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The dynamical evolution of boson stars in scalar-tensor theories of gravity is considered in the physical

(Jordan) frame. We focus on the study of spontaneous and induced scalarization, for which we take as

initial data configurations on the well-known S branch of a single boson star in general relativity. We show

that during the scalarization process a strong emission of scalar radiation occurs. The new stable

configurations (S branch) of a single boson star within a particular scalar-tensor theory are also presented.
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I. INTRODUCTION

Scalar-tensor theories (STTs) are alternative theories of
gravitation where a spin-0 degree of freedom� can accom-
pany the usual tensor spin-2 modes (see Ref. [1] for a
review). There are two mathematical representations of
the STTs: (1) The physical frame (also known as the
‘‘Jordan’’ frame), where test particles follow geodesics of
spacetime and the scalar field � couples nonminimally to
the curvature, and (2) the Einstein frame, obtained by a
conformal transformation of the metric, where the scalar
field couples minimally to the curvature and nonminimally
to the matter fields [2].

STTs are perhaps the simplest, well motivated, and most
competitive theories of gravitation after general relativity
(GR), the most prominent example being the well-known
Jordan-Brans-Dicke theory [3,4]. Intuitively, STTs can be
seen as theories with a varying effective gravitational ‘‘con-
stant.’’ Although so far there is no observational evidence
that such a scalar gravitational field exists, one can use the
experimental and observational tests of GR to put limits on
its existence and its possible interactions [5].Using data from
the binary pulsar, for instance, it is possible to put limits on
some classes of STTs which restrict the form of the non-
minimal coupling (NMC) to the curvature. Nevertheless,
these bounds still allow a NMC constant of order
unity [6].

Despite the fact that STTs were proposed several deca-
des ago, it has only been recently that several phenomena
associated with them, and with no counterpart in GR,
have been analyzed. For instance, in the cosmological
context, STTs have been proposed as alternatives to the

cosmological constant in order to explain the accelerated
expansion of the Universe [7–12].
In the astrophysical scenario, Damour and Esposito-

Farèse [6,13] discovered that neutron star models within
STTs may undergo a phase transition that consists of the
appearance of a nontrivial configuration of the scalar field�
in the absence of sources and with vanishing asymptotic
value. This phenomenon has been named spontaneous sca-
larization (SS) due to its similarities with the spontaneous
magnetization of ferromagnets at low temperatures. The
stability analysis for the transition to SS was first performed
by Harada [14,15]. It is now understood that SS arises under
certain conditions where the appearance of a nontrivial
scalar field gives rise to a stationary configuration that
minimizes the energy of the star with fixed baryon number.
Further analysis has confirmed that the SS phenomenon

takes place in neutron stars independently of the equation of
state used to describe the nuclear matter [16–18]. In boson
stars this phenomenon was first studied by Whinnett [19],
who constructed stationary scalarized configurations with a
self-interaction potential for the scalar field. More recently,
the dynamic transition to SSwas analyzed by us in the Jordan
frame and without self-interaction [20]. One important fea-
ture of this phenomenon is that it can occur even when the
parameters of the theory satisfy the stringent bounds imposed
by the Solar System experiments, notably, when the Brans-
Dicke parameter is chosen to be arbitrarily large.
The SS phenomenon is accompanied by the ‘‘sudden’’

appearance of a new global quantity termed scalar charge,
where by sudden we mean that the derivative of this charge
with respect to the central energy density at the critical point
is infinite. The scalar charge is the analogous of the mag-
netization of ferromagnets mentioned above. Moreover,
just as in the neutron star case, in boson stars one also finds
that beyond a certain critical central energy density, the
stationary configurations that are energetically preferred
are those where the SS ensues.
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A phenomenon similar to SS, but that occurs when a
background scalar field is present, is called induced scala-
rization (IS). It corresponds to the case where the scalar
field does not vanish asymptotically. In this situation the
scalar charge does not exhibit a discontinuous ‘‘jump’’ as
the object becomes more compact, and the transition to
scalarization is smoothed out by the presence of the back-
ground field.

Another important feature of STTs is the prediction of
scalar gravitational waves. While GR predicts only quad-
rupole gravitational radiation in the ‘‘far zone,’’ STTs
predict the existence of monopolar gravitational waves
that can be emitted even in the case of spherical symmetry
[21]. The new polarization of this scalar mode is of breath-
ing type since it affects all directions isotropically [21].

A simple scenario where such scalar gravitational waves
might be produced is precisely during the scalarization
process of a spherical compact object. The amplitude of
such waves (in the linear approximation) is linked directly
with both the form of the NMC and the asymptotic value of
the scalar field. For instance, when this asymptotic value
vanishes, it turns out that certain classes of STTs do not
lead to the emission of scalar gravitational waves. This
implies in particular that in such classes of STTs the SS
phenomenon does not produce monopolar waves, rather it
is only in the IS scenario that such theories can lead to an
emission of scalar gravitational radiation. Since we will be
working with one such class of STTs, it is then particularly
important to make a clear distinction between the SS and
the IS phenomena.

The first dynamical analysis of the scalarization phe-
nomenon in neutron stars was made by Novak [16]. He did
not only confirm the dynamical transition to the scalariza-
tion state, but also the emission of scalar gravitational
waves. Moreover, he also studied the emission of scalar
gravitational radiation when a scalarized star collapses into
a black hole [22].

Recent studies of neutron star oscillations within STTs
have shown that, in addition to the emission of scalar
gravitational waves, the quadrupole gravitational radiation
is also disturbed as compared to the corresponding signals
in GR [23]. Therefore, even if the detection channels for
scalar gravitational waves are ‘‘switched off,’’ the detec-
tion of gravitational waves of spin 2 coming from these
sources might still validate STTs or put even more strin-
gent bounds on their parameters. Of course, the direct
detection of scalar gravitational waves (or the absence
thereof) would also help to discriminate between several
alternative theories.

In this work, we present a systematic study of the
phenomenon of IS in the spacetime of a single boson
star, without a self-interaction potential for the nonmini-
mally coupled scalar field. We choose to work directly in
the physical Jordan frame where the physics is better
understood. In addition, we study some properties of the

gravitational scalar waves such as their magnitude and
frequency. All the numerical evolutions are performed in
spherical symmetry using a 3þ 1 formalism of STTs as
presented in Ref. [24]. However, instead of evolving the
geometry with the Arnowitt-Deser-Misner (ADM) equa-
tions, we use a strongly hyperbolic version similar to the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [25,26] but adapted to the STTs [27]. Using this
3þ 1 system the initial value problem of STTs in the
Jordan frame turns out to be well posed. Nevertheless, at
the moment we only have numerical evidence to show that
the initial boundary value problem (IBVP) is also well
posed. The analysis of the continuum IBVP for this system
will be presented elsewhere.
This paper is organized as follows. Section II introduces

the STTs and discusses briefly some properties associated
with the Jordan frame. The relevant 3þ 1 equations of
Ref. [24] are also presented. For completeness, and for the
benefit of the reader, in Sec. III we discuss the heuristic
analysis performed by Damour and Esposito-Farèse in
Ref. [13], which allows one to understand the scalarization
phenomenon on simple grounds. Section IV contains our
boson star model. In Sec. V we describe the scalar waves
predicted in STTs. Section VI summarizes the setup used
in the numerical code. We present the results of our
numerical simulation in Sec. VII, and we conclude in
Sec. VIII.
We also present in Appendix A the characteristic decom-

position of the spherically symmetric equations used in
this paper, which allow us to conclude that our system is
strongly hyperbolic and, therefore, that the Cauchy prob-
lem is well posed for the spherically symmetric case. In
Appendix B we present some numerical evidence that
indicates that corresponding IBVP is also well posed.

II. SCALAR-TENSOR THEORIES OF GRAVITY

A. Field equations

The STTs of gravitation are one of the simplest and most
analyzed alternative theories of gravity. These alternative
theories were introduced by Jordan during the decade of
the fifties [3], and then reanalyzed by Brans and Dicke later
[4]. The general action for STTs in the Jordan frame, where
gravity is coupled nonminimally to a single scalar field �,
is given by

S½gab; �; c � ¼
Z �

Fð�Þ
16�G0

R� 1

2
ðr�Þ2 � Vð�Þ

� ffiffiffiffiffiffiffi�g
p

d4x

þ Smatt½gab; c �; (2.1)

where c represents all the matter fields, i.e., fields other
than�,G0 is the usual gravitational constant, Fð�Þ is some
NMC function to be specified later, and Vð�Þ represents a
potential for� (we use units such that c ¼ 1). In fact, in all
the numerical analysis considered here, we will not con-
sider the potential Vð�Þ. However, for completeness it will

MILTON RUIZ et al. PHYSICAL REVIEW D 86, 104044 (2012)

104044-2



be included in the field equations displayed below. Notice
that one can identify the ‘‘effective’’ gravitational constant
as the coefficient Geffð�Þ ¼ G0=Fð�Þ that appears in the
above action [28].

