

a

�
4 5

k50

�
1

k20
� 4a2

15

�
þ � � � ; (14)

where k0 are the eigenvalues corresponding to �� ¼ 0. The
above expression, (14), can be used in (11) to arrive at an

1The case studied in the next section refers to the case of two
parallel layers that effectively compactify the direction perpen-
dicular to the layers and leave the parallel directions uncon-
strained. This geometry is clearly noncompact. In this case, we
proceed in the usual way by closing the cavity with two hyper-
planes, separated by a distance L and perpendicular to the
boundaries, where we impose periodic boundary conditions,
and let L to infinity at the end (see, for example, Ref. [28]).
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appropriate expansion for �ðtÞ. In the regime of small
condensate and small a, we obtain

�ða2tÞ ¼ �0ða2tÞ � 2ða ��Þ�1ða2tÞ þ 2ða ��Þ2�2ða2tÞ
� 4

3
ða ��Þ3�3ða2tÞ þ 2

3
ða ��Þ4�4ða2tÞ þ � � � ;

(15)

where we have defined

�0ða2tÞ ¼ K0ðtÞ;
�1ða2tÞ ¼ tK0ðtÞ;
�2ða2tÞ ¼ t2K0ðtÞ þ 1

2
tK1ðtÞ;

�3ða2tÞ ¼ t3K0ðtÞ þ 3

2
t2K1ðtÞ � 1

2
tK1ðtÞ þ 3

2
tK2ðtÞ;

�4ða2tÞ ¼ t4K0ðtÞ þ 3t3K1ðtÞ � 2t2K1ðtÞ
þ 27

4
t2K2ðtÞ � 3tK2ðtÞ þ 15

2
tK3ðtÞ;

and

K�ðtÞ ¼
X1
n¼1

ðak0Þ�2�e�ta2k2
0 :

Relation (15) can then be used to obtain the following
expansion for �ðsÞ:

�ðsÞ ¼ 2
Dþ1
2 �S

ð4�ÞD=2
ð�0 � 2ða ��Þ�1 þ 2ða ��Þ2�2

� 4

3
ða ��Þ3�3 þ 2

3
ða ��Þ4�4 þ � � �Þ; (16)

where

�0 ¼ Að0Þ
0 ðsÞ;

�1 ¼ Að0Þ
1 ðsÞ;

�2 ¼ Að0Þ
2 ðsÞ þ 1

2
Að1Þ

1 ðsÞ;

�3 ¼ Að0Þ
3 ðsÞ � 1

2
Að1Þ

1 ðsÞ þ 3

2
Að1Þ

2 ðsÞ þ 3

2
Að2Þ

1 ðsÞ;
�4 ¼ Að0Þ

4 ðsÞ � 2Að1Þ
2 ðsÞ þ 3Að1Þ

3 ðsÞ � 3Að2Þ
1 ðsÞ

þ 27

4
Að2Þ

2 ðsÞ þ 15

2
Að3Þ

1 ðsÞ;

with

AðJÞ
I ðsÞ¼a2s�D

�ðsÞ
Z 1

0
dtts�D=2�1þIe�ta2 ��2

F̂ �;�ða2tÞKJðtÞ:
(17)

For convenience we split the integral (17) as the sum of two
terms, separating out the thermodynamic contribution,

W ðJÞ
I ðsÞ from a temperature independent part, V ðJÞ

I ðsÞ,

AðJÞ
I ðsÞ ¼ V ðJÞ

I ðsÞ þW ðJÞ
I ðsÞ; (18)

where

V ðJÞ
I ðsÞ ¼ 1

�2J

a2s�D

�ðsÞ
X
	

Z 1

0
dtts�D=2�1þIe�ta2 ��2 e�t�2	2

	2J
;

(19)

W ðJÞ
I ðsÞ ¼ 1

�2J

2a2s�D

�ðsÞ
X
n;	

ð�1Þn coshð��nÞ

�
Z 1

0
dtts�D=2�1þIe

�ta2 ��2��2n2

4a2t
e�t�2	2

	2J
: (20)

Notice that both terms depend on the inter-layer separation
that in (20) is entangled with the temperature. In the above
expressions we have used the following short-hand nota-
tion: 	 � jþ 1=2 and

P
n;	 � P1

n¼1

P1
j¼0 . Relevant rep-

resentations for the above integrals (19) and (20) and their
derivatives along with the analytical continuation at s ¼ 0
are constructed in Appendix A for any dimensionality.
Composing the results contained in Appendix A to obtain
the thermodynamic potential presents no special compli-
cation, aside from being a tedious and long algebraic
computation.
A readable expression for the thermodynamic potential

may be presented when the various contributions are ap-
propriately combined,

U ¼ ��2

2g
þU0 þU1 þU�T: (21)

The term U0 comes from the V ðJÞ
I ðsÞ contributions with

J ¼ 0 [see Appendix A 1 part (a)]:

U0 ¼ 2
D�1
2

ð4�ÞD2
1

aDþ1

�X
n

uðDÞ
n ða ��Þn þ log

�
4a

�‘

�X
n

vðDÞ
n ða ��Þn

�
:

(22)

The coefficients uðDÞ
n and vðDÞ

n can be computed straight-
forwardly and for D ¼ 2, 3, 4 are reported in Tables I and

II in Appendix E. Notice that the coefficients vðDÞ
n always

occur in finite number and for even spatial dimensionality
vanish.
The J � 0 terms can be combined together leading to

the following expression [see Appendix A 1 part (b)]:

U1 ¼ 2
D�1
2

ð4�ÞD2
1

aDþ1

�X
n

~uðDÞ
n ða ��Þn þ log

�
4a

�‘

�X
n

~vðDÞ
n ða ��Þn

�
;

(23)

where the first few coefficients are tabulated in Tables III
and IV in Appendix E for D ¼ 2, 3, 4.
Finally, the temperature-density contribution, U�T , can

be expressed as (see Appendix A 2)
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U�;T ¼ 2
D�1
2

aDþ1ð4�ÞD2
�
~!00�2ða ��Þ ~!10þ2ða ��Þ2

�
~!20þ1

2
~!11

�

�4

3
ða ��Þ3

�
~!30�1

2
~!11þ3

2
~!21þ3

2
~!12

�
þ2

3
ða ��Þ4

�
~!40�2 ~!21þ3 ~!31�3 ~!12þ27

4
~!22þ15

2
~!13

�
þ���

�
; (24)

in terms of the functions

~!IJ ¼ 4
X1
n¼1

ð�1Þn
�
n�

2

�
I�D=2

aD�2I�2J coshð��nÞ

�X1
i¼0

��2J
i ð�2

i þ ��2Þ�I�D=2
2 KI�D=2ðn�ð�2

i þ ��2Þ1=2Þ;

(25)

where the quantity �i is defined as

�2
i ¼

�
�

a

�
2ðiþ 1=2Þ2: (26)

The results (22)–(24), can be added up, according to (21),
to obtain the final expression for the thermodynamic po-
tential. The above method can be systematically extended
to higher orders, although computations become increas-
ingly more cumbersome.

