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When Lorentz invariance is violated at high energy, the laws of black hole thermodynamics are

apparently no longer satisfied. To shed light on this observation, we study dispersive fields in de Sitter

space. We show that the Bunch-Davies vacuum state restricted to the static patch is no longer thermal, and

that the Tolman law is violated. However we also show that, for free fields at least, this vacuum is the only

stationary stable state, as if it were in equilibrium. We then present a precise correspondence between

dispersive effects found in de Sitter and in black hole metrics. This indicates that the consequences of

dispersion on