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We compute the conservative piece of the gravitational self-force (GSF) acting on a particle of mass m1

as it moves along an (unstable) circular geodesic orbit between the innermost stable orbit and the light ring

of a Schwarzschild black hole of mass m2 � m1. More precisely, we construct the function hR;Luu ðxÞ �
hR;L�� u

�u� (related to Detweiler’s gauge-invariant ‘‘redshift’’ variable), where hR;L�� ð/ m1Þ is the regularized
metric perturbation in the Lorenz gauge, u� is the four-velocity of m1 in the background Schwarzschild

metric of m2, and x � ½Gc�3ðm1 þm2Þ��2=3 is an invariant coordinate constructed from the orbital

frequency �. In particular, we explore the behavior of hR;Luu just outside the ‘‘light ring’’ at x ¼ 1
3 (i.e.,

r ¼ 3Gm2=c
2), where the circular orbit becomes null. Using the recently discovered link between hR;Luu

and the piece aðuÞ, linear in the symmetric mass ratio � � m1m2=ðm1 þm2Þ2, of the main radial potential

Aðu; �Þ ¼ 1� 2uþ �aðuÞ þOð�2Þ of the effective-one-body (EOB) formalism, we compute from our

GSF data the EOB function aðuÞ over the entire domain 0< u< 1
3 (thereby extending previous results

limited to u � 1
5 ). We find that aðuÞ diverges like aðuÞ � 0:25ð1� 3uÞ�1=2 at the light-ring limit,

u ! ð13Þ�, explain the physical origin of this divergent behavior, and discuss its consequences for the

EOB formalism. We construct accurate global analytic fits for aðuÞ, valid on the entire domain 0< u< 1
3

(and possibly beyond), and give accurate numerical estimates of the values of aðuÞ and its first three

derivatives at the innermost stable circular orbit u ¼ 1
6 , as well as the associated Oð�Þ shift in the

frequency of that orbit. In previous work we used GSF data on slightly eccentric orbits to compute a

certain linear combination of aðuÞ and its first two derivatives, involving also the Oð�Þ piece of a second
EOB radial potential �DðuÞ ¼ 1þ � �dðuÞ þOð�2Þ. Combining these results with our present global

analytic representation of aðuÞ, we numerically compute �dðuÞ on the interval 0< u � 1
6 .
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I. INTRODUCTION

For much of its long history, the two-body problem in
general relativity has been studied primarily within two
analytical approximation frameworks, one built around the
weak-field limit and the other around the test-particle
(geodesic) limit. The first analytical framework, formal-
ized in post-Newtonian (PN) and post-Minkowskian theo-
ries, is (a priori) applicable only when the two components
of the two-body system are sufficiently far apart. The
second analytical framework is (a priori) relevant only
when one of the masses is much larger than the other,
in which case the dynamics can be described, at first
approximation, as a geodesic motion on a fixed curved
background. Recently, rapid developments (mixing theo-
retical and numerical methods) in the field of gravitational
self-force (GSF) calculations (see Ref. [1] for a review)
have allowed one to go one step beyond the geodesic
approximation, giving access to new information on
strong-field dynamics in the extreme-mass-ratio regime.
In addition, since 2005 it has been possible to accurately
describe the coalescence of two black holes of comparable
masses by using three-dimensional numerical simulations
based on the fully nonlinear Einstein equations. The

progress in interferometric gravitational-wave detectors
has brought with it the imminent prospect of observing
gravitational radiation from inspiralling and coalescing
astrophysical binaries, and with it the need to compute,
in an efficient and accurate way, the form of the many
possible gravitational-wave signals emitted by generic
binary systems (having arbitrary mass ratios and spins,
and moving on generic orbits). It has become clear over
the past few years that the best way to meet the latter
theoretical challenge will be to combine knowledge from
all available approximation methods: PN theory, post-
Minkowskian theory, GSF calculations, and full numerical
simulations.
Within this program, the effective-one-body (EOB) for-

malism [2–5] was proposed as a flexible analytical frame-
work for describing the motion and radiation of coalescing
binaries over the entire merger process, from the early
inspiral, right through the eventual plunge and final ring-
down (see Ref. [6] for a review). The central posit of the
EOB formulation is a mapping between the true dynamics
and an effective description involving an effective metric,
together with an extra ‘‘mass-shell deformation’’ phase-
space function Q involving (effective) position and
momentum variables. If the two objects are nonspinning
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black holes with masses m1 and m2, then in the extreme-
mass-ratio limit [i.e., when the symmetric mass ratio
� � m1m2=ðm1 þm2Þ2 tends to zero] the effective metric
is expected to reduce smoothly to the Schwarzschild
metric, while Q must vanish. For a general mass ratio,
i.e., for a nonzero value of � in the interval 0< � � 1

4 , the

effective metric involves two initially unspecified func-
tions of two variables (‘‘EOB potentials’’), denoted
Aðu;�Þ and �Dðu;�Þ. Here u is the dimensionless ‘‘inter-
body gravitational potential’’ u � GM=ðc2rEOBÞ, where
M � m1 þm2 denotes the total mass, and rEOB is the
(EOB-defined) radial separation between the two objects.
In the current, ‘‘standard’’ formulation of the EOB formal-
ism, the motion in strictly circular binaries is governed by
the potential Aðu; �Þ alone. The (conservative) dynamics of
slightly eccentric binaries involves, besides Aðu; �Þ, the
second EOB potential �Dðu;�Þ. More generally, the con-
servative dynamics of arbitrary orbits (described by the full
EOB Hamiltonian) involves, besides Aðu;�Þ and �Dðu;�Þ,
the third EOB function Qðu; p’; pr;�Þ, which a priori

depends on the four variables ðu; p’; pr; �Þ, where p’ is

the angular momentum and pr is the radial momentum
canonically conjugated to the radial variable rEOB.

Post-Newtonian theory only gives access to the expan-
sions of the EOB potentials in powers of the inter-body
gravitational potential u, while keeping the exact depen-
dence upon �. For instance, PN calculations at the third
PN (3PN) approximation lead to the exact knowledge of
the coefficients A2ð�Þ, A3ð�Þ and A4ð�Þ in Aðu; �Þ ¼ 1�
2uþ A2ð�Þu2 þ A3ð�Þu3 þ A4ð�Þu4 þOðu5 lnuÞ, with the
remarkably simple result [4] that the 1PN coefficient A2ð�Þ
vanishes, and that the 2PN, A3ð�Þ, and 3PN, A4ð�Þ, coef-
ficients are both linear in � [thanks to some remarkable
cancellations; the function A4ð�Þ, e.g., is a priori a cubic
polynomial in �]. In order to apply the EOB formalism to
the description of the final stages of coalescing binaries, it
is necessary to somehow improve the behavior of these
(weak-field; u � 1) PN expansions, and to extend the
knowledge of the functions AðuÞ, �DðuÞ into the strong-field
regime u ¼ Oð1Þ. Two different methods have been pro-
posed to perform such a strong-field extension. Both meth-
ods exploit the flexibility of the EOB framework, which
naturally allows for either the introduction of unknown
parameters (parametrizing higher-order PN terms), or the
introduction of unknown functions (linked to GSF theory).

The first method used for ‘‘upgrading’’ the PN
expansions of Aðu;�Þ and �Dðu;�Þ into functions which
are (tentatively) valid in the strong-field regime u ¼ Oð1Þ
was to replace them with suitably resummed expressions,
namely some Padé approximants of either the currently
known PN expansions [4], or of PN expansions incorporat-
ing some undetermined coefficients parametrizing as-yet-
unknown higher-order PN terms [7–10]. As results from
strong-field numerical relativity (NR) simulations started
to emerge, it became possible to ‘‘calibrate’’ some of these

unknown parameters by finding the values that ‘‘best fit’’
the NR data [7–10]. The resulting NR-fitted EOB formal-
isms have been found to provide a useful analytic approach
to the two-body problem in both the weak- and strong-field
regimes and across all mass ratios [9–15].
The second method for extending the validity of the PN

expansions of Aðu;�Þ and �Dðu;�Þ is to use information
from GSF theory [16]. Essentially, while PN theory (in the
EOB context) involves the expansion of Aðu;�Þ, �Dðu;�Þ
and Qðu; p’; pr;�Þ in powers of u (for fixed �), GSF

theory involves the expansion of these functions in powers
of � (for fixed u). For instance, the GSF expansion of the A
potential is of the form Aðu;�Þ ¼ 1� 2uþ �aðuÞ þ
�2a2ðuÞ þOð�3Þ, while that of �Dðu;�Þ starts as �Dðu;�Þ ¼
1þ � �dðuÞ þ �2 �d2ðuÞ þOð�3Þ, where we suppressed, for
notational simplicity, the index 1 on the coefficients aðuÞ
and �dðuÞ of the first power of � (‘‘first GSF level’’). Note
that all the GSF coefficients aðuÞ, a2ðuÞ, �dðuÞ, �d2ðuÞ are
functions of u, and are a priori defined for arbitrary
values of u, including strong-field values u ¼ Oð1Þ.
Since 2008, calculations of the GSF in Schwarzschild
geometry are providing valuable information on various
invariant aspects of the post-geodesic dynamics in binaries
of extreme mass-ratios. This offers a new opportunity for
improving the EOB formalism by acquiring knowledge
on the strong-field behavior of the various functions
aðuÞ; a2ðuÞ; �dðuÞ; �d2ðuÞ; . . . . The GSF data are particularly
useful for this purpose since they are highly accurate (GSF
calculations involve only linear differential equations), and
because they give access to a portion of the parameter space
inaccessible to either PN or NR: strong-field inspirals in
the extreme-mass-ratio domain. Furthermore, in GSF calcu-
lations (unlike in NR) it is straightforward to extract the
conservative (time-symmetric) aspects of the dynamics
separately from the dissipative ones. This is an advantage
because the two aspects are dealt with separately in EOB.
The promise of such a GSF-improved EOB formalism

was first highlighted in Ref. [16]. That work suggested
several concrete gauge-invariant quantities characterizing
the conservative dynamics of the binary, which can be
constructed (in principle) using knowledge of the GSF,
and would provide accurate information about the
�-linear EOB functions aðuÞ, �dðuÞ. As a first example,
Ref. [16] used the GSF computation [17] of the Oð�Þ shift
in the value of the frequency of the innermost stable
circular orbit (ISCO) of the Schwarzschild black hole,
to determine the value of the combination aðuÞ � aðuÞ þ
ua0ðuÞ þ 1

2uð1� 2uÞa00ðuÞ (where a prime denotes d=du)

at the ISCO potential value u ¼ 1
6 . Reference [16] also

proposed that a GSF computation of the frequency and
angular momentum of a marginally bound zoom-whirl
orbit could be used to determine the separate values of
aðuÞ and a0ðuÞ at the much stronger-field point u ¼ 1

4 (the

‘‘whirl’’ radius), but such a computation is yet to be
performed.
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More importantly, Ref. [16] has shown that a computa-
tion of the GSF-induced correction to the periastron
advance of slightly eccentric orbits along the one parame-
ter sequence of circular orbits would allow one to compute
the combination [18] ��ðuÞ � aðuÞ þ ð1� 6uÞ �dðuÞ as a
function of u over the entire range where circular orbits
exist, i.e., 0< u � 1

3 . The calculation of the EOB function

��ðuÞwas then performed in Ref. [19] along the sequence of
stable circular orbits (i.e., 0< u � 1

6 ), when computa-

tional tools for the GSF in eccentric binaries became
available [20]. Reference [19] also made the following
important point. By combining PN information about the
behavior near u ¼ 0 of functions such as aðuÞ or ��ðuÞ,
together with the GSF-computed values of these functions
at a (possibly sparse) sample of strong-field points u ¼
u1; u2; . . . , one can construct simple (Padé-like) analytic
representations which can provide accurate global fits for
the corresponding EOB functions. Then, in turn, these
global representations can be used to analytically represent
other GSF functions of direct dynamical significance.
Reference [19] demonstrated this idea by constructing a
simple, yet accurate, global analytic model for the perias-
tron advance in slightly eccentric orbits, using only a small
set of strong-field GSF data in conjunction with available
weak-field PN information. In subsequent work [14] this
model was successfully tested against results from fully
nonlinear numerical simulations of inspiralling binaries.

Unfortunately, knowledge of the GSF-induced perias-
tron advance only gives access to the combination ��ðuÞ
involving the functions aðuÞ, a0ðuÞ, a00ðuÞ and �dðuÞ, and it is
not sufficient for determining the individual potentials aðuÞ
and �dðuÞ separately. This situation was cured in recent
work by Le Tiec and collaborators. In Ref. [21] Le Tiec
et al. have ‘‘derived’’ (using a mixture of plausible argu-
ments) a ‘‘first law of binary black hole mechanics’’,
relating infinitesimal variations of the total energy E
and angular momentum J of the binary system to variations
of the individual black hole ‘‘rest masses’’, and (for
m1 � m2) involving Detweiler’s redshift variable z1 asso-
ciated with m1 [22]. (The validity of this relation was
established rigorously only through 3PN order.) Based on
this relation, further work [23] about the functional link
between E, J and the dimensionless orbital frequency

parameter x � ðGM�=c3Þ2=3 led Barausse, Buonanno
and Le Tiec [24] to derive a simple direct relation between
the Oð�Þ piece of the function z1ðxÞ, and the Oð�Þ EOB
function aðuÞ (evaluated for the argument u ¼ x). This
relation shows that GSF calculations of the Oð�Þ piece of
the redshift function z1ðxÞ of m1, along circular orbits,
allows one to compute the function aðuÞ separately from
the second Oð�Þ EOB function �dðuÞ. [Using the (quite
simple) EOB theory of circular orbits, it is then easy to
derive from aðuÞ the functions relating E and J to both u
and x; see Refs. [16,24] and below.] By putting together
the so-acquired knowledge of the function aðuÞ with

Ref. [19]’s GSF computation of the combination
��ðuÞ, one then has separate access to the second EOB
function �dðuÞ, thereby completing the project initiated in
Refs. [16,19] of using GSF data to determine the (separate)
strong-field behaviors of the two main Oð�Þ EOB poten-
tials aðuÞ and �dðuÞ. Note, however, that this still leaves out
the third EOB function Qðu; p’; pr;�Þ.
The analyses of Refs. [23,24] relied on numerical GSF

data for z1ðxÞ, which have so far been available only for
x � 1=5 [22,25]. This allowed the determination of the
EOB potentials (and of E and J) through Oð�Þ only in the
restricted domain 0 � u � 1=5. The EOB potentials
remained undetermined in the strong-field domain u > 1

5 .

In the extreme-mass-ratio case, this domain corresponds to
the region r < 5Gm2=c

2 outside the large black hole of
mass m2 (where r is the Schwarzschild radial coordinate
associated withm2, which coincides with rEOB in them1 !
0 limit). Note that the gravitational potential varies steeply
in this region, so that the EOB functions might well vary
correspondingly fast and possibly in a nontrivial way,
potentially giving rise to interesting new physics. In this
regard, we emphasize that (as is clear from EOB theory) it
is the gravitational-potential coordinate u, and not r itself,
which best parametrizes the strength of the gravitational
field. We note in this respect that the gravitational potential
difference across the seemingly ‘‘small’’ domain extending
between the ISCO and the light ring (below which there
exist no circular geodesic orbits), 3Gm2=c

2 < r <
6Gm2=c

2 (i.e., 1
6 < u< 1

3 ), is as large as that across the

entire domain 6Gm2=c
2 < r <1 (i.e., 0< u< 1

6 ). This

lends a strong motivation for extending the analyses of
Refs. [23,24] to the domain 1

5 < u< 1
3 .

In this paper we obtain numerical GSF data for z1ðxÞ for
circular geodesic orbits with radii in the range 3Gm2=c

2 <
r< 150Gm2=c

2. We use these data to compute the
numerical values of the function aðuÞ on a dense set of u
values, extending down to u ¼ 1

3 . We then construct a

global analytic fit for the function aðuÞ, valid uniformly
on 0< u< 1

3 . We pay particular attention to the behavior

near u ¼ 1
3 , which, in the limit � ! 0, represents the light

ring (LR) of the Schwarzschild black hole, where circular
geodesic orbits become null.
It should be commented immediately that the interpre-

tation of the GSF near the LR is a subtle one: for any finite
(nonzero) value of �, there are sufficiently small values of
u� 1

3 for which the mass-energy of the small particle

becomes comparable to that of the large black hole, at
which point perturbation theory breaks down and the
GSF approximation ceases to be meaningful. In principle,
however, it is possible to make the GSF approximation
relevant arbitrarily close to the LR, simply by taking � to
be sufficiently small. This formal argument allows us to
use GSF data to explore the immediate vicinity of the LR.
The structure of this paper is as follows. We start, in

Sec. II, by reviewing the formal GSF results relevant to our
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analysis, and then present the new sub-ISCO GSF data.
The raw numerical data are given in the Appendix for the
benefit of colleagues interested in reproducing our analysis
or studying other applications. In Sec. III we use the GSF
data to construct a global analytic fit for the function aðuÞ,
and in particular establish the behavior of this potential
near the LR. In Sec. IV we similarly construct global
analytic models for the Oð�Þ pieces of E and J. In Sec. V
we revisit the problem of determining the Oð�Þ shift in the
ISCO frequency, and, using the method proposed in
Ref. [23] with our new, highly accurate aðuÞ data, add
four significant digits to the value obtained in previous
analyses [16,17,23]. Section VI turns to discuss the deter-
mination of the second Oð�Þ EOB potential, �dðuÞ: by
combining the new analytic aðuÞ model with our previ-
ously obtained data for ��ðuÞ, we determine �dðuÞ (numeri-
cally) on the domain 0< u< 1

6 . Section VII then focuses

on the LR behavior, explaining the physical origin of the
observed divergent behavior of aðxÞ, and discussing its
consequences for the EOB formalism. We summarize our
main results in Sec. VIII and discuss future directions.

A. Setup and notation

Henceforth, we shall use units such that G ¼ c ¼ 1.
We will consider a circular-orbit binary of black holes
with masses m1 � m2. Various combinations of these
two masses will become relevant in different parts of our
analysis: we shall use

M � m1 þm2; q � m1

m2

� 1;

� � m1m2

ðm1 þm2Þ2
¼ q

ð1þ qÞ2
(1)

to denote, respectively, the total mass, ‘‘small’’ mass ratio,
and symmetric mass ratio of the system. This mass nota-
tion differs from the one used in our previous paper [19],
and is more in line with the notation commonly used in
EOB and PN work. It reflects the fact that in these for-
mulations (unlike in GSF work) the two masses are treated
symmetrically.

We will find it convenient, in different parts of the
analysis, to use different measures of the binary separation.
In the GSF-relevant limit q ! 0 ( , � ! 0) we will use

the standard (areal) radial coordinate r associated with the
Schwarzschild geometry of the black hole with mass m2,
while in discussing EOB we will mainly use the EOB
‘‘gravitational potential’’ (or ‘‘inverse radius’’) u �
M=rEOB. A relation between the GSF and EOB descrip-
tions can be established using the invariant frequency �
associated with the orbit, or the dimensionless frequency
parameter

x � ðM�Þ2=3 ¼ ½ðm1 þm2Þ��2=3 (2)

derived from it. As is well-known, in the GSF limit � ! 0,
x becomes equal to u (‘‘Kepler’s third law’’): x ¼
uþOð�Þ. When discussing the behavior near the (unper-
turbed) LR, x ¼ 1

3 ¼ u, it will be convenient to introduce

the (invariant) coordinate

z � 1� 3x: (3)

(The quantity should not be confused with z1, denoting
the redshift of worldline 1.) For easy reference, Table I
summarizes our notation for various mass and radius
quantities.

II. CONSERVATIVE GSF FOR (STABLE OR
UNSTABLE) CIRCULAR ORBITS

A. Redshift function and regularized self-metric
perturbation

The GSF formulation stems from a perturbative
treatment of the binary dynamics. At the limit q ! 0 the
object with mass m1 becomes a ‘‘test particle’’ and its
motion is described by some geodesic in a ‘‘background’’
Schwarzschild geometry of mass m2. Finite-m1 effects
(self-force, including radiation reaction, etc.) are incorpo-
rated, in principle, order by order in q, working on the fixed
background of the large black hole. In this treatment, the
small object experiences a GSF caused by an interaction
with its own gravitational perturbation, and giving rise to
an accelerated motion with respect to the Schwarzschild
background. The GSF accounts for the dissipative decay of
bound orbits, as well as for conservative (e.g., preces-
sional) effects associated with the finiteness of m1. While
the GSF itself is gauge-dependent, knowledge of the GSF
(in a particular gauge) together with the metric perturba-
tion due to m1 (in that same gauge) gives sufficient

TABLE I. Various mass and separation quantities appearing in our analysis, summarized here
for easy reference.

Binary masses Measures of binary separation

m1 particle mass r or r0 Schwarzschild radial coordinate

m2 black hole mass u ¼ M=rEOB EOB ‘‘inverse radius’’ coordinate

M ¼ m1 þm2 total mass � invariant orbital frequency

q � m1=m2 ‘‘small’’ mass ratio x ¼ ðM�Þ2=3 dimensionless frequency parameter

� � m1m2

ðm1þm2Þ2 symmetric mass ratio z ¼ 1� 3x invariant ‘‘distance’’ from light ring

� � m1m2

m1þm2
reduced mass
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information for quantifying the gauge-invariant aspects of
the dynamics. At the foundational level the GSF is now
well-understood at the first order in q beyond the geodesic
approximation [26–30], and at this order there is also a
well-developed methodology and a toolkit for numerical
computations, at least in the case of a Schwarzschild
background [20,31]. (The foundations for the second-order
GSF have also been laid recently [32–34] but this formu-
lation is yet to be implemented numerically.)

In the problem at hand we ignore the dissipative effect of
the GSF, and the orbit is assumed to be precisely circular.
We shall assume, without loss of generality, that the motion
takes place in the equatorial plane � ¼ �=2, where here-
after we use standard Schwarzchild coordinates ft; r; �; ’g
defined with respect to the background Schwarzschild
geometry with metric g0��ðm2Þ. Detweiler and Whiting

have shown [35] that the GSF-corrected worldline has
the interpretation of a geodesic in a smooth perturbed

spacetime with metric g�� ¼ gð0Þ��ðm2Þ þ hR��, where hR��
(the ‘‘R field’’) is a certain [OðqÞ] smooth perturbation
associated with m1. We let u�1 ¼ fut1; 0; 0; u’1 g be the

four-velocity defined with respect to proper time along
this effective geodesic. It is straightforward to show that
both ut1 and u’1 are invariant under gauge transformations
with generators �� ¼ OðqÞ that respect the helical sym-
metry of the perturbed spacetime [36]. The azimuthal
frequency (with respect to a coordinate time t belonging
to an ‘‘asymptotically flat’’ coordinate system),

� � u’1
ut1

¼ d’

dt
; (4)

is thus also invariant under such gauge transformations.
Detweiler [22,37] proposed utilizing the functional relation
ut1ð�Þ or, equivalently, the ‘‘redshift function’’

z1ð�Þ � 1=ut1ð�Þ; (5)

as a gauge-invariant handle on the conservative effect
of the GSF in circular motion. He also discussed the
physical meaning of z1 as a measure of the (regularized)
gravitational redshift between the worldline of m1 and
infinity.