C. Expansion for small ��=a

It is easily noticed that in the regime of separation
relatively large compared to the value of the condensate,
the previous expansion is not useful. When the interlayer
separation is larger than the typical value of ��, the expan-
sion developed in the previous section does not converge
and to study the thermodynamic behavior in the range
where ��=a is small or a �� is large is important to develop
an alternative expansion. Clearly, this step is necessary also
to obtain the infinite volume limit. The aim of this section
is to modify the procedure to include the case of large a.
This case can be done essentially in the sameway by taking
as expansion parameter ��=a. After rescaling the proper
time t ! a�2t in (12), we expand the function �ðtÞ:

�ðtÞ ¼ �0ðtÞ � 2

�
��

a

�
�1ðtÞ þ 2

�
��

a

�
2
�2ðtÞ

� 4

3

�
��

a

�
3
�3ðtÞ þ 2

3

�
��

a

�
4
�4ðtÞ þ � � � ; (27)

where

�0ðtÞ ¼ Q0ðtÞ;
�1ðtÞ ¼ tQ0ðtÞ;
�2ðtÞ ¼ t2Q0ðtÞ þ 1

2
tQ1ðtÞ;

�3ðtÞ ¼ t3Q0ðtÞ þ 3

2
t2Q1ðtÞ � 1

2
a2tQ1ðtÞ þ 3

2
tQ2ðtÞ;

�4ðtÞ ¼ t4Q0ðtÞ þ 3t3Q1ðtÞ � 2a2t2Q1ðtÞ
þ 27

4
t2Q2ðtÞ � 3a2tQ2ðtÞ þ 15

2
tQ3ðtÞ;

and

Q�ðtÞ ¼
X1
n¼1

k�2�
0 e�tk20 :

Using the above expressions, we obtain the following
expansion for �ðsÞ:

�ðsÞ ¼ 2
Dþ1
2 �S

ð4�ÞD=2

�
�0 � 2

�
��

a

�
�1 þ 2

�
��

a

�
2
�2 � 4

3

�
��

a

�
3
�3

þ 2

3

�
��

a

�
4
�4 þ � � �

�
; (28)

where

�0 ¼ Bð0Þ
0 ðsÞ;

�1 ¼ Bð0Þ
1 ðsÞ;

�2 ¼ Bð0Þ
2 ðsÞ þ 1

2
Bð1Þ
1 ðsÞ;

�3 ¼ Bð0Þ
3 ðsÞ � 1

2
a2Bð1Þ

1 ðsÞ þ 3

2
Bð1Þ
2 ðsÞ þ 3

2
Bð2Þ
1 ðsÞ;

�4 ¼ Bð0Þ
4 ðsÞ � 2a2Bð1Þ

2 ðsÞ þ 3Bð1Þ
3 ðsÞ � 3a2Bð2Þ

1 ðsÞ
þ 27

4
Bð2Þ
2 ðsÞ þ 15

2
Bð3Þ
1 ðsÞ;

with

BðJÞ
I ðsÞ ¼ 1

�ðsÞ
Z 1

0
dtts�D=2�1þIe�t ��2

F̂ �;�ðtÞQJðtÞ:
(29)

Here we will present directly the expression for the ther-
modynamic potential and skip the details of the computa-
tion of the above integrals that can be done using a
procedure similar to the one used in Appendix A for the
case of small a.
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We express the potential in the following way:

U ¼ ��2

2g
þUð1Þ

0 þ 
U0 þ �U1 þ �U�T; (30)

where Uð1Þ
0 þ 
U0 correspond to the sum of the terms

with J ¼ 0, �U1 to those with J � 0 and �U�T to the

temperature dependent part. Explicitly, Uð1Þ
0 þ 
U0 can

be expressed in terms of the function

rIðsÞ ¼ �ðsþ I �D=2Þ
�ðsÞ

X
	

�
��2 þ �2

a2
	2

�
D=2�I�s

; (31)

where the summation can be written in term of the function
Sðs; �Þ defined in Eq. (A7),

rIðsÞ ¼ �ðsþ I�D=2Þ
�ðsÞ

�
�2

a2

�
D=2�I�s

�
�
22sþ2I�DS

�
sþ I �D=2;

2a ��

�

�

� S
�
sþ I �D=2;

a ��

�

��
: (32)

Proceeding as described in Appendix A 1, we get

rIðsÞ¼ 1

�ðsÞ
�
�2

a2

�
D=2�I�s

� ffiffiffiffi
�

p
2

�ðsþI�D=2�1=2Þ
�
a ��

�

�
1�2s�2IþDþ2�sþI�D=2

�
a ��

�

�
1=2�s�IþD=2

�X1
q¼1

qsþI�D=2�1=2½2sþI�D=2þ1=2KsþI�D=2�1=2ð4qa ��Þ�KsþI�D=2�1=2ð2qa ��Þ�
�
: (33)

The terms Uð1Þ
0 and 
U0 collect the contributions coming from the first and second terms in curly brackets in the

expression above, respectively. It takes straightforward steps to arrive at the following formulas:

Uð1Þ
0 ¼ 2

D�1
2

ð4�ÞDþ1
2

1

aDþ1

��
r�0 ða ��ÞDþ1 � 2r�1 ða ��ÞD þ 2r�2 ða ��ÞD�1 � 4

3
r�3 ða ��ÞD�2 þ 2

3
r�4 ða ��ÞD�3 þ � � �

�
log

�
�e

‘ ��

�
2

þ
�
rþ0 ða ��ÞDþ1 � 2rþ1 ða ��ÞD þ 2rþ2 ða ��ÞD�1 � 4

3
rþ3 ða ��ÞD�2 þ 2

3
rþ4 ða ��ÞD�3 þ � � �

��
; (34)

where we have adopted the short-hand notation

�

�
sþk�Dþ1

2

�
¼ r�k

s
þrþk þOðsÞ; for s!0: (35)

Notice that the coefficients r�k vanish for even number of
spatial dimensions (evenD), while only the first ðDþ 1Þ=2
are nonvanishing for odd number of spatial dimensions
(odd D). We have defined �e � expð�e=2Þ with �e being
the Euler constant. The contribution 
U0 comes from
second term of (A11) and it can be expressed as


U0 ¼ 2
D�1
2

ð4�ÞD2
1

aDþ1

�
’0 � 2’1 þ 2’2 � 4

3
’3

þ 2

3
’4 þ � � �

�
; (36)

where

’I ¼ 2ffiffiffiffi
�

p ða ��ÞDþ1
2

X1
q¼1

qI�Dþ1
2 ð2I�D=2þ1=2KI�Dþ1

2
ð4qa ��Þ

� KI�Dþ1
2
ð2qa ��ÞÞ: (37)

The J � 0 terms can be combined together leading to the
following expression:

�U1¼ 2
D�1
2

ð4�ÞD=2

1

aDþ1

��
��

a

�
2
�11þ2

�
��

a

�
3
�
1

3
a2�11��21��12

�

�2

�
��

a

�
4
�
2

3
�21��31þa2�12�9

4
�22�5

2
�13

�
þ���

�
;

(38)

where �IJ is constructed from the analytical continuation to
s ¼ 0 of

TIJ¼aDþ2J

�2J

�ðI�D=2þsÞ
�ðsÞ

X
	

	�2J

�
��2þ�2

a2
	2

�
D=2�I�s

;

(39)

and its derivative, giving

�IJ ¼ lim
s!0

�
T IJ log‘

�2 þ d

ds
T IJ

�
: (40)

A regular integral representation for the above series can
be obtained by use of the Abel-Plana summation formula
(see Appendix D for details):

�IJ ¼ aD

2

�
2a

�

�
2J

�PD=2�Ið�þ � �� logð‘2 �P ÞÞ

þ aD
�
a

�

�
2J
CIJ þ a2ðIþJÞ

2�
ð�a2 ��2Þð1þD�2J�2IÞ=2

� ðzþ�0 þ z��1 � z��0 logð‘ ��Þ2Þ;
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where �P ¼ P ð0Þ with

P ðzÞ ¼
�
��2 þ �2

a2

�
1

2
þ z

�
2
�
;

and

CIJ¼ {
Z 1

0

��
1

2
þ {z

��2J
PD=2�Ið{zÞð�� logð‘�2P ð{zÞÞþ�þÞ

�ðz!�zÞ
�

dz

e2�z�1
;

where the constants ��, z� and �0 and �1 are defined in
(B9) and (B13)–(B15).
The above integrals can be evaluated analytically by

dividing the integration range into two intervals, ½0; 1Þ [
½1;1� and by expanding the exponential appropriately.
Alternatively, use of numerical approximation does not
require any effort.