From the above action, one finds the following field
equations:

Rab � 1

2
gabR ¼ 8�G0Tab; (2.2)

h�þ 1

2
f0R ¼ V0; (2.3)

where a prime indicates @�,h :¼ gabrarb is the standard

covariant d’Alembertian operator, and

Tab :¼ Geff

G0

ðTf
ab þ T�

ab þ Tmatt
ab Þ; (2.4)

Tf
ab

:¼ raðf0rb�Þ � gabrcðf0rc�Þ; (2.5)

T�
ab

:¼ ðra�Þðrb�Þ � gab

�
1

2
ðr�Þ2 þ Vð�Þ

�
; (2.6)

with Tmatt
ab the stress-energy tensor of all matter fields other

than �, and where we have defined

f :¼ F

8�G0

; Geff :¼ 1

8�f
: (2.7)

Notice that Eq. (2.2) implies that the Ricci scalar can be
expressed in terms of the trace of the energy-momentum
tensor (2.4). Therefore, Eq. (2.3) can be rewritten in the
form

h�¼2fV 0 �4f0V�f0ð1þ3f00Þðr�Þ2þf0Tmatt

2fð1þ3f02=2fÞ ; (2.8)

with Tmatt the trace of T
matt
ab . On the other hand, the Bianchi

identities directly imply

rcT
ca ¼ 0: (2.9)

Nevertheless, the use of the field equations leads to the
conservation of the energy-momentum tensor of the matter
alone,

rcT
ca
matt ¼ 0; (2.10)

which implies the fulfillment of the (weak) equivalence
principle; i.e., test particles follow geodesics of the metric
gab.

B. 3þ 1 decomposition

In order to recast the previous field equations as a
Cauchy initial value problem [29,30], we first rewrite the
four-dimensional metric in 3þ 1 form as

ds2¼�ð�2��i�iÞdt2þ2�idx
idtþ�ijdx

idxj; (2.11)

with � the lapse function, �i the shift vector, and �ij the

3-metric induced on the spatial hypersurfaces.
We perform a 3þ 1 decomposition of equations. (2.2)

and (2.3), using the normal timelike vector na to the
spacelike hypersurfaces �t, and the projection operator
Pa

b ¼ �a
b þ nanb. In order to do so, we first define the

first order variables:

Qi :¼ Di� ¼ Pk
irk�; (2.12)

� :¼ nara� ¼ 1

�

d�

dt
; (2.13)

where Di is the covariant derivative compatible with the
3-metric �ij, and d=dt :¼ @t �L�, with L� the Lie

derivative along the shift vector. Notice that the relevant
components of the quantities computed with Pa

b are the

spatial ones. It is now straightforward to show that Qi and
� evolve according to [24]

dQi

dt
¼ Dið��Þ; (2.14)

d�

dt
¼ �½�K þQlDlðln�Þ þDlQ

l�

� �

2fð1þ 3f02
2f Þ

½2fV0 � 4f0V

� f0ð1þ 3f00ÞðQ2 ��2Þ þ f0Tmatt�: (2.15)

We define the energy density � :¼ nanbTab, momentum
density Ja :¼ �Pb

an
cTbc, and a stress tensor Sab :¼

Pc
aP

d
bTcd. From (2.4) we find

� ¼ Geff

G0

ð�f þ �� þ �mattÞ; (2.16)

Ji ¼ Geff

G0

ðJfi þ J�i þ Jmatt
i Þ; (2.17)

Sij ¼ Geff

G0

ðSfij þ S�ij þ Smatt
ij Þ: (2.18)

Using now Eqs. (2.7) and (2.8), one can show that [24]

� ¼ 1

8�G0f

�
f0ðDkQ

k þ K�Þ þ�2

2

þQ2

2
ð1þ 2f00Þ þ Vð�Þ þ �matt

�
; (2.19)

Ji¼ 1

8�G0f
½�f0ðKk

i QkþDi�Þ��Qið1þf00ÞþJmatt
i �;
(2.20)
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Sij ¼ 1

8�G0f

�
QiQjð1þf00Þþf0ðDiQjþ�KijÞ

þ �ij�
1þ 3f02

2f

�
�
1

2
ðQ2��2Þ

�
1þf02

2f
þ 2f00

	

þV

�
1�f02

2f

	
þf0V 0 þf02

2f
ðSmatt��mattÞ

�
þSmatt

ij

�
;

(2.21)

where we have defined Q2 :¼ QlQl.
Notice that the 3þ 1 decomposition of (2.2) is just the

usual ADM equations given by

d�ij

dt
¼ �2�Kij; (2.22)

dKij

dt
¼ �rirj�þ �½Rij þ KKij � 2KilK

l
j�

þ 4�G0�½�ijðS� �Þ � 2Sij�; (2.23)

where Rij is the three-dimensional Ricci tensor associated

with the spatial metric �ij, and the effective matter

terms are given by Eqs. (2.19), (2.20), and (2.21). The
Hamiltonian and momentum constraints take the form

H :¼ 1

2
ðRþ K2 � KijK

ijÞ � 8�G0� ¼ 0; (2.24)

Mi :¼ DlðKil � �ilKÞ � 8�G0J
i ¼ 0: (2.25)

Formally, one should also consider the constraint
D½iQj� ¼ 0, which corresponds to the integrability condi-

tion @2ij� ¼ @2ji�. The above system of evolution equa-

tions has to be completed with appropriate evolution
equations for the gauge variables. This issue is considered
below.

C. Gauge choice

To obtain a closed evolution system, one has to impose
gauge conditions for the time variable t and for the spatial
coordinates xi. Following Ref. [27], we will consider a
modified Bona-Masso time slicing condition [31]. In local
coordinates adapted to the 3þ 1 foliation xa ¼ ðt; xiÞ, this
slicing condition is given by

d�

dt
¼ ��2fBMð�Þ

�
K � �

fBMð�Þ
f0

f
�

�
; (2.26)

with fBMð�Þ> 0 the usual Bona-Masso gauge function
and � a free parameter.

The specific choices � ¼ fBM ¼ 1 correspond to a
modified harmonic slicing condition (termed ‘‘pseudo-
harmonic’’ in Refs. [24,27]), which was specially useful
for the second order hyperbolicity analysis performed in
Ref. [24]. On the other hand, with � ¼ 0 one recovers the
usual Bona-Masso slicing condition. However, it has been

shown that taking � ¼ 0 does not result in a strongly
hyperbolic formulation of STTs in the Jordan frame [27].
For this reason, in all the simulations presented here we
have used the pseudoharmonic slice with � ¼ 1.
Concerning the propagation of the spatial coordinates,

we will consider the shift vector as an a priori known
function of the coordinates. In particular, in all our evolu-
tions it is set to zero. However, in the future, it would be
interesting to investigate some ‘‘live’’ shift conditions and
their effects in phenomena involving STTs.

III. SCALARIZATION

The STTs of gravity induce strong field effects which,
for instance, produce important deviations from GR in
stellar models. As mentioned before, one such effect is
the SS phenomenon which is similar to the spontaneous
magnetization in ferromagnetic materials at low tempera-
tures. In the following, we will use this analogy in order to
understand the SS phenomenon.
When a ferromagnet is exposed to an external magnetic

field, the individual spins of its constituents align with
the field, giving rise to a permanent magnetization
which remains even after the external field is switched
off. Moreover, the ferromagnets have the property that,
below the Curie temperature, a magnetization appears
‘‘spontaneously’’ even in the absence of an external mag-
netic field. In the STTs, on the other hand, a nontrivial
configuration of a scalar field may spontaneously appear
during the evolution of a compact object in the absence of
external sources, i.e., without a potential Vð�Þ. One can
then identify the external magnetic field with a background
(cosmological) scalar field and the temperature with the
inverse of the central energy density �matt

c of the matter
content or, equivalently, with the inverse of total baryon
mass (in the case of neutron stars). The role of the magne-
tization is played by a new global quantity called the scalar
chargeQscal, which will be defined below and which corre-
sponds to the coefficient of�ðrÞ �Qscal=r in the asymptotic
region. This means that beyond a certain critical density or
critical baryon mass, the transition to the spontaneous sca-
larization ensues. In this case @Qscal=@�

matt
c is infinite at the

critical energy density. This transition can be smoothed by
the presence of a nonzero background scalar field �0.
In practice, when the phenomenon is analyzed in static

configurations, the value �0 is usually fixed by a shooting
method [18,32]. It is important to emphasize the relevance
of not adding sources to the scalar-field equation. Indeed, a
nonzero potential can make the scalar field decrease so fast
that the scalar charge might in fact vanish at infinity.
An interesting analytical toy model to understand this

phenomenon is the following [6]. Consider a static and
spherically symmetric compact object represented by an
incompressible fluid (constant energy density), whose
profile density is given by a step function. Moreover,
assume that the function Fð�Þ in the action for STTs is
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just a quadratic function of Fð�Þ ¼ 1þ 8�G0��
2, and

the potential Vð�Þ vanishes. Finally, assume R �
�8�G0Tmatt � 8�G0�matt (as in GR). This implies, for
instance, that the generalized Klein-Gordon (KG) Eq. (2.3)
is linear in �. Furthermore, by neglecting all the gravita-
tional effects in this equation, one ends up with a
Helmholtz-like equation of the form ��þ k2� ¼ 0,
where the masslike term k2 ¼ 8�G0��matt depends on
both the constant energy density of the matter and the
NMC constant �. Notice that in this simplified model,
the mass term vanishes beyond the surface of the compact
object. Now, for � > 0 the interior regular spherically
symmetric solution of the above Helmholtz equation is
given by

�intðrÞ ¼ �c

sinðkrÞ
kr

; (3.1)

where�c is the scalar field at the origin r ¼ 0. The exterior
solution is

�extðrÞ ¼ C

r
þ�0; (3.2)

where C is an integration constant and�0 is the asymptotic
value of the scalar field.