The expressions derived by Detweiler for ut1ð�Þ [or
z1ð�Þ] involve the double contraction of hR�� with the

four-velocity u�1 , namely

hR;Guu � hR;G�� u�1 u
�
1 : (6)

Here we have introduced the extra label G, for
‘‘gauge’’(besides the first label R referring to ‘‘regular-
ized’’), to keep track of the coordinate gauge in which
one evaluates the metric perturbation. This is important
for the following reason. The prescription in Ref. [22]
assumes that the metric perturbation is given in a gauge
which is manifestly asymptotically flat (i.e., one in which
the unregularized metric perturbation vanishes at infinity).

This, however, happens not to be the case for the Lorenz
gauge that we shall use in our actual GSF calculations. As a
consequence, a certain gauge correction term will enter our
expressions for ut1ð�Þ, as we discuss below. We shall use
the label G ¼ F to refer to a manifestly asymptotically flat
gauge, and the label G ¼ L for the Lorenz gauge.
Using an asymptotically flat gauge, and the dimension-

less frequency parameter

y � ðm2�Þ2=3; (7)

Ref. [22] obtained the simple relation

ut1ð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p
�
1þ 1

2
hR;Fuu þOðq2Þ

�
: (8)

In terms of the redshift variable (5) this reads

z1ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p �
1� 1

2
hR;Fuu þOðq2Þ

�
: (9)

The GSF-adapted frequency parameter y [Eq. (7)] is re-
lated to the more symmetric (EOB-adapted) frequency
parameter x [Eq. (2)] through

y

x
¼

�
m2

m1 þm2

�
2=3 ¼ 1

ð1þ qÞ2=3 ¼ 1� 2

3
qþOðq2Þ; (10)

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3y

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p þ q
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p þOðq2Þ: (11)

Substituting in Eq. (9) then yields, through OðqÞ,

z1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p �
1� 1

2
hR;Fuu þ q

x

1� 3x

�
: (12)

The form of the last relation is invariant under gauge
transformations within the class of asymptotically flat (and
helically symmetric) gauges. However, our GSF calcula-
tions will be carried out in the Lorenz gauge, in which the
metric perturbation hL�� turns out not to decay at infinity

(its monopolar piece tends to a constant value there [38]).
We need to have at hand the link between the normal

‘‘asymptotically flat’’ hR;Fuu and its Lorenz-gauge counter-

part hR;Luu . The issue was discussed in Refs. [16,36], and we
recall here the end result.
A simple gauge transformation away from Lorenz into

a corresponding asymptotically flat gauge is obtained by
rescaling the Lorenz-gauge time coordinate tL using

tF ¼ ð1þ �ÞtL; (13)

with

� ¼ q
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p : (14)

This defines an F-gauge with metric perturbation given
[through OðqÞ] by
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hF00ðrÞ ¼ hL00ðrÞ þ 2�

�
1� 2m2

r

�
; (15)

with hF�� ¼ hL�� for all other components. Since the gauge

transformation relating hF�� to hL�� is regular, the corre-

sponding regularized fields hR;F�� and hR;L�� are related to one

another in just the same way (this comes from a general
result derived in Ref. [39]). Evaluating on them1 worldline
and contracting twice with the four-velocity, one then finds

hR;Fuu ¼ hR;Luu þ 2�

�
1� 2m2

r

�
ðut1Þ2; (16)

which reads explicitly [using ðut1Þ2 ¼ ð1� 3xÞ�1 þOðqÞ]

hR;Fuu ¼ hR;Luu þ 2q
xð1� 2xÞ
ð1� 3xÞ3=2 : (17)

Inserting Eq. (17) into Eq. (12) finally leads to an expres-

sion for z1ðxÞ in terms of hR;Luu :

z1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p �
1� 1

2
hR;Luu � q

xð1� 2xÞ
ð1� 3xÞ3=2 þ q

x

1� 3x

�
:

(18)

In the above expressions we have not specified the argu-

ment in terms of which hR;Guu should be expressed, or—

more precisely—the specific orbit along which hR;Guu should
be evaluated. The explicit GSF computations presented

below actually give hR;Luu along an unperturbed, geodesic
orbit, parametrized by the unperturbed Schwarzschild-
radius variable m2=r. However, to leading order in q we
have m2=r ¼ yþOðqÞ ¼ xþOðqÞ, so that in Eqs. (12)

and (18) we can simply replace hR;Guu ðm2=rÞ ! hR;Guu ðxÞ [as,
of course, hR;Guu itself is alreadyOðqÞ and in our analysis we
ignore terms of Oðq2Þ or higher].

Finally, we note that hR;Guu describes a purely conserva-
tive effect of the GSF (even though in practice we shall

extract hR;Guu from the retarded metric perturbation). To see

this, it is enough to recall Eq. (8), which relates hR;Guu to the

time-symmetric function ut1ð�Þ. The property that hR;Guu

encodes a purely conservative piece of the GSF is unique
to circular orbits, and it does not carry over to (e.g.,)
eccentric orbits; cf. Ref. [40].

B. Mode-sum computation of hR;L
uu

Our method follows closely the standard strategy of
mode-sum regularization [1,41,42]. As, in this section,
we work only with the Lorenz-gauge perturbation we shall
drop, for concision, the extra label L on h��. We begin by

writing hR�� ¼ h�� � hS��, where h�� is the full (retarded)

Lorenz-gauge metric perturbation associated with the mass
m1, and hS�� is the locally defined Detweiler-Whiting

Singular field (‘‘S field’’) [35]. Both h�� and hS�� diverge

at the particle, but their difference hR�� is perfectly smooth.

We formally construct the fields huu � h��û
�
1 û

�
1 and

hSuu � hS��û
�
1 û

�
1 , where û�1 is any smooth extension of

the four-velocity u�1 off the particle’s worldline (so that
û�1 ¼ u�1 on the worldline itself). We then consider the
formal decomposition of the fields huuðt; r; �; ’Þ and
hSuuðt; r; �; ’Þ in scalar spherical harmonics Ylmð�;’Þ,
defined as usual on the spherically symmetric

Schwarzschild background, and we let hluuðrÞ and hS;luuðrÞ
denote the individual l-mode contributions to the respec-
tive fields, summed over m for fixed l, and evaluated at the
particle [i.e., in the limit r ! rparticleðtÞ]. As shown in

Appendix D of Ref. [40], the particle limit in the above
procedure is well-defined, and the resulting values hluuðrÞ
and hS;luuðrÞ are finite and do not depend on the direction
(upwards or downwards) from which the limit r !
rparticleðtÞ is taken. We thus have

hRuuðrÞ ¼
X1
l¼0

ðhluuðrÞ � hS;luuðrÞÞ; (19)

where it should be noted that while each of the individual

l-mode sums
P

lh
l
uu and

P
lh

S;l
uu would be divergent, the

mode sum of the difference
P

lðhluu � hS;luuÞ converges
exponentially fast (because the difference h�� � hS�� is a

smooth function). We also note that the individual l-mode

contributions hluu and hS;luu depend on the off-worldline
extension chosen for u�1 , while the sum over modes in
Eq. (19) is, of course, extension-independent.
The formulation of the l-mode method proceeds by

obtaining an analytic description of the large-l behavior

of hS;luu. Reference [22] (see also Ref. [40]) obtained the
asymptotic form (as l � 1)

hS;luuðrÞ ¼ D0ðrÞ þOðl�2Þ; (20)

whereD0ðrÞ is an l-independent parameter depending only
of the orbital radius r:

D0ðrÞ ¼ 4m1ZðrÞ
�r

EllipKðwðrÞÞ; (21)

with

ZðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3m2

r� 2m2

s
; wðrÞ ¼ m2

r� 2m2

; (22)

and with EllipKðwÞ ¼ R�=2
0 ð1� wsin2xÞ�1=2dx denoting

the complete elliptic integral of the first kind. [The

large-l behavior of hS;luu was analyzed in Ref. [40] for
generic (stable) eccentric orbits, and we specialize the
expressions obtained there to circular orbits: the validity
of these analytic results for r < 6m2 will be discussed
below.] It was found [40] that the asymptotic value D0

does not depend on the u�-extension involved in the defi-

nition of the modes hS;luu. Furthermore, it was found that (for
any such extension)
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X1
l¼0

ðhS;luuðrÞ �D0ðrÞÞ ¼ 0: (23)

This allows us to write Eq. (19) in the form

hRuuðrÞ ¼
X1
l¼0

ðhluuðrÞ �D0ðrÞÞ; (24)

which is an operational mode-sum formula for hRuu, describ-
ing the correct mode-by-mode regularization of the fields
hluu. The latter are to be provided as input, typically in the
form of numerical solutions to the mode-decomposed
Lorenz-gauge metric perturbation equations with suitable
‘‘retarded’’ boundary conditions (details of our particular
numerical implementation are provided below).

Since the mode sum in Eq. (19) converges faster than
any power of 1=l, it follows that the retarded modes too
must have the asymptotic form hluuðl � 1Þ ¼ D0 þ
Oðl�2Þ. Thus, in general, we expect the partial mode sum
in Eq. (24) to converge with a slow power law �l�1 (and

this was indeed confirmed numerically in Ref. [40]). This
is problematic from the practical point of view, and
restricts the accuracy within which hRuu can be computed.
As emphasized notably in Ref. [22] the problem can be
mitigated by including higher-order terms in the large-l

expansion of hS;luu. Recently, Heffernan et al. [43] were able
to obtain analytic expressions for a couple of these:

hS;luuðrÞ ¼ D0ðrÞ þD2ðrÞ
L2

þD4ðrÞ
L4

þOðl�6Þ; (25)

where [22,44] L2 � ðl� 1
2Þðlþ 3

2Þ, L4 � ðl� 3
2Þðl� 1

2Þðlþ 3
2Þðlþ 5

2Þ, and where the l-independent (but

r-dependent) coefficients D2;4 are given by

D2ðrÞ ¼ m1

2�r2ZðrÞ
��

7r2 � 61m2rþ 96m2
2

r� 2m2

�
EllipKðwðrÞÞ

� ð7r� 33m2ÞEllipEðwðrÞÞ
�
; (26)

D4ðrÞ ¼ 3m1

160�r3ZðrÞðr� 3m2Þ2

	
��

30r5 � 2683m2r
4 þ 30741m2

2r
3 � 131855m3

2r
2 þ 241905m4

2r� 160530m5
2

r� 2m2

�
EllipKðwðrÞÞ

� 2

�
15r5 � 1469m2r

4 þ 13990m2
2r

3 � 56858m3
2r

2 þ 106395m4
2r� 71385m5

2

r� 3m2

�
EllipEðwðrÞÞ

�
; (27)

withEllipEðwÞ ¼ R�=2
0 ð1� wsin2xÞ1=2dx denoting the com-

plete elliptic integral of the second kind. [The expressions in
Ref. [43] were derived for generic (stable) bound geodesics,
and we specialize them here to circular orbits.] It is important
to note that the values of the subleading parameters D2 and
D4, unlike that ofD0, do depend on the off-worldline exten-
sion of u�1 . The above values correspond to the particular
extension û�1 � u�1 (in Schwarzschild coordinates), i.e., an
extension in which the contravariant Schwarzschild compo-
nents of the field û�1 are taken to have the constant values u�1
everywhere.This is a practically useful extension andwe shall
refer to it as the ‘‘constant’’ extension.

The l-dependent factors in Eq. (25) have the important
property (first exploited in Ref. [44] in the context of the
scalar-field self-force)

X1
l¼0

1

L2

¼ 0;
X1
l¼0

1

L4

¼ 0; (28)

which allows us to recast the mode-sum formula (24) in the
more useful form

hRuuðrÞ ¼
X1
l¼0

�
hluuðrÞ �D0ðrÞ �D2ðrÞ

L2

�D4ðrÞ
L4

�
: (29)

Once again, since the sum in Eq. (19) converges faster than

any power of 1=l, we have that hluu and hS;luu must share the
same asymptotic power-law expansion (25), with the same

coefficients Dn (as long as hluu is defined and computed
using the above ‘‘constant’’ u�1 -extension). Therefore, we
expect the revised mode-sum formula (29) to converge like
�l�5—significantly faster than the original mode sum (24).
This will be confirmed numerically below. The fast-
converging mode-sum formula (29) forms the basis for our
numerical implementation in this work.

C. Behavior of the mode sum near the light ring

The results presented in the previous subsection were
derived in Refs. [40,43] for stable geodesic orbits. However,
all of these results, and in particular the formof themode-sum
formula (29) and the values of the parametersDn, are equally
applicable for circular (timelike) geodesics below the ISCO.
Subtleties begin tomanifest themselves onlywhen the orbit is
sufficiently close to the LR at r ¼ 3m2. There, the orbit
becomes asymptotically null and beaming-type effects distort
the usual l-mode distribution, potentially enhancing the rela-
tive contribution of higher multipoles [see, e.g., Davis et al.
[45], but note that their analysis concerns the distribution at
infinity of tensorial-harmonic modes, while ours involves
scalar-harmonic modes near them1 worldline of the particu-
lar (extension-dependent) contraction huu].
That the l-mode behavior becomes subtle near the LR is

evident from the asymptotic form of the parameters Dn.
Defining z � 1� 3m2=r we find
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D0ðz� 1Þ¼�2qz1=2 lnð3z=16Þffiffiffi
3

p
�

þOðz3=2 lnz;z3=2Þ; (30)

D2ðz � 1Þ ¼ 2qz�1=2½1þ lnð3z=16Þ�
3

ffiffiffi
3

p
�

þOðz1=2 lnz; z1=2Þ;

(31)

D4ðz � 1Þ ¼ 32q

405
ffiffiffi
3

p
�
ðz�7=2 þ 13z�5=2Þ

þOðz�3=2 lnz; z�3=2Þ: (32)

This suggests that successive terms in the l-mode series
become increasingly more singular in 1=z. Even though it
is not possible to predict the leading-order singular behav-
ior of an arbitrary termD2n based only on the known terms
D0;2;4 (and this behavior may anyway depend on the exten-

sion), it is clear that the limits l ! 1 and z ! 0 are
not interchangeable, and that the mode-sum series (29)
becomes ill-convergent near the LR. For any given 0<
z � 1, we expect the series to start showing the standard

power-law convergence only for l * ~lðzÞ, where ~lðzÞ is
some monotonically increasing function of 1=z, with
~lðzÞ ! þ1 for z ! 0þ. Our numerical experiments con-

firm these expectations and suggest ~lðzÞ / 1=z—see Fig. 1.
The evident broadening of the l-mode spectrum near the

LR is problematic from the practical point of view: at a

given z, one must compute at least ~lðzÞ modes in order to
reach the power-law ‘‘tail’’ regime where the series begins
to converge, and this quickly becomes computationally
prohibitive as z gets smaller. Assuming the empirical scal-

ing ~l / 1=z holds, we find that at least�1=zmodes must be
calculated. Current codes cannot in practice compute more
than a hundred or so modes, which, a priori, restricts the
reach of our analysis to z * 0:01.

We should comment, in passing, about a more funda-
mental issue. Strictly speaking, for any (small) nonzero
value of the mass ratio q, the GSF approximation itself
ceases to be meaningful sufficiently close to the LR at
z ! 0. This is because, for a given q, there are sufficiently
small values of z for which the mass-energy of the small
particle becomes comparable to that of the large black
hole, at which point perturbation theory clearly breaks
down and the notion of GSF is no longer useful.
However, reversing the argument, it is also true that we
can make the GSF approximation valid arbitrarily close to
the LR simply by taking q to be sufficiently small. Thus,
GSF calculations (and ours in particular) can be used to
explore the geometry arbitrarily close to the LR.

D. Raw numerical data for hR;L
uu

We computed hR;Luu for a dense sample of orbital radii in the
range 3m2 < r � 150m2 using two independent numerical
codes. The first code, presented in Ref. [20], is based on a

direct time-domain integration (in 1þ 1 dimensions) of the
metric perturbation equations in the Lorenz gauge. The sec-
ond code employs a newer algorithm based on a frequency-
domain treatment of theLorenz-gauge perturbation equations
[46]. Each code takes as input the orbital radius r, and returns

the value hR;Luu ðrÞ computed via the mode-sum formula (29).
We typically compute numerically the contributions from the
modes 0 � l � 80, confirm the expected l�6 falloff of the
regularized modes (see Fig. 1), and analytically fit a power-
law tail to account for the remaining modes 81 � l <1.
Note that the observed l�6 behavior comes as a result of a
delicate cancellation of as many as six terms in the 1=l
expansion of the unregularized modes huuðrÞ [i.e., the terms
ofOðl0Þ throughOðl�5Þ]. It thus provides an excellent cross-
validation test for both our numerical computation and the
analytical parameter values derived in Ref. [43].
The new, frequency-domain, Lorenz-gauge algorithm

offers significant computational savings as it only involves
solutions of ordinary differential equations, and since, in
our circular-orbit case, the spectrum of the perturbation
fields is trivial (it contains only one frequency for each
azimuthalm-mode). This is a crucial improvement, because
self-force calculations in the time domain are extremely
computationally intensive. The new, frequency-domain
code allows us to obtain very accurate results at relatively
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FIG. 1 (color online). Broadening of the l-mode spectrum near
the LR, z ¼ 1� 3m2=r ¼ 0. We plot here the (absolute values
of the) regularized modes hluu�D0�D2

L2
�D4

L4
[see Eq. (29)] for

0 � l � 80, for a range of radii on and below the ISCO. Solid
curves refer to (top to bottom) z¼0:005;0:025;0:05;0:1; and0:5.
The dashed lines are arbitrary / l�6 references. Away from the
LR, the regularized modes are expected to fall off at large l with
an �l�6 tail, as is clearly manifest in the case z ¼ 1=2 (the
ISCO, lower curve). As the radius gets closer to the LR, the onset
of the l�6 tail shifts to larger l-values, with the standard tail not
developing until around l� 1=z (the regularized mode contri-
butions turn from negative to positive around that value of l). In
the near-LR case z ¼ 1=200 (upper curve) no transition to a
power law is evident below l ¼ 80. How these data are obtained
is described in Sec. II D.

AKCAY et al. PHYSICAL REVIEW D 86, 104041 (2012)

104041-8



small computational cost. Nonetheless, we have also used
our time-domain code to check (with lower accuracy) many
of our data points.

Our raw numerical data for hR;Luu ðxÞ, which form the basis
for our analysis, are presented in the Appendix. The data
for x > 1=5 are new, while our data for x < 1=5 are much
improved in accuracy, and more finely sampled, compared
to previous results [22,36]. For most data points the
fractional accuracy of our data is around�10�10, decreas-
ing to �10�9 at large r and to �10�3 very near the LR.
(The results of Ref. [25], obtained by a frequency-domain,
Regge-Wheeler-gauge method, are more accurate than
ours, but the data shown in that paper are restricted to the
weak-field domain 1=500 � x � 1=200.)

Our hR;Luu data are plotted in Fig. 2 as a function of x. The

inset, showing hR;Luu as a function of z ¼ 1� 3x on a log-
log scale, suggests the near-LR power-law behavior

hR;Luu ��q

2
	z�3=2 as z ! 0; with 	 � 1: (33)

We will return to discuss the LR behavior in detail in
Sec. VII.

III. DETERMINING THE EOB POTENTIAL aðxÞ
BELOW THE ISCO

A. aðxÞ from hR;F
uu or hR;L

uu

Barausse, Buonanno and Le Tiec [24] (using the pre-
vious results of Le Tiec et al. [21,23]) have derived a

simple link between the Oð�Þ piece zSFðxÞ of the function
z1ðxÞ, defined through

z1ðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p þ �zSFðxÞ þOð�2Þ; (34)

and the Oð�Þ piece aðuÞ of the EOB function Aðu;�Þ,
defined through

Aðu;�Þ ¼ 1� 2uþ �aðuÞ þOð�2Þ; (35)

namely

aðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
zSFðxÞ � x

�
1þ 1� 4xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

�
: (36)

Let us clarify that in Eq. (36) we regard að
Þ and zSFð
Þ as
functions, with x merely denoting a ‘‘dummy’’ argument.
We could as well have written (36) using the natural
notation for the EOB argument of the function að
Þ, namely

aðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p
zSFðuÞ � u

�
1þ 1� 4uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3u
p

�
: (37)

In the following, we shall freely alternate between using x
or u as independent variables for the function að
Þ. Note
that the two physical variables x and u satisfy the
functional relation xðuÞ ¼ uþOð�Þ (see below), so that
Eqs. (36) and (37) would anyway have the same content (at
leading order in �) even if we interpret the arguments x and
u as physical variables.
Putting together the definition (34) of zSFðxÞ and the

previous links (12) and (18) between the redshift function
z1ðxÞ and the metric perturbations, we have the following
relations between zSFðxÞ and the two types of metric per-
turbations (Flat or Lorenz):

zSFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p �
� 1

2
~hR;Fuu þ x

1� 3x

�
; (38)

zSFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p �
� 1

2
~hR;Luu � xð1� 2xÞ

ð1� 3xÞ3=2 þ
x

1� 3x

�
:

(39)

Here, the tilde over hR;Guu indicates that one has factored out
the mass ratio q ¼ �þOð�2Þ:

~hR;Guu � q�1hR;Guu : (40)

Finally, inserting Eq. (38) or Eq. (39) into Eq. (36) yields,
respectively,

aðxÞ ¼ � 1

2
ð1� 3xÞ~hR;Fuu � x

1� 4xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p ; (41)

aðxÞ ¼ � 1

2
ð1� 3xÞ~hR;Luu � 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
: (42)

Note in passing that some cancellations took place when

replacing zSFðxÞ in terms of either ~hR;Fuu ðxÞ or ~hR;Luu ðxÞ.
In particular, when relating aðxÞ to the Lorenz-gauge
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FIG. 2 (color online). Our raw numerical data for the Lorenz-
gauge quantity hR;Luu ðxÞ (blue data points; the solid line is an
interpolation). The numerical values are tabulated, with error
bars, in the Appendix. Note in the main plot the orbital radius
increases to the left; the locations of the geodesic ISCO (x ¼
1=6) and LR (x ¼ 1=3) are marked with vertical dashed lines.
The inset shows the same data (in absolute value) plotted against
z ¼ 1� 3x on a double logarithmic scale (note here the orbital
radius increases to the right, and the LR limit is z ! 0 asymp-
totically far to the left). The dashed (magenta) line is a simple
power-law model hR;Luu �� q

2 z
�3=2.
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perturbation ~hR;Luu , the single ‘‘extra’’ term that remains (the

one not involving ~hR;Luu ) has the property of tending towards
zero at the LR limit (x ! 1

3 ), while the corresponding extra

term in Eq. (41) tends to infinity in that limit. We will come
back later to a deeper discussion of the physics near the LR.