Finally, the temperature-density contribution, �U�T , can

be expressed as

�U�;T ¼ 2
D�1
2

aDþ1ð4�ÞD2
�
$00 � 2

�
��

a

�
$10 þ 2

�
��

a

�
2
�
$20 þ 1

2
$11

�
� 4

3

�
��

a

�
3
�
$30 � 1

2
a2$11 þ 3

2
$21 þ 3

2
$12

�

þ 2

3

�
��

a

�
4
�
$40 � 2a2$21 þ 3$31 � 3a2$12 þ 27

4
$22 þ 15

2
$13

�
þ � � �

�
; (41)

where

$IJ ¼ a2Iþ2J ~!IJ: (42)

Combining (34), (36), (38), and (41) according to (28) and (6) gives the thermodynamic potential.

D. Infinite volume limit

In the present section we will explicitly take the infinite volume limit. As we shall see, aside from the cancellation of
spurious divergences, the computations that follow will provide a nontrivial check of the general results.

To explicitly take the infinite volume limit, rather than the above integral representation, we can obtain a simpler
expression by using the binomial theorem. Choosing a �� � � 2 N, we have

T IJ ¼ aDþ2J

�2J

�ðI �D=2þ sÞ
�ðsÞ �

�
��D�2I�2s

2
4X1

k¼0

ð�1Þk D=2� I � sþ k� 1

D=2� I � s� 1

 !�
�

a ��

�
2k
�Hð2J � 2k; 1=2Þ

�X�
j¼0

X1
k¼0

ð�1Þk D=2� I� sþ k� 1

D=2� I � s� 1

 !�
�

a ��

�
2k
	2k�2J

3
5þX�

j¼0

	�2J

�
��2 þ �2

a2
	2

�
D=2�I�s

�
: (43)

Starting from the above expression, simple power counting arguments are sufficient to show that the infinite volume limit
can be taken with no problem. The last two terms involve a finite summation over j (	 ¼ jþ 1=2) and an infinite
summation over k. Both of them do not produce any diverging behavior, as trivial algebra shows. The first term is also
regular, since the zeta function occurs with an even argument. Both summations over k are also converging in the infinite-
volume ‘‘regime,’’ since a �� is large. However, using the above representation directly in (38) and (39) requires some care
when the limit a ! 1 is taken since the leading behavior of the above expression for large a goes asT IJ � a2J and not all
terms in (38) vanish in this limit. Precisely, in the second line of (38) the terms proportional to a2�12 and �5�13=2
individually produce linearly diverging contributions as a approaches infinity. These terms, when combined, cancel out
leaving a regular expression:

a2T 12 � 5T 13=2 ¼ a6 ��D�2�2s �ð1�D=2þ sÞ
�ðsÞ

2
4��ð4; 1=2Þ

�4
� �ð6; 1=2Þ

�6

�

� X�
n¼0

	�4 þ X�
n¼0

	�4 � X�
n¼0

	�6 þ X�
n¼0

	�6

3
5þOð1=aÞ ¼ 0þOð1=aÞ: (44)

Although the representation (43) is sufficient to prove the
regularity of the infinite volume limit, for large, but finite, a
the integral expression given above is handier for numeri-
cal evaluations.

Letting a ! 1, we have already shown [see (44)] that

the second line in �U1, Eq. (38), vanishes. The first and

fourth terms in the first line of (38) also trivially go to zero,
while the second and fourth asymptote to constants that
when combined vanish. The term 
U0 also vanish in the

same limit. The contribution �U�;T , is more delicate to

analyze. All terms in the first line in (41) asymptote to
zero in the infinite volume limit. In the second line of the
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same expression the first and second terms vanish in the
a ! 1 limit, while the second and third asymptote to
a-independent quantities. In the third line of (41), the first,
second, third, and fifth terms go to zero. The forth and sixth
terms, while individually diverging as �a, when com-
bined, vanish in the a ! 1 limit (the reader may check
this by expanding the quantity�3$12 þ 15$13=2 for large
a and perform the sums over i exactly). All terms that
asymptote to a-independent quantities in the infinite vol-
ume limit, vanish when the zero temperature limit is also
taken. Therefore, for T ¼ 0, only the first term coming

from the Uð1Þ
0 contribution survives in the a ! 1 limit,

giving

lim
a!1U

ð1Þ
0 ¼ � 2

Dþ1
2

ðDþ 1Þð4�ÞDþ1
2

��Dþ1�

�
1�Dþ 1

2

�
: (45)

The above result is seen to reproduce the correct infinite
volume zero temperature limit (see Ref. [20] formula (31)

or Ref. [30]). The terms in �U�;T , that do not vanish in the

infinite volume limit, reproduce the correct temperature
dependence as it can be checked, with some work, by
comparing with the flat space limit of the results of
Ref. [26] (see also Ref. [24]).

III. REMARKS

In the present section, we wish to make several remarks
useful for the subsequent numerical evaluation, as well as
perform some other checks.

Vanishing condensates. The limit of vanishing conden-
sates, �� ¼ 0, at zero temperature and chemical potential
provides one nontrivial check of the result. We will con-
sider the case of D ¼ 3 in order to compare with the
correct zero temperature free energy for massless free
fermions confined between two parallel layers at distance
a given in Ref. [31]:

Uc ¼ � 7�2

2880a4
: (46)

This result should be reproduced by our computation in
both regimes of small and large separation. In the case of
small separation, the reader may easily check that the
��-independent contribution comes from the n ¼ 0 term
of the first summation in (22). This (see Table I for the
numerical coefficient) reproduces (46). For large separa-
tion, the leading ��-independent term may be computed by
expanding (36) and by performing exact resummation over
q. This also reproduces the above result (46). Finally, let us
notice that the same result can be obtained directly setting
�� ¼ 0 in (12). In the limit of vanishing temperature and
chemical potential, a simple computation gives

�ðsÞ ¼ 2
Dþ1
2 �S

ð4�ÞD=2

�ðs�D=2Þ
�ðsÞ

�
�

a

��2sþD

� ½22s�DSðs�D=2; 0Þ � Sðs�D=2; 0Þ�

¼ �ðs�D=2Þ
�ðsÞ

�
�

a

��2sþD
�Rð2s�DÞð22s�D � 1Þ;

where the function S is introduced in (A7). The above
expression can be inserted in (6), and reproduces the
correct result.
Summations. The results obtained in the preceding sec-

tions contain series over certain combinations of Bessel
functions. Here we will examine the convergence of these
series and show how to implement their numerical evalu-
ation. We will illustrate the procedure for the case D ¼ 3,
extensions to any dimensionality being identical.
Expression (37) can be written in terms of the quantity

~’ ¼ X1
q¼1

P q

� X1
q¼1

qI�2ð22�IKI�2ð4qa ��Þ � KI�2ð2qa ��ÞÞ: (47)

The above sum may be evaluated in a way that is numeri-
cally efficient by separating out the small-q part,

~’ ¼ X1
q¼1

P q þ
X1

q¼q̂þ1

ðP q � P qÞ; (48)

with integer q̂� ða ��Þ�1 and the underline signifying ex-
pansion for large argument. The first term in the above
expression can be resummed exactly to any desired order.
Each term may contain spurious divergences that can be
handled by multiplying the summand by qu before resum-
ming over q and then by analytically continuing to u ¼ 0.
The second term constitute the reminder of the summation
and it is expected to be small due to the exponential decay
for large arguments of the Bessel functions. Computation
of the reminder can be handled in a numerically efficient
way by using the Abel-Plana summation formula (see, for
instance Ref. [32]),

X1
q¼a

H ðqÞ ¼ 1

2
H ðaÞ þ

Z 1

a
HðzÞdz

þ {
Z 1

0

H ðaþ {yÞ �H ða� {yÞ
e2�y � 1

dy:

The reminder is found to be negligible in all cases
analyzed.
Numerical evaluation of the � functions. Apart from the

integral representation for the functions �IJðsÞ given in the
preceding section, it is possible to evaluate these efficiently
in a fully numerical way. A convenient approach is to fix
the values of D, I, and J first, then expand �IJðsÞ and
its derivative around s ¼ 0, and then sum the resulting
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expressions numerically. Numerical summations can be
performed in a number of ways; here we adopt a sampling
technique based on computing the summations up to a
cutoff, sample the remaining terms, and approximate using
a polynomial interpolation. The reader may easily check
that for I þ J > 2 this numerical approach works very
efficiently. However, something different is necessary to
deal with the case I ¼ J ¼ 1. In this case, we adapt a
technique similar to that used in Ref. [33] to extend the
Chowla-Selberg formula for the Epstein zeta function to
higher dimensionality. The trick is to write the second term
in the summation occurring in (39) in terms of its Mellin
transform, discretize the �� direction, and integrate over t at
each point of the �� grid (the exponential dependence on the
condensate allows one to interchange the summation and
integration operations—see Ref. [33] for details about this
point in general). The resulting expression can be easily
used to construct an interpolated form for �IJ.