When both solutions are matched continuously at the
surface of the object r ¼ R [�mattðr � RÞ ¼ 0], it turns
out that �c ¼ �0= cosðkRÞ. The explicit form for the
constant C is not relevant for the analysis (but one finds
C / �cR). Note that if�0 ¼ 0, automatically�c¼0¼C,
and therefore, �ðrÞ � 0. In this case, there is no scalariza-
tion. On the other hand, a different situation can happen if
cosðkRÞ vanishes as well when �0 ! 0. This can occur
when k ¼ �=ð2RÞ. In this case, the solution is given by

�intðrÞ ¼ 	 sinð �rÞ
�r

; (3.3)

�extðrÞ ¼ 	

�r
; (3.4)

where 	 is a constant related to the scalar charge Qscal

whose numerical value depends on the details of the model,
and �r ¼ r�=ð2RÞ. The above simplified analysis agrees
qualitatively with the full numerical study [6,16,18].
Note that if � < 0, the interior solution is �intðrÞ ¼
�c sinhðjkjrÞ=ðjkjrÞ and �c ¼ �0= coshðjkjRÞ. In this
case, the scenario is completely different since the function
coshðjkjRÞ never vanishes, and so when �0 ! 0 then
automatically �c ! 0 and then the scalar field vanishes
everywhere (no scalarization ensues). It is somehow
remarkable that the spontaneous scalarization phenomenon
is associated with a decreasing effective gravitational con-
stant (i.e., Geff <G0) [18].

Another way to understand the existence of these kinds
of scalarized configurations is to notice that the presence of
a nontrivial scalar field �ðrÞ (within a class of STTs)
causes the total energy of the stationary configuration to

decrease relative to the case where �ðrÞ ¼ 0 for a fixed
baryon mass [13,18]. This can also be understood on
Newtonian grounds by a suitably redefinition of the kind
of energy that has to be minimized when dealing with a
theory where an effective gravitational ‘‘constant’’ may
vary [18]. The energetic analysis shows that for large
compactness the energetically preferred stationary con-
figurations are those with a nontrivial scalar field. Again,
in the ferromagnetic analogy, one appreciates that in the
Landau ansatz the free energy of the ferromagnet becomes
lower in the presence of magnetization than the energy in
the absence of it when the temperature is below the Curie
point. This occurs since below that temperature the free
energy develops a global minimum and a local maximum
(like a Mexican hat potential). The local maximum of the
free energy is located at zero magnetization while the
minimum corresponds to a nonzero magnetization.
Recently, it has also been argued that the SS phenomenon
can be traced back to the quantum fluctuations of the
vacuum state associated with the scalar field [33,34], and
it could yield an exponential amplification of the vacuum
fluctuations in relativistic stars [35].
The scalar charge which characterizes the scalarized

configuration is defined as

Qscal :¼ � lim
r!1

1

4�
ffiffiffiffiffiffi
G0

p
Z
S
sara�ds; (3.5)

where sa is the unit outward normal to a topological
2-sphere S embedded in �t, and r is a radial coordinate
that provides the area of S asymptotically. As it was
remarked in the introduction, when the asymptotic value
of the scalar field,�0, is not demanded to vanish but is only
accommodated to satisfy the Solar System bounds, then the
scalarization process is induced by such a background
(cosmological) field. In such a situation the transition
from a small scalar charge to a large one (which depends
on the compactness of the object) is smoothed out and the
derivative @Qscal=@�

matt
0 is always finite. In this paper, we

will be concerned with this latter situation only, but as long
as �0 is small, the difference between the two type of
scalarizations is just a matter of principle. Nevertheless,
the important point for making such a distinction is that
while in the SS case there is no emission of gravitational
waves (when F0ð�Þ�0¼0 ¼ 0, which is the case for the

quadratic function Fð�Þ considered above), for the induced
case where �0 � 0, one can have a small but nonzero
amplitude for the scalar waves (cf. Sec. V).
Another important qualitative mathematical aspect that

distinguishes both types of scalarizations for a NMC like
the quadratic one is the following. If one considers
Eq. (2.3) in absence of a potential, it turns out that � ¼ 0
is always a stationary solution of the equation. This implies
then that �0 � 0. Therefore, in order to trigger the tran-
sition to a SS case an explicit scalar-field perturbation is
required. An analysis of this sort was performed by us in
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Ref. [20]. However, if one considers initially a trivial (but
nonzero) scalar-field configuration � ¼ �0 ¼ const, then
this is not a stationary solution of Eq. (2.3). In such a case
a fortiori the scalar field will evolve in time without the
need of any perturbation. Howmuch of the initial energy of
the star will then be transformed into scalar energy and
scalar radiation leaving behind a highly nontrivial station-
ary scalar-field configuration will depend precisely on the
compactness of the object. Higher compact objects will
radiate more energy in the form of scalar radiation than
lower compact ones. Therefore, higher compact objects are
expected to end up in a stationary scalarized state with
energy lower than the initial one, the difference being
radiated away in scalar-field form. Clearly, in order to
analyze in detail the transition towards a scalarized state
from a state with a trivial (nonzero) scalar field and its
corresponding emission of scalar radiation, a dynamical
evolution is required. This is the aim of this paper.

IV. BOSON STARS

Boson stars are equilibrium configurations of a self-
gravitating (condensate) complex scalar field. Their
‘‘hydrostatic’’ equilibrium is maintained by the intrinsic
effective pressure of the boson field due to the uncertainty
principle (for a review see Refs. [36,37]), rather than the
Pauli exclusion principle that acts, for instance, in neutron
stars. Classically, one can interpret the equilibrium as a
consequence of an effective pressure associated with the
boson field which depends on its gradients and potential.
Since the energy density and pressure are parametrized in a
certain way by the boson field itself, the relation between
them provides a nontrivial equation of state for this kind of
matter.

Boson stars are also interpreted as macroscopic boson
quantum states whose associated physical particles are
formed by the excitations around the vacuum expectation
value of the scalar field. The theoretical existence of such
objects was proven first by Kaup [38], and later by Ruffini
and Bonazzola [39], for the ground state solutions of a free
boson field. Using the uncertainty principle and the defini-
tion of the Schwarzschild radius, it can be shown that
the boson stars considered there have an effective radius
Reff � ℏ=mbc and a maximum mass of

Mmax � ℏc
2G0mb

¼ 0:5M2
Pl=mb; (4.1)

whereMPl is the Planck mass andmb is the mass associated
with bosons (for clarity we have restored the speed of
light c). Numerical results show that, in fact, this limit is
Mmax � ð2=�ÞM2

Pl=mb. Therefore, the resulting sizes and

masses of boson stars would be so small as to be astro-
physically inconsequential. In a more recent paper [40], it
was shown that a self-interacting boson field (with an
interaction of the form�
�4) can give rise to stable boson
stars with

Mmax � 
1=2M2
Pl=mb � GeV2
1=2M�=m2

b; (4.2)

which is comparable with the Chandrasekhar mass for
fermion stars [41]. This result was then extended to the
so-called soliton stars [42,43].
Boson star models have been constructed in the past

within the framework of STTs (see, e.g., Refs. [19,20,44–48]
and references therein), although only Whinnett had shown
that the phenomenon of spontaneous scalarization occurs in
these objects with the inclusion of a quartic self-interaction
potential [19]. Recently, we have found that self-interactions
are not in fact necessary in order to produce scalarization
[20]. On the other hand, Torres has shown in Ref. [44] that,
for parameters and boundary conditions respecting theweak-
field limits and the nucleosynthesis bounds, the masses of
boson stars in the STT framework are comparable with the
ones in GR (for stars in the ground state). Comer and Shinkai
[45] confirmed the same trend for the case of boson stars
in ‘‘excited’’ states. Equilibrium and stability properties for
these stars in STTs for different cosmic ages have been
analyzed in Refs. [46,47].
An important aspect of analyzing boson stars in the

framework of STTs is that the transition to a scalarized
state might be accompanied by the emission of (spin-0)
scalar gravitational waves (like in neutron stars). It is pos-
sible that such kinds of waves might be detected in the
future if fundamental scalar fields do exist in nature [21].

A. The model

Boson stars are described by the Lagrangian density of a
complex scalar field

L matt ¼ � 1

2
gabracrbc

� � Vc ðjc j2Þ; (4.3)

where c is the scalar field, c � its complex conjugate,
jc j2 ¼ c c �, and Vc ðjc j2Þ is a potential depending just

on the norm. Variation of the above Lagrangian with
respect to c leads to the KG equation

hc ¼ 2c
dVc

djc j2 : (4.4)

It is straightforward to show that if the scalar field c is real,
the KG equation (4.4) takes the usual form hc ¼ @cVc .