B. The ‘‘doubly rescaled’’ function âEðxÞ
Using Eq. (42) and our numerical results for ~hR;Luu ðxÞ, one

obtains a dense sample of numerical values for aðxÞ over the
entire range 0< x < 1

3 . Our goal now is to obtain a global

analytic fit formula that faithfully represents this relation.
The function aðxÞ itself varies rapidly at both ends of the

above domain (just like ~hR;Luu in Fig. 2): as we discuss
below, aðxÞ vanishes fast at x ¼ 0 and blows up at x ¼
1=3. Rather than fitting directly for aðxÞ, it is more conve-
nient to fit for a new function, constructed from aðxÞ
by ‘‘factoring out’’ suitable terms representing the
leading-order behavior at both ends of the domain, so
that the resulting ‘‘rescaled’’ function is relatively slowly
varying over the entire domain.

Let us first consider the behavior near x ¼ 0.
Information from PN theory determines the form of aðxÞ
in this weak-field regime. References. [4,16,24,25,47,48]
obtained the expansion

aPNðxÞ ¼
X1
n¼3

ðan þ alnn ln xÞxn; (43)

where aln, and the first few nonzero coefficients that can be
determined analytically from available PN expressions are

a3 ¼ 2; a4 ¼ 94

3
� 41�2

32
;

aln5 ¼ 64

5
; aln6 ¼ � 7004

105
:

(44)

Note that the leading-order (Newtonian) behavior is aðxÞ �
2x3, and that logarithmic running first appears at Oðx5Þ.
A fewmore, higher-order coefficients in the expansion (43)
were obtained numerically in Ref. [24] by fitting to the
accurate large-radius GSF data of Refs. [25,47]:

a5 ¼ þ23:50190ð5Þ; a6 ¼ �131:72ð1Þ;
a7 ¼ þ118ð2Þ; aln7 ¼ �255:0ð5Þ;

(45)

where in each case a parenthetical figure indicates the
estimated uncertainty in the last decimal place. Let us
introduce the notation âðxÞ to denote the normalization of
the function aðxÞ using the leading-order PN term, i.e.,

âðxÞ � aðxÞ
2x3

; (46)

so that âð0Þ ¼ 1.
Consider next the behavior near the LR, xLR ¼ 1

3 . This

behavior has not been studied so far, neither numerically, nor
analytically. Note, however, that Ref. [23] has remarked that
the extrapolation beyond x ¼ 1

5 of a five-parameter fit to 55

data points (ranging between x ¼ 0 and x ¼ 1
5 ) for zSFðxÞ

indicated the possible presence of a simple pole zSFðxÞ �
ðx� xpoleÞ�1 located near the LR. (Their fit yields xpole �
0:335967, which is slightly beyond the LR.) In this work,
we study the behavior near x ¼ 1

3 both numerically and

analytically. We have already mentioned that our data sug-
gest the scaling relation (33) (which corresponds to a simple
pole in zSFðxÞ located exactly at the LR). Combined with
Eq. (42), this suggests the leading order divergent behavior

a

�
x ! 1

3

�
� 	

4
ð1� 3xÞ�1=2; (47)

where, recall, the ‘‘fudge’’ factor 	 is � 1. We will discuss
the analytical origin of this asymptotic behavior in Sec. VII
below.
Equation (47) suggests that it would be convenient to

further normalize the function âðxÞ by a factor ð1� 3xÞ�1=2.
However, as will be further discussed below, there is a more
physically motivated normalization: we recall that the con-
served specific energy associated withm1 as it moves along
a circular geodesic orbit in the Schwarzschild background
of m2 is given by

EðxÞ ¼ 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p ; (48)

which has the same type of divergent behavior as aðxÞ for
x ! 1

3 (but is regular elsewhere). We hence choose to use E

for our second normalization. Let us introduce a notation
whereby a sub-index E denotes normalization with respect
to EðxÞ; in particular,
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FIG. 3 (color online). Numerical data for the doubly rescaled
function âEðxÞ [see Eq. (50)]. The solid line is a cubic inter-
polation of the numerical data points (beads). The inset shows,
on a semilogarithmic scale, the relative numerical error in the âE
data, computed based on the estimated errors tabulated in the
Appendix. Note that the relative error is between 10�8 and 10�10

over most of the domain, and it never exceeds 10�5 (except at a
single point, closest to the LR, where it is �0:1%).
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aEðxÞ � aðxÞ
EðxÞ : (49)

Note aEð1=3Þ � 3
4 	 .

Let us finally introduce the ‘‘doubly rescaled’’ function

âEðxÞ � aðxÞ
2x3EðxÞ ; (50)

which attains finite, nonzero values at both ends of the
domain 0 � x � 1

3 , namely âEð0Þ ¼ 1 and âEð1=3Þ � 81
8 	 .

Our numerical data set for âEðxÞ is plotted in Fig. 3.
Evidently, the function âEðxÞ is monotonically increasing
and convex over 0 � x � 1

3 .

C. Accurate global analytic model

We have explored a large set of global analytic models
for the function âEðxÞ. In each case we used a least-squares
approach, i.e., given the data (sampled at a discrete set
x1; x2; 
 
 
 of x values), together with an estimate of the
corresponding standard data errors
dataðxiÞ, we minimized
(using MATHEMATICA’s function NONLINEARMODELFIT[])
the standard �2 statistic

�2ðparametersÞ ¼ X
i

�
dataðxiÞ �modelðxi; parametersÞ


dataðxiÞ
�
2

(51)

over the model parameters to determine the best-fit
parameters. In addition, we evaluated the faithfulness of
the fit by recording the minimum value of �2: �2

min ¼ �2

(best-fit parameters). If numerical errors were normally
distributed without a systematic bias (which we assume
here), and if the model were ‘‘true’’, then we would expect
�2
min to equal approximately the number of degrees of

freedom (DOF) in our model. As a second measure of
the fit quality we also considered the norm kafitE �
adataE k1, i.e., the maximal absolute difference between the
best-fit model and the data over all data points. We are
using here aEðxÞ [rather than aðxÞ or âEðxÞ] because this is
the relevant quantity entering the EOB expressions, as we
discuss in Sec. VII below.
We report here some of our results, and present two

selected models: a 16-parameter high-accuracy model
with �2=DOF of order unity; and (in the following sub-
section) a simpler, eight-parameter model, which is less
accurate (has a very large �2 value) but has a sufficiently
small norm kafitE � adataE k1 to be useful in some foreseeable
applications.
Let us focus, for ease of presentation, on the following

restricted class of analytic models, which employ a Padé-
like approximant for âE:

â fit
E ¼ 1þPp

i¼1ðci þ c
log
i lnxÞxi þ x3z lnjzjðcz0 þ c

log
z0 lnjzj þ cz1zÞ

1þPq
j¼1 djx

j : (52)

Here p � 3 and q � 1 are constant integers (see below),
and fci�2; c

log
i�4; di; cz0; c

log
z0 ; cz1g are the model parameters

to be fitted. The first few c parameters are constrained so as
to reproduce all analytically available PN information:

c1 ¼ 97

6
� 41�2

64
þ d1; c

log
1 ¼ 0;

clog2 ¼ 32

5
; clog3 ¼ � 3166

105
þ 32

5
d1:

(53)

We do not constrain the remaining parameters to agree
with the additional PN information available through a
numerical fit [Eq. (45)], but rather allow our model to
‘‘re-fit’’ some of these high-order PN terms. We find, in
general, that this leads to improved global fits.

Our model family âfitE ðxÞ is designed (heuristically) to
capture all global features of âEðxÞ from x ¼ 0 down
through the LR and (potentially) beyond. We use a Padé-
type expansion in x (with logarithmic running terms),
augmented with z-dependent terms which are aimed at
capturing the behavior near the LR. The latter terms are
multiplied by x3 to suppress their support in the weak field,
where the known PN behavior should apply (we have tried
various powers of x and found that x3 generally works
best).

The form of the z-dependent terms in (52) is motivated
as follows. We have initially experimented with simple
polynomials in z (without logarithmic terms), but found
that these always yielded best-fit models that possessed
poles (singularities) immediately behind the LR (i.e., just
above x ¼ 1

3 ). This suggested to us that the true function

âEðxÞ has a remaining nonsmoothness at x ¼ 1
3 , and the

form of the function suggested a weakly divergent deriva-
tive. In our model family (52) we have attempted to
represent this type of nonsmoothness with a term of the
form �z lnjzj, which indeed seemed to have the effect of
removing the undesired pole. To allow more freedom in
fitting the correct LR behavior we have added a few higher-
order terms in z and lnjzj. We experimented with a large
variety of such higher-order term combinations, and found
that the form shown in (52) worked well (while minimizing
the number of extra model parameters).
Each member of our model family âfitE ðx;p; qÞ has 2pþ

q� 1 fitting parameters. In Table II we show fitting results
for a variety of p, q values (and also for models in which
we remove some of the lnx terms). For each fitting model
we compute the �2 statistic using as weights the estimated
numerical errors from Tables VIII and IX. For each best-fit
model we also display in Table II the value of the norm
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kafitE � adataE k1. Some of the models presented in Table II
have remaining poles on x > 1=3, and we indicate in the
table the location of the first pole below the LR if any
occurs. Finally, the table shows the predicted value of the
fudge factor 	 for each of the models.

The data in Table II suggest that, at least within the
model family (52), one cannot obtain a good fit for âEðxÞ
with just a handful of model parameters. At least 14
parameters are needed to achieve �2=DOF� 1000 and at
least 16 for �2=DOF< 10. However, the value of �2=DOF
becomes saturated at around 3 or 4 for * 16 parameters,
and does not decrease much further upon adding extra
parameters (this may indicate that our quoted numerical
errors 
i are slightly too optimistic, consistent with our
estimated factor�2 uncertainty in the values of the quoted

i; see Appendix). We have experimented with several
other model families but were not able to achieve
�2=DOF values of order unity with less than 16 parameters.

We choose to present here the accurate 16-parameter
model highlighted in Table II (model #14), which has

�2=DOF ¼ 4:77 and kafitE � adataE k1 ¼ 1:97	 10�5.
Some of the other models in the table have slightly lower
values of �2=DOF but in all such cases the models are
more complicated (have more parameters) and, more
importantly, they present undesired poles below the LR.
The best-fit parameters for our selected model are shown in
Table III. Note that we are giving the parameter values
accurate to many decimal places: this accuracy is neces-
sary for our model to reproduce the data down to the level
of the numerical noise, which is generally as small as
10�9–10�10 (fractionally). We have checked that all deci-
mal figures shown are significant, in the sense that omitting
any of the figures would result in �2=DOF values larger
than 4.77.
Figure 4 shows a performance diagnostic for our

selected model. From the left panel it is evident that our
model for aEðxÞ reproduces most data points to within
mere differences of 10�10–10�12. Larger differences
appear only at x * 0:3, in which domain our data is less
accurate. The right panel compares the difference between

TABLE II. Model fitting for the doubly rescaled function âEðxÞ. Each row describes best-fit results for the model âfitE ðxÞ given in
Eq. (52), with particular values of p and q: in some of the models we have eliminated some of the fitting parameters, as indicated in the

fourth column. [In the last row we show best-fit results for the model â
fit;simp
E ðxÞ given in Eq. (54), to be discussed in Sec. III D below].

The fifth column shows the total number of fitting parameters for each model, and the sixth columns displays the value of �2=DOF for
the best fit parameters. In the seventh column we show the maximal difference between the model (with the best fit parameters) and the
data, for the physically relevant quantity aEðxÞ � aðxÞ=EðxÞ. In the penultimate column we indicate the location of the first pole of
âfitE ðxÞ [which is the same as for afitE ðxÞ or afitðxÞ]. The last column presents the value of the fudge factor 	 ¼ 4

3 aEð1=3Þ [see Eq. (47)], as
predicted by each of the best-fit models. Highlighted in boldface are values for the two selected models (#14 and #24) whose
parameters are given, respectively, in Tables III and IV below.

Fit model [Eq. (52)]

Model # p q Parameters set to zero # Model parameters �2=DOF kafitE � adataE k1 Pole? 	

1 4 4 c
log
4 10 4:45	 106 1:62	 10�2 
 
 
 0.991785

2 
 
 
 11 6:71	 104 4:01	 10�3 
 
 
 1.00984

3 4 5 c
log
4 11 3:81	 104 2:65	 10�4 
 
 
 1.00791

4 
 
 
 12 2:81	 103 1:46	 10�4 
 
 
 1.00192

5 5 5 c
log
4 , c

log
5 12 5:55	 103 4:53	 10�5 
 
 
 1.00408

6 clog5 13 2:79	 103 1:37	 10�4 
 
 
 1.00214

7 
 
 
 14 1:52	 103 1:48	 10�4 x � 0:45 0.999680

8 5 6 c
log
5 14 1:83	 103 1:41	 10�4 
 
 
 1.00137

9 
 
 
 15 1:03	 103 1:98	 10�4 x� 0:35 0.988620

10 6 7 c
log
4 , c

log
5 , c

log
6 15 19.2 1:12	 10�6 
 
 
 1.00750

11 c
log
5 , c

log
6 16 9.97 1:08	 10�5 x � 0:42 1.00536

12 c
log
6 17 3.37 2:52	 10�6 x � 0:375 1.00525

13 
 
 
 18 4:94 2:01	 10�5 
 
 
 1.00907

14 7 7 c
log
4 , c

log
5 , c

log
6 , c

log
7 16 4:77 1:97	 10�5 
 
 
 1:00899

15 c
log
5 , c

log
6 , c

log
7 17 3.08 3:81	 10�6 x � 0:36 1.00453

16 c
log
6 , c

log
7 18 3.03 5:81	 10�6 x � 0:35 1.00345

17 clog7 19 2.87 4:28	 10�6 x � 0:575 1.00968

18 
 
 
 20 2.93 2:62	 10�6 x � 0:58 1.00918

19 7 8 c
log
4 , c

log
5 , c

log
6 , c

log
7 17 4.79 1:79	 10�5 
 
 
 1.00882

20 c
log
5 , c

log
6 , c

log
7 18 3.04 5:71	 10�6 x � 0:35 1.00350

21 c
log
6 , c

log
7 19 3.01 5:46	 10�6 x � 0:35 1.00373

22 c
log
7 20 2.87 2:51	 10�6 x � 0:53 1.00775

23 
 
 
 21 2.87 2:16	 10�6 x � 0:5 1.00732

24 4 4 c
log
4 , c

log
z0 , cz1 8 1:08	 107 1:21	 10�5 x � 0:7 1:00554
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the model and the data with the estimated numerical error
in the data points. We observe that most data points are
reproduced by the model at the level of the numerical
noise, as desired.

In Fig. 5 we plot our selected model for âEðxÞ over the
entire domain 0< x< 1, showing how it extends beyond
the LR. We observe that the function âEðxÞ peaks closely
below the LR, then drops and changes its sign around x� 1

2

(the location of the event horizon in the background ge-
ometry). To assess the robustness of these features we have
also plotted in Fig. 5 the global extensions of a handful of
other models—all models from Table III with kafitE �
adataE k1 < 10�4 admitting a smooth behavior with no poles

below the LR. Remarkably, the above basic features seem
to be preserved: a peak right below the LR, followed by a
change of sign. The function âEðxÞ generally turns negative
at x values in the range�0:5–0:6 (more towards 0.5 for the
more accurate models). Note that the function aEðxÞ [as
well as aðxÞ itself] turns negative at precisely the same
location as âEðxÞ. Note also that aEðxÞ vanishes at the
proximity of x ¼ 1

2 despite having EðxÞ (which vanishes

at x ¼ 1
2 ) being factored out in its definition [recall

aEðxÞ � aðxÞ=EðxÞ]. This may (heuristically) point to a
rather rapid vanishing of aðxÞ at the horizon. Whether or
not the above features are indeed robust remains to be
verified.

FIG. 4 (color online). Faithfulness of the analytic best-fit model (52), with parameters as given in Table III. The left panel shows, on
a semilogarithmic scale, the magnitude of the absolute difference between the model and the data; we use here the variable aEðxÞ
[rather than âEðxÞ], which is the relevant one entering the EOB potential. The right panel shows (now on a linear scale) that same
difference divided by the estimated numerical error for each data point. For most data points the model reproduces the data down to the
level of our numerical noise.

TABLE III. Parameter values for the 16-parameter model highlighted in Table II. The model

belongs to the family (52), with c1 and c
log
1;2;3 constrained in accordance with (53) so as to impose

all PN information available analytically. This 16-parameter model has �2=DOF� 4:77 and it
reproduces all of our numerical data points for aEðxÞ to within an absolute difference of 1:97	
10�5. (The difference for most data points is actually much smaller—see Fig. 4.) All decimal
figures are significant, in the sense that removal of any figure would lead to �2=DOF> 4:77.

i ci c
log
i di

1 þ7:48610059021 0 �2:357850757006
2 �8:81722069138 þ 32

5 �1:889967139293
3 �227:6806641934 �45:2426257972 �109:86788081837
4 �1336:5402672986 0 þ535:45853874191
5 þ8044:588011262 0 �53:572041734
6 �5643:745303388 0 �3030:7781195456
7 �7744:83943928 0 þ4106:962599268

cz0 ¼ �32:8395937428

c
log
z0 ¼ �4:34430971904
cz1 ¼ �365:569972774
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D. Simpler global analytic model

In the above ‘‘high fidelity’’ 16-parameter model, the
maximum norm of differences kafitE � adataE k1 is deter-
mined by the data point nearest the LR, which is our least
accurate point. As can be seen from Fig. 4 (left panel),
removing just a few near-LR points from our sample would
result in a norm of a mere �10�10. This high standard of
accuracy may not be necessary for some applications.
Indeed, in designing analytical waveform templates for
comparable-mass binaries one usually has no reason to
require the model to be locally accurate at that level. It is
therefore both convenient and useful to have at hand a
simpler, less unwieldy model, which reproduces all
numerical data points to within a prescribed accuracy
(say, a fiducial & 10�5), but not necessarily to within the
(very high) accuracy of our numerical computation; in
other words, a model in which we relax the requirement
�2=DOF� 1 and replace it with an upper bound on the
norm kafitE � adataE k1.

Through experimentation, we were able to devise an
eight-parameter model with a norm as small as kafitE �
adataE k1 ¼ 1:2	 10�5 (that is, even slightly smaller than
the norm for our 16-parametermodel). Themodel is given by

â fit;simp
E ¼ 1þ c1xþ x2ðc2 þ c

log
2 lnxÞ þ x3ðc3 þ c

log
3 lnxÞ þ c4x

4 þ cz0x
4z lnjzj

1þ d1xþ d2x
2 þ d3x

3 þ d4x
4

; (54)

where c1 and clog2;3 are again PN-constrained as in Eq. (53),
and fc2; c3; c4; cz0; d1; d2; d3; d4g are eight independent
model parameters. The best-fit values of these parameters
are given in Table IV, and the residual differences between
the model and the data are plotted in Fig. 6. We see that the
model reproduces the numerical aEðxÞ data to within 10�7

for x & 0:28 and to within 10�6 for x & 0:32.
We note that the above simple model has a very large

value of �2=DOF (� 1:08	 107). Also, its behavior be-
yond the LR is problematic and rather different from that
shown in Fig. 5: the function âEðxÞ does not reach a maxi-
mum but instead grows monotonically with x and eventually

blows up at a pole located at x ¼ 0:695694 . . . (i.e., below
the background horizon). However, we emphasize, the
model reproduces all of the numerical data points for the
function aEðxÞ to within a maximal absolute difference of a
mere 1:2	 10�5 over the entire domain 0< x< 1

3 .

TABLE IV. Parameter values for the ‘‘simple’’ model (54).

The parameters c1 and c
log
1;2;3 are constrained in accordance

with Eq. (53), and the other eight parameters are found by model
fitting. This eight-parameter model reproduces all of our nu-
merical data points for aEðxÞ to within an absolute difference of
1:2	 10�5. All decimal figures are significant, in the sense that
removal of any figure would lead to a larger difference.

i ci c
log
i di

1 þ2:0154525 0 �7:82849889
2 �39:57186 þ 32

5 þ20:84938506
3 �24:30744 �80:254774 �20:5092515
4 þ103:93432 0 þ5:383192

cz0 ¼ þ10:22474

FIG. 5 (color online). Extension of our analytic âEðxÞ models
below the LR. The thick (blue) curve shows the behavior of our
selected model (#14 in Tables II and III) over the entire domain
0< x< 1. Other curves, labelled by model numbers from
Table II, show the behavior of other models for comparison.
Shown, from top to bottom at x ¼ 0:8, are models number 5, 8,
6, 4, 13, 14, 19 and 10.

FIG. 6 (color online). Performance of the simpler analytic
model (54), with the parameters given in Table IV. The plot
shows, on a semilogarithmic scale, the magnitude of the absolute
difference between the model and the numerical data for the
function aEðxÞ.
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E. PN limit of the global analytic models

It may be useful to study here the PN expansion of our
global models. Recall that in our treatment we have
imposed all PN information known analytically [Eq. (44)]
but refrained from imposing the numerical values of the
higher-order PN coefficients a5; a6; . . . [Eq. (45)] obtained
in Ref. [24] by fitting to large-radius numerical data from
Refs. [25,47]. We may now check how these numerically
specified high-order PN coefficients compare with the ones
entailed by our global analytic models. By considering the
PN expansion of our 16-parameter analytic model (#14),
we obtain, for the two leading coefficients,

a#145 ¼ 23:47267 . . . ½23:50190�;
a#146 ¼ �127:154 . . . ½�131:72�;

(55)

where in square brackets we recall the values fromRef. [24]
[Eq. (45) above]. Higher-order coefficients agree only in
sign: a#147 ¼ 701:092 . . . ½118� and aln. Similarly, our sim-
ple, eight-parameter model (#24) yields

a#245 ¼ 24:19028 . . . ½23:50190�;
a#246 ¼ �163:396 . . . ½�131:72�;

(56)

with a7 and aln agreeing much less well (and a7 not even
agreeing in sign).

It should come as no surprise that the values extracted
from our global fits differ from those obtained using large-r
data only, and that the discrepancy increases rapidly
with PN order. Our goal here was not to obtain accurate
values for the coefficients of the asymptotic PN series (as
in Refs. [25,47]) but rather to devise a globally accurate
model for the function aðxÞ. The latter goal could be
achieved more ‘‘economically’’ (i.e., with a simpler ana-
lytic model) by relaxing (and thus effectively re-fitting) the
values of some of the high-order PN coefficients.

Finally, comparing between the results of Eqs. (55) and
(56) provides a rough idea of the uncertainty within which
the values of PN parameters can be extracted from any
global fit. We see that, while different global models
roughly agree on the value of a5, they predict rather differ-
ent values for a6 (and for a7; a

ln). One should keep this
uncertainty inmindwhen comparing the ‘‘effective values’’
of the PN coefficients extracted from any single global fit.