Convergence. An analogous scheme may be used to
compute the function ~!I;J occurring in the temperature-

density contribution; however, due to the presence of a
chemical potential, the analysis of the convergence of the n
summation is more delicate. Simple steps show that the

series converges exponentially for � 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4a2
þ ��2

q
setting

a limit of validity for the series representation (25). A
rather nice consequence of the above inequality is that by
decreasing the interlayer separation the convergence im-
proves and allows for larger values of � than in the
corresponding infinite volume limit. This is rather conve-
nient for any numerical evaluation, the reason being that
for values of a and � satisfying the above inequality the
sum over n can be approximated by keeping only the first
few terms, and any numerical computation does not require
any effort. For small � it is possible to expand the sum-
mand appropriately and resum each term of the expansion
by means of analytical continuation techniques.

Interlayer separation. It is interesting to see that the
interlayer separation, a, appears in the expression for the
thermodynamic potential in a form identical to that of
the Matsubara frequencies (26) with an effective tempera-
ture Ta ¼ 1=ð2aÞ. The presence of a chemical potential and
higher order terms in the condensate makes the combination
between geometrical and thermodynamical effects nontri-
vial, making the scrutiny of the finite-size-finite-temperature
analogy not as transparent as in the case of geometries with
topologically nontrivial circular directions [22].

Scaling. Letting ½mass� ! 
½mass�, where ½mass� is

any mass parameter ( ��, �, g�1=2, ��1, a�1 and ‘�1), it
takes simple steps to show that the potential rescales as
U ! 
Dþ1U, allowing one to fix one of the parameters.

Large condensates and high temperatures. The high
temperature approximation for the potential in the regime
of large temperature can be obtained with less work than
we did above, by using the method of Refs. [34,35] which
consists in rescaling the proper time in the expression for

the zeta function (12), t ! t�2=ð2�Þ2, and then uses the
small-t (Schwinger-De Witt) expansion for the heat kernel.
A similar trick can be used to analyze the large condensate
behavior, as it is easy to understand from the general
formula of the zeta function. Rather than reporting this
computation for the two-layer setup, which is essentially a
repetition of the previous calculation, we will consider
both cases in some detail in Appendix C for more general
boundary geometries.

IV. RESULTS

The discussion presented in the previous subsections,
along with the details reported in the Appendices, should
provide sufficient information on how to proceed with the
numerical computation. A technical complication comes
from having to use different representations in different
regimes, but, apart from this, the procedure is straightfor-
ward. We will present the result of such an evaluation for
the three-dimensional case and two-dimensional bounda-
ries. Generalization to different dimensionality can be
performed similarly.
Zero chemical potential. In the first part of this section

we will consider the case of vanishing chemical potential.
We have already explained the basics of our method in the
previous section. One thing that deserves further discussion
is the way we perform the summations over the Matsubara
frequencies and over the eigenvalues �i. Clearly, both sums
can be performed numerically using standard numerical
techniques. However, a more efficient way to proceed is
to expand the Bessel functions in the region of interest and
then exactly resum over the Matsubara frequencies each
term of the resulting series. This provides an analytical
expression that will need to be summed over the eigenval-
ues�i. This second sum is then performed numerically. The
full numerical method and partially resummed one are
found to give consistent results.
In Fig. 1, we illustrate the result for the thermodynamic

potential UN (normalized by subtracting the value of the
free energy for �� ¼ 0) for sample values of the parameters.
Notice that when the interlayer separation is decreased, the
effective temperature of the system increases and the min-
ima of the potential shifts towards smaller values. Another
feature that can be noted is that the potential ‘‘flattens’’
when the value of a increases. The third prominent feature
is that for combinations of distance and temperature, it is
possible to arrange the system such that the effective
potential has two minima (one vanishing and one non-
vanishing) with equal free energy, suggesting that in cer-
tain regions of the phase diagram, possibly implying the
existence of regions of broken/restored phase separated by
domain walls. In this case, the condensate would not be
constant but spatially varying, thus leading to an inhomo-
geneous phase. Whether, even at vanishing density, such a
phase could become energetically favored owing to finite
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size effect cannot be proven at this stage, but we will return
on this point in the future.

In Fig. 2 we illustrate the a dependence of the potential
for fixed values of the temperature. The dashed red line
represents the critical curve at which a phase transition
occurs (for fixed temperature) owing to finite size effects.

In all figures, increasing the interlayer separation or
decreasing the temperature (for fixed small separation)
tends to flatten the potential and eventually change the
order of the transition from first to second.

Finite density. Switching on the chemical potential pro-
duces some complications related to the fact that its de-
pendence modifies the properties of convergence of the
expression (25). However, as we have stressed previously,
the incorporation of effects of finite size compensates that
of a nonvanishing chemical potential allowing for values of
� larger than the corresponding ones in the infinite volume
case. The various regimes that can be considered may be
treated more efficiently using different numerical schemes.
For instance, assuming to be in a range of the parameters
for which the convergence of (25) is guaranteed, if�=T �
1, it is convenient to expand the summands in (25) for
small chemical potentials, proceed by exactly resumming
over i and then sum over the Matsubara frequencies by
means of numerical approximation. When the chemical
potential is large compared to the temperature, it is more

convenient to perform both summations numerically. Here,
we always follow this second approach and use the first
only for check. The double numerical sum is performed
over a grid in the �� direction. We perform exactly the sum
over the two indices up to a cutoff value, sample the addi-
tional terms and approximate these using a polynomial
fitting. The values of the cutoff are varied until the desired
accuracy is reached. Results are shown in Fig. 3 for sample
values of the chemical potential and of the interlayer
separation.
The critical temperature, Tcrit, can be computed by

solving the equation

fa;�ð�Þ ¼ lim
��!0

@2U=@ ��2 ¼ 0; (49)

by numerical approximation. We first expand to second
order in �� the thermodynamic potential, and, after comput-
ing the second derivative of the resulting expression,
we take the limit �� ! 0. The infinite summations over
the Matsubara frequencies and over the eigenvalues �i

involved are computed using the same numerical sampling
technique we have used before. The sums are evaluated
after discretizing the � direction and for fixed values of
the chemical potential and of the interlayer separation.
The result is then fitted using a polynomial interpolat-
ing function and the zero of fa;�ð�Þ ¼ 0 is calculated

FIG. 1 (color online). The figure displays the thermodynamic potential UN (normalized according to Uj ��¼0 ¼ 0) for vanishing
chemical potential as a function of the condensate �� for fixed interlayer separation and varying temperature. The values of the
parameters are fixed to g ¼ 102, ‘�1 ¼ 30. The value of the separation a is indicated in the panels, while the temperature takes the
following values: ��1 ¼ 7 (top curve—left panel), ��1 ¼ 1:5 (bottom curve—left panel); ��1 ¼ 4:5 (top curve—central panel),
��1 ¼ 0:7 (bottom curve—central panel); ��1 ¼ 2:2 (top curve—right panel), ��1 ¼ 0:5 (bottom curve—right panel).
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FIG. 2 (color online). The figure illustrates the dependence on the interlayer separation of the thermodynamic potential for fixed
temperature. The values of � are set as indicated in the panels, while the separation a takes the following values in all panels: a ¼ 5
(top curve), a ¼ 20 (bottom curve). The red dashed curves represent the critical curves: (left panel) a ¼ 10:4, (central panel) a ¼ 13:2,
(right panel) a ¼ 15:12. The other parameters are set as in the previous figure.
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numerically by using the interpolating function.
Alternatively, the critical temperature can be computed
directly by inspecting how the minima of the potential
changes when the temperature and chemical potential are
varied and by finding for which value of the temperature for
fixed� and a the nonzero minima of the potential vanishes.
This method is accurate when the transition is first order
while it is less accurate when the transition is second order.
Results are presented in the right panel of Fig. 4.