On the other hand, variation of (4.3) with respect to the
metric gab leads to the energy-momentum tensor

Tmatt
ab ¼ 1

2
½ðrac

�Þðrbc Þ þ ðrbc
�Þðrac Þ�

� gab

�
1

2
jrc j2 þ Vc ðjc j2Þ

�
: (4.5)

We will consider only the free field case where the poten-
tial is given by

Vc ðjc j2Þ ¼ 1

2
m2c �c ; (4.6)
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with m a parameter that can be considered as the ‘‘bare
mass’’ of the theory (although it has units of inverse length).
It is possible to include more general terms in (4.6), such as

jc j4 which corresponds to a self-interaction term [40].

The Lagrangian (4.3) is invariant with respect to a global
phase transformation c ! e{qc (with q a real constant).
The Noether theorem then implies the local conservation
of the boson number raJ a ¼ 0, where the number-
density current is given by

J a ¼ {

2
gab½crbc

� � c �rbc �: (4.7)

This means that the total boson number,

N ¼ �
Z
�t

ffiffiffiffi
�

p
naJ ad3x; (4.8)

is conserved (here � is the determinant of the 3-metric �ij).

The total boson mass can be defined by

Mbos :¼ mbN ; (4.9)

where mb :¼ 2�ℏm=c is the mass of single bosons (again
we have restored the speed of light c).

A 3þ 1 decomposition of the above energy-momentum
tensor gives rise to the following matter variables:

�matt ¼ 1

2
ðj�c j2 þ jQc j2Þ þ Vc ðjc j2Þ; (4.10)

Sijmatt ¼ 1

2
ðQ�i

cQ
j
c þQ�j

c Q
i
c Þ

� �ij

�
1

2
ðjQc j2 � j�c j2Þ þ Vc ðjc j2Þ

�
; (4.11)

Jmatt
i ¼ � 1

2
ð�cQ

�c
i þ��

cQ
c
i Þ; (4.12)

where we have defined, in analogy with (2.12) and (2.13),
the variables

Qc
i
:¼ Dic ; (4.13)

�c :¼ 1

�

dc

dt
¼ 1

�
ð@tc � �lQc

l Þ: (4.14)

According to this, one can rewrite the KG equation (4.4) as
a first order partial differential equation system like
(2.14) and (2.15).

Before finishing this section we must emphasize the fact
that boson stars in STTs involve two distinct scalar fields,
the real-valued nonminimally coupled field � and the a
complex-valued boson field c .

V. SCALAR GRAVITATIONALWAVES

In this section we will show that the presence of the
scalar field � can induce the propagation of scalar (mono-
polar) gravitational waves. Similar analysis has been
presented before in Refs. [49,50]. Using the weak-field

approximation, Wagoner has analyzed the properties of
the source and its radiation in the Einstein frame [49].
On the other hand, Harada et al. have analyzed, in the
Brans-Dicke theory, the emission of the scalar gravitational
radiation in spherical dust collapse [50]. Moreover from
the detection point of view, a detailed study has been
performed in Ref. [21].
Let us start by considering a linear perturbation of a flat

background metric �ab and a background scalar field �0

such that

gab � �ab þ 	�ab; (5.1)

� � �0 þ 	 ~�; (5.2)

where 	 	 1 [do not confuse this 	 with the one in
Eqs. (3.3) and (3.4)]. Thus, according to the above approxi-
mation, we have

Tab � 	 ~Tab; (5.3)

Fð�Þ � F0 þ 	 ~�F0
0; (5.4)

where the subindex 0 indicates quantities at zero order.
Notice that one must in fact have Tab

0 ¼ 0 in order to

be consistent with first order perturbations of a flat
background [51].
In the generalized Lorentz gauge @a ~�ab ¼ 0, where ~�ab

is defined as

~� ab :¼ �ab � 1

2
�ab

�
�þ 2 ~�

F0
0

F0

	
; (5.5)

the field equations (2.2) and (2.8) (for V � 0) become [51]

h� ~�ab ¼ �16�
G0

F0

~Tmatt
ab ; (5.6)

h�
~� ¼ 4��

F0
0

F0

~Tmatt; (5.7)

where h� is the D’Alembertian operator in the flat back-

ground metric, and the constant � is defined as [51]

� :¼ 1

8�

�
1þ 3ðF0

0Þ2
16�F0G0

	�1
: (5.8)

Notice that the flat metric is used to raise and lower indices
of first order tensorial quantities.
We will now perform the analysis of scalar gravitational

waves in a spherical and vacuum spacetime, which is
enough for the purpose of the following discussion. In
that case one can neglect the tensor modes and assume
that ~�ab � 0 (note that in spherical symmetry, quadrupole
radiation is absent). Hence, according to Eq. (5.5) we
obtain

�ab ¼ � ~��ab

F0
0

F0

: (5.9)
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Therefore, the whole metric at linear order reads

gab � ð1þ�Þ�ab; (5.10)

where � :¼ � ~�F0
0=F0 and the factor 	 has been reab-

sorbed in ~� [note that ~� 	 �0 (i.e., � 	 1)]. The physi-
cal metric then turns out to be conformally flat,
gab � �2�ab, with the conformal factor �2 :¼ 1þ�.

Gravitational waves are directly related to the Riemann
tensor. Here we compute that tensor using the well-known
relationship between two Riemann tensors associated with
two conformal metrics [see, e.g., Eq. (D.7) of Wald [52]].
In this case, the Riemann tensor associated with �ab

vanishes, and at linear order, we have

RLabc
d ¼ �d

½arb�rc�� �de�c½arb�re�; (5.11)

where the subindex L indicates that this is valid only at the
linear approximation. According to (5.11), we obtain
the following components, which are directly related to
the relative (tidal) acceleration between two particles in
geodesic motion,

RLtitj ¼ 1

2
ð��ij@

2
tt�þrirj�Þ: (5.12)

Assuming now that ~� ¼ ~�ðt; rÞ is a spherically sym-
metric perturbation for the scalar field, we obtain

RLtitj ¼ 1

2

�
��ij@

2
tt�þ sisj@

2
rr�þ 1

r
ð�ij � sisjÞ@r�

�
;

(5.13)

where si ¼ �ijx
j=r is a unit vector in the radial direction of

propagation.
On the other hand, in vacuum and in spherical symmetry,

the wave equation (5.7) implies

@2tt ~� ¼ @2rr ~�þ 2

r
@r ~�: (5.14)

Plugging (5.14) into (5.13) yields

RLtitj ¼ � 1

2
ð�ij � sisjÞ@2tt�þ 1

2
ð�ij � 3sisjÞ 1r @r�:

(5.15)

For outgoing radiation �ðt; rÞ ¼ �ðt� rÞ=r, thus the sec-
ond term in (5.15), which involves the spatial derivative,
will be very small with respect to the first one in the
‘‘wave zone’’ and so we can neglect it. Finally, we obtain
the following expression,

RLtitj � � 1

2
?ij@

2
tt�; (5.16)

where we have introduced the transverse projector
?ij ¼ �ij � sisj in the orthogonal directions to si and

neglected terms Oð1=r2Þ. In the above expression, we
have considered only the massless case. When the mass
term is included, a longitudinal contribution appears in
Eq. (5.16) (cf. Ref. [21]).

According to (5.9), in the minimal coupling case, where
F0
0 � 0, or when one takes the value �0 ¼ 0 asymptoti-

cally (like in the quadratic coupling F ¼ 1þ 8�G0��
2),

the scalar gravitational waves are absent. However, taking
for �0 the maximal value allowed by the Solar System
experiments, which constrain !BD > 4
 104, scalar
gravitational waves are expected to develop in dynamical
situations where the NMC scalar field is nonzero initially,
like in the IS phenomenon. We expect the amplitude of the
1=r contribution of the gravitational radiation to be of the
following order,

jRLtitjj � Qscal!
2

2D
j?ijjjF0

0=F0j; (5.17)

where ! is the frequency of the scalar wave, Qscal is the
scalar charge (which has units of mass), andD the distance
to the source.

VI. NUMERICAL SETUP

In this section we present the numerical ingredients that
have been used in order to study the scalarization transition
and the emission of scalar radiation in the boson star
context.

A. Formulation

We perform a numerical evolution of the equations of
Sec. II B. However, since the ADM equations in GR are
only weakly hyperbolic [53], we will use a formulation of
the BSSN type, which has been particularly robust in the
numerical evolution of both vacuum and matter spacetimes
in GR [25,26]. We adopt the particular version of the BSSN
formulation presented in Ref. [54] that is specially adapted
to spherical symmetry. In Appendix A we discuss the
characteristic decomposition of this formulation for the
case of an STT.