IV. GSF CORRECTION TO THE ENERGYAND
ANGULAR MOMENTUM OF CIRCULAR ORBITS

A. Energy and angular momentum
in terms of aðxÞ and a0ðxÞ

Reference [23] has used the results of Ref. [21] to
derive links between the function zSFðxÞ, Eq. (34), and
the GSF corrections to the functions eðxÞ and jðxÞ, where
e � ðE �MÞ=� is the binding energy per unit reduced
mass, and j � J=ðM�Þ ¼ J=ðm1m2Þ is the rescaled total
angular momentum. Here E represents the (invariant) total

gravitational energy of the binary, as it is defined in PN or
EOB theories [49]. By inserting the link (36) between
zSFðxÞ and aðxÞ into their results one can derive the corre-
sponding links between ðeðxÞ; jðxÞÞ and the function aðxÞ.
However, we find it simpler, and conceptually more trans-
parent, to use (more general) known results from EOB
theory to directly derive the latter links. Let us start by
recalling some basic results from EOB theory of circular
orbits and its GSF expansion (see Ref. [16] for details).
The total energy E (including the rest mass contribution)

of a (circular) binary system is simply given by the value of
the EOB Hamiltonian H. Given the EOB main radial
potential Aðu;�Þ, it is easy to derive the exact link between
H and the EOB radial variable u ¼ M=rEOB. (This is done,
exactly as in the textbook treatments of circular orbits
around a Schwarzschild black hole, by extremizing an
effective potential; see below.) Before describing the result
of this extremization let us recall the explicit structure of
the EOB Hamiltonian: it is given by

Hðu; j; prÞ ¼ Mhðu; j; prÞ; (57)

with

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
(58)

and

Ĥeffðu; j; prÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðu;�Þ

�
1þ j2u2 þ p2

r

Bðu;�Þ þQðu; j; pr;�Þ
�s
;

(59)

where the second EOB potentialBðu;�Þ ¼ geffrr is related to
A and the potential �Dðu;�Þ mentioned above via

AB �D � 1:

Along circular orbits p2
r vanishes, as does Qðu; j; pr;�Þ

when one is working within the standard formulation of
the EOB Hamiltonian (see below for more details).
Circular orbits are obtained by extremizing the simple
effective potential Aðu;�Þð1þ j2u2Þ with respect to u, at
fixed j. This leads to the following relation (valid along
circular orbits) between j2 and u:

j2ðuÞ ¼ � A0ðuÞ
ðu2AðuÞÞ0 ¼ � A0ðuÞ

2u ~AðuÞ ; (60)

where a prime denotes differentiation with respect to u, and
we have introduced the shorthand notation

~AðuÞ � AðuÞ þ 1

2
uA0ðuÞ: (61)

[For notational brevity we hereafter ignore the � depen-
dence of Aðu; �Þ.] Note that Eq. (60) yields the simple
result
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1þ j2ðuÞu2 ¼ AðuÞ
~AðuÞ : (62)

Inserting the latter result into the effective Hamiltonian,
Eq. (59), yields yet another simple result:

ĤeffðuÞ ¼ AðuÞffiffiffiffiffiffiffiffiffiffi
~AðuÞ

q : (63)

At this stage Eqs. (60) and (63) give the exact functional
relations between u and the energy and angular momentum
of circular orbits. Note that the specific binding energy
e ¼ ðH �MÞ=� reads, in terms of the above notation,

e � H �M

�
¼ 1

�
ðh� 1Þ ¼ 1

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
� 1

�
:

(64)

In order to obtain the corresponding exact functional
relation between the frequency parameter x and e and j we
need to relate x to u. The latter link simply follows from the
general Hamiltonian equation � ¼ @H=@J, which explic-
itly reads (along circular orbits)

M�ðuÞ ¼ jðuÞu2AðuÞ
hðuÞĤeffðuÞ

: (65)

Squaring this result, and substituting from Eqs. (60) and
(63), yields the simpler looking relation

M2�2ðuÞ ¼
�
� 1

2

A0ðuÞ
h2ðuÞ

�
u3: (66)

Recalling the definition of x in Eq. (2), we simply have
ðM�Þ2 � x3 so that (66) yields the following exact link
between u and x:

xðuÞ ¼ u

�� 1
2A

0ðuÞ
h2ðuÞ

�
1=3

: (67)

Note that, up to this stage, we have made no approxi-
mation. In other words, given an explicit expression for the
main EOB potential Aðu;�Þ, one can, by using EOB theory,
write the exact functions eðuÞ, jðuÞ and xðuÞ along the
sequence of circular orbits. Note also that we are consid-
ering here the full sequence of stable or unstable circular
orbits. (See Ref. [16], and below, for the exact condition
defining the ISCO separating stable orbits from unstable
orbits.)

As, in this work, we are interested in GSF expansions
at order Oð�Þ ¼ OðqÞ, let us now expand the above results
in powers of �. Using Eq. (35), it is trivial to obtain
the functions eðuÞ and jðuÞ to order Oð�Þ in terms of the
function aðuÞ [see, e.g., Eq. (4.19) of Ref. [16] for the
expansion of jðuÞ]. However, an extra complication comes
from the need to also expand the function xðuÞ to order
Oð�Þ. This result was first obtained in Ref. [16], Eq. (4.21).
Here, we are mainly interested in the Oð�Þ inverse relation
uðxÞ, which reads [Eq. (4.22) in Ref. [16]]

uðxÞ ¼ x

�
1þ 1

6
�a0ðxÞ þ 2

3
�

�
1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1

�
þOð�2Þ

�
:

(68)

Finally, inserting (68) into the Oð�Þ expansions of eðuÞ
and jðuÞ leads to the following Oð�Þ expansions of the
composed functions eðuðxÞÞ and jðuðxÞÞ:
eðuðxÞÞ ¼ e0ðxÞ þ �½�EðxÞa0ðxÞ þ �EðxÞaðxÞ þ �EðxÞ�

� e0ðxÞ þ �eSFðxÞ; (69)

jðuðxÞÞ ¼ j0ðxÞ þ �½�jðxÞa0ðxÞ þ �jðxÞaðxÞ þ �jðxÞ�
� j0ðxÞ þ �jSFðxÞ; (70)

where

e0ðxÞ � 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1; (71)

j0ðxÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� 3xÞp ; (72)

and where the coefficients �E, �E, �E, �j, �j and �j are

given by

�EðxÞ ¼ � 1

3

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p ; (73)

�EðxÞ ¼ 1

2

1� 4x

ð1� 3xÞ3=2 ; (74)

�EðxÞ ¼ �e0ðxÞ 	
�
1

2
e0ðxÞ þ x

3

1� 6x

ð1� 3xÞ3=2
�
; (75)

�jðxÞ ¼ x�3=2�EðxÞ ¼ � 1

3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� 3xÞp ; (76)

�jðxÞ ¼ � 1

2

1

x1=2ð1� 3xÞ3=2 ; (77)

�jðxÞ ¼ � 1

3

1� 6x

x1=2ð1� 3xÞ3=2 	 e0ðxÞ: (78)

Note in passing that the relation de½uðxÞ� ¼ x3=2dj½uðxÞ�
holds exactly (and, in particular, at each order in �), and
implies many relations between the various coefficient
functions �E, �E, �E, �j, �j, �j. The simplest of these

relations is the link �EðxÞ ¼ x3=2�jðxÞ indicated above.

B. Global fits for the binding energy
and angular momentum

Equations (69) and (70) link the functions eSFðxÞ and
jSFðxÞ to the function aðxÞ and its derivative a0ðxÞ. Our
global analytic model (52) hence translates to global
analytic models for eSFðxÞ and jSFðxÞ. Since the resulting
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analytic expressions are quite cumbersome we will not
present them here, but instead content ourselves with a
plot of the results.

First, however, it is useful to consider the asymptotic
behavior of eSFðxÞ and jSFðxÞ at the two ends of the domain
0< x< 1

3 . In the weak-field regime x � 1, our models, of

course, reproduce the known PN behavior:

eSFðx � 1Þ ¼ 1

24
x2 þOðx3Þ; (79)

jSFðx � 1Þ ¼ 1

6
x1=2 þOðx3=2Þ: (80)

Near the LR, we use Eq. (47) in conjunction with (69) and
(70) to obtain

eSF

�
x ! 1

3

�
�

�
1

27
� 1

12
	

�
z�2 � � 5

108
z�2; (81)

jSF

�
x ! 1

3

�
�

�
1

3
ffiffiffi
3

p �
ffiffiffi
3

p
4

	

�
z�2 � � 5

12
ffiffiffi
3

p z�2; (82)

where we also used 	 � 1. Hence, both eSF and jSF are
expected to diverge quadratically in 1=z ¼ ð1� 3xÞ�1 at
the LR.

To plot our analytic models for the binding energy and
angular momentum it is convenient to introduce the
rescaled quantities

êSF � eSF 	 z2 	 ðx2=24Þ�1; (83)

ĵSF � jSF 	 z2 	 ð ffiffiffi
x

p
=6Þ�1; (84)

which attain the regular values êSFð0Þ ¼ ĵSFð0Þ ¼ 1 as

well as êSFð1=3Þ � �10 and ĵSFð1=3Þ � � 5
2 . The func-

tions êSFðxÞ and ĵSFðxÞ are plotted in Fig. 7. Inspecting the

plot, we note that both GSF corrections êSFðxÞ and ĵSFðxÞ
turn from positive in the weak field to negative in the strong
field. The transition occurs at x � 0:0247 (r � 40:49M)
for eSF and at x � 0:0435 (r � 22:99M) for jSF.

V. ACCURATE DETERMINATION OF THE Oð�Þ
CORRECTION TO THE ISCO FREQUENCY

Le Tiec et al. pointed out in Ref. [23] that the link
they had established between the functions eðxÞ and
zSFðxÞ provides an efficient method for calculating the
GSF-induced [Oð�Þ] shift in the value of the ISCO
frequency—an important strong-field benchmark. This
shift was first calculated in Ref. [17] (with a crucial gauge
correction introduced later in Ref. [16]) by analyzing
small-eccentricity perturbations of circular orbits. Full
details of this calculation (and a slightly more accurate
result) were presented in Ref. [20]. Le Tiec et al. suggested
calculating the ISCO shift by minimizing the binding
energy function eðxÞ. This seems potentially advantageous
from the computational point of view, because the function
zSFðxÞ [from which eðxÞ is determined] is derived from
GSF computations along the sequence of strictly circular
orbits. These are substantially simpler and less demanding
than GSF computations along eccentric orbits, even for the
small eccentricities considered in Refs. [17,20]. [However,
below we comment that Le Tiec et al.’s method is essen-
tially equivalent (computationally) to the second method
used in Refs. [17,20], in which the GSF is computed along
circular orbits with a certain fictitious source term contain-
ing derivatives of the particle’s energy-momentum.]
The calculation by Le Tiec et al. in Ref. [23], based on

the circular-orbit GSF data for r � 5m2 available to them
at the time, produced a value in full agreement with the
results of Refs. [16,17,20], and with a slightly improved
accuracy—see Table V. This agreement also lent support to
the assertion made in Ref. [21] that the link between eðxÞ
and zSFðxÞ is valid not only through 3PN order (as explic-
itly proven by them) but also in the strong-field regime.
Following Refs. [16,23], we parametrize the Oð�Þ ¼

OðqÞ correction to the ISCO frequency by the dimension-
less parameter C�, such that

FIG. 7 (color online). The GSF corrections to the binding
energy eðuðxÞÞ and angular momentum jðuðxÞÞ. We show here
the rescaled functions êSFðxÞ (lower curve) and ĵSFðxÞ (upper
curve) defined in Eqs. (83) and (84). The curves shown represent
the analytic functions obtained by inserting our global analytic
fit for aðxÞ, Eq. (52), into Eqs. (69) and (70).

TABLE V. Value of the parameter C� describing the GSF
correction to the ISCO frequency [see Eq. (85)]. Parenthetical
figures show the uncertainty in the last displayed decimals.

Source C�

Barack & Sago [17]; Damour [16] 1.2513(6)

Barack & Sago [20] 1.2512(4)

Le Tiec, Barausse & Buonanno [23] 1.2510(2)

This work 1.25101546(5)
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ðm1 þm2Þ�isco ¼ 6�3=2½1þ C��þOð�2Þ�; (85)

where �isco is the physical frequency of the ISCO, defined
with respect to an ‘‘asymptotically flat’’ time t, and where

6�3=2 is the dimensionless frequency of the unperturbed
(geodesic) ISCO around a Schwarzschild black hole.
Reference [16] obtained an analytical expression for C�

in terms of the values of aðxÞ and its first two derivatives at
the ISCO:

C� ¼ 3

2
að1=6Þ þ 1� 2

ffiffiffi
2

p
3

; (86)

where að1=6Þ denotes the combination (see next section)

a ð1=6Þ ¼ að1=6Þ þ 1

6
a0ð1=6Þ þ 1

18
a00ð1=6Þ: (87)

On the other hand, by considering the minimum of the
function eðxÞ, Ref. [23] obtained an analytical expression
for C� in terms of the values of the first two derivatives of
the redshift function zSFðxÞ at the ISCO:

C� ¼ 1

2
þ 1

4
ffiffiffi
2

p
�
1

3
z00SFð1=6Þ � z0SFð1=6Þ

�
: (88)

It is easily checked that the link (36) (found in Ref. [24])
between aðxÞ and zSFðxÞ transforms Eq. (86) into Eq. (88).

Our goal here is to obtain a more accurate value for C�

based on our new, improved GSF data. Given Eqs. (86) and
(87), this task amounts to accurately determining aðxÞ
and its first and second derivatives [or, equivalently, the

perturbation hR;Luu ðxÞ and its first and second derivatives] at
x ¼ 1

6 . We comment that in the method referred to as

second in Refs. [17,20] (which is modelled upon the
scalar-field analysis of Ref. [50]) one essentially also
requires the second derivative of the metric perturbation
from circular orbits, although in this method one derivative
is taken with respect to the field point (to construct the
GSF) and only the second is taken with respect to the
orbital radius (to consider the effect of a small-eccentricity
variation). From a computational point of view, we hence
expect both methods (Le Tiec et al.’s [23] and the second
method [17,20]) to perform at a roughly equivalent level.
Our improved accuracy in C� will come primarily from
using much more accurate numerical data based on the
efficient frequency-domain code of Ref. [46].

As a first attempt, we may simply use our global analytic
model(s) for aðxÞ to read off estimated values for að1=6Þ,
a0ð1=6Þ and a00ð1=6Þ, and hence for að1=6Þ and C�. For
example, our accurate 16-parameter model (#14 in
Table III) and simpler eight-parameter model (54) give,
respectively,

að1=6Þ ¼ 0:7958829 . . . ðusing model #14Þ;
að1=6Þ ¼ 0:7958860 . . . ðusing model #24Þ;

(89)

and

C� ¼ 1:2510153 . . . ðusing model #14Þ;
C� ¼ 1:2510199 . . . ðusing model #24Þ:

(90)

Both values of C� are consistent with the results of
Refs. [17,20,23]. However, placing an error bar on our
predictions for að1=6Þ and C� requires a more careful
analysis. Also, it is reasonable to expect that more reliable
values for að1=6Þ and C� could be extracted from local
analysis of the data near x ¼ 1

6 rather than relying on global

fits. We proceed by presenting such a local analysis.
First, let us give some consideration to the question of

the optimal functions for the local analysis near x ¼ 1
6 .

Naively, one may expect either aðxÞ or âEðxÞ [or aEðxÞ, or
even zSFðxÞ itself] to be equally suitable for a local fit near
the ISCO, because all these functions are perfectly regular
there. However, one should recall that the rate of conver-
gence of the Taylor expansion in x� 1

6 about the ISCO

(which can be measured by its radius of convergence)
depends on the global smoothness of the function. For
instance, while aEðxÞ and âEðxÞ are both bounded and
continuous (by construction) not only on the closed interval
on 0 � x � 1

3 but even in larger intervals, say 0 � x � 1
2 ,

the function aðxÞ itself [as well as âðxÞ ¼ aðxÞ=ð2x3Þ] blows
up at the LR like ð1� 3xÞ�1=2. The function zSFðxÞ blows
up even faster: like ð1� 3xÞ�1. If we assume that the
functions we are dealing with can be analytically continued
in the complex x plane, the radius of convergence of the
Taylor expansion around some point x0 can (generally) be
estimated to be equal to the distance separating x0 from
the nearest singularity, in the complex plane, of the consid-
ered function [51]. This suggests that the Taylor expansion
(around x0) of all functions having a singularity at xsing ¼ 1

3

[such as aðxÞ, âðxÞ or zSFðxÞ] will have a radius of con-
vergence equal to jxsing � x0j ¼ j 13 � x0j. For x0 ¼ 1

6 , this

yields a radius of convergence equal to 1
6 , i.e., a

Taylor series around the ISCO converging roughly likeP
nð6ðx� 1

6ÞÞn. By contrast, if we assume, for instance,

that the nearest (complex) singularity of the functions
aEðxÞ and âEðxÞ is beyond xsing ¼ 1

2 , this suggests that the

radius of convergence of the ISCO expansion of these
functions will be larger than j 12 � 1

6 j ¼ 1
3 , corresponding

to a series converging roughly like
P

nð3ðx� 1
6ÞÞn (i.e.,

much faster than for the LR-singular functions). This sug-
gests that the use of an LR-regular function, such as âEðxÞ,
should allow for a more accurate determination of the local
aðxÞ derivatives than the direct use of an LR-singular one,
such as aðxÞ or zSFðxÞ.
We have checked this expectation by comparing the

relative performances (with respect to local fits) of several
functions related to aðxÞ. Namely, we considered local
fits for the following functions: faiðxÞ; i ¼ 1; . . . ; 5g ¼
fa; as; aE; âs; âEg, where asðxÞ � sðxÞaðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

aðxÞ
and âsðxÞ � asðxÞ=ð2x3Þ. Our analysis began by selecting a
subset of aiðxÞ data (for each i) around x ¼ 1

6 . We chose ten
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data points on each side of x ¼ 1
6 , which, together with the

x ¼ 1
6 point itself, comprise a 21-point subset in the range

x 2 ½2=15; 0:2�, corresponding to r=m2 2 ½5:0; 7:5�. We
least-square fitted each of these aiðxÞ data sets to polyno-
mials in ~x � ðx� 1

6Þ of degrees varying from 7 to 13, as in

Eq. (51). We judged the quality of each fit by looking at the
value �2

min=DOF resulting from each fit. Let QiðNÞ denote
the value of �2

min=DOF corresponding to fitting aiðxÞ to a

polynomial of degree N. In Table VI, we present the values
of QiðNÞ for i ¼ 1; . . . ; 5 (corresponding to the ai’s taken
in the order of the set defined above) and N ¼ 7; . . . ; 13.

The results in Table VI confirm that the use of LR-
regular functions [i.e., a2ðxÞ through a5ðxÞ] is beneficial
in the sense that fewer parameters (i.e., lower values of N)
are required to obtain a �2=DOF of Oð1Þ. Among the LR-
regular functions, a4ðxÞ ¼ âsðxÞ stands out as being opti-
mal in that it already reaches �2=DOF ¼ 2:419 for N ¼ 7
while for this value of N all the other aiðxÞ fare worse, and
importantly much worse in the case of the unregularized
original function aðxÞ, which has �2=DOF> 104 for N ¼
7 (and needs at least N ¼ 9 to be considered a good fit).
Note also that the second-best function is a5ðxÞ ¼ âEðxÞ.

Our strategy, therefore, is to use the function âsðxÞ for
our local analysis at the ISCO. Based on the values pre-
sented in Table VI above, we use a4ðxÞ ¼ âsðxÞ with N ¼
8 to compute að1=6Þ, a0ð1=6Þ, a00ð1=6Þ, and a000ð1=6Þ (the
latter will be needed later) by analytic differentiation of

the best-fit model multiplied by 2x3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
[to translate

back from âsðxÞ values to aðxÞ values]. This yields the
following results:

að1=6Þ ¼ 0:0260941094800ð93Þ;
a0ð1=6Þ ¼ 0:6164354346ð12Þ
a00ð1=6Þ ¼ 12:00689379ð28Þ;
a000ð1=6Þ ¼ 204:788188ð53Þ:

(91)

Here the two-digit error bars refer to the last two decimals
of each quantity. These errors have been obtained from the

covariance matrix of the polynomial regression. For
instance, the above procedure gives for a0ð1=6Þ an estimate
of the form c0~a0 þ c1~a1, where ~a0, ~a1 are the coefficients
in the fitting polynomial Pfitð~xÞ ¼ ~a0 þ ~a1~xþ . . .þ ~aN~x

N,
and c0, c1 are coefficients obtained by using the chain rule

in differentiating aðxÞ ¼ 2x3âsðxÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
at x ¼ 1=6.

This yields a squared error on a0ð1=6Þ given by 
2
a0 ¼

c20
00 þ 2c0c1
01 þ c21
11, where 
ij are the elements

of the covariance matrix coming out of the least-square
fit. (Note that here we are treating the data points as random
Gaussian variables centered on the values listed in
Tables VIII and IX, with the variance given by the errors
in the tables.)
Inserting the values of Eq. (91) into Eq. (87) we obtain

að1=6Þ ¼ 0:795883004ð15Þ ½from local fit for âsðxÞ�;
(92)

corresponding to [using Eq. (86)]

C� ¼ 1:251015464ð23Þ ½from local fit for âsðxÞ�: (93)

Note that the error bar on að1=6Þ (and therefore on C�) is
dominated by the error on a00ð1=6Þ. As above, the errors in
these quantities have taken into account the correlations
described by the covariance matrix. Actually, we find
that these correlations are rather mild, the largest of which

equaling
02=½
00
22�1=2 ¼ �0:777when normalized. As
a check, we repeated this analysis with our second best LR-
regular fitting function, namely âEðxÞ for N ¼ 8. The
results agreed with the ones listed in Eq. (91) well within
the error bars indicated there. For example, the central
value for a00ð1=6Þ obtained from a local fit to âEðxÞ is
12.00689372. We also used the non-LR-regular function
aðxÞ to repeat the above local analysis using N ¼ 10 (see
Table VI for why). As expected, it led to larger errors, but
the central values it gave agreed with the ones listed above
within the (larger) error bars entailed by the use of aðxÞ.
For example, the central value for a00ð1=6Þ obtained from a
local fit to aðxÞ is 12.00689374(54).
In addition, we also used seven- and nine-point stencil

(midpoint) methods, applied to the functions aiðxÞ defined
above to extract the same derivatives independently. The
results for að1=6Þ and its derivatives from these stencil
methods also agreed with the above results within the error
estimates corresponding to the stencil methods [which
happen to be substantially larger, especially as the order
of the derivative increases, than those given by the local fits
to âsðxÞ or âEðxÞ]. For example, the seven-point stencil
method applied directly to the unrenormalized function
aðxÞ gives a00ð1=6Þ ¼ 12:006890ð7Þ, where the error was
computed considering that the stencil method estimates the
derivatives as a weighted sum of data points, each of which
is, as before, treated as a Gaussian random variable with
the variance equal to the error listed in Tables VIII and IX.

TABLE VI. The values for the ‘‘quality of the fit’’ QiðNÞ for
the various aiðxÞ used. N is the degree of the polynomials used in
the fits. way of averaging out these fluctuations 2 through 5 are
the �2

min/DOF values for these polynomial fits of degree N. For

example, Q3ð7Þ is the �2
min=DOF value obtained from a

7th-degree polynomial fit to aEðxÞ (with DOF ¼ 21� 8 ¼ 13).