We close the section by computing the value that the
condensate attains at the minima of the potential, ��min, vs
the temperature (for fixed separation) and vs the separation
(for fixed temperature) both at zero chemical potential, and
the minima are computed using a minimization routine
based on the Newton’s method. The left panel of Fig. 4
below shows the value of ��min obtained for a sample choice
of parameters.

A precise construction of the three-dimensional phase
diagram T-�-a is left for future work as it requires a
more substantial numerical effort (particularly for the pre-
cise determination of the critical points and of the order of
the transitions). However, the results displayed in Figs. 2–4
are sufficient to illustrate the main features that the

presence of the layers produces. As expected, reducing
the interlayer separation induces a shift in the thermody-
namic potential indicating an increase in the effective
temperature. This is also observed in the tendency of the
critical temperature to decrease when the separation de-
creases, indicating that for fixed � a decrease of the
interlayer separation tends to bring the system towards a
phase of restored chiral symmetry. An additional interest-
ing feature is noticed looking at the � dependence of the
potential for fixed a and varying � (see Fig. 3), showing
that a simultaneous decrease in temperature and separation
tends to cause a flattening of the potential and eventually a
change in the order of the transition from a second order
one for large a towards a first order one for small values of
a, and producing possible shifts in the critical points.

V. CONCLUSIONS

It is not possible, in general, to predict how the finite
size of a system may affect its thermodynamical behavior.
This depends on the geometrical and topological properties
of the system, on the presence of external fields, on
the specific type of interactions, etc. In some cases,
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FIG. 4 (color online). The left panel illustrates the behavior of ��min vs the temperature for several values of the interlayer separation
(values are indicated in the figure). In the right panel we display the critical temperature, Tcrit vs � for several values of the interlayer
separation. The filled dots are directly calculated as explained in the text, while the empty dots are computed by fitting the results in the
region around the ‘‘knee’’ and by extrapolating the resulting curve. The renormalization scale and the coupling constant are set as in
the other figures.
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FIG. 3 (color online). The figure illustrates the thermodynamical potential for vanishing vs nonvanishing �, fixed a, and varying �.
The inverse temperature is varied between ��1 ¼ 0:6 and ��1 ¼ 3 for the left panel, ��1 ¼ 1 and ��1 ¼ 4:5 for the central panel,
��1 ¼ 3:0 and ��1 ¼ 7:5 for the right panel. Values of � and a are indicated in the figures, coupling constant, and renormalization
scale are fixed as in the previous figures.
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symmetries may help to relate high and low temperature
regimes, or (modular symmetries) certain topologically
nontrivial configurations. Spectral geometric techniques
can also be used to make more generic statements in
specific regimes (e.g., at high temperature). However, a
case-by-case analysis seems to be necessary to make de-
tailed predictions and understand precisely the combined
geometrical and thermodynamical effects.

Here, we have analyzed the impact of finite size effects
on the thermodynamics of a system of interacting fermions
that we have modeled using an effective field theory with a
four-fermion interaction term inD dimensions, and looked
in detail at the case of a confining two-layer system in three
dimensions. We have developed a method based on zeta-
function regularization techniques and used the large-N
and mean-field approximations to construct the effective
thermodynamic potential. We have developed all necessary
expansions in different regimes of temperature and sepa-
ration, constructed all relevant integral and series repre-
sentations for the various expressions involved, and
thoroughly discussed the analytic structure of the potential.
While being particularly interested in the case when the
‘‘tree-level’’ four-point interaction term and quantum cor-
rections produced by the deformation in the vacuum due to
the presence of the boundaries both generate a sizeable
force between the boundaries, we have also obtained an
expression valid for large separations that is important
when taking the infinite volume limit. We have performed
several checks of the individual contributions showing
nontrivial cancellation of divergences and reproducing
various known results in several limits (infinite volume
limit, zero condensate, finite temperature). The method
we have discussed in this paper can be efficiently imple-
mented numerically and, after clarifying several points, we
have performed a numerical computation of the thermody-
namic potential, of the critical temperature, and the con-
densate in the broken phase for the D ¼ 3 dimensional
two-layer setup.

The most important effect of finite size is the tendency to
shift the critical points and eventually change the order of
the transitions. We have seen that the critical temperature
and the ‘‘flatness’’ of the potential depend in a nontrivial
way on the size of the system (the interlayer separation in
our case) and on the other thermodynamical quantities.
However, in order to completely describe the modifications
that finite size effects may produce to the phase diagram of
a strongly interacting fermionic system, it is important to
relax at least two conditions. The first one is the approxi-
mation of spatially constant condensates, while the second
one is related to the boundary conditions. Relaxing the first
condition generates several new terms in the partition
function and solution of the gap equation in this case
requires proper functional minimization and related nu-
merical treatment. Regarding the boundary conditions,
here we have considered the simplest possible choice

allowed. However, more general boundary conditions
may be used [27]. How the phase diagram depends on
the boundary conditions remains an open (and in our
opinion interesting) question and it is clearly very impor-
tant also in the inhomogeneous case. When the boundaries
are disconnected, as for instance in the two-layer case
analyzed here, different boundary conditions may, in fact,
be imposed at each layer independently (introducing in the
effective potential a dependence on some additional pa-
rameter, e.g., a chiral angle). While these changes are not
expected to modify the situation at high temperature (see,
for instance, Appendix C) some modifications may be
expected at low temperature. Especially when inhomoge-
neous phases become energetically favored, how the
ground state is affected by the boundary conditions is
certainly nontrivial, and whether by means of an appro-
priate choice for the boundary conditions it is possible to
engineer the shape of the ground state is also an amusing
related question.
A physical situation where the present discussion may

have some relevance is in the context of the Casimir
effect. Here, we have basically considered a Casimir-
type setup with the action augmented by a quartic inter-
action term. An interesting system of this sort is the
bilayer graphene with interlayer pairing whose properties
have been recently discussed in Ref. [36]. (The literature
on the fermion Casimir effect is vast. The reader may
consult Refs. [37–40] for some recent articles where the
Casimir effect for noninteracting fermions has been dis-
cussed.) While in the free field case, no phase transition/
symmetry breaking occurs, adding an interaction term may
change things in a more dramatic way. Let us choose the
coupling constant g and the temperature in such a way that
for large separation a chiral symmetry is broken (as in
Fig. 2). Starting from this configuration, let us gradually

decrease the interlayer separation producing a gradual shift

in the minima of the condensate. Once the distance reaches

a critical value at which chiral symmetry is restored a phase

transition occurs: the true minimum of the potential

��min jumps to a zero value (see Fig. 5, where the transition

is a first order one). The transition is from a massive

phase (with a mass proportional to the condensate) to a

massless phase in the restored chiral symmetry region. In

the massive phase, the fermion contribution to the Casimir

force is expected to be suppressed (with the degree of

suppression depending on the precise value of a ��min).