B. Initial data

We consider a single boson star in stationary equilib-
rium. In such a configuration the spacetime metric is time
independent, and the scalar field c ðt; rÞ oscillates in time
with a fixed frequency !:

c ðt; rÞ ¼ �ðrÞe{!t: (6.1)

In order to find the initial data one must substitute (6.1) into
the KG Eq. (4.4). We now need to solve Eqs. (2.2) and (4.4)
in order to obtain the frequency !, the function �ðrÞ, and
the metric coefficients such that, for a given amplitude of
the scalar field at the origin, �ð0Þ, the resulting spacetime
is static. Following Refs. [38,55,56], we solve this problem
in the polar-areal gauge, where the line element takes the
form

ds2 ¼ ��2ðrÞdt2 þ AðrÞdr2 þ r2d�2; (6.2)

where d�2 ¼ d2 þ sinðÞ2d�2 is the usual solid angle
element. The field equations then reduce to
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@rA ¼ A

�
1� A

r
þ 4�r

�
2AVc þ A!2�2

�2
þQ2

c

��
; (6.3)

@r� ¼ �

�
A� 1

r
þ @rA

2A
� 8�rAVc

�
; (6.4)

@r� ¼ Qc ; (6.5)

@rQc ¼ �Qc

�
2

r
þ @r�

�
� @rA

A

�
þ A�

�
@cVc �!2

�2

�
;

(6.6)

where the potential Vc is given by Eq. (4.6). There are

several solutions of the above system, depending on the
value of the different variables at the origin and their
asymptotic behavior. In order to guarantee regularity at
the origin we impose the following boundary conditions:

Að0Þ ¼ 1; (6.7)

@r�jr¼0 ¼ 0; (6.8)

�ð0Þ ¼ �c; (6.9)

Qc ð0Þ ¼ 0: (6.10)

Also, for the spacetime to be asymptotically flat we must
ask for

Aj lim
r!1

¼ 1; (6.11)

�j lim
r!1

¼ 1; (6.12)

�j lim
r!1

¼ 0: (6.13)

One can consider this problem as an eigenvalue problem
for �ðrÞ in the sense that, for a given value of the scalar
field at the origin �c, the above system only admits solu-
tions for a discrete set of frequencies !. We are interested
in the ground state of the boson stars, which corresponds to
the configuration with no nodes in �ðrÞ.

Numerical solutions of Eqs. (6.3), (6.4), (6.5), and (6.6)
satisfying the boundary conditions (6.7), (6.8), (6.9), (6.10),
(6.11), (6.12), and (6.13) are obtained for a given value of
�c by integrating the equations from the origin outwards
using a shooting method [32]. This is similar to the case of
neutron stars, where the integration is also performed out-
wards from the origin by giving a value of the energy
density at the center of the star. Fixing the value of the
energy density at the center of the star is equivalent to
choosing a particular stationary configuration, which in
turn determines the ADM mass as well as the total number
of particles (total baryon number in the case of neutron
stars and total boson number in the case of boson stars).

Moreover, just like in neutron stars, one can construct a
whole family of stationary configurations for different
energy densities at the origin. It can be shown that there
is a specific value of the central density which maximizes
the ADM mass. That point indicates the threshold to
configurations that are unstable to gravitational collapse
under small perturbations. Figure 1 shows the mass profile
for a single boson star without self-interaction. The maxi-
mum mass configuration, which corresponds to a central
value of the boson field given by �ð0Þ � 0:272 [where
�ðrÞ :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4�Go

p
�ðrÞ is a dimensionless boson field;

cf. Eq. (7.2) below], separates the space of configurations
into two branches: the stable ‘‘S branch’’ and the unstable
‘‘U branch.’’ When perturbed, configurations on the U
branch can either collapse to form black holes or disperse
away depending on value of the binding energy [57].
In the case of STTs, there is another point of instability

towards spontaneous scalarization for a mass which is not
the maximum one. In neutron stars there is a critical baryon
mass below the maximum that marks the onset of this
instability. We expect that it is the total boson number
that indicates the point of instability towards spontaneous
scalarization. However, a priori this value is difficult to
know unless one constructs a whole family of stationary
configurations and looks for solutions with a nontrivial
value of the nonminimal scalar field �. At this point it is
perhaps important to remark that a maximum mass model
within STTs usually corresponds to a model with a non-
trivial scalar field. That is, it corresponds to a star that has
already undergone a spontaneous scalarization process in
which some of the scalar field has been radiated away and
the star has reached a stationary configuration. This maxi-
mum mass star is then unstable and collapses to a black
hole under a small perturbation (see Sec. VII).
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FIG. 1 (color online). ADMmass profile for a single boson star
without self-interaction in GR, as a function of the central value
of the boson field �ð0Þ. The maximum mass configuration,
which corresponds to �ð0Þ � 0:272, separates the stable con-
figurations (S branch) from the unstable ones (U branch).
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VII. NUMERICAL RESULTS

We performed numerical simulations of several single
boson star configurations. We used the code described in
Ref. [54], which consists of a spherical reduction of the
BSSN formulation, coupled to the STTs given by the
Lagrangian (2.1). We have taken the nonminimal coupling
function (2.7) to be of the form

Fð�Þ ¼ 8�fð�Þ ¼ 1þ 8�G0��
2; (7.1)

with � a positive constant. In order to have a notation
consistent with previous studies about boson stars
[44,57,58], we define the dimensionless boson field

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4�G0

p
�: (7.2)

All runs have been performed using a method of lines
with a fourth order Runge-Kutta integration in time, and
fourth order centered differences in space. A constraint
preserving boundary has been implemented using the al-
gorithm described in Appendix B. Our typical simulations
use a grid spacing of �r ¼ 0:048, and we take �t ¼ �r=2
in order to be sure that we satisfy the Courant-Friedrich-
Lewy stability condition [53]. We have also performed
some simulations with grid spacings of �r ¼ 0:024
and �r ¼ 0:012, in which case the violations on the
Hamiltonian constraint are dominated by spurious reflec-
tions from the boundary which are, in the worst case, of
order 10�9. In all the runs presented here the outer bounda-
ries are located at rout ¼ 240.

A. Spontaneous scalarization

The phenomenon of scalarization in compact objects
and the emission of the monopolar gravitational waves
depend strongly on the asymptotic value of the nonmini-
mally coupled scalar field �. If the asymptotic value of �
is zero, which corresponds to spontaneous scalarization,
then F0 tends to zero asymptotically which means that,
according to (5.17), there are no monopolar gravitational
waves. Nevertheless, it has been shown that in this case the
evolution of stable boson stars on STTs reaches a final state
where the scalarization ensues [20]. Boson star configura-
tions below a critical central value of the boson field �crit

c

are stable with respect to Gaussian perturbations on the
scalar field and do not lead to a SS transition: The scalar
field � is just radiated away during the evolution. On the
other hand, configurations above that critical value are
unstable with respect to perturbations and undergo a tran-
sition to a scalarized state with a nontrivial scalar field �
and a nonzero scalar charge.

B. Induced scalarization

In the IS phenomenon, an initially nonzero and uniform
NMC scalar field evolves naturally without the need of
any perturbation. The reason for this is that for a non-
zero background scalar field �ðrÞ ¼ �0 one finds

F0ð�Þj�¼�0
� 0. The presence of the term f0R in the

Klein-Gordon equation (2.3) then implies that this initial
data will not be a stationary solution, and the field will
therefore evolve away from its initial configuration without
the need for an external perturbation. This is in contrast
with the SS case for which we have initially�ðrÞ¼�0¼0,
which is indeed a solution of Eq. (2.3), so an explicit
perturbation is required to trigger the SS phenomenon.
Since in principle any background scalar field �0 in

STTs might disturb the constraints imposed by the Solar
System experiments, the value of �0 must be chosen such
that the corresponding Brans-Dicke parameter !BD satis-
fies the observational bounds. Using the fact that the
parameter !BD can be written as

!BD ¼ f

f02









�0

¼ 1þ 8�G0��
2
0

32�G0�
2�2

0

; (7.3)

where � is the NMC constant associated with the class of
STTs considered here, it turns out that

�0 ¼










1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��ð4!BD�� 1Þp









: (7.4)

For a given value of �, one can then enforce the constraint
!BD * 4:3
 104 imposed by the Cassini probe [59], and
use the above expression to fix the value for �0 that
satisfies the observational bounds. In all the simulations
discussed below we have chosen �0 in such a way as to
saturate the Cassini bounds, that is, the one corresponding
to !BD ¼ 4:3
 104 (notice that �0 will then depend on
the parameter �).
Figure 2 shows snapshots of the evolution of the NMC

field � for a boson star with an initial central density
�ð0Þ � 0:266, which is at the threshold of the unstable
configurations. For this simulation the NMC parameter
was taken to be � ¼ 1, and the NMC scalar field is initially
set to �ðrÞ ¼ �0 ¼ �4:8
 10�4, which corresponds to
the background value that saturates the lower bound for
!BD. In this case a quasistationary configuration with a
nontrivial scalar field � is reached at the end of the
simulation.
Figure 3 displays the initial and final states of the radial

metric component A, the lapse function �, the NMC scalar
field �, and the norm of the boson field j�j, for a different
simulation with � ¼ 500 and �ð0Þ ¼ 0:106 initially and
�0 ¼ �9:6
 10�7. Notice that, although the parameter �
is much larger than in the previous case, the IS only seems
to affect slightly the geometry of the spacetime [confront,
for example, the initial and final values of the lapse �ð0Þ in
Fig. 3]. In order to make this statement more precise, we
first define an approximate size of our boson star Rstar as
the radius of the sphere which contains the 95% of the
integrated mass. The compactness of the star is then
defined as MMS=Rstar, with MMS the Misner-Sharp mass
of the system (see below). For the simulation of Fig. 3 we
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find that the compactness of the star is reduced by only
�3% with respect to its initial value.