N a1 ¼ a a2 ¼ as a3 ¼ aE a4 ¼ âs a5 ¼ âE

7 1:165	 104 133.5 672.9 2.419 7.408

8 111.1 2.906 6.862 2.188 2.200

9 3.118 2.387 2.399 2.387 2.388

10 2.674 2.626 2.629 2.623 2.624

11 2.831 2.833 2.832 2.847 2.843

12 3.185 3.186 3.186 3.151 3.160

13 3.432 3.414 3.432 3.313 3.328
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As a partially independent check on the value of C�, we
repeated the above analysis working with the variable
zSFðxÞ. We first constructed a data set for zSFðxÞ using
Eq. (12) [with (34)], and then combined a local-fit proce-
dure (with N between 9 and 11) with seven- and nine-point
stencils applied to zSFðxÞ to estimate the values z0SFð1=6Þ
and z00SFð1=6Þ. We obtained

z0ð1=6Þ ¼ 3:10379963ð1Þ; z00ð1=6Þ ¼ 22:056551ð6Þ;
(94)

where the errors were now estimated from the dispersion
between the local fits and the stencil estimates. Hence,
using Eq. (88) yields

C� ¼ 1:2510155ð4Þ
½from local fit and stencils for zSFðxÞ�: (95)

Summarizing, all of the above results are consistent with
each other within their own errors. We a priori consider
that it is likely that the most accurate results are those
obtained from using the first method above, i.e., local fits to
the LR-regular âsðxÞ. Indeed, by looking at the difference
between the data points and the fits for âsðxÞ, one sees that
they fluctuate in sign in a quasirandom manner across the
entire data set. This suggests that the local fit is an effective
wayof averaging out these fluctuations over the 21 data points
around the ISCO. However, the minimum �2=DOF for the
local fit is somewhat above unity (namely 2.188 for the best fit
used above). (Similarly, for our preferred global fit the mini-
mum �2=DOF was 4.77.) This hints that, as already men-
tioned, our error bars on the data points have been somewhat
underestimated. To be on the conservative side, we simply
suggest that all our errors bars be uniformly doubled. In
particular, this means that we recommend using as our pre-
ferred final results for að1=6Þ and C� the following values:

að1=6Þ ¼ 0:795883004ð30Þ; (96)

C� ¼ 1:251015464ð46Þ: (97)

Our final result (97), which in rounded numbers reads
1.25101546(5), is fully consistent with the value currently
available in the literature, and it adds 4 significant digits to it.
See Table V for a comparison.

VI. ON DETERMINING THE EOB POTENTIAL �dðxÞ
In this section we discuss the determination of the Oð�Þ

piece �dðuÞ of the second EOB potential �Dðu;�Þ, defined
through

�Dðu;�Þ ¼ 1þ � �dðuÞ þOð�2Þ: (98)

[Here, as usual, we use �dðuÞ to denote a functional form.]
We present numerical results for �dðuÞ on u � 1

6 , i.e.,

outside the ISCO as well as on the ISCO itself, where a
certain subtlety occurs. These results are obtained from a

combination of numerical data and analytic fits. We then
comment on the extension of the function �dðuÞ beyond the
ISCO. Our discussion extends upon and improves the
similar discussion presented in Ref. [24].
Reference [16] obtained a relation involving �dðuÞ, the

function aðuÞ (and its first and second derivatives), and
the function �ðuÞ describing the Oð�Þ precession effect in
slightly eccentric orbits (at the circular-orbit limit). The
function �ðuÞ is defined for stable circular orbits through�

�r

�

�
2 ¼ 1� 6xþ ��ðxÞ þOð�2Þ; (99)

where�r is the t-frequency of radial oscillations about the
circular motion, and � is the usual azimuthal t-frequency
of the circular orbit. As discussed in Ref. [16], the defini-
tion of �ðxÞ can be extended to include unstable circular
orbits (i.e., to the entire regime 0< x< 1

3 where timelike

circular orbits exist) by replacing the squared radial fre-
quency�2

r with (minus) the appropriate squared Lyapunov
exponent associated with the growth rate of perturbations
of the unstable orbit. The said relation between the func-
tions �dðuÞ, aðuÞ and �ðuÞ is given by [16]

�ðuÞ ¼ 4u

�
1� 1� 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3u
p

�
þ aðuÞ þ ð1� 6uÞ �dðuÞ; (100)

where we have introduced [consistent with Eq. (87) above]
the shorthand notation

aðuÞ � aðuÞ þ ua0ðuÞ þ 1

2
uð1� 2uÞa00ðuÞ: (101)

This relation is valid over the entire range where timelike
circular orbits exist, i.e., for 0< u � 1

3 .

The function �ðuÞ was computed numerically in
Ref. [40] for u < 1

6 , and an analytic fit for it over the

corresponding domain was obtained in Refs. [14,19].
This, in conjunction with an analytic fit for aðuÞ, allows
one to obtain the function �dðuÞ on 0< u< 1

6 via Eq. (100).

Reference [24] proposed computing �dðuÞ simply through
solving Eq. (100) with respect to �dðuÞ:
�dðuÞ ¼ 1

1� 6u

�
�ðuÞ � aðuÞ þ 4u

�
1� 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p � 1

��
:

(102)

Note, however, that this expression is formally singular at
the ISCO, where 1� 6u ¼ 0. This singularity should in
principle be removable (as also discussed in Ref. [24]), but
the presence of the divergent factor ð1� 6uÞ�1 makes it
difficult to evaluate �dðuÞ numerically in the immediate
neighbourhood of the ISCO. Thus, the expression (102),
as it stands, is in practice ill-suited for describing the
behavior of �dðuÞ across the ISCO (where this function is
expected to be perfectly smooth).
To overcome this difficulty we can use an ISCO-local

analysis, as we have done in the preceding section.
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An expression for �dð1=6Þ can be obtained simply by eval-
uating the u-derivative of Eq. (100) at u ¼ 1

6 [or, equiv-

alently, by using l’Hôpital’s rule in Eq. (102)], assuming
�dðuÞ is smooth across the ISCO. One finds

�dð1=6Þ ¼ � 1

6

�
�0ð1=6Þ � a0ð1=6Þ þ 8

ffiffiffi
2

p
3

� 4

�
; (103)

which was first derived in Ref. [16]. Note that a0ð1=6Þ
involves the first three derivatives of aðuÞ at u ¼ 1

6 :

a0ð1=6Þ ¼ 2a0ð1=6Þ þ 1

3
a00ð1=6Þ þ 1

18
a000ð1=6Þ: (104)

Hence, calculating �dð1=6Þ requires knowledge of a0ð1=6Þ,
a00ð1=6Þ, a000ð1=6Þ and �0ð1=6Þ. Highly accurate values for
the former three quantities were given in Eq. (91) above.
These values give a0ð1=6Þ ¼ 16:612290ð3Þ.

To obtain the value �0ð1=6Þ we fit to a sample of �ðxÞ
data points just outside the ISCO, as was done in Ref. [19],
but using a denser sample of data for better accuracy. We
obtain

�0ð1=6Þ ¼ 12:70ð5Þ: (105)

This is consistent with the estimated value of 12.66 quoted
in Ref. [19]. [We prefer here to compute �0ð1=6Þ based on
an ISCO-local analysis, rather than extract this value from
any of the global fit models of Refs. [14,19], since the local
analysis is likely to produce a more accurate result.] With
these values, Eq. (103) gives

�dð1=6Þ ¼ 0:690ð8Þ: (106)

The uncertainty in this result is entirely dominated by the
numerical error in �0ð1=6Þ; unfortunately, the latter value
comes from eccentric-orbit GSF calculations, which are of
a relatively limited accuracy.

Table VII lists all �ðxÞ data available to date, combining
results fromRefs. [14,19]. For each data point we display the
corresponding value of �dðxÞ, computed via Eq. (102) with
our accurate 16-parameter model for aðxÞ (#14 in Table III).
At the ISCO itself we quote the value obtained above.
Figure 8 shows a plot of the �dðxÞ data. Note that the error
bars on �dðxÞ are predominantly due to the numerical error in
the� data, which is larger than the model error in our aðxÞ fit
[itself based on very-high-accuracy aðxÞ data]. For that rea-
son, it is ‘‘safe’’ to use our analytic fit formula for aðxÞ rather
than the actual aðxÞ data, as we have opted for here.

The data in Table VII can be used as a basis for an
analytic fit model for �dðuÞ over 0< u � 1

6 , e.g., using the

methods of Ref. [19]. We leave this to future work: we
expect that the new, frequency-domain GSF method of
Refs. [46,52] could soon provide much more accurate
data for �ðuÞ that will enable a more reliable and accurate
fitting. It is important to extend the computation of �ðuÞ
beyond the ISCO in order to facilitate the computation of
�dðu > 1=6Þ. This should be possible in principle based on
the existing GSF computational framework, although the
details are yet to be worked out and implemented.

TABLE VII. Available numerical data for �ðxÞ (collected from
Refs. [14,19,40]), and quasinumerical values for the Oð�Þ EOB
function �dðxÞ, obtained from Eq. (102) based on the � data in
conjunction with our accurate 16-parameter model for aðxÞ (#14 in
Table III). The value of � at the ISCO was determined from the
simple relation �ð1=6Þ ¼ 2

3C�, using the accurate value we have

obtained for C� in Eq. (97) above. The value of �d at the ISCO is
quoted fromEq. (106). Note that the r values in this table are exact,
while the x values are computed as the inverse of these exact values.

r=m2 x � �d

80 0.0125 0.0024117(9) 0.0010406(9)

57.142857 0:0175 . . . 0.0048913(6) 0.0021230(6)

50 0.02 0.006494(2) 0.002829(2)

44.4444 0:02250 . . . 0.008351(2) 0.003652(2)

40 0.025 0.010470(1) 0.004598(1)

36.363636 0:0275 . . . 0.0128610(8) 0.005674(1)

34.2857 0:0291 . . . 0.0146099(8) 0.0064658(9)

30 0:0333 . . . 0.0195438(4) 0.0087235(5)

25 0.04 0.0291863(3) 0.0132258(4)

20 0.05 0.0479916(5) 0.0223171(7)

19 0:0526 . . . 0.053862(3) 0.025233(5)

18 0:0555 . . . 0.060857(2) 0.028753(3)

17 0:0588 . . . 0.069279(4) 0.033055(6)

16 0.0625 0.079537(2) 0.038386(2)

15 0:0666 . . . 0.092199(3) 0.045101(6)

14 0:0714 . . . 0.108061(2) 0.053718(4)

13.5 0:0740 . . . 0.117534(3) 0.058966(6)

13.25 0:0754 . . . 0.122734(2) 0.061880(4)

13 0:0769 . . . 0.128280(3) 0.065016(5)

12.75 0:0784 . . . 0.134204(3) 0.068396(6)

12.5 0.08 0.140536(5) 0.072041(9)

12.25 0:0816 . . . 0.147316(5) 0.075979(9)

r=m2 x � �d

12 0:0833 . . . 0.154578(3) 0.080229(5)

11.75 0:0851 . . . 0.162386(2) 0.084856(5)

11.5 0:0869 . . . 0.170784(4) 0.089887(8)

11.25 0:0888 . . . 0.179837(5) 0.09538(1)

11 0:0909 . . . 0.189605(3) 0.101369(7)

10.75 0:0930 . . . 0.200170(3) 0.107933(6)

10.5 0:0952 . . . 0.211643(5) 0.11520(1)

10.25 0:0975 . . . 0.224075(4) 0.12315(1)

10 0.1 0.237610(4) 0.131940(9)

9.75 0:102 . . . 0.252391(5) 0.14174(1)

9.5 0:105 . . . 0.268565(5) 0.15267(1)

9.25 0:108 . . . 0.286271(5) 0.16482(1)

9 0:111 . . . 0.305750(5) 0.17849(2)

8.75 0:114 . . . 0.327230(6) 0.19390(2)

8.5 0:117 . . . 0.351000(6) 0.21141(2)

8 0.125 0.406767(6) 0.25423(3)

7.5 0:133 . . . 0.47651(1) 0.31129(5)

7.4 0:135 . . . 0.492527(7) 0.32490(4)

7 0:142 . . . 0.56528(1) 0.38986(8)

6.8 0:147 . . . 0.607693(9) 0.42991(7)

6.5 0:153 . . . 0.68059(1) 0.5024(2)

6 0:166 . . . 0.8340103(2) 0.690(8)
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Such developments would allow one, in particular, to
study the behavior of �dðuÞ at the LR. It is interesting to
speculate about this behavior based on the form of
Eq. (102) and what we already know about the LR-

behavior of aðuÞ. From Eqs. (47) and (101) we have aðuÞ �
3	
32 ð1� 3uÞ�5=2 as u ! 1

3 (with 	 � 1). Hence, if the diver-

gence of �ðuÞ at the LR is weaker than / ð1� 3uÞ�5=2, we

must have that �dðuÞ diverges as �dðu ! 1=3Þ � 3	
32 	

ð1� 3uÞ�5=2. We will indicate below an argument suggest-

ing that �dðuÞ indeed has a strong divergence/ ð1� 3uÞ�5=2.

VII. LIGHT-RING BEHAVIOR AND
IMPLICATIONS FOR EOB THEORY

A striking result of our sub-ISCO GSF computation is
the finding that, as one approaches the LR, i.e., as x ! 1

3 or

u ! 1
3 , h

R;L
uu ðxÞ blows up proportionally to ð1� 3xÞ�3=2,

while, correspondingly, aðuÞ has an inverse square-root

singularity: aðuÞ � 0:25ð1� 3uÞ�1=2. This (apparent)
singular behavior a priori raises an issue concerning
the domain of validity of the EOB formalism, or that
of the GSF expansion. In previous EOB work, it
was always tacitly assumed that all the functions parame-
trizing the EOB Hamiltonian, i.e., Aðu;�Þ, �Dðu;�Þ and
Qðu; p’; pr;�Þ, were smooth functions of u ¼ M=rEOB,

from the weak-field value u ¼ 0 up to, at least, the
Schwarzschild horizon value u ¼ 1

2 . A smooth behavior

of the EOB radial potentials across u ¼ 1
3 seems a priori

necessary when allowing the EOB formalism to describe,
for instance, the head-on (or near head-on) coalescence of
a (large mass ratio) binary down to rEOB � 2M. Is the

observed singular behavior aðuÞ � 0:25ð1� 3uÞ�1=2 a sig-
nal that something pathological happens in the EOB for-
malism around the radius rEOB � 3M, or is it an artifact of

formally trusting the first [Oð�1Þ] term in the GSF expan-
sion beyond its physical domain of validity? Let us start
discussing this issue by considering the physical origin of

the LR singularities in hR;Luu ðxÞ and aðuÞ.

A. Physical origin of the light-ring divergences
of hR;L

uu ðxÞ and aðuÞ
We first explain the singular behavior hR;Luu ðxÞ /

ð1� 3xÞ�3=2 in terms of heuristic technical considerations.

[The weaker singular behaviour aðuÞ / ð1� 3uÞ�1=2 then
follows from the structure of Eq. (42).] Note that we are

interested in the regularized field hR;Luu ðx
Þ, which is
obtained from the full, retarded perturbation hLuuðx
Þ by

subtracting the Detweiler-Whiting S-field hS;Luu ðx
Þ (and
evaluating the result on the particle’s circular orbit). We
will consider in turn the LR behavior of the full and
singular fields, and argue that the singular behavior of

hR;Luu ðxÞ is inherited from the full field (while the S-field
remains bounded at the LR).
Consider first the full Lorenz-gauge metric perturbation

hL��ðx
Þ, which is sourced by the stress-energy tensor of

particle 1, i.e., T��ðx
Þ ¼ m1ð�gÞ�1=2
R
d�u�u��ðx
 �

y
ð�ÞÞ ¼ ð�gÞ�1=2
R
m1u

�dy��ðx
 � y
ð�ÞÞ, where �,
y
ð�Þ and u
 � dy
=d� are, respectively, the particle’s
proper time, trajectory and four-velocity. As the particle
approaches the LR (along a sequence of circular orbits),
the (nonvanishing) components of its four-velocity u�

(in any frame at rest with respect to the background
Schwarzschild frame of m2) tend towards infinity propor-

tionally to u0 ¼ dt=d� ¼ ð1� 3xÞ�1=2. Therefore, the
(nonvanishing) components of T�� too will tend to infinity

proportionally to ð1� 3xÞ�1=2. In other words, we can

write T�� ¼ ð1� 3xÞ�1=2T̂��, where all the components

of the ‘‘renormalized’’ stress-tensor T̂�� stay bounded as
particle 1 tends to the LR. Correspondingly, we can write

hL�� ¼ ð1� 3xÞ�1=2ĥ��, where the ‘‘renormalized’’ metric

perturbation ĥ�� is sourced by T̂��, so that ĥ�� can be

written as the convolution of a suitable tensorial Green

function with T̂��. The latter convolution might introduce

an additional, milder singular behavior in the LR limit [53],
but it is unlikely to alter the leading-order power-law blowup

/ ð1� 3xÞ�1=2. Then, the value of the redshift-related scalar

hLuu, which contains two extra factors ð1� 3xÞ�1=2 coming
from the two contractions with the four-velocity (we assume
here the ‘‘constant’’ off-worldline extension of the four-
velocity discussed in Sec. IIB), is expected to blow up

near the LR proportionally to ð1� 3xÞ�3=2.

Let us next consider the S-field hS;Luu ðx
Þ. Near the
particle, the trace-reversed counterpart of this field,
�hS;L�� ðx
Þ � hS;L�� ðx
Þ � 1

2h
S;Lðx
Þg��ðx
Þ, has the leading-

order form �hS;L�� ðx
Þ � 4m1u�u�=�, where � is the invari-

ant orthogonal geodesic distance between x
 and the
worldline. When contracting this local expression with

FIG. 8 (color online). The Oð�Þ EOB function �dðxÞ. We plot
here the quasinumerical data from Table VII, normalized by the
leading-order PN term 6x2 for convenience.
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u�u�, the two factors of u� disappear (by virtue of
u�u� ¼ �1) and we are left with �hS;L��u

�u� � 4m1=�.

Now, � scales proportionally to u� near the LR, so that
�hS;Luu , and hence also hS;Luu , finally scales proportionally to

the inverse of u� near the LR, i.e., hS;Luu / ð1� 3xÞþ1=2.
Note that the above ‘‘cancellation’’ of factors u� (due to
u�u� ¼ �1) does not occur in the case of the full field

hLuuðx
Þ, which is obtained by a global integral that gen-
erally does not yield a result proportional to u�u�.

In summary, we find that the LR behavior of the regu-

larized difference field hR;Luu ðx
Þ ¼ hLuuðx
Þ � hS;Luu ðx
Þ
is dominated by the LR behavior of hLuuðx
Þ, i.e., it
is naturally expected to blow up near the LR propor-

tionally to ð1� 3xÞ�3=2. We can say that the blowups

hR;Luu / ð1� 3xÞ�3=2, and correlatively [according to

Eq. (42)] aðuÞ / ð1� 3uÞ�1=2, as particle 1 tends to the
LR are simply rooted in the corresponding power-law
blowup of the components of the four-velocity near the

LR: u� / ð1� 3xÞ�1=2.
Having understood this simple technical origin of the

LR behavior, we can reformulate it in a more physically
transparent way. Instead of parametrizing (as is usually
done) the strength of first-order GSF effects by means
of the rest-mass m1, one can say that the source of the
perturbation is better measured by the conserved energy
of the small mass, say E1. Indeed, we recall that E1 is
given by a hypersurface integral of the contraction of
the stress-energy tensor with the time-translation Killing
vector k�@=@x� ¼ @=@x0, i.e., E1 ¼ �R

k�T�
�dS�. We

note also that E1 ¼ �m1g��k
�u�, clearly exhibiting the

fact that E1 measures the eventual growth of the compo-
nents of u�. In the case of circular orbits, it takes the simple
form E1 ¼ m1Ecircðu0Þ, where u0 ¼ m2=r0 is the back-
ground gravitational potential at the considered orbital
radius r0, and where we used the notation

EcircðuÞ � 1� 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3u

p : (107)

For later conceptual clarity we have here added a subscript
‘‘circ’’ to the function EðuÞ, already defined in Eq. (48).

We conclude that a physically transparent way of inter-
preting the blowup of aðuÞ near the LR is to say that the
first-order GSF correction aðuÞ / m1=m2 actually grows
proportionally to the ratio of the conserved energy E1 ¼
m1EcircðuÞ of the small mass to the large mass m2, i.e.,
aðuÞ � qEcircðuÞ. We have already used this reformulation
above to factor out the singular function EcircðuÞ from the

GSF-data-derived function aðuÞ. As for hR;Luu , its stronger

blowup near the LR is equivalent to saying that hR;Luu ðxÞ �
z�1aðxÞ � qz�1EcircðxÞ, with z ¼ 1� 3x as usual.

B. Physical domain of validity of GSF results

Before discussing the impact on the EOB formalism of

the LR-divergent behaviors of hR;Luu ðxÞ and aðuÞ, let us

address the issue of the physical domain of validity of
the GSF approximation. We already mentioned (in
Sec. II C) the evident condition that a first-order [Oð�1Þ]
GSF calculation makes sense only if the conserved energy
of the small mass, E1, is parametrically smaller than that of
the large mass, E2 � m2. In the context of circular orbits,
this leads to the necessary condition

E1 ¼ m1Ecirc

�
m2

r0

�
� m2; (108)

where EcircðuÞ is the function defined in Eq. (107).
Actually, this necessary condition is not sufficient for the

consistency of the GSF expansion. Indeed, though we do

not yet have a second-order GSF calculation of hR;Luu and
aðuÞ, one can physically estimate that second-order GSF
effects will (at least approximately) modify the zeroth-
order (geodesic) expression E1 ¼ m1Ecircðm2

r0
Þ used in the

condition (108) above for the energy ofm1 by including the
back reaction of m1 on the background metric. Therefore,
one expects that a more accurate version of the above
necessary condition will roughly read

m1Ecirc

�
m2 þ cE1

r0

�
� m2; (109)

where we have modified the zeroth-order gravitational
potential u0 ¼ m2=r0 by replacingm2 bym2 þ cE1, where
c is some constant of order unity. However, if we now look
at the crucial square root contained in the singular denomi-
nator of condition (109), it readsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3
m2

r0
� 3c

E1

r0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

m2

r0
� c

3m2

r0

E1

m2

s
: (110)

Near the LR, the hopefully more accurate condition (109)
(which approximately takes into account second-order
GSF effects) is consistent with the first-order GSF condi-
tion (108) only if we have

E1

m2

� z0 � 1� 3
m2

r0
; (111)

i.e.,

� � ðz0Þ3=2: (112)

This is much stronger (near the LR, i.e., when z0 ! 0) than
the condition (108) which corresponded to qEcircðu0Þ � 1,
or q � � � ffiffiffiffiffi

z0
p

. We can also note that the approximate

inclusion (following the pattern used above) of third-order,
and higher-order, GSF effects do not a priori seem to
require stronger constraints on �. Indeed, our treatment
above essentially consisted of considering a first-order
fractional modification of the ‘‘effective background
mass’’ (say near the LR, where m2=r0 � 1 does not
introduce an independent small parameter) of the type
m2 ! m2½1þ c1�Ecircðu0Þ�. We can generalize this treat-
ment by considering higher-order GSF contributions
(proportional to higher powers of E1=m2) leading to a
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replacement of the type m2 ! m2½1þ c1�Ecircðu0Þ þ
c2ð�Ecircðu0ÞÞ2 þ 
 
 
�. However, the condition (111)
is such that all the higher-order terms cnð�Ecircðu0ÞÞn,
(n � 2) are consistently smaller than the first-order one
c1�Ecircðu0Þ.