On the other hand, in the massless phase, the fermion

contribution to the Casimir force takes the familiar a�4

behavior. The transition between these two phases of the

Casimir force (mass-suppressed and massless) is related to

the spontaneous breaking/restoration of chiral symmetry

and it is a phase transition. Figure 5 summarizes the above

arguments.
It seems interesting to us to pursue these ideas further

and we will return to these issues in the near future [23].
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APPENDIX A: INTEGRALS

In this section we will provide some explicit formulas
for the integrals used in the body of the paper (some

formulas and definitions given before will be repeated
here for the convenience of the reader). The starting point
is the following expression:

AðJÞ
I ðsÞ ¼ a2s�D

�ðsÞ
Z 1

0
dtts�D=2�1þIe�ta2 ��2

F̂ �;�ða2tÞKJðtÞ;
(A1)

where

KJðtÞ ¼ ��2J
X
	

e�t�2	2

	2J
; (A2)

and

F̂ �;�ða2tÞ ¼ 1þ 2
X1
n¼1

ð�1Þn coshð��nÞe��2n2

4a2t : (A3)

We have used the short-hand definition 	 ¼ jþ 1=2 andP
	 ¼ P1

j¼0 . We will split the integral (A1) as

AðJÞ
I ðsÞ ¼ V ðJÞ

I ðsÞ þW ðJÞ
I ðsÞ; (A4)

where

V ðJÞ
I ðsÞ ¼ 1

�2J

a2s�D

�ðsÞ
X
	

Z 1

0
dtts�D=2�1þIe�ta2 ��2 e�t�2	2

	2J
;

(A5)

W ðJÞ
I ðsÞ ¼ 1

�2J

2a2s�D

�ðsÞ
X
n;	

ð�1Þn coshð��nÞ

�
Z 1

0
dtts�D=2�1þIe

�ta2 ��2��2n2

4a2t
e�t�2	2

	2J
: (A6)

1. Computation of V ðJÞ
I ðsÞ

The first integral can be computed straightforwardly
leading to

V ðJÞ
I ðsÞ ¼ a2s�D

�2J

�ðI �D=2þ sÞ
�ðsÞ

�X
	

	�2Jða2 ��2 þ �2	2Þ�s�IþD=2:

Let us now consider the two cases J ¼ 0 (a) and J � 0 (b)
in turn.
(a) For J ¼ 0, we have

V ð0Þ
I ðsÞ ¼ a2s�D �ðI�D=2þ sÞ

�ðsÞ
X
	

ða2 ��2 þ �2	2Þ�s�IþD=2

¼ a2s�D �ðI�D=2þ sÞ
�ðsÞ ��2s�2IþD

X
	

�
a2 ��2

�2
þ 	2

��s�IþD=2

¼ a2s�D �ðI�D=2þ sÞ
�ðsÞ ��2s�2IþD

�
22sþ2I�DS

�
sþ I �D=2;

2a ��

�

�
� S

�
sþ I �D=2;
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;
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FIG. 5 (color online). Vacuum expectation value of the
fermion condensate and phases of the Casimir force. The
figure shows how the vacuum expectation value of the con-
densate depends on the interlayer separation in the region
around the transition for fixed temperature (set to ��1 ¼ 1:5).
The other parameters have been set as in the central panel of
Fig. 2.
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where we have expressed the sums in terms of the follow-
ing function:

Sðs; �Þ :¼ X1
n¼1

ðn2 þ �2Þ�s: (A7)

The cases �� ¼ 0 and �� � 0 present some slight computa-
tional differences. For �� ¼ 0 (� ¼ 0), Sðs; �Þ is nothing
but the Riemann zeta function, Sðs; 0Þ ¼ �Rð2sÞ:

V ð0Þ
I ðsÞ ¼ a2s�D �ðI �D=2þ sÞ

�ðsÞ ��2s�2IþD

� ð22sþ2I�D � 1Þ�Rð2sþ 2I �DÞ: (A8)

For any even spatial dimensionality (any integer and even
D), the zeta function is regular and the only poles occur in
the Gamma functions for s ¼ 0 (denominator) and for
s ¼ 0 and I ¼ 0; 1; � � � ; D2 (numerator) compensating
each other and leaving a well behaved expression. For
any odd spatial dimensionality, any integer and odd D,
the zeta function has a pole occurring for s ¼ 0 when
I ¼ ðDþ 1Þ=2. This pole is compensated by that of the
gamma function in the denominator, and the expression is
perfectly regular. When both �� and a are small (that is
when � is small), we may expand the function Sðs; �Þ as a
series of Riemann zeta functions,

Sðs; �Þ ¼ X1
q¼0

ð�1Þq sþ q� 1

s� 1

 !
�2q�Rð2sþ 2qÞ: (A9)

Using this representation we get

V ð0Þ
I ðsÞ ¼ a2s�D �ðI �D=2þ sÞ

�ðsÞ ��2s�2IþD
X1
q¼0

ð�1Þq

� sþ I �D=2þ q� 1

sþ I �D=2� 1

 !
ð22sþ2I�Dþ2q � 1Þ

�
�
a ��

�

�
2q
�Rð2sþ 2I �Dþ 2qÞ;

that recovers (A8) in the appropriate limit. As before, forD
even and integer, the poles of the Gamma functions com-
pensate each other leaving a regular expression for s ¼ 0.
For D odd and integer, the poles in the summand, at s ¼ 0
and for I ¼ ðDþ 1Þ=2� q 2 N, are canceled by the pole
of the Gamma function in the denominator, leaving a
regular expression.
A representation valid also for larger values of a �� can be

constructed by using the Chowla-Selberg representation
for the series, Ref. [41],

Sðs; �Þ ¼ ���2s

2
þ

ffiffiffiffi
�

p
2

�ðs� 1=2Þ
�ðsÞ �1�2s

þ 2�s

�ðsÞ�
1=2�s

X1
q¼1

qs�1=2Ks�1=2ð2�q�Þ: (A10)

Using the above expression, we find

V ð0Þ
I ðsÞ ¼ a2s�D ��2s�2IþD

�ðsÞ
� ffiffiffiffi

�
p
2

�ðsþ I�D=2� 1=2Þ
�
a ��

�

�
1�2s�2IþD þ 2�sþI�D=2

�
a ��

�

�
1=2�s�IþD=2

� X1
q¼1

qsþI�D=2�1=2½2sþI�D=2þ1=2KsþI�D=2�1=2ð4qa ��Þ � KsþI�D=2�1=2ð2qa ��Þ�
�
: (A11)

One may notice that the first term in square brackets in
(A10) cancel out in the above expression. For D odd and
integer, the poles of the gamma function in square brackets
are compensated by the pole of the gamma function in the
denominator, leaving a regular expression. For D even
integer, the expression vanishes for s ¼ 0.

(b) For J � 0, we have

V ðJÞ
I ðsÞ ¼ a2s�D �ðI�D=2þ sÞ

�ðsÞ ��2J

�X
	

	�2Jða2 ��2 þ �2	2Þ�s�IþD=2:

For vanishing ��, we have

V ðJÞ
I ðsÞ ¼ a2s�D �ðI�D=2þ sÞ

�ðsÞ
�X

	

��2s�2IþD�2J	�2s�2IþD�2J

¼ �ðI �D=2þ sÞ
�ðsÞ ��2s�2IþD�2J

� �Hð2sþ 2I �Dþ 2J; 1=2Þ; (A12)

where

�Hðu;bÞ ¼
X1
k¼0

ðkþ bÞ�u (A13)

is the Hurwitz zeta function. Since the only (simple) pole of
the Hurwitz zeta function (A13) occur at u ¼ 1, for any D
even integer the Hurwitz zeta function in (A12) is regular for
any positive integers I and J, while the poles coming from

INTERACTING FERMIONS, BOUNDARIES, AND FINITE . . . PHYSICAL REVIEW D 86, 104047 (2012)

104047-15



the gamma function in the numerator for I ¼ 0; � � � ; D=2,
are compensated by the poles coming from the gamma
function in the denominator. For D odd integer, the poles
occurring in the Hurwitz zeta function in (A12) are compen-
sated by those from the gamma function in the denominator.
As in the previous cases, the final expression is regular.