The Misner-Sharp mass MMS used to measure the mass
of the system is defined as follows: Let ra be the areal
radial coordinate. We first define the ‘‘Misner-Sharp mass

function’’mMSðraÞ in terms of the radial metric component
graraðraÞ as [60]

mMSðraÞ :¼ ra
2

�
1� 1

graraðraÞ
	
; (7.5)

with ra the areal radius. One can show that, for asymptoti-
cally flat spherically symmetric spacetimes, the Misner-
Sharp mass function coincides with the ADMmass as long
as we are in vacuum. That is, once we are in a region
outside of all the sources we should find that mMSðraÞ
reaches a constant value MMS such that MMS ¼ MADM.
Several considerations are now in order. First, even

though our initial data are in the areal gauge, during the
evolution this is no longer the case, so that one must
transform back from the radial coordinate r used in the
simulation to the areal radius ra in order to calculate the
mass function. This is simple to do and we will not go into
the details here. More important, however, is the fact that
for boson stars we are never actually in vacuum since the
bosonic field � extends all the way to infinity. However,
one finds that � decays exponentially, so that in practice
for stars that are not scalarized we very rapidly reach a
region that for all practical purposes is indeed vacuum. For
scalarized stars, on the other hand, we have to be more
careful since the NMC field � decays more slowly (typi-
cally as�1=r), and in the IS case it in fact reaches a small
nonzero asymptotic value �0. This means that the Misner-
Sharp mass function never quite reaches the constant
‘‘vacuum’’ value. Because of this, the values of MMS we
report actually correspond to the value of the mass function
mMSðrÞ evaluated at the boundary of the numerical grid.
Strictly speaking this is not the actual mass of the system,
but it is a good enough approximation for our purposes.
As a final comment one should also mention the fact that

the Misner-Sharp massMMS only coincides with the ADM
mass for static spacetimes. The spacetimes considered here
are dynamic, and radiate energy during the scalarization
process. When we talk about the initial and final mass we
mean in fact the mass of the star, and not the ‘‘true’’ ADM
mass which takes into account contributions all the way to
infinity (and is therefore constant).
We will now try to understand the emergence of the

scalarization phenomenon on energetic grounds, where
stationary scalarized configurations turn out to be energeti-
cally preferred over unscalarized ones. For instance, it has
been shown in the context of neutron stars [1,18] that,
beyond some critical baryon mass, a stationary configura-
tion with � � 0 which maximizes the fractional binding
energy of the system is energetically more favorable than
the corresponding configuration at the same baryon mass
with � � 0 (the GR case). This critical point depends on
the details of the model, such as the value of �, the equation
of state, etc.
Figure 4 shows the results of this energetic analysis for

our scalarized boson stars. In the figure we plot the
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FIG. 2. Snapshots of the evolution of the NMC scalar field
for the case when �ð0Þ � 0:266 initially. For this simulation we
have taken � ¼ 1, and the NMC scalar field is initially set to
�ðrÞ ¼ �0 ¼ �4:8
 10�4, which corresponds to the back-
ground value that saturates the lower bound for !BD. The system
evolves until it reaches a quasistationary configuration with a
nontrivial scalar field �. This final configuration is what we refer
to as ‘‘induced scalarization.’’ Notice that asymptotically �
preserves its initial value �0.
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FIG. 3 (color online). Initial and final states of the radial
metric component A (top left), lapse function � (top right), the
NMC field � (bottom left), and the norm of the complex bosonic
field� (bottom right), for an initial central density �ð0Þ � 0:106
and � ¼ 500. Just as in Fig. 2, the system undergoes scalariza-
tion and reaches a quasistationary configuration with a nontrivial
NMC scalar field at the end of the evolution.
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fractional binding energy ðMbos=MMSÞ � 1 as a function of
the bosonic massMbos for several values of �. HereMMS is
calculated as described above, while Mbos is the mass
contribution from the bosonic field alone obtained from
Eq. (4.9). From the figure one can see that, for a given value
of Mbos and �, the scalarized configuration is energetically
preferred when compared with an ordinary boson star with
� � 0 (the GR case). It is important to mention here that,
strictly speaking, this energetic analysis would only be
valid for the SS case, where both the scalarized and unsca-
larized configurations have a vanishing asymptotic value
of the NMC field �. Nevertheless, for small asymptotic
values �0 one finds that bulk quantities are essentially
the same in the IS and SS cases, so one can still use the
energetic argument.

To corroborate the above analysis, in Fig. 5 we plot the
final value of the integrated scalar charge Qscal, and the
central absolute value of the NMC scalar field � (which
always corresponds to its maximum), for several sets of
boson star configurations with different values of the
parameter � as a function of the initial central density of
the star �ð0Þ. We have chosen initial configurations with
central density in the interval [0.028, 0.265], which corre-
spond to boson stars which in GR are stable against gravi-
tational collapse (i.e., the S-branch configurations of
Fig. 1). For these configurations we have always assumed
!BD ¼ 4:0
 104, which fixes the asymptotic value of the
NMC field �0. As expected, these stars evolve to a quasi-
stationary final state with a nontrivial scalar field �.
We can conclude that the scalarization phenomenon
depends strongly on the value of the parameter �. For all

configurations that we have analyzed we find that the final
value of the scalar charge, as well as the central value of�,
reach a maximum for �� 50. Notice also that the final
central value of the NMC scalar field seems to depend
logarithmically on the central density of the initial boson
star �ð0Þ [in Fig. 5 we use a log scale for �ð0Þ in order to
see this logarithmic dependence].

C. Gravitational collapse and black hole formation

Since the scalarization phenomenon modifies the com-
pactness of the star, one would expect that the threshold
to the U branch associated with the scalarized stars also
changes depending on the value of �. For instance, the
initial unscalarized configuration with �ð0Þ � 0:266 and
� ¼ 1, which evolved into a quasistationary scalarized
state as depicted in Fig. 2, will collapse into a black hole
if we take instead � � 10. This means that the critical
�critð0Þ seems to decrease when compared to the GR case
in a way that depends on the value of the parameter �.
In particular, we have found that for � ¼ 50 the last
scalarized boson star configuration that is stable against
black hole formation corresponds to a central value
�ð0Þ � 0:195. This value of �ð0Þ has to be contrasted
with the value �ð0Þ � 0:272 for � ¼ 0 (the GR case),
which is associated with the usual maximum mass con-
figuration. In summary, depending on the value of �,
there are two kinds of instabilities for boson stars in
STTs: On the one hand, there is an instability that takes
the star into a stable scalarized state and, on the other
hand, an instability that causes a scalarized star to col-
lapse to a black hole. Presumably, an unscalarized boson
star that collapses directly into a black hole may also
reach a transient (possibly very brief) state of scalariza-
tion before collapsing.
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We have studied the dynamical collapse of boson stars in
STTs toward a black hole. In order to be sure that a black
hole is formed, we look for the appearance of an apparent
horizon during the simulations. As expected, for unstable
configurations an apparent horizon appears suddenly after
some evolution. Its area then grows for some time as more
matter is accreted, until it finally settles once all the initial
matter has either fallen into the black hole or has been
radiated away. Figure 6 shows the apparent horizon mass

(defined in terms of its area A as MAH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16�

p
) as a

function of time, for the first unstable boson star
configuration for � ¼ f1; 50; 250; 500g and �ð0Þ ¼
f0:268; 0:195; 0:231; 0:249g. These values of the central
density are above the threshold given by Table I. The
asymptotic value of the NMC field �0 is dependent on �
through Eq. (7.4). Notice that as � increases, the black hole
formation time first decreases to a certain value of �, after
which the time of collapse increases again for larger �.

Figure 7 shows some snapshots of the evolution of the
NMC scalar field for a case where �ð0Þ ¼ 0:23 and
� ¼ 50, and an asymptotic value of �0¼�9:25
10�11.
A similar initial configuration with � ¼ 0 (the GR case) is

stable, while configurations with � < 50 evolve into a
stable scalarized state.

D. Scalar radiation

Gravitational radiation can carry energy away from an
isolated system, and it also encodes important information
about the physical properties of the system itself. In
Ref. [61], Harada et al. have performed a numerical study
of the scalar gravitational radiation emitted during an
Oppenheimer-Snyder collapse in STTs in terms of the
initial parameters, such as the initial radius and mass of
the dust.
In order to study the emission of scalar gravitational

radiation in our boson star configurations, we will start by
considering the reduction of the Misner-Sharp mass during
the scalarization process. Figure 8 displays the evolution of
the mass function mMSðrÞ for an initial boson star configu-
ration with central density �ð0Þ � 0:141, both for � ¼ 1
and � ¼ 500. It is clear that the configuration with � ¼ 1
reaches rapidly a quasistationary state where the variation
of the Misner-Sharp mass can be ignored (it is less than
1%). On the other hand, the evolution for the configuration
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FIG. 6 (color online). Apparent horizon mass of the first
scalarized unstable boson star configurations for different values
of the parameter �. When � ¼ 1 the configuration is essentially
that of GR. For � ¼ f50; 250; 500g the scalarized boson star
collapses toward a black hole of the same mass but at much
earlier times.