Let us also remark in passing that another way to under-
stand the necessity of the stronger consistency condition
(111) is to notice that it is tantamount to requiring

hR;Luu � z�1
0

E1

m2

� 1: (113)

This makes sense because hR;Luu yields the first-order GSF
perturbation of the proper time of particle 1. More pre-
cisely, the regularized proper time of particle 1 reads

d�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðgð0Þ�� þ hR;L�� Þdx�dx�

q
¼ d�ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hR;Luu

q
:

Clearly, it makes sense to expand the square root in powers

of q only if the actual magnitude of hR;Luu is small compared
to 1.

Summarizing so far: first-order GSF results near the LR
are a priori physically meaningful only in a limit where the

ratio �=ðz0Þ3=2 tends to zero.

C. Singular light-ring behavior as a coordinate
singularity in the EOB phase space

The findings of the previous subsection imply that the
physical implications of the mathematically divergent LR

behavior aðuÞ � ð1� 3uÞ�1=2 of the Oð�Þ piece of the
EOB radial potential Aðu; �Þ ¼ 1� 2uþ �aðuÞ þOð�2Þ
are less dramatic than they seem to be at first sight. Indeed,
in the domain wherewe can trust the derivation of this result,
i.e., under the condition (112), the first-order GSF contribu-
tion to Aðu; �Þ remains small, namely �aðuÞ � �=

ffiffiffi
z

p �
z � 1. In addition, the first-order GSF contribution to the
u-derivative of Aðu; �Þ also remains, under the consistency

condition (112), much smaller than unity, namely �a0ðuÞ �
�=z3=2 � 1. On the other hand, if we consider the second

u-derivative of Aðu; �Þ, it will be of the form A00ðu; �Þ ¼
�a00ðuÞ þOð�2Þ � �=z5=2, which increases so much near
the LR that the condition (112) is compatiblewith arbitrarily
large values of A00ðu; �Þ as one approaches the LR.

Therefore, it is a priori possible that the near-LR behav-

ior aðuÞ � ð1� 3uÞ�1=2 only corresponds to some mild
type of physical singularity at the LR, and that higher-
order effects in � will smooth out the shape of the A
potential into some sort of ‘‘boundary layer’’ near the
LR. However, the appearance of a formal square-root
singularity makes it unclear how the function aðuÞ can be
extended across the LR to radial arguments u > 1=3.

Indeed, the formal analytic continuation of ð1� 3uÞ�1=2

leads to imaginary values of aðuÞ when a > 1=3.
However, independently of the possible role of

higher-order effects, we are faced with the mathematical
fact that the Oð�Þ piece in Aðu; �Þ, i.e., the value of the

�-derivative @Aðu; �Þ=@� at � ¼ 0 has a singularity aðuÞ �
ð1� 3uÞ�1=2. Is this inescapable mathematical singularity
signalling the presence of some real singularity in the EOB
formalism? We think instead that it does not correspond to
any physical singularity of the EOB dynamics, but is
simply a coordinate singularity in phase space, which
can be avoided by a suitable (symplectic) phase-space
transformation. Indeed, a somewhat similar, formally sin-
gular LR behavior of the EOB AðuÞ potential has already
appeared in another EOB work, in a problem where one can
see how this apparent singularity can be avoided by a suitable
phase-space transformation. We are alluding here to a recent
analysis by Bini, Damour and Faye [54] of tidal effects in
comparable-mass binary systems, based on an effective
action approach, completed by an EOB reformulation.
Reference [54] found that the perturbative description of
these effects leads, within the standard EOB description of
circular orbits, to a radial potential of the form

Aðu; �;�TÞ ¼ A2ppðu; �Þ þ�TaTðu; �Þ þOð�2
TÞ; (114)

where the term �TaTðu; �Þ denotes the additional
contribution, coming from tidal interactions, to the ‘‘two-
point-particle’’ EOB radial potential A2ppðu; �Þ. Here �T

symbolically denotes a generic tidal parameter (actually
there is a sum over a set of tidal parameters: �T ¼
�A

2 ; �
B
2 ; �

A
3 ; . . . ). It was proven in Sec. VI of Ref. [54]

that, in the extreme-mass-ratio limit � � 1, the (various)
tidal contributions aTðu; �Þ are singular at the LR. More
precisely, they formally blow up as aTðu; � ¼ 0Þ�
ð1� 3uÞ�1 when u ! 1

3 . Let us sketch how this singularity

in aTðuÞ can be avoided by a suitable phase-space transfor-
mation that replaces it with an alternative regular description.
First, it should be noted that when comparing Eq. (114)

and the GSF-expanded result Aðu; �Þ ¼ 1� 2uþ �aðuÞ þ
Oð�2Þ the analogy is between a perturbation expansion in
powers of �T (‘‘tidal expansion’’) and a perturbation ex-
pansion in powers of � (GSF expansion). To make the
argument more crisp, let us actually set � to zero in
Eq. (114), i.e., consider tidal effects on a body of mass
m1 � m2. (It is in this limit that the results of Ref. [54]
which we shall use below could be rigorously proven.) Let
us now recall how Ref. [54] derived the presence of an LR
singularity in aTðuÞ. This was done in essentially two steps:
(i) computation of the additional effective action due to
tidal effects, and of its Hamiltonian formulation; (ii) refor-
mulation of this original Hamiltonian perturbation as a
contribution to the standard EOB Hamiltonian in the
limit of circular motions. The result of the first step is
that tidal effects add to the squared effective Hamiltonian

ðĤeffðu; p’; prÞÞ2 a new contribution which, for general

orbits, is quartic in the (effective) momenta p�, say

�TĤ
2
effðu; p’; prÞ ¼ �T �qðu; p�Þ þOð�2

TÞ; (115)

with
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�qðu; p�Þ ¼ C���
ðuÞp�p�p�p
; (116)

where the tensor C is a smooth function of u (in particular it
is regular at u ¼ 1

3 ). [In the above expressions the time

component p0 is meant to be replaced by (minus) the unper-
turbed effective Hamiltonian.] For instance, for the leading-
orderquadrupolar tidal effects the tensorC���
 is proportional

to a symmetrized version of (1� 2u) R�
���R

�
��
, where

R�
��� is the background curvature tensor.

It is the second step taken in Ref. [54] (namely the
reformulation into the standard EOB Hamiltonian form)
which actually introduced the singular behavior at u ¼ 1

3 .

To explain this point, let us first recall that the standard
form of the EOB Hamiltonian, introduced in Ref. [4],
consists of imposing some specific restrictions on the
momentum dependence of the squared effective EOB
Hamitonian. Namely, it should have the form

Ĥ2
effðu; p’; prÞ ¼ Aðu;�Þ

�
1þ p2

’u
2 þ p2

r

Bðu;�Þ
þ Q̂restrðu; p’; pr;�Þ

�
; (117)

with the specific form p2
’u

2 of the term quadratic in p’,

and with the restriction that the mass-shell deformation

term Q̂restr vanish quartically in the limit of small radial
momentum:

Q̂restrðu; p’; pr ! 0Þ ¼ Oðp4
rÞ: (118)

Reference [4] showed, at the 3PN accuracy, how such a
restricted form can be reached by applying a suitable
symplectic transformation of EOB phase-space variables
ðqi; piÞ ! ðq0i; p0

iÞ. At the 3PN accuracy, it was found that

Q̂restrðu; p’; prÞ did not depend upon p’, and was given

by Q̂3PNðu; prÞ ¼ 2ð4� 3�Þ�u2p4
r . We, however, expect

that Q̂restr will involve a dependence on p’ at higher PN

orders (see the discussions in Ref. [16] and the appendix of
Ref. [24]). Let us also recall that this standard EOB form is
well tuned to the description of near-circular orbits. For
instance, as discussed in Ref. [16], it allows one to describe
the dynamics of small-eccentricity orbits only in terms of
the radial potentials AðuÞ and BðuÞ.

Reference [54] used the fact that, for the special case of
circular motions, the value of the original first-order
Hamiltonian perturbation (115) must coincide with the
corresponding value in the transformed phase-space coordi-
nates, ðq0; p0Þ. In accord with the results we shall derive
below in aGSF context, this led to the following link between
the original, LR-regular momentum-dependent perturbation
(116) and the momentum-independent tidal perturbation of
the standard radial A potential, entering (114):

½aTðu0Þ�u0¼u ¼
�
�qðu; p�Þ
1þ p2

’u
2

�
circ

: (119)

Here, we have added a prime on the radial variable appearing
on the left-hand side as a reminder that the function aTðuÞ
belongs to the transformed phase-space coordinates ðq0; p0Þ.
However, at the first order in �T we are considering, u0 can
(and actually should) be identifiedwith the dummyvariableu
used on the right-hand side (rhs).Of crucial importance in the
result (119) is the fact that all the quantities on the rhs should
be evaluated along the one-parameter sequence of circular
motions. This means that the momentum components p� on

the rhs are to be replaced as follows: �p0 is replaced by
EcircðuÞ, Eq. (107), while the tangential component of the
spatial momentum, say pk � p’u, is replaced by

pcirc
k ðuÞ � upcirc

’ ðuÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u

1� 3u

r
: (120)

Here, and in the following, we shall often use, without
explicating the change of notation, scaled EOB variables,

such as pi ¼ p
phys
i =� or r ¼ rphys=M. We also remove the

label EOB from the radial coordinate r for notational
simplicity.
Finally, as the (transformed) inverse radial variable u

tends to 1
3 , we see that the link (119) implies that the

potential aTðuÞ blows up proportionally to

aT

�
u ! 1

3

�
¼

�Oðp4
kÞ

1þ p2
k

�
circ

� ðpcirc
k ðuÞÞ2 � ð1� 3uÞ�1:

(121)

The main point we wanted to emphasize by explicating the
appearance of the pole singularity in aTðuÞ (as u ! 1

3 )

found in Ref. [54] was that its origin was the growth, for
large values of the tangential momenta pk, of the original,
momentum-dependent Hamiltonian perturbation (115)
which was, to start with, perfectly regular near (and across)
u ¼ 1

3 . As we shall see in more technical detail below (in

the GSF case), it is actually the change of phase-space
variables ðq; pÞ ! ðq0; p0Þ needed to go to the restricted,
standard EOB Hamiltonian form, Eq. (117), that is respon-
sible for introducing a singularity in aTðuÞ.
Let us now apply the same reasoning to our GSF context,

i.e., using � as a perturbation parameter, instead of �T in
the tidal case above. To clarify this application (as well
as what was at work in the tidal example above) we shall
also show how to explicitly construct the phase-space
transformation, say,T : ðqi; piÞ ! ðq0iEOB; p0EOB

iÞ, needed
to go to the restricted, standard EOB Hamiltonian
form (117), parametrized by two radial potentials AðuÞ
and BðuÞ, and an EOB mass-shell deformation function

Q̂restrðu; p’; prÞ constrained to be Oðp4
rÞ when pr ! 0. In

the discussion of Ref. [54] recalled above, the transforma-
tion T was implicitly used, but its explicit form was not.
Let us start from the unperturbed (squared effective)

EOB Hamiltonian
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Ĥ 2
eff0ðu; p’; prÞ ¼ A0ðuÞ

�
1þ p2

’u
2 þ p2

r

B0ðuÞ
�
; (122)

with A0ðuÞ ¼ 1� 2u, B0ðuÞ ¼ ð1� 2uÞ�1, and consider
that, in some original phase-space coordinates ðqi; piÞ (say,
coordinates directly related to a Lorenz-gauge calculation)
GSF effects modify it by adding a new contribution of the
general form

��Ĥ
2
effðu; p’; prÞ ¼ � �qðu; p’; prÞ þOð�2Þ: (123)

We assume that, in the original phase-space coordinates
ðqi; piÞ ¼ ðr; ’; pr; p’Þ (for planar motions), the perturbed

Hamiltonian inEq. (123) is a smooth function of ðqi; piÞ, and,
in particular, that no divergence occurs when u crosses the
value 1

3 . On the other hand, we allow for a general (unre-

stricted) dependence of �qðu; p’; prÞ on the momenta. In

other words, the sum Ĥ2
eff0ðu; p’; prÞ þ ��Ĥ

2
effðu; p’; prÞ

is not assumed to be of the standard EOB form, Eq. (117).
Let us now look for a symplectic phase-space

transformation, say, T : ðqi; piÞ ! ðq0iEOB; p0EOB
iÞ, which

simplifies the form of the original squared effective

Hamiltonian, Ĥ2
eff0ðu; p’; prÞ þ ��Ĥ

2
effðu; p’; prÞ, by put-

ting it in the standard EOB form of the type displayed in
Eq. (117), with the restriction (118). We shall sketch
here how one can formally construct the needed symplectic
transformation T within our GSF-perturbative context.
(In previous work, T was constructed within a PN-
perturbative context.) T can be taken to arise from a
(perturbed) generating function of the form gðr; p’; prÞ ¼
�pr�

rðr; p2
’; p

2
rÞ þOð�2Þ. [In preparation for some tech-

nical developments below, we use the spacetime
symmetries of the two-body dynamics to infer that the
time-reversal-invariant, scalar quantity �r can be written
as a function of p2

’ ¼ ðq	 pÞ2 and p2
r ¼ ðq 
 pÞ2=r2.] The

Oð�Þ phase-space transformation generated by gðr; p’; prÞ
is effected via a Poisson bracket, namely �gX ¼ fX; gg, on
any phase-space function Xðq; pÞ. From a technical point
of view, let us formally consider that all the dynamical
functions of interest are expanded in powers of pr, while
keeping the dependence on r and p’ exact. (This differs

from the usual PN-perturbative construction of T which
essentially uses a multiple expansion in powers of pr,
pk � up’ and u.) A simple calculation (using fr;prg¼1,

fpr;p’g¼0, etc.) then shows that �gpr ¼ fpr; gg ¼ OðprÞ.
In other words, the transformationT respects each order in
the expansion in powers of pr, namely �gp

n
r ¼ Oðpn

r Þ. For
simplicity, we shall focus here on the terms of zeroth-order
in pr. These terms are already quite nontrivial. It can be
verified that the reasoning indicated below can be straight-
forwardly extended to higher powers of pr.

At zeroth order in pr, the original Hamiltonian
perturbation � �qðu; p’; pr ¼ 0Þ þOð�2Þ depends on two

independent phase-space variables, namely u and p’.

Our aim here is to show how a suitable generating function

g can reduce the general dependence of �qðu; p’; pr ¼ 0Þ
on u and p’ to the special one entering Eq. (117). At zeroth

order in pr, the only relevant changes in phase-space
variables are that in r and p’. (The change in ’ is irrele-

vant as the relevant dynamical observables do not
explicitly depend on ’.) A simplifying feature is that
�gp’ ¼ fp’; gg ¼ 0 (because @g=@’ ¼ 0). Let us then

consider the change in r: �gr ¼ fr; gg ¼ @g=@pr. This is

easily found to be �gr ¼ ��rðr; p2
’; p

2
rÞ þOðp2

rÞ þOð�2Þ.
In other words, to zeroth order in pr, and to first order in �
[i.e., modulo corrections of Oðp2

rÞ þOð�2Þ] we have
�gr ¼ ��rðr; p2

’; 0Þ. Note that the change in radial coor-

dinate is more general than a simple (configuration-space)
coordinate transformation �r ¼ �rðrÞ in that �gr depends

on both r and p’. This phase-space dependence of �gr is

crucial for allowing the transformation T to reduce the
original contribution Eq. (123) to the standard canonical
EOB form. For convenience, we shall work in the follow-
ing with the corresponding change in u ¼ 1=r, i.e., �gu ¼
��gr=r

2, and denote it as �gu ¼ ��uðr; p2
’Þ [modulo

corrections of Oðp2
rÞ þOð�2Þ].

The condition on g is that it transforms the sum of
Eqs. (122) and (123) into the standard form Eq. (117),
with some modified potentials AðuÞ¼A0ðuÞþ�aðuÞþ
Oð�2Þ, BðuÞ¼B0ðuÞþ�bðuÞþOð�2Þ, and some restricted

Oð�Þ mass-shell term Q̂restr satisfying Eq. (118). Written

explicitly, this condition means that �gĤ
2
effðu; p’; prÞmust

be equal to the difference between (123) and a GSF per-
turbation of the standard EOB Hamiltonian (117). The
latter GSF perturbation has the structure

��Ĥ
2
eff standardðu; p’; prÞ ¼ �aðuÞ

�
1þ p2

’u
2 þ p2

r

B0ðuÞ
�

� �bðuÞA0ðuÞp2
r

B2
0ðuÞ

þOðp4
rÞ;

(124)

where the contribution Oðp4
rÞ comes from the restricted

Oð�Þmass-shell term Q̂restr. At lowest order in pr, and after
division by �, the condition on g reads (with j � p’ to

ease the notation)

1

�
�g½ð1� 2uÞð1þ j2u2Þ� ¼ �qðu; j; pr ¼ 0Þ

� aðuÞð1þ j2u2Þ: (125)

If we introduce the short-hand notations

��ðu; j2Þ � 2uð1� 3uÞ
1þ j2u2

�uðr; j2Þ

and

�ðu; j2Þ � �qðu; j; pr ¼ 0Þ
1þ j2u2

; (126)
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the latter condition explicitly reads (after dividing both
sides by 1þ j2u2)

��ðu; j2Þðj2 � j2circðuÞÞ ¼ �ðu; j2Þ � aðuÞ; (127)

where

j2circðuÞ �
1

uð1� 3uÞ (128)

denotes the function of u which describes the value of
j � p’ along the sequence of circular orbits. [One must

carefully distinguish the general, independent phase-space
variable j from the specific function jcircðuÞ.]

From the condition (127) on g, one first deduces
[by taking the limit j2 ! j2circðuÞ on both sides], that the

(a priori unknown) value of the canonical perturbed EOB
potential aðuÞ corresponding to the original noncanonical
perturbation in Eq. (123) is given by

aðuÞ ¼ �ðu; j2circðuÞÞ ¼
�qðu; jcircðuÞ; 0Þ
1þ j2circðuÞu2

: (129)

Then, we derive the value of the function
�rðr; p2

’; p
2
r ¼ 0Þ determining the transformation g (at

lowest order in pr) from

2�uðr; j2Þ
j2circðuÞð1þ j2u2Þ � ��ðu; j2Þ ¼ �ðu; j2Þ � �ðu; j2circðuÞÞ

j2 � j2circðuÞ
:

(130)

Note that the last expression on the rhs defines, despite the
appearance of a denominator that vanishes along the phase-
space curve j2 � j2circðuÞ, a smooth function of u and j2

along this seemingly singular curve. This follows from the
fact that � is a smooth function of its second argument.
[Here, we are using the fact that, if fðxÞ is a smooth
function of x, gðx; yÞ � ðfðxÞ � fðyÞÞ=ðx� yÞ is a smooth
function of the two variables x and y, even in the vicinity of
the diagonal x ¼ y.]

The result in Eq. (129) is the GSF-perturbation analog of
the (tidal-perturbation) result of Ref. [54] cited in Eq. (119)
above. It is this result which explains the appearance of LR
singularities in the ‘‘standard’’ EOB potential aðuÞ when
starting from an LR-regular original nonstandard perturbed
EOB Hamiltonian, Eq. (123). Indeed, if the original Oð�Þ
GSF perturbation in Eq. (123) is regular in phase space
(including near u ¼ 1

3 ), but grows as p
n
i when the compo-

nents pi of the momenta get large, we see from Eq. (129)
that such a growth at large momenta in the original phase
space will lead, after the transformation T , to a corre-
sponding growth of the purely radial function aðuÞ as
u ! 1

3

�
on its (transformed) u axis of the type

aðuÞ / jncircðuÞ
1þ u2j2circðuÞ

� ðjcircðuÞÞn�2 � 1

ð1� 3uÞðn�2Þ=2 :

(131)

Reciprocally, if we reason backwards, our construction
above of the Oð�Þ generating function g can be used (as
we shall explicitly discuss in the next subsection), when
starting from the singular standard Oð�Þ EOB potential

aðuÞ � ð1� 3uÞ�1=2, to transform it away, and to replace
it by a regular, (unrestricted) momentum-dependent Oð�Þ
contribution to the EOB Q function.
We therefore conclude that our finding above of a LR

singularity in the perturbed standard Oð�Þ EOB potential
aðuÞ probably [55] originates from an everywhere-regular
unrestricted perturbed Oð�Þ effective Hamiltonian
� �qðu; p’; prÞ, Eq. (123), which grows cubically (i.e., /
p3
’) as p’ ! 1. Note that the new, transformed u axis

corresponds to the original phase-space variable u0 ¼ uþ
��uðr; p2

’Þ þOð�2Þ. Note also that the result Eq. (130)

formally determining the transformation T to the canoni-
cal EOB form becomes ill-defined as u tends to 1

3
� .

Worse, if we approximate [for large j2 and large j2circðuÞ]
�qðu; j2Þ as �j3, so that �ðu; j2Þ � �qðu; j; 0Þ=ð1þ j2u2Þ �
j, we see from Eq. (130) that

�u � j2j2circ
j� jcirc
j2 � j2circ

� j2j2circ
jþ jcirc

: (132)

Not only is this result blowing up as either jcirc or j gets
large, it is actually only well-defined above the LR, i.e.,
when r > 3 or u < 1

3 , because it contains the square

rootjcircðuÞ ¼ ðuð1� 3uÞÞ�1=2. Therefore, the transforma-
tion T , and the corresponding standard EOB potential
aðuÞ, are (probably) only defined when u < 1

3 .

One can also check that the reasoning above can be
extended to higher orders in pr. In particular, at order
Oðp2

rÞ it determines the value of the second ‘‘standard’’
EOB potential ��BðuÞ � Bðu;�Þ � B0ðuÞ ¼ �bðuÞ þ
Oð�2Þ. A preliminary study of the Oð�Þ contribution to
the standard B potential indicates that it blows up like

bðuÞ / ð1� 3uÞ�5=2 as u ! 1
3 . As a consequence, �dðuÞ

will have the same type of divergence near the LR.
We can summarize our conclusion by an analogy.