When a �� is nonvanishing and small, use of the binomial
theorem leads to

V ðJÞ
I ðsÞ ¼ a2s�D �ðI �D=2þ sÞ

�ðsÞ ��2IþD�2s�2J

� X1
q¼0

ð�1Þq I�D=2þ sþ q� 1

I �D=2þ s� 1

 !

�
�
a ��

�

�
2q
�Hð2J þ 2qþ 2I �Dþ 2s; 1=2Þ:

(A14)

The regularity of the above expression for s ¼ 0 and for
any nonzero integer p can be shown as in the previous
cases. It is also possible to give an integral representation

for V ðJÞ
I ðsÞ using, for instance, the Abel-Plana summation

formula. However, wewill not present explicit formulas for
this case here.

2. Computation of W ðJÞ
I ðsÞ

W ðJÞ
I ðsÞ is easier to handle and simple steps lead to

W ðJÞ
I ðsÞ ¼ 4a2s�D

�ðsÞ
X1
n¼1

ð�1Þn
�
n�

2a

�
Iþs�D=2

� coshð��nÞ � ��2J

�X
	

	�2Jð�2	2 þ a2 ��2Þ�1
2ðIþs�D=2ÞKIþs�D=2

�
�
n
�

a
ð�2	2 þ a2 ��2Þ1=2

�
: (A15)

The presence of the Bessel functions in the above expres-
sion suppresses, for large values of their argument, the
summations and make any numerical evaluation straight-
forward. The regularity is immediate to show and the
above expression (but not its derivative) vanishes in the
limit of s ¼ 0 for any D, I and J.

APPENDIX B: INTEGRAL REPRESENTATION OF
THE T IJ FUNCTIONS

Carrying out the analytical continuation of the functions
T IJ occurring in the regime of large interlayer separation
requires an approach slightly different from that we have
used in the other cases. The starting point here is the
function (we suppress the indices I and J for notational
convenience and write T ¼ T IJ)

T ¼ a2JþD

�2J

�ðI �D=2þ sÞ
�ðsÞ

� X1
n¼0

	�2J

�
��2 þ �2

a2
	2

�
D=2�I�s

: (B1)

The case of positive J 2 N can be dealt with by using
some recursive relations starting from the standard
Chowla-Selberg representation (see Ref. [42]).
Unfortunately, here we need to consider the case of
�J 2 N and this complicates things slightly. Using the
Abel-Plana formula, we can express � as

T ¼ aDðTð0Þ þ Tð1Þ þ Tð2ÞÞ; (B2)

where

T ð0Þ ¼ a2J

�2J

�ðI �D=2þ sÞ
�ðsÞ 22J�1 �PD=2�I�s; (B3)

Tð1Þ ¼ a2J

�2J

�ðI�D=2þ sÞ
�ðsÞ

Z 1

0

�
1

2
þ z

��2J
PD=2�I�sðzÞdz;

(B4)

Tð2Þ ¼ a2J

�2J

�ðI�D=2þsÞ
�ðsÞ

�
�
{
Z 1

0

�
1

2
þ {z

��2J
P ð{zÞD=2�I�s dz

e2�z�1

� {
Z 1

0

�
1

2
� {z

��2J
P ð�{zÞD=2�I�s dz

e2�z�1

�
; (B5)

where we have used the short-hand notation

P ðzÞ ¼
�
��2 þ �2

a2

�
1

2
þ z

�
2
�
; (B6)

and

�P ¼ P ðz ¼ 0Þ: (B7)

It is easy to get

Tð0Þ ¼ 1

2

�
2a

�

�
2J

�PD=2�I½�� þ sð�þ � �� log �P Þ� þOðs2Þ;
(B8)

where we have defined

�ðI�D=2þ sÞ
�ðsÞ ¼ �� þ s�þ þOðs2Þ: (B9)

Notice that �� ¼ 0 for D odd.

In general, the contribution �ð1Þ can be expressed in
terms of hypergeometric functions. However, a represen-
tation more useful for our purposes can be constructed in
terms of incomplete beta functions,

�aðx; yÞ ¼
Z a

0
tx�1ð1� tÞy�1dt; (B10)
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and their regularized form, �
reg
a ðx; yÞ,

�reg
a ðx; yÞ ¼ �aðx; yÞ=�ðx; yÞ: (B11)

Some computations lead to

Tð1Þ ¼ a2ðIþJþsÞ

2�

�ðI �D=2þ sÞ
�ðsÞ ð�a2 ��2Þð1þD�2J�2I�2sÞ=2

� �

�
I þ J þ s�Dþ 1

2
;
D

2
� I � sþ 1

�

� �
ðregÞ
�4a2 ��2

�2

�
I þ J þ s�Dþ 1

2
;
D

2
� I � sþ 1

�
;

(B12)

where the incomplete gamma function is defined as it takes
simple steps to show that the quantity

�ðI�D=2þsÞ
�ðsÞ �

�
D=2�2ðI�1þsÞ;IþJþs�Dþ1

2

�
¼ z�þzþsþOðs2Þ;

is regular for s ! 0, while the rest of (B12) is regular by
construction. Expanding for s ! 0 gives

Tð1Þ ¼a2ðIþJÞ

2�
ð�a2 ��2Þð1þD�2J�2IÞ=2

�ðz��0þsðzþ�0þz��1þz��0 log ��
�2ÞÞþOðs2Þ;

(B13)

where we have defined

�0 ¼ ð�1Þ1þD�2J�2I
2 �ðregÞ

�4a2 ��2

�2

�
I þ J �Dþ 1

2
;
D

2
� I þ 1

�
;

(B14)

�1 ¼ d

ds

�
ð�1Þ1þD�2J�2I�2s

2 �
ðregÞ
�4a2 ��2

�2

ðI þ J þ s�Dþ 1

2
;

D

2
� I � sþ 1Þ

���������s¼0
: (B15)

Finally, we deal with Tð2Þ:

T ð2Þ ¼ a2J

�2J
½��I þ sð�þI � ��J Þ� þOðs2Þ; (B16)

where

I ¼ {
Z 1

0

��
1

2
þ {z

��2J
PD=2�Ið{zÞ � ðz ! �zÞ

�
dz

e2�z � 1
;

J ¼ {
Z 1

0

��
1

2
þ {z

��2J
PD=2�Ið{zÞ logP ð{zÞ

� ðz! �zÞ
�

dz

e2�z � 1
:

Analytical approximations may be obtained by splitting the
integration range into ½0; 1Þ [ ½1;1� and by appropriately
expanding the exponential in the region of small and large
z. Both integrals I and J can be computed with no effort
by means of numerical approximation.

APPENDIX C: HIGH TEMPERATURE AND LARGE
CONDENSATE APPROXIMATIONS FOR

GENERAL SMOOTH BOUNDARIES

In the present section we wish to give some more details
on the high temperature and large condensate expansions.
In these cases, it is possible to give simpler and more direct
derivations as well as considering slightly more general
geometries, for the cases where explicit knowledge for the
heat-kernel expansion is available. Although it is possible
to include some singular spaces (for instance, conifold
geometries, see Ref. [43]), here, for simplicity, we will
limit our discussion to the case of codimension one, non-
singular boundaries. The starting point, i.e., Eqs. (5) and
(6), remains valid, and the zeta function takes the following
general form:

�ðsÞ ¼ X
n

X
�

ðð!n � {�Þ2 þ �þ ��2Þ�s; (C1)

where � is used to indicate the eigenvalues of the Laplacian
with boundary conditions appropriately imposed. As we
did before, one may easily recast the above expression in
factorized form

�ðsÞ ¼ �

2
ffiffiffiffi
�

p
�ðsÞ

Z 1

0
dtts�3=2e�t ��2

�ðtÞF̂ �;�ðtÞ; (C2)

where �ðtÞ ¼ P
�e

�t�.