TABLE I. Initial and final values of the Misner-Sharp mass and integrated energy flux of the last stable boson star configuration in
SST as measured by an Euler observer, for different values of � which, according to Eq. (7.4), correspond to different values of �0.

�ð0Þ �=�0 Min Mfin ðMfin �MinÞ Eflux

0.267 1=� 4:8
 10�4 6:329
 10�1 6:325
 10�1 � 1:81
 10�4 4:000
 10�4 9:290
 10�6 � 1:41
 10�8

0.194 50=� 9:6
 10�6 6:189
 10�1 5:826
 10�1 � 3:55
 10�3 3:630
 10�2 3:725
 10�2 � 3:41
 10�3

0.212 100=� 4:8
 10�6 6:251
 10�1 5:611
 10�1 � 3:00
 10�3 6:400
 10�2 6:183
 10�2 � 3:37
 10�3

0.230 250=� 1:9
 10�6 6:293
 10�1 5:260
 10�1 � 3:80
 10�3 1:033
 10�1 1:020
 10�1 � 3:42
 10�3

0.248 500=� 9:6
 10�7 6:320
 10�1 5:050
 10�1 � 2:84
 10�3 1:270
 10�1 1:271
 10�1 � 1:45
 10�3
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FIG. 7. Snapshots of the evolution of the NMC scalar field for
an initial configuration with �ð0Þ ¼ 0:230 and � ¼ 50. The star
eventually collapses into a black hole. The same initial configu-
ration with �ð0Þ ¼ 0:230, but taking � ¼ 0 (the GR case), is
stable. The vertical lines in the bottom panels indicate the
location of the apparent horizon.
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with � ¼ 500 is quite different. First, one can notice a
distortion moving outward for which the mass function
even becomes negative. The position of this distortion can
be seen to coincide with an outward moving pulse of scalar
field �. One should not worry about the fact that the mass
function is negative since, as we have said before, one can
only interpret this as a mass in the vacuum regions. More
importantly, once this pulse has moved away, we can see a
very clear reduction in the mass function. At the end of the
simulation, the final reduction in the mass is of around 20%
(see Table I). We should also mention the fact that in this
case the metric components and the scalar field� continue
to oscillate at late times around a fixed configuration (these
oscillations are quite independent of the resolution of the
numerical evolution).

One could naively think that this reduction in the mass is
entirely produced by the emission of scalar gravitational
radiation. However, at this point it is difficult to separate
between the total amount of energy carried away by the
scalar field � and that carried by the scalar gravitational
radiation itself. The latter of course arises due to the NMC
between the scalar field and the curvature, but everything
is mixed in the flux of energy as given by Eq. (2.20). For
instance, in the SS case with �0 ¼ 0 some scalar field is
still radiated away during the transition to the quasistation-
ary scalarized state (or during the collapse to a black hole),
even though in that case we do not expect scalar gravita-
tional radiation since F0ð�Þ�¼0 � 0. In order to have an

unambiguous quantification of the amount of energy emit-
ted in the form of scalar gravitational radiation, one would
need to go to second order perturbation theory and com-
pute the equivalent of the Isaacson energy-momentum
tensor in STTs. We will leave this computation for a future
work.

Figure 9 shows the final Misner-Sharp mass for a
sequence of boson star configurations both in GR (�¼0),
and for STTs with different values of �. The configurations
presented here correspond to the S branch of a single boson
star for which the system has reached a stationary state.
The stationary unstable configurations (i.e., the U branch)
would continue on the right after the last plotted point of
the curves. We have performed several numerical simula-
tions using central amplitudes beyond the new S branch in
STTs, and we have confirmed that the stars collapse into a
black hole.
Table I summarizes the initial and final states of the last

stable boson star configurations found for each curve of
Fig. 9. Notice that for many of the cases studied here, at late
times the system reaches a oscillating state, with oscilla-
tions that seem to decay very slowly, which makes it
difficult to determine the final value of the Misner-Sharp
mass. So, in order to provide an error estimation on the
values reported on it, we consider a time average between
the maximum and minimum value of the ‘‘final’’ mass. We
also include the value of the integrated energy flux as
measured by an Eulerian observer. Notice that the differ-
ence between the initial and final masses agrees very well
with the energy flux for almost all the values of �, except
for � ¼ 1. In this case the oscillations of the system do not
allow us to get an accurate value for the final mass of the
system.
The evolution of the stars considered above proceeds in

general as follows: After the initial burst of scalar radiation
due to the scalarization process, the system settles down
and reaches a state with very long-lived oscillations with a
characteristic frequency. In the bottom panel of Fig. 10 we
show the main frequencies of this oscillations for the stable

0

0.2

0.4

0.6
m

M
S(r

)

-0.3

0

0.3

0.6

ξ = 1
ξ = 500

0 60 120 180 240
r

-3

-2

-1

0

1

m
M

S(r
)

0 60 120 180 240
r

0

0.2

0.4

0.6

t = 0 t = 500

t = 1600 t = 5600

FIG. 8 (color online). Evolution of the Misner-Sharp mass for
a stable boson star with central density �ð0Þ � 0:141. The
variation of the Misner-Sharp mass with � ¼ 1 is insignificant
while the variation of the mass with � ¼ 500 is around 20% (see
Table I). Notice however that the peak in the plots is not physical
since mMS acquires a physical meaning only in the limit r ! 1.

0.08 0.16 0.24 0.32 0.4
σ(0)

0.2

0.3

0.4

0.5

0.6

M
M

S

ξ = 1
ξ = 50
ξ =100
ξ = 250
ξ = 500
GR

Max. mass in GR

FIG. 9 (color online). Misner-Sharp mass for a sequence of
stable stationary scalarized boson stars for different values of �.
For reference we also show the GR configurations (� ¼ 0). The
last point on every curve corresponds to the last stable configu-
ration found. To the right of that point all configurations are
unstable.

MILTON RUIZ et al. PHYSICAL REVIEW D 86, 104044 (2012)

104044-14



configurations presented in Fig. 9. We obtain these fre-
quencies by performing a discrete Fourier transform in
time (at late times) of the nonminimal scalar field at a
fixed radius r ¼ 120, and looking for the largest peak. One
would expect that the scalar gravitational waves should
have the same frequency [61]. Notice that the main fre-
quency of the system seems to be independent of the
parameter �. The top panel of the figure shows the actual
Fourier transform (the power spectrum) for the case
�0 ¼ 0:07 where one can see that there is indeed a very
clear peak.

VIII. CONCLUSIONS

Boson stars are stable self-gravitational configurations
of a complex massive scalar field that evolves according to
the Klein-Gordon equation. The expected mass of these
type of stars typically varies between the mass of an
asteroid and a few solar masses, depending on the mass
parameter of the bosonic scalar field [40]. Though hypo-
thetical, boson stars are simple models that can be used to
understand the corrections to general relativity proposed
by alternative theories of gravity. Any alternative theory of
gravity has to be tested against observations, both at the
scale of the Solar System and at the cosmological scale.
Scalar-tensor theories of gravity, where a (real) scalar field
is nonminimally coupled to gravity, are interesting general-
izations of general relativity that have so far not been ruled
out by observations.

In this paper we have used a scalar-tensor theory of
gravity to study the evolution of distinct families of single
boson stars parametrized by the central density of the star

and the parameter � that controls the nonminimal coupling
of the theory. We have focused on the transition to a
scalarized state using a fully relativistic code in spherical
symmetry. We have found that, just at it happens with
neutron stars, boson stars can also undergo both sponta-
neous and induced scalarization, the latter case linked
directly with the emission of scalar (monopolar) gravita-
tional waves.
Our numerical experiments show that the final magni-

tude of the nonminimally coupled scalar field seems to
depend logarithmically on the central density of the boson
star. We have also found that there is a critical value of the
nonminimal coupling parameter �, corresponding to about
to �� 50, that maximizes the scalarization (i.e., the
amount of final scalar charge). On the other hand, the
maximum reduction of the initial mass of the boson star
(about 20%), due to energy radiated to infinity during the
scalarization process, was obtained for the maximum value
of the parameter � considered in our evolutions (� ¼ 500).
We summarized our results in Table I. Each configuration
considered there corresponds to the critical density that
separates the stable and unstable branches of a single boson
star in scalar-tensor theories for different values of �.
Figure 9 shows the stable branches as a function of this
parameter, once the system has reached a final quasista-
tionary state. It is evident that, whereas a small value of �
leads to results that are very close to those of general
relativity (� ¼ 0), larger values lead to important devia-
tions that in principle could be measured.
At this point it is important to stress the fact that in all

the evolutions presented here there are two parameters
associated with the specific form of the scalar-tensor the-
ory: The free parameter � used in the expression for the
nonminimal coupling function Fð�Þ ¼ 1þ 8�G0��

2,
and the asymptotic (cosmological) value of the scalar field
�0 that in our evolutions is chosen as the maximum value
allowed by the constraints imposed by the Cassini probe on
the effective Brans-Dicke parameter [given by Eq. (7.3)].
This ensures that all our results satisfy the bounds imposed
by the Solar System experiments.
Finally, we have taken a first step in trying to character-

ize the monopolar gravitational waves emitted during the
scalarization process. Onewould expect that the magnitude
of this monopolar radiation will be proportional to the
product of the scalar charge and the square magnitude of
the frequency of the radiation. We have found that this
frequency seems to be independent of the coupling
parameter �.
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APPENDIX A: CHARACTERISTIC VARIABLES
FOR THE BSSN FORMULATION IN STTS

Using the slicing condition (2.26), and assuming that the
shift vector is an a priori given function of the coordinates,
Salgado et al. have presented the characteristic decompo-
sition of the BSSN formulation in the STT context [27].
They have shown that this formulation leads to a well-
posed Cauchy problem in the Jordan frame. In this appen-
dix we show that the algorithm used for dealing with the
regularization of the origin, in which one introduces a set
of auxiliary variables to impose all the required regularity
conditions [20,62,63], does not spoil those results.