For many years, researchers in general relativity have
been mystified by what they called the ‘‘Schwarzschild
singularity’’, namely the fact that the standard
Schwarzschild metric is singular at r ¼ 2M, notably
because grr ¼ ð1� 2M=rÞ�1 blows up there and then
changes sign. It was only in the 1960s, notably through
the work of Kruskal, that it became clearly understood that
this ‘‘r ¼ 2M Schwarzschild singularity’’ is a singularity
of the standard Schwarzschild coordinates, which can be
gauged away by a suitable transformation of the spacetime
coordinates, including a necessary mixing of space and
time coordinates. Our conclusion is that the singularity

aðuÞ � ð1� 3uÞ�1=2 we found is, somewhat similarly,
only due to a singularity of the standard phase-
space coordinates used in the EOB formalism. This
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‘‘phase-space-coordinate singularity’’ can be gauged away
by a suitable symplectic transformation, necessarily mix-
ing coordinates and momenta.

D. Impact of our findings on the EOB formalism

What conclusions should we draw from our GSF sub-
ISCO results for the EOB formalism? One possible reac-
tion would be to modify the standard EOB strategy that
concentrates all the near-circular dynamical information
into the effective metric [parametrized by the two radial
potentials AðuÞ ¼ A0ðuÞ þ �aðuÞ þOð�2Þ and BðuÞ ¼
B0ðuÞ þ �bðuÞ þOð�2Þ], and to allow the third EOB

function, Q̂ðu; pr; p’;�Þ, to participate in the description

of near-circular orbits, by relaxing the constraint that

Q̂ðu; pr; p’;�Þ vanishes when pr ! 0. (In the analogy

with the ‘‘r ¼ 2M Schwarzschild singularity’’ case, this
reaction is the analog of modifying the standard
Schwarzschild coordinates by allowing the use of a more
general spacetime gauge fixing.) Let us sketch how this
could be done. For this purpose, it is convenient to introduce
a special notation for the piece of the squared effective
Hamiltonian contributed by the Q function. Let us denote

�Qðu; p’; pr;�Þ � Aðu;�ÞQ̂ðu; p’; pr;�Þ; (133)

so that we have a simple linear decomposition of the
squared effective Hamiltonian:

Ĥ2
effðu; p’; prÞ ¼ Aðu;�Þð1þ p2

’u
2Þ þ Aðu;�Þ

Bðu;�Þp
2
r

þ �Qðu; p’; pr;�Þ: (134)

Note thatwe are no longer adding a subscript ‘‘restr’’ to Q̂ or
�Q. Indeed, we are no longer imposing the constraint (118),

but we allow a general momentum dependence in Q̂ and �Q.
Let us now consider the GSF expansion of the squared

effective Hamiltonian in Eq. (134), corresponding to the
GSF expansions of A, B and �Q, namely AðuÞ ¼ A0ðuÞ þ
�aðuÞ þOð�2Þ and BðuÞ ¼ B0ðuÞ þ �bðuÞ þOð�2Þ
and, consistently with Eq. (123), �Qðu; p’; pr; �Þ ¼
� �qðu; p’; prÞ þ Oð�2Þ. It yields Ĥ2

effðu; p’; prÞ ¼
H2

eff0ðu; p’; prÞ þ ��Ĥ
2
effðu; p’; prÞ, where the zeroth-

order term is given in Eq. (122) above, and where the
Oð�Þ perturbation is given by

��Ĥ
2
effðu; p’; prÞ ¼ �aðuÞð1þ p2

’u
2Þ

þ �

�
aðuÞ
B0ðuÞ � bðuÞA0ðuÞ

B2
0ðuÞ

�
p2
r

þ � �qðu; p’; prÞ þOð�2Þ: (135)

As above, let us focus on the terms in the Hamiltonian
which survive in the limit where pr ! 0:

��Ĥ
2
effðu; p’; pr ¼ 0Þ ¼ �aðuÞð1þ p2

’u
2Þ

þ � �qðu; p’; pr ¼ 0Þ þOð�2Þ:
(136)

This contrasts with the corresponding pr ! 0 limit of the
perturbation of the standard, restricted EOB Hamiltonian
which would only contain the first contribution, linked to
the perturbation of the standard A potential.
In previous sections, we (following, in particular,

Ref. [24]) have interpreted the numerical GSF data by
assuming that we were working within the context
of a standard EOB Hamiltonian. It was within this context
that we found a standard aðuÞ potential of the form
aEðuÞEcircðuÞ. In other words, we interpreted the GSF
data in terms of the following perturbation of the
standard-gauge EOB Hamiltonian:

��Ĥ
2
eff standardðu; p’; pr ¼ 0Þ
¼ �aEðuÞEcircðuÞð1þ p2

’u
2Þ þOð�2Þ; (137)

where EcircðuÞ is the function of u alone defined in
Eq. (107).
Let us now discuss the many ways in which the

latter, LR-singular standard EOB Hamiltonian (137) can
be traded off for an everywhere-regular Hamiltonian of
the general, nonstandard form (136). From Eq. (127), the
criterion for two Hamiltonians to be equivalent (at zeroth
order in pr) modulo a symplectic transformation is simply
that their numerical values agree along the sequence of
circular motions, i.e., when p’ ¼ pcirc

’ ðuÞ. This criterion

leaves many possibilities for transforming (137) into an
equivalent, but LR-regular Hamiltonian.
The simplest way of doing so is to replace the problem-

atic factor EcircðuÞ ¼ Heff0ðu; pcirc
’ ðuÞ; pr ¼ 0Þ in (137) by

the � ! 0 limit of the full (noncircularly reduced) effective
EOB Hamiltonian, i.e., the square root of Eq. (122),
namely

Ĥeff0ðu; p’; prÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0ðuÞ

�
1þ p2

’u
2 þ p2

r

B0ðuÞ
�s
: (138)

This leads, when considering for simplicity the pr ¼ 0
hypersurface in phase space [56], to the following first
nonstandard possibility for replacing (137):

�0
�Ĥ

2
effðu; p’; pr ¼ 0Þ ¼ �aEðuÞHeff0ðu; p’; pr ¼ 0Þ

	 ð1þ p2
’u

2Þ þOð�2Þ: (139)

Considered as functions over phase space, the two per-
turbed Hamiltonians in Eqs. (137) and (139) are very
different functions. In particular, the new Hamiltonian
Eq. (139) is regular across u ¼ 1

3 [57], because it is con-

structed from the ‘‘regularized’’ function aEðuÞ, extrapo-
lated beyond u ¼ 1

3 , as discussed in Sec. III. In addition,

�0
�Ĥ

2
effðu; p’; pr ¼ 0Þ vanishes at u ¼ 1

2 at least as fast as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2u

p
. [Actually, as we saw above that the regularized

function aEðuÞ is likely to change sign near u ¼ 1
2 , the new

Hamiltonian Eq. (139), being proportional to aEðuÞ	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2u

p
, nearly vanishes as ð1� 2uÞ3=2 near u ¼ 1

2 .]

The p’ dependence of Eq. (139) is / ð1þ p2
’u

2Þ3=2.
This is consistent with our general conclusion above that
any LR-regular form of the Oð�Þ perturbed Hamiltonian
must grow as p3

’ for large momenta. However, it was

argued in Ref. [4] that it is most natural for the Q contri-
bution that it be Oðp4Þ for small momenta. It is easy to
accommodate such a requirement by considering new
reformulations of the naive possibility Eq. (139) within
the ‘‘equivalence class’’ of perturbed Hamiltonians that
numerically agree along the sequence of circular motions
[i.e., when pr ¼ 0, and p2

’ ¼ j2circðuÞ].
Let us consider the following phase-space function:

kðu; p’Þ � ð1� 2uÞ p2
’u

1þ p2
’u

2
: (140)

It is easily seen that, along circular orbits [when p2
’ ¼

j2circðuÞ] the phase-space function kðu; p’Þ is numerically

equal to 1. On the other hand, as a function of momenta it is
Oðp2Þ for small momenta. We can then define a reformu-
lation of Eq. (137) which is both regular at u ¼ 1

3 and

Oðp4Þ for small momenta, by multiplying Eq. (139) by
the square of kðu; p’Þ, say

�00
�Ĥ

2
effðu; p’; pr ¼ 0Þ ¼ �aEðuÞðkðu; p’ÞÞ2Heff0

	 ðu; p’; pr ¼ 0Þð1þ p2
’u

2Þ
þOð�2Þ; (141)

giving, explicitly,

�00
�Ĥ

2
effðu; p’; pr ¼ 0Þ ¼ �aEðuÞu2ð1� 2uÞ5=2 p4

’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

’u
2

q
þOð�2Þ: (142)

Note that the global p dependence of this new
Hamiltonian is quite different from the previous one

[namely p4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
instead of ð1þ p2Þ3=2, where p

stands for pk ¼ up’], though (by consistency) they both

grow like p3 for large momenta. Note also that this new
Hamiltonian has a faster vanishing near u ¼ 1

2 , namely

/ aEðuÞð1� 2uÞ5=2.
More generally, one could use a phase-space transfor-

mation which trades off the GSF result Eq. (137) for a
perturbed Hamiltonian such that

�
gen
� Ĥ2

effðu;p’;pr¼0Þ¼�fðu;kðu;p’ÞÞHeff0ðu;p’;pr¼0Þ
	ð1þp2

’u
2ÞþOð�2Þ; (143)

where fðu; kÞ is any function such that fðu; 1Þ ¼ aEðuÞ.
This clearly leaves a lot of freedom in the definition of such
an LR-regular version of the standard result (137). Note
that the phase-space function kðu; p’Þ tends to the finite

limit ð1� 2uÞ=u as p’ ! 1, independently of being re-

stricted to the sequence of circular orbits, so that the whole
class of regular perturbed Hamiltonians Eq. (143) grows as
p3 for large momenta.
One should not be surprised by the existence of such a

large freedom in the formulation of a regular, nonstandard
Hamiltonian. Indeed, given any specific, LR-regular
Hamiltonian, its transform by an arbitrary regular sym-
plectic transformation T reg will generate a new, regular

Hamiltonian. The fact that, at zeroth order in pr, such a
regular T reg can introduce an arbitrary function of two

variables fðu; kÞ [constrained only along a certain curve in
the ðu; kÞ plane] is linked to the presence of the arbitrary
function �rðr; p2

’; p
2
r ¼ 0Þ in the pr ! 0 limit of a gener-

ating function gðr; p’; prÞ ¼ �pr�
rðr; p2

’; p
2
rÞ þOð�2Þ.

We leave to future work the detailed generalization of
our considerations to higher orders in powers of pr, and
simply note that, anyway, such a generalization involves
[at Oð�Þ] an arbitrary function of three arguments [corre-
sponding to �rðr; p2

’; p
2
rÞ]. We just recall here that part

of the success of the EOB formalism consists of finding
good ways of trimming down this large gauge freedom to
parametrize the dynamics in terms of the minimum number
of relevant functions.
We have just explained how to make full use of our sub-

ISCO results, without being restricted by their singular
behavior at the LR, by relaxing the ‘‘standard gauge fix-
ing’’ of the EOB formalism. However, it should be noted
that such a modification of the current EOB formalism is
really only needed if one wishes to describe the dynamics
of ultra-relativistic quasicircular orbits (p ! 1) near
u ¼ 1

3 . By contrast, the original motivation for, and main

use of, the current EOB formalism is to describe the
dynamics of mildly-relativistic radiation-reaction-driven
quasicircular orbits. Such orbits stay close to the sequence
of (stable) circular orbits down to the ISCO (i.e., for 0<

u & 1
6 ), and then strongly deviate from the sequence of

unstable orbits that formally continue to exist when 1
6 &

u & 1
3 . Indeed, though the ‘‘plunging motion’’ that follows

the radiation-reaction-driven quasicircular inspiral remains
approximately circular (i.e., with p2

r � p2
k, see Fig. 1 in

Ref. [3]), its path in phase space ðq; pÞ drastically deviates
from the phase-space location of unstable circular orbits. In
particular, the angular momentum p’ of a plunging orbit

stays approximately equal to its value jISCOcirc ¼ ffiffiffiffiffiffi
12

p þ
Oð�Þ when it crossed the ISCO, while the formal adiabatic
sequence of p’ values along the unstable circular orbits is

given by the function jcircðuÞ defined as the square root of
the rhs of Eq. (128). In particular, as one gets near u ¼ 1

3 the

two phase-space points ðqplunge; pplungeÞ and ðqcirc; pcircÞ
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become infinitely far apart. This infinite phase-space sepa-
ration (in the p’ direction) is both the cause (as we have

seen above) of the divergence of the standard aðuÞ as
u ! 1

3 , and an indication that the latter divergence is not

of direct physical relevance for describing (as the EOB
formalism aims to do) the dynamics of plunging orbits.
Actually, a proof of the capability of the standard
3PN-accurate EOB formalism (as defined in Ref. [4]) to
accurately describe the dynamics of (comparable-mass)
coalescing black hole binaries down to the light ring has
been recently given in Ref. [15]. Figure 1 of the latter
reference shows in particular that the (uncalibrated) stan-
dard 3PN-EOB prediction for the EðjÞ curve agrees
remarkably well with the NR one down to the radial
location of the LR (indicated as the leftmost vertical line
in the figure). By contrast, the EðjÞ curve corresponding to
the formal adiabatic sequence of circular orbits starts to
exhibit a strong and increasing deviation from ENRðjÞ after
the crossing of the ISCO (see the dash-dotted line in the
latter figure).

In view of this effectiveness of the standardly gauge-
fixed EOB formalism for the description of the dynamics
of mildly-relativistic binary systems, it might be useful to
set up a minimal way of modifying the EOB formalism so
as to incorporate our GSF sub-ISCO results. [In our above
analogy, this is like continuing to use standard (or nearly
standard) Schwarzschild coordinates when describing a
system for which the coordinate singularity at r ¼ 2M is
not interfering with the physics one is interested in.]
Above we have discussed ways of entirely trading off the
Oð�Þ piece of the radial A potential for an equivalent
momentum-dependent Q-type contribution. Actually, the
latter momentum-dependent Q-type contribution (growing
/ p3

’ for large momenta) is only needed for describing

ultra-relativistic motions, while the standard A-type contri-
bution is a simple and effective way of describing mildly-
relativistic motions above the ISCO. One can then conceive
of a mixed scheme, where the dynamics is described partly
by a certain radial �a0ðuÞ potential, and partly by a � �q
contribution, with the �a0ðuÞ potential playing the leading
role during the inspiral, and the � �q contribution taking over
only during the (late) plunge. For instance, considering as
above the terms remaining when pr ! 0, if we constrain
the � �q contribution to have the same p dependence as in

(142), namely p4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, we can use

�000
� Ĥ

2
effðu; p’; pr ¼ 0Þ

¼ �a0ðuÞð1þ p2
’u

2Þ þ �
p4
’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
’u

2
q ðaEðuÞu2ð1� 2uÞ5=2

� a0ðuÞu2ð1� 2uÞ3=2ð1� 3uÞ1=2Þ þOð�2Þ: (144)

Here one can choose a0ðuÞ, which corresponds to a
�-deformed radial potential Aðu;�Þ ¼ A0ðuÞ þ �a0ðuÞ, at

will. For instance, one could choose a0ðuÞ ¼ 2u3, so that

the p4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
-type contribution in Eq. (144) starts, when

u is small, proportionally to u6, i.e., at the 3PN level [by

contrast to Eq. (142) which starts like u5p4
’=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2p2

’

q
,

which corresponds to the 2PN level]. Alternatively, one
could choose an a0ðuÞwhich stays very close to the ‘‘exact’’
standard one (aEðuÞEcircðuÞ) up to some value u ¼ u0,
and then deviates from it when u > u0, and stays regular
across the LR. Such a choice would ensure that the

p4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
-type contribution in Eq. (144) has a

negligible effect when u � u0, and starts modifying the
dynamics only when u > u0. For instance, one could
choose a value of u0 between the ISCO and the LR. This
would allow one to make full use of our new strong-field
results on aðuÞ up to u ¼ u0 <

1
3 , essentially without

modifying the EOB formalism up to u ¼ u0. [It is with
this program in mind—of defining some simple, accurate
a0ðuÞ approximation to astandardðuÞ—that we have
given (above) accurate estimates for the first three deriva-
tives of astandardðuÞ at the ISCO.] The LR-regularized

p4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
-type contribution in Eq. (144) would then

only affect the end of the plungewhich follows the crossing
of the ISCO.
We leave to future work a study of the performances and

relative merits of the various possible completions of the
EOB formalism discussed above, as well as a discussion of
the needed extra terms of order Oðp2

rÞ (B-type contribu-
tions) and Oðp4

rÞ (old, standard Qrestr-type contributions).
In this respect, we note that it would be very valuable to be
able to use GSF data on plunging motions to directly
extract EOB-useful information about the plunge dynam-
ics taking place after the crossing of the ISCO. Alas, the
current state of development of GSF theory [namely the
lack of explicitOð�2Þ results] does not allow one to extract
gauge-invariant information from the calculation of the
gauge-variant self-force along a plunging orbit. In a related
vein, we note that, even if we go back to the case of exactly
circular orbits, our current GSF calculation of the first-
order only, Oð�Þ contribution to the (standard) radial A
potential is quite insufficient for allowing one to construct
an estimate of the function Aðu;�Þ able to accurately
describe the dynamics of comparable-mass binary systems.
Our current best-bet knowledge of the function Aðu;�Þ for
comparable-mass (nonspinning) systems (i.e., �� 1

4 ) has

been obtained by: (i) introducing [9] a two-parameter
family of putative A-functions incorporating current ana-
lytical (and GSF) knowledge, and then (ii) best-fitting, for
each available value of �, the corresponding EOB-
predicted waveform to NR waveforms [9,10]. The results
of these EOB/NR fits indicate that the function Aðu;�Þ
cannot be accurately described with only a linear depen-
dence on �, i.e., a function of the form Aðu;�Þ ¼ 1� 2uþ
�aðuÞ. The latter fact was explicitly discussed in the
Conclusions of Ref. [16], especially around Eq. (8.2) there.
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Even if one disregards the indications from such EOB/NR
fits about the need for Oð�2Þ terms in Aðu; �Þ, our GSF
results on the behavior of aðuÞ near u ¼ 1

3 give another hint

about the need for and importance of such terms. Let us
just quote two illustrative examples which involve mildly
strong-field effects [58] in the dynamics of a small mass
around a large mass.

First, there is the issue of the existence of an ISCO. We
know that it exists in the geodesic limit � ! 0, and is
located at rphys ¼ 6M, i.e., u ¼ 1

6 . We should a priori

expect that such a mildly strong-field phenomenon contin-
ues to exist (when neglecting radiation-reaction effects) as
the symmetric mass ratio increases to values of order 1

4 . In

the (standardly gauge-fixed) EOB formalism, the condition
for the existence of an ISCO (defined as the condition for
the existence of an inflection point in the effective potential
describing the radial motion) is [16]

�ðuISCO; �Þ ¼ 0; (145)

where uISCO is the looked-for inverse radius, and where the
function �ðu; �Þ is defined as

�ðu; �Þ � 2Aðu; �ÞA0ðu; �Þ þ 4uðA0ðu; �ÞÞ2
� 2uAðu; �ÞA00ðu; �Þ; (146)

with the prime denoting d=du. By mathematical continuity
with the solution uISCO ¼ 1

6 which exists when � ¼ 0, the

condition (145) will certainly admit a solution of the form
uISCO ¼ 1

6 þOð�Þ in a neighborhood of � ¼ 0. We can

now explore the physical need for terms of order Oð�2Þ
in the function Aðu;�Þ by studying the range of values
of � where a solution of (145) continues to exist under the
assumption that the A potential is assumed to be exactly
linear in �, i.e., given by the formula Alinðu;�Þ ¼
1� 2uþ �aGSFðuÞ with our above-determined sub-ISCO
a function, aGSFðuÞ ¼ aEðuÞEcircðuÞ. We find that such a
solution exists only for a rather small neighborhood
ð0; �maxÞ of � ¼ 0 with �max � 0:108. Note in passing
that a radial A potential of the type Alinðu;�Þ ¼ 1� 2uþ
�aGSFðuÞ also has the unpleasant physical consequence of
predicting the existence of some stable rest position, at
some radius r, with fixed values of � and ’. Indeed, the

effective radial potential Ĥ2
effðu; p’;�Þ, considered as a

function of the radial coordinate u ¼ 1=r, for any fixed
angular momentum p’, reduces in the case where p’ ¼ 0

to simply Alinðu;�Þ ¼ 1� 2uþ �aGSFðuÞ, which exhibits,
for any nonzero value of �, a minimum at some value of
u < 1

3 (because aGSFðuÞ ! þ1 as u ! 1
3 � ).

Let us give a second illustrative example for the unde-
sired physical consequences of keeping only the term
linear in � in the A potential. It concerns another mildly
strong-field effect. In the geodesic limit, one of the un-
stable circular orbits plays a somewhat preferred role. It is

the one located at u ¼ 1
4 (i.e., r

phys ¼ 4M). It has a (spe-

cific) angular momentum p’ ¼ 4, and a vanishing binding

energy, i.e., E ¼ 1. This marginally bound orbit is the end
point of the special zero-binding zoom-whirl orbit which
starts, in the infinite past, with zero kinetic energy at
infinity (but with the nonzero angular momentum p’ ¼
4) and ends up, in the infinite future, ‘‘whirling indefi-
nitely’’ around the large mass. As in the case of the ISCO,
one would a priori expect that such a mildly strong-field
phenomenon will continue to exist (when neglecting
radiation-reaction effects) as the symmetric mass ratio
increases to values of order 1

4 . The condition for such a

zero-binding circular orbit to exist has been written down
(in the EOB formalism) in Ref. [16]. It reads

Zðu�; �Þ ¼ 0; (147)

where u� is the looked-for radius, and where the function
Zðu; �Þ is defined as

Zðu; �Þ � Aðu; �Þ þ 1

2
uA0ðu; �Þ � A2ðu; �Þ: (148)

We know that the condition (147) admits the solution u� ¼
1
4 when � ¼ 0. By mathematical continuity, it will certainly

admit a solution of the form u� ¼ 1
4 þOð�Þ in a neighbor-

hood of � ¼ 0. Like in the case of the ISCO, we can now
explore the range of values of � where a solution of (147)
continues to exist under the assumption that the A potential
is assumed to be exactly linear in �. We find that this leads
to a much stronger constraint on the magnitude of � than in
the case of the ISCO. Namely, we find that a solution of
(147) exists only for a very small neighborhood ð0; �0

maxÞ of
� ¼ 0with �0

max � 0:035. For larger values of � the growth
of aGSFðuÞ in the interval 14 < u< 1

3 prevents the continued

existence of a zero-binding circular orbit (as well as of the
corresponding zero-binding zoom-whirl orbit).
These striking physical consequences of neglecting

Oð�2Þ terms in Aðu; �Þ suggest that the Oð�2Þ contribution
to Aðu; �Þ is also divergent near u ¼ 1

3 , but has a negative

sign. In addition, one expects it to diverge proportionally to
ð1� 3uÞ�2 so that the ratio between the Oð�2Þ contribu-
tion and the Oð�1Þ one is of order �=ð1� 3uÞ3=2, as sug-
gested by the previously derived consistency condition
(112). We leave to future work a detailed study of the
higher-order GSF contributions to Aðu; �Þ.

VIII. CONCLUSIONS AND OUTLOOK

We have computed the conservative piece of the GSF
acting on a particle of mass m1 as it moves along any
(stable or unstable) circular geodesic orbit around a
Schwarzschild black hole of mass m2 � m1. Our main
results and conclusions are as follows.

(1) We numerically computed the function hR;Luu ðxÞ �
hR;L�� u

�u�, where hR;L�� ð/ m1Þ is the regularized
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metric perturbation in the Lorenz gauge, u�

is the four-velocity of m1 in the background

Schwarzschild metric of m2, and x � ½Gc�3ðm1 þ
m2Þ��2=3 is a dimensionless measure of the orbital
frequency�. Our results are collected in Table VIII
and IX in the Appendix. The fractional accuracy of
our numerical results ranges between 10�10 and
10�8 for most data points, and never gets worse
than 10�5 (except at a single point, closest to the
LR). Our results improve on previous calculations
both in accuracy (except for very small values of x,
x < 1=200) and in range. In particular, our work is
the first to explore the unstable orbits between x ¼ 1

5

[slightly below the innermost stable circular orbit
(ISCO) located at x ¼ 1

6 ], and the LR, located at

x ¼ 1
3 .

(2) We particularly studied the behavior of hR;Luu ðxÞ just
outside the LR at x ¼ 1

3 (i.e., r ¼ 3Gm2=c
2), where

the circular orbit becomes null. We found that

hR;Luu ðxÞ blows up like hR;Luu ðx ! 1
3Þ � � 1

2 	
m1

m2
	ð1� 3xÞ�3=2, where 	 � 1. We argued that the

divergence of hR;Luu ðx ! 1
3Þ can be understood from

the divergent behavior of (some of) the components
of the four-velocity u� near the LR.

(3) Using a recently discovered link [24] between

hR;Luu ðxÞ and the piece aðuÞ, linear in the symmetric
mass ratio � � m1m2=ðm1 þm2Þ2, of the main
radial potential Aðu; �Þ ¼ 1� 2uþ �aðuÞ þOð�2Þ
of the EOB formalism, we computed from our
GSF data the EOB function aðuÞ over the entire
domain 0< u< 1

3 . Our results for the function

aðuÞ improve on previous calculations both in accu-
racy and in range. In particular, our work is the first
to explore the behavior of the EOB potential aðuÞ as
u ! 1

3 . We found that aðuÞ diverges like aðuÞ �
1
4 	ð1� 3uÞ�1=2 (where 	 � 1) at the light-ring

limit, u ! ð13Þ�.
(4) We then considered the energy-rescaled

function aEðuÞ � aðuÞ=EðuÞ, where EðuÞ ¼
ð1� 2uÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3u
p

is the (specific) relativistic en-
ergy of m1 in the background Schwarzschild black
hole of mass m2 � m1. This energy-rescaled func-
tion has a finite limit as u ! 1

3 , but seems to have a

weak singularity �c0 þ ð1� 3uÞðclog1 lnj1� 3uj þ
c1Þ there. We gave several high-accuracy global
analytical representations of aEðuÞ that incorporate
all the presently known PN analytical information
about it, and essentially reproduce all our numerical
results within their numerical errors. We think that
our analytical models of aEðuÞ give a reasonably
accurate representation of the behavior of that func-
tion even beyond the range (0< u< 1

3 ) where GSF

data can compute it, say in the range 1
3 < u & 1

2 . See

notably the curves for models 13, 14 and 19 in
Fig. 5, which show the Newton-rescaled function
âEðuÞ ¼ aEðuÞ=2u3. In other words, we think that
our GSF calculations give us, for the first time,
valuable information about the truly strong-field
regime u ¼ GM=c2r & 1

2 .

(5) Using our accurate analytical fits of the EOB poten-
tial aðuÞ, we computed global analytical representa-
tions of the Oð�Þ pieces in the functions giving the
total energy and total angular momentum of a binary
system in terms of the frequency parameter x.
We found that these Oð�Þ functions have rather
strong (negative) divergences near the LR, namely
�� ~c�ð1� 3xÞ�2 (with positive constants ~c).

(6) The GSF-induced, Oð�Þ shift in the value of the
orbital frequency of the innermost stable circular
orbit (ISCO) has been a touchstone for comparing
various analytical descriptions of binary dynamics.
Using a multipronged analysis of our accurate
new data, we have been able to improve the compu-
tation of the Oð�Þ ISCO shift by four orders of
magnitude—see Table V. We have also expressed
our improved result in terms of the combination
að1=6Þ, Eq. (87), of derivatives of the EOB
potential, thereby providing a direct, accurate way
of calibrating the EOB formalism in the � ! 0
limit—see Eq. (96). In addition, for further
helping the construction of Oð�Þ-accurate EOB
Hamiltonians, we have given accurate numerical
estimates of the values of aðuÞ and its first three
derivatives at the ISCO point u ¼ 1

6 : Eq. (91).

(7) In previous work we used GSF data on slightly
eccentric orbits to compute a certain linear combi-
nation of aðuÞ and its first two derivatives, which
also involved theOð�Þ piece of a second EOB radial
potential �DðuÞ ¼ 1þ � �dðuÞ þOð�2Þ. Combining
these results with our new accurate global analytic
representation of aðuÞ, we numerically computed
�dðuÞ on the interval 0< u � 1

6 .

(8) Our finding of an inverse-square-root singularity

aðuÞ / ð1� 3uÞ�1=2 in the Oð�Þ EOB potential
seems to put in question the domain of validity of
the GSF expansion, and/or that of the EOB formal-
ism. We addressed both issues in detail. First,
we argued that Oð�Þ GSF results are physically
reliable near the LR only in a limit where the ratio

�=ð1� 3uÞ3=2 tends to zero. This limit allows for the
unboundedness, near u ¼ 1

3 , of second (and higher)

u-derivatives of the EOB potential Aðu; �Þ, and
thereby signals the presence of some type of singu-
larity of the (standard) EOB formalism at u ¼ 1

3 .

However, we argued that the (mathematical) singu-

larity aðuÞ / ð1� 3uÞ�1=2 we found is only a spu-
rious singularity, due to the use, in the current,
standard EOB formalism, of some specific way of
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fixing the phase-space gauge freedom. [The aðuÞ /
ð1� 3uÞ�1=2 singularity is a phase-space analog of,
e.g., the grr ¼ ð1� 2M=rÞ�1 ‘‘Schwarzschild
coordinate singularity’’ at r ¼ 2M.] We explicitly
showed (at lowest order in pr) how to ‘‘gauge-

away’’ the singularity aðuÞ / ð1� 3uÞ�1=2 by
relaxing the standard, phase-space-gauge-fixing
conditions of the EOB Hamiltonian (namely by
allowing the third, Q EOB potential to grow / p3

’

when pr ¼ 0 and p’ ! 1). In addition, we exhib-

ited minimal ways of modifying the current EOB
gauge fixing, which are appropriate when dealing
with radiation-driven inspiralling and coalescing
binaries, rather than with highly unbound ultra-
relativistic circular orbits near the LR. In order to
globally construct these modifications of the cur-
rent EOB formalism, it is essential to make use of
our finding that, after factoring EðuÞ out of aðuÞ,
one ends up with a function that is continuous at
u ¼ 1

3 , and can be naturally extended to larger

values of u.
Finally, let us make the following remarks about some of

the future research directions that suggest themselves to
complete our results.

(a) First, it would be useful to improve the accuracy
of the GSF data near the LR, in order to allow
a better characterization of the behavior there.
This would likely require a reformulation of the
mode-sum scheme to achieve a more rapid con-
vergence of the multipole mode-sum near the LR,
where the standard high-l behavior is no longer
applicable.

(b) It would be interesting to extend the GSF computa-
tion of the precession of slightly eccentric orbits so
as to extend the range of determination of the second
EOB potential, �dðuÞ, from the current range 0<

u< 1
6 to the full range 0< u< 1

3 where it is, in

principle, computable.
(c) Several aspects of our work have emphasized the

need for an understanding of higher-order terms in
the GSF expansion, notably terms Oð�2Þ. This pro-
vides a motivation for pushing more effort in this
direction.

(d) Our work has also emphasized the importance of
being able to extract gauge-invariant dynamical in-
formation about plunging orbits.

(e) Finally, it would be interesting to study the perfor-
mances and relative merits of the various nonstan-
dard EOB schemes whose necessity is suggested by
our work.
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APPENDIX: NUMERICAL DATA

We tabulate here the complete set of GSF numerical data
used in our analysis. We show numerical values for the

Lorenz-gauge quantities hR;Luu ðxÞ sampled at (generally)
equal intervals in x in the range 1=150 � x � 1=3, corre-
sponding to 3m2 < r � 150m2. For practical reasons we
split the data between Table VIII (x < 1=6) and Table IX
(x � 1=6). The tables also show the corresponding values

of the Oð�Þ EOB potential aðxÞ derived from hR;Luu ðxÞ using
Eq. (42). Our data for x > 1=5 is new. A subset of the x �
1=5 data already appeared in the literature [22,36] but at
significantly lower accuracy. Reference [25], which was
concerned primarily with the PN domain, presented a
sample of very-high-accuracy data for the weak-field range
1=500 � x � 1=200. As we are interested here in the
global behavior (in particular in the strong-field domain),
we do not include these high-accuracy large-r points in our
sample to avoid statistical bias in our �2 analysis. All of
our data points are consistent with previously published
results within the respective error bars (where quoted). [To
see the agreement with Refs. [22] or [25] one needs to use
our Eq. (15) in order to convert between the Lorenz-gauge
values given in our tables and the flat-gauge values given in
those sources.]
To allow for a meaningful �2 analysis in the present

work, it was important for us to obtain a reliable estimate
of the numerical error in the data points. Our methods
for error estimation are described in detail in
Refs. [20,46]. For most data points the error is by far
dominated by the uncertainty in the value of the analyti-
cally fitted large-l tail contribution to the regularized
metric. Essentially, we use some of the our large-l nu-
merical data points to fit a power-law model using sev-
eral plausible models (varying over the number of
power-law terms and the number of data points used
for the fit), and use the variance of the results as a rough
measure of the tail-fit error. See Refs. [20,46] for more
details. We expect this procedure to give us the actual
error to within a factor �2 or so. (This is indeed con-
firmed by our �2 analysis: we find that the value of
�2=DOF settles at around 3–4 and does not reduce any
further upon adding model parameters.)
The parenthetical figures in Tables VIII and IX

correspond to the error estimates coming from the
above procedure. For instance, 0.02693868484(1) stands
for �0:02693868484
 10�11. In this example, 
10�11

describes our ‘‘best guess’’ for the numerical error,
although a more conservative approach (taking into
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TABLE VIII. Numerical data (part I). Each row displays data for a circular geodesic with a particular Schwarzschild radius r, given
in the third column. The first and second columns show the corresponding values of x ¼ m2=r and z ¼ 1� 3m2=r. [The relation
x ¼ m2=r holds only at Oð�0Þ, but here we may ignore higher-order corrections because x and r are used as arguments (independent
variables) for quantities which are already Oð�Þ, namely hR;Luu ðxÞ and �aðxÞ.] The fourth and last columns give, respectively, our
numerical results for the Lorenz-gauge quantity hR;Luu [see Eq. (6)] and for the Oð�Þ EOB potential aðxÞ [see Eq. (42)]. In the fifth
column we give estimates of the absolute numerical errors in the hR;Luu data. These error values are the ones used in our �2 analysis, and
we give them here in full (showing several insignificant digits) in order to allow readers to reproduce this analysis accurately. Our
actual error estimates for the individual data points (which we expect to be only accurate to within a factor 2 or so) are expressed in the
form of parenthetical figures in the fourth and last columns, showing our best estimate of the uncertainty in the last displayed decimals.

300x z r=m2 q�1hR;Luu ðxÞ Num. err. aðxÞ
2.0 0.98 150.000000 �0:02693868484ð1Þ 1:000	 10�11 0.000000628989(5)

3.0 0.97 100.000000 �0:04061834870ð1Þ 1:000	 10�11 0.000002183516(5)

4.0 0.96 75.000000 �0:05444418654ð1Þ 1:000	 10�11 0.000005318948(5)

5.0 0.95 60.000000 �0:06842101467ð3Þ 3:367	 10�11 0.00001066749(2)

6.0 0.94 50.000000 �0:08255394376ð4Þ 4:464	 10�11 0.00001891471(2)

7.0 0.93 42.857143 �0:09684839467ð3Þ 3:365	 10�11 0.00003079997(2)

8.0 0.92 37.500000 �0:11131011555ð2Þ 2:282	 10�11 0.00004711690(1)

9.0 0.91 33.333333 �0:12594520104ð2Þ 2:497	 10�11 0.00006871439(1)

10.0 0.90 30.000000 �0:14076011159ð2Þ 2:255	 10�11 0.00009649701(1)

11.0 0.89 27.272727 �0:15576169693ð2Þ 2:492	 10�11 0.00013142683(1)

12.0 0.88 25.000000 �0:17095721902ð5Þ 5:184	 10�11 0.00017452421(2)

13.0 0.87 23.076923 �0:18635437743ð3Þ 2:506	 10�11 0.00022686906(1)

14.0 0.86 21.428571 �0:20196133845ð3Þ 2:648	 10�11 0.00028960291(1)

15.0 0.85 20.000000 �0:21778676312ð3Þ 2:688	 10�11 0.00036392975(1)

16.0 0.84 18.750000 �0:23383984256ð3Þ 2:569	 10�11 0.00045111905(1)

17.0 0.83 17.647059 �0:25013033092ð3Þ 2:619	 10�11 0.00055250677(1)

18.0 0.82 16.666667 �0:26666858464ð3Þ 3:039	 10�11 0.00066949804(1)

19.0 0.81 15.789474 �0:28346560363ð3Þ 2:900	 10�11 0.00080356947(1)

20.0 0.80 15.000000 �0:30053307633ð4Þ 4:293	 10�11 0.00095627173(2)

21.0 0.79 14.285714 �0:31788342798ð3Þ 2:637	 10�11 0.00112923221(1)

22.0 0.78 13.636364 �0:33552987395ð4Þ 4:052	 10�11 0.00132415814(2)

23.0 0.77 13.043478 �0:35348647703ð4Þ 3:569	 10�11 0.00154283972(1)

24.0 0.76 12.500000 �0:37176820994ð3Þ 3:197	 10�11 0.00178715358(1)

25.0 0.75 12.000000 �0:39039102352ð4Þ 3:700	 10�11 0.00205906652(1)

26.0 0.74 11.538462 �0:40937192102ð3Þ 3:419	 10�11 0.00236063948(1)

27.0 0.73 11.111111 �0:42872903910ð3Þ 3:237	 10�11 0.00269403185(1)

28.0 0.72 10.714286 �0:44848173631ð3Þ 3:194	 10�11 0.00306150609(1)

29.0 0.71 10.344828 �0:46865068987ð4Þ 3:505	 10�11 0.00346543262(1)

30.0 0.70 10.000000 �0:48925800172ð4Þ 3:820	 10�11 0.00390829530(1)

31.0 0.69 9.677419 �0:51032731469ð4Þ 3:919	 10�11 0.00439269707(1)

32.0 0.68 9.375000 �0:53188393996ð4Þ 3:507	 10�11 0.00492136623(1)

33.0 0.67 9.090909 �0:55395499707ð4Þ 4:085	 10�11 0.00549716304(1)

34.0 0.66 8.823529 �0:57656956839ð4Þ 3:895	 10�11 0.00612308706(1)

35.0 0.65 8.571429 �0:59975886869ð3Þ 3:494	 10�11 0.00680228486(1)

36.0 0.64 8.333333 �0:62355643293ð4Þ 3:601	 10�11 0.00753805854(1)

37.0 0.63 8.108108 �0:64799832304ð4Þ 3:628	 10�11 0.00833387474(1)

38.0 0.62 7.894737 �0:67312335749ð4Þ 3:980	 10�11 0.00919337468(1)

39.0 0.61 7.692308 �0:69897336535ð5Þ 4:992	 10�11 0.01012038486(2)

40.0 0.60 7.500000 �0:72559346831ð4Þ 4:231	 10�11 0.01111892870(1)

41.0 0.59 7.317073 �0:75303239481ð5Þ 4:703	 10�11 0.01219323936(1)

42.0 0.58 7.142857 �0:78134282910ð5Þ 4:585	 10�11 0.01334777348(1)

43.0 0.57 6.976744 �0:81058180205ð5Þ 4:826	 10�11 0.01458722644(1)

44.0 0.56 6.818182 �0:84081112697ð6Þ 6:060	 10�11 0.01591654886(2)

45.0 0.55 6.666667 �0:87209788852ð6Þ 5:738	 10�11 0.01734096473(2)

46.0 0.54 6.521739 �0:90451499141ð5Þ 4:813	 10�11 0.01886599135(1)

47.0 0.53 6.382979 �0:93814177780ð6Þ 5:528	 10�11 0.02049746125(1)

48.0 0.52 6.250000 �0:97306472296ð5Þ 4:990	 10�11 0.02224154634(1)

49.0 0.51 6.122449 �1:00937822184ð7Þ 6:524	 10�11 0.02410478457(2)
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account the uncertainty in the error itself) would perhaps
set this at 
2	 10�11. Note that the tables also quote (in
the fifth column) more ‘‘precise’’ values for the numerical
errors, given to three places right of the decimal point.

Strictly speaking, this extra information is, of course,
meaningless, given the factor�2 uncertainty in the errors:
we present it here only for the purpose of allowing inter-
ested readers to fully reproduce our �2 analysis.

TABLE IX. Numerical data (part II), covering the sub-ISCO range 1=6 � x < 1=3. The table is structured in the same way as
Table VIII.

300x z r=m2 hR;Luu ðxÞ Num. err. aðxÞ
50.0 0.50 6.000000 �1:0471854796ð1Þ 1:054	 10�10 0.02609410950(3)

51.0 0.49 5.882353 �1:08659952251ð6Þ 6:245	 10�11 0.02821688301(2)

52.0 0.48 5.769231 �1:12774434980ð7Þ 7:185	 10�11 0.03048093197(2)

53.0 0.47 5.660377 �1:17075624628ð7Þ 7:489	 10�11 0.03289458866(2)

54.0 0.46 5.555556 �1:21578528730ð6Þ 5:720	 10�11 0.03546673669(1)

55.0 0.45 5.454545 �1:26299706191ð6Þ 6:359	 10�11 0.03820686140(1)

56.0 0.44 5.357143 �1:31257466418ð8Þ 7:999	 10�11 0.04112510844(2)

57.0 0.43 5.263158 �1:36472098296ð8Þ 7:670	 10�11 0.04423234741(2)

58.0 0.42 5.172414 �1:4196613648ð1Þ 9:639	 10�11 0.04754024627(2)

59.0 0.41 5.084746 �1:47764670375ð8Þ 7:896	 10�11 0.05106135426(2)

60.0 0.40 5.000000 �1:5389570493ð1Þ 1:137	 10�10 0.05480919704(2)

61.0 0.39 4.918033 �1:60390583535ð9Þ 9:043	 10�11 0.05879838596(2)

62.0 0.38 4.838710 �1:6728448488ð1Þ 1:087	 10�10 0.06304474249(2)

63.0 0.37 4.761905 �1:7461701015ð1Þ 1:107	 10�10 0.06756544251(2)

64.0 0.36 4.687500 �1:8243287924ð1Þ 1:355	 10�10 0.07237918263(2)

65.0 0.35 4.615385 �1:9078276091ð1Þ 1:351	 10�10 0.07750637433(2)

66.0 0.34 4.545455 �1:9972426612ð1Þ 1:363	 10�10 0.08296936903(2)

67.0 0.33 4.477612 �2:0932314430ð1Þ 1:371	 10�10 0.08879272321(2)

68.0 0.32 4.411765 �2:1965473024ð1Þ 1:373	 10�10 0.09500350907(2)

69.0 0.31 4.347826 �2:3080570549ð1Þ 1:375	 10�10 0.10163168283(2)

70.0 0.30 4.285714 �2:4287625435ð1Þ 1:401	 10�10 0.10871052135(2)

72.0 0.28 4.166667 �2:7026089937ð1Þ 1:445	 10�10 0.12437313326(2)

74.0 0.26 4.054054 �3:0299861727ð1Þ 1:496	 10�10 0.14234657312(2)

76.0 0.24 3.947368 �3:4275063529ð1Þ 1:471	 10�10 0.16308580174(2)

78.0 0.22 3.846154 �3:9189791853ð2Þ 1:627	 10�10 0.18718609087(2)

80.0 0.20 3.750000 �4:5395895523ð2Þ 1:609	 10�10 0.21544503763(2)

82.0 0.18 3.658537 �5:3432356852ð6Þ 6:309	 10�10 0.24896018744(6)

84.0 0.16 3.571429 �6:416105450ð1Þ 1:404	 10�9 0.2892884360(1)

86.0 0.14 3.488372 �7:903439422ð2Þ 1:905	 10�9 0.3387190693(1)

88.0 0.12 3.409091 �10:066672801ð2Þ 1:559	 10�9 0.40077307330(9)

90.0 0.10 3.333333 �13:4187934749ð9Þ 9:284	 10�10 0.48120301414(5)

91.0 0.09 3.296703 �15:849341504ð3Þ 2:644	 10�9 0.5312203677(1)

92.0 0.08 3.260870 �19:093469318ð8Þ 8:388	 10�9 0.5902619091(3)

93.0 0.07 3.225806 �23:580398048ð7Þ 7:359	 10�9 0.6612773504(3)

94.0 0.06 3.191489 �30:07746738ð2Þ 2:200	 10�8 0.7488226643(7)

95.0 0.05 3.157895 �40:08190371ð5Þ 4:853	 10�8 0.860429954(1)

96.0 0.04 3.125000 �56:8876661ð5Þ 4:832	 10�7 1.00975332(1)

97.0 0.03 3.092784 �89:13862ð2Þ 1:684	 10�5 1.2250733(3)

97.5 0.025 3.076923 �118:32926ð2Þ 1:775	 10�5 1.3763418(2)

98.0 0.02 3.061224 �167:13828ð2Þ 2:138	 10�5 1.5789875(2)

1575=16 1=64 3.047619 �244:5136ð1Þ 1:271	 10�4 1.828231(1)

98.5 0.015 3.045685 �260:3517ð2Þ 1:914	 10�4 1.872213(1)

99.0 0.01 3.030303 �484:6ð5Þ 5:398	 10�1 2.357(3)
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of the offending logarithm by �1=H2
eff 0ðu; p’Þ, so as to

have a completely smooth functional dependence on u.
[58] We note that the results of Refs. [14,23], which find good

NR/AR agreements when using only corrections linear in
�, concern certain quantities (considered in restricted
domains) for which the EOB predictions can also be
approximately described by a �-linear approximation to
A. Such particular cases tell us nothing about the behavior

of other physical quantities, and/or more general (and,
notably, stronger-field) domains, where the nonlinearities
in � become quite important. We recall in this respect that
a remarkable fact of the (canonical) 3PN-accurate Aðu; �Þ
potential is that, thanks to special cancellations among
terms of order �2 and �3, it happens to be exactly linear in
�. This means that the Oð�2Þ contribution to Aðu; �Þ must
be at least as small as Oðu5Þ in a weak-field expansion.
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