1. High temperature

The first regime we wish to address is the high tempera-
ture one, where we expect the system to be in a region of
unbroken symmetry. In order to study the high-T regime,

we may rescale t ! �2

4�2 t, in (C2) and arrive at

�ðsÞ ¼ �

2
ffiffiffiffi
�

p
�ðsÞ

�
�

2�

�
2s�1 Z 1

0
dtts�3=2e�tð� ��

2�Þ2�
�
�2t

4�2

�

� F̂ �;�

�
�2t

4�2

�
: (C3)

At high temperature (� � 1), we may use the asymptotic
expansion of the heat-kernel

�

�
�2t

4�2

�
¼
�
t�2

�

��D=2 X
k2N=2

�k

�
t�2

4�2

�
k
; (C4)
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where the coefficients �k are determined by the intrinsic and extrinsic geometry of the spatial section of the background
manifold as well as by the boundary conditions. The high temperature expansion, skipping lengthy computational steps,
can be cast as follows:

U ¼ ’ðDÞ
0

�Dþ1
þ ’ðDÞ

1

�D þ ’ðDÞ
2

�D�1
þ ’ðDÞ

3

�D�2
þ ’ðDÞ

4

�D�3
þ ’ðDÞ

log log

�
� ��2

�2

�
þ � � � ; (C5)

where, for D ¼ 3,

’ð3Þ
0 ¼ � 7�2

720
�̂0;

’ð3Þ
1 ¼ � 3�ð3Þ

16�3=2
�̂1=2;

’ð3Þ
2 ¼ � 1

24

��
�2 � 1

2
��2

�
�̂0 þ 1

2
�̂1

�
;

’ð3Þ
3 ¼ � log2

8�3=2
ð�2�̂1=2 � ��2�̂1=2 þ �̂3=2Þ;

’ð3Þ
4 ¼ � 1

24�3=2
��3�̂1=2 � 1

16�2
�̂1

�
�2 �

�
1

2
� �e

��
��2 þ 1

16�3=2
���̂3=2 þ �e

16�2
�̂2 � 1

32�3=2
���1�̂5=2

� 1

32�2
���2�̂3 � 1

64�3=2
���3�̂7=2 � ��2

2g
� 1

16�2

� X
k2N=2

vk�̂k ��
4�2k �

�
1

2
�̂0 ��

4 þ �̂1 ��
2 þ �̂2

�
logð‘ ��Þ2

�
;

’ð3Þ
log ¼ � 1

16�2
ð ��2�̂1 � �̂2Þ:

The coefficients vk calculable numbers (for D ¼ 3, the
first few are: v0 ¼ 3=4, v1=2 ¼ 4

ffiffiffiffi
�

p
=3, v1 ¼ �1, v3=2 ¼

2
ffiffiffiffi
�

p
, v2 ¼ 0; � � � ), and we have defined �̂k ¼ Vol�1�k.

The above expression is valid for any smooth boundary
and for any self-adjoint preserving boundary conditions,
encoded in the integrated heat-kernel coefficients. Notice
that the chemical potential, in the high temperature expan-
sion, shows up only at third and higher orders and it
multiplies volume (at third order) and boundary (at fourth
order) terms, but not the condensate (the same is true for
bosons [22]). Therefore, up to fourth order in the high
temperature approximation, it does not affect the position
of the minima of the potential.

The explicit form of the heat-kernel coefficients is not
known in general. However, for the present analysis we
only need information regarding the first few coefficients
and this can be retrieved from general formulas (see, for
example, Refs. [44,45]). In fact, the relevant behavior of
the potential can be obtained by looking at the sign of its

derivative with respect to ��, " � Sign @U
@ �� . For the case of

bag boundary conditions, the first few coefficients are
known and sufficient to show that " > 0 for any positive
��, implying that the potential is a monotonically increasing
function of the condensate with an absolute minima at
�� ¼ 0. Therefore, at high temperature and without
boundaries chiral symmetry is always restored at leading
order in the high temperature approximation, as one may
have expected.

For more general boundary conditions (for example, for
chiral boundary conditions), the first few coefficients have

been computed in Ref. [45]. The relevant part of �̂1 is

�̂1�� 1

Vol

�Z
dVTr ��2

þ
Z
d�Trðc3 ���5�mþc5 ���5þc6 ��Þ

�
þ��� ; (C6)

where the first integral is over thevolume,while the second is
over the boundary. The dots indicate terms that either vanish
or do not depend on �� and �m indicates the gamma matrices
normal to the boundary. The coefficients c3, c5, c6 are
universal multipliers and explicit forms for the case in ques-
tion can be found in Ref. [45]. Restricting to the case of bag
boundary conditions that are a special case of chiral boundary
conditionwith the chiral angle set to zero, results of Ref. [45]

show that c5, c6 > 0 and c3 ¼ 0. Thus, the overall sign of �̂1
does not change, and the previous conclusions remain valid.
Changing the boundary conditions allowing for a nonvanish-
ing chiral angle modifies the coefficients c. However, for the
case of flat boundaries, the sign of �1 remains positive.

2. Large condensates

If the values of the condensate is large, one may proceed
in a similar way to the high temperature case discussed
above, owing to the presence of the exponential in (C2) that
suppresses contributions from the large-t region of the
integration range. Similar steps give
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U ¼ 1

ð4�ÞD=2

��
��3=2

2�5=2

�
c0 þ c1

�1=2

��1=2
þ c2

�

��
þ c3

�3=2

��3=2
þ c4

�2

��2
þ � � �

��
1

2

1

ð4�Þ1=2

�
�
3

4
�̂0 ��

4 þ 4
ffiffiffiffi
�

p
3

�̂1=2 ��
3 � �̂1 ��

2 � 2
ffiffiffiffi
�

p
�̂3=2 ��þ ffiffiffiffi

�
p

�̂5=2
1

��
þ �̂3

1

��2
þ

ffiffiffiffi
�

p
2

�̂7=2
1

��3

þ �̂4
1

��4
� logð‘ ��Þ2

�
1

2
�̂0 ��

4 � ��2�̂1 þ �̂2

���
þ ��2

2g
; (C7)

where for D ¼ 3,

c0 ¼ 4�̂0
Li5=2 c1 ¼ 2
ffiffiffi
2

p
�̂1=2
Li2 c2 ¼ 15

2�2
�̂0
Li7=2 þ 2�̂1
Li3=2

c3 ¼ 2
ffiffiffi
2

p
�2

�̂1=2
Li3 þ
ffiffiffi
2

p
�̂3=2
Li1 c4 ¼ 105

32�4
�̂0
Li9=2 þ 3

4�2
�̂1
Li5=2 þ �̂2
Li1=2:

In the above expression we have defined the following combination of the polylogarithm functions:


Li� ¼ Li�ð�e��ð ��þ�ÞÞ þ Li�ð�e��ð ����ÞÞ: (C8)

APPENDIX D: NUMERICAL TEST ON THE ANALYTICAL APPROXIMATION FOR THE EIGENVALUES

In order to test the approximations we have developed for the eigenvalues in Sec. II B and II C we have numerically
computed the eigenvalues and compared the resulting values with the analytic approximations over a wide range of
parameters for k? up to 105. Figures 6 and 7 show some sample plots of this test for small and large values of a and ��. The
intersection between the vertical red lines and the horizontal axis indicate the eigenvalues computed by numerical
approximation using a root-finding routine based on the Newton method. The blue dots are the eigenvalues obtained by
analytical approximation up to fourth order in the expansion parameter.
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FIG. 6 (color online). Numerical check on the eigenvalue approximation. Plots refer to a ¼ 0:1 and �� ¼ 0:1.
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FIG. 7 (color online). Numerical check on the eigenvalue approximation. Plots refer to a ¼ 1 and �� ¼ 10.
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