Let us start by considering the spatial metric in spherical
coordinates written in the form

dl2 ¼ Aðt; rÞdr2 þ r2Bðt; rÞd�2 (A1)

¼ e4�½aðt; rÞdr2 þ r2bðt; rÞd�2�; (A2)

where e� is the conformal factor and d�2 the standard
solid angle element. In order to construct a fully first order
and regularized BSSN system, one first needs to introduce
the following set of variables:

d� ¼ @r ln�; da ¼ 1

2
@r lna; (A3)

d
 ¼ @r
; 	 ¼ @r�; (A4)

�̂ r ¼ 1

a

�
@ra

2a
� @rb

b
� 2r


	
; (A5)

where 
 is defined below in Eq. (A15). It turns out that,
with the above variables, the principal part of the BSSN
formulation in the STT context, coupled with the slicing
condition (2.26), is given by

@0d� ’ ��fBM

�
@rK � f0

fBMf
@r�

	
; (A6)

@0	 ’ � 1

6
�@rK; (A7)

@0da ’ � 2

3
�r2@rA
; (A8)

@0K ’ ��e�4�

a

�
@rd� � f0

f
@rQr

	
; (A9)

@0A
 ’ ��e�4�

r2a

�
@rd� þ 2@r	� br2

2a
@rd


� a@r�̂
r þ f0

f
@rQr

	
; (A10)

@0d
 ’ 2�a

b
@rA
; (A11)

@0�̂
r ’ 2�r2

3a
ð�� 2Þ@rA
 � 2��

3a
@rK þ ��f0

af
@r�;

(A12)

@0Qr ’ �@r�; (A13)

@0� ’ �e�4�

a
@rQr; (A14)

where we have defined @0 ¼ @t þ �r@r.
Notice that Eqs. (A13) and (A14) are the spherical

reduction of the equations of motion (2.14) and (2.15).
Moreover, the quantities 
 and A
 are auxiliary variables
needed in order to impose regularity conditions at the
origin, and which are defined by [20]


 :¼ 1

r2
ð1� a=bÞ; A
 ¼ 1

r2
ðAa � AbÞ: (A15)

Also, the equation of motion for �̂r has been modified by
adding a multiple of the momentum constraint which is
controlled by the � parameter. In the following, we con-
sider, for simplicity, that � ¼ 2 (see Ref. [20]).
Taking into account the fact that an evolution system of

the form

@tu ¼ �1@rv; @tv ¼ �2@ru; (A16)

has the characteristic variables w� ¼ u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2=�1Þ
p

v with
characteristic speeds � ffiffiffiffiffiffiffiffiffiffi

�1�2
p

, it is easy to show that

the subsystem (A13) and (A14) has the characteristic
decomposition

U�
� ¼ Qr � e2�

ffiffiffi
a

p
�; (A17)

with speeds of propagation

��
� ¼ �r � �

e�2�ffiffiffi
a

p : (A18)

On the other hand, the characteristic variables related to
the choice of slicing, and associated with the subsystem
(A6) and (A9), turn out to be

Ugauge
� ¼d���e2�

ffiffiffiffiffiffiffiffiffiffiffiffi
afBM

p
Kþ f0

fð1�fBMÞ

fQrðfBM�Þ�e2�

ffiffiffiffiffiffiffiffiffiffiffiffi
afBM

p ð1�Þ�g; (A19)

with characteristic speeds
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�
gauge
� ¼ �r � �

ffiffiffiffiffiffiffiffiffi
fBM

p
e�2�ffiffiffi
a

p : (A20)

Furthermore, the following combinations

U
� ¼ d
 � f0fQrð1� 2fBM þ Þ � ffiffiffi
a

p
e2�ð1� Þ�g

2fð1� fBMÞ
� 1

2

ffiffiffi
a

p
e2�ðK � A
r

2Þ � a

2

�
�̂r þ r2d


2a5=2

	
; (A21)

provide two more characteristic variables with associated
speeds

�� ¼ �r � �
e�2�ffiffiffi

a
p : (A22)

Finally, the following variables,

U0
1 ¼ �̂r � 2f0Qr

af

�
1� 2

3fBM

	
� 4d�

3afBM
; (A23)

U0
2 ¼ �a�̂r þ f0Qrð2f0fBM � Þ

ffBM
þ d�

fBM
þ 2	; (A24)

U0
3 ¼ �U2 þ 1

2

�
3da þ r2d


a3=2

	
; (A25)

are the remaining characteristic variables with speed �r.

APPENDIX B: CONSTRAINT PRESERVING
BOUNDARY CONDITIONS

To reduce the influence of the numerical boundary on
the dynamics of the system we have considered constraint
preserving boundary conditions (CPBCs), in the sense that
small violations of the constraints introduced by spurious
reflections from the boundary converge away with the
resolution. This is motivated not only by the requirement
of having a well-posed initial boundary problem, but also
mainly because, for long evolutions such as those consid-
ered here, constraint violating modes may propagate inside
the domain contaminating the interior solution, which
could lead to an incorrect physical interpretation [64].

In order to impose our CPBCs we introduce information
from the characteristic variables at the boundary through
the following algorithm.

(1) We construct numerically the characteristic out-
going modes Uþ using the dynamical variables,
such as gauge, metric components, and �, at the
boundary. For instance, one can reconstruct the out-

going mode U�
þ at the boundary by using the one-

sided difference scheme for � and Qr.
(2) In order to reconstruct the incoming scalar and

gauge fields, U�� and Ugauge� , we assume that �
and � behave at the boundary as outgoing spherical
waves of the form

uðt; rÞ ¼ u0 þ 1

r
fðr� tÞ; (B1)

with u0 their corresponding asymptotic values. By
taking time and space derivatives one can then
reconstruct the corresponding incoming character-
istic fields. For example, for U�� we find (assuming
that � ¼ 0 asymptotically)

U�� ¼ � e�2�ffiffiffi
a

p
r
�: (B2)

It is interesting to notice that the incoming fields are
not zero, as one could naively expect ( just setting
them to zero introduces quite large reflections).

(3) This leaves us with the incoming field U
�. This is
where one can impose the constraints, as one can
show that the spatial derivative @rU


� can be written
as a combination of the constraints plus a term that
contains no derivatives of the dynamical variables.
Asking then for the constraints to vanish at the
boundary allows us to evaluate @rU


� directly at
the boundary. And once we have @rU


� at the bound-
ary we can use it, together with the values of U
� at
the nearby points, to solve forU
� at the boundary by
simple finite differencing.

(4) Finally, we recover the dynamical variables using
both the incoming and outgoing modes. Notice that
it is not necessary to recover all the variables, since
many of them are in fact not independent.

The above algorithm allows us to impose CPBCs for the
spherical reduction of the BSSN formulation. As an ex-
ample, in Fig. 11 we show results from an evolution of a
single boson star using fourth order spatial differences and
a fourth order Runge-Kutta for the integration in time. The
outer boundary is located at rout ¼ 240. The figure shows
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FIG. 11 (color online). Violation of the constraints for a boson
star with �ð0Þ ¼ 0:1. The L2 norm of the Hamiltonian (top
panel) and the momentum constraints (bottom panel) is plotted
for two different resolutions as a function of the time. The effect
of the outer boundary conditions is visible only in the momen-
tum constraint at times t ¼ 240 and t ¼ 480.
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the L2 norm of the violation of the Hamiltonian and
momentum constraints for a boson star with �ð0Þ ¼ 0:1,
and for two different resolutions. Notice that while the light
crossing time of the numerical grid is t� 240, the scheme
remains fourth order convergent for much longer times.

The boundary conditions do a spurious reflection whose
magnitude is less than 10�9. This effect is only evident in
the momentum constraint at t ¼ 240 and t ¼ 480. The
magnitude of the violation of the Hamiltonian constraint
in the interior is much larger than those reflections.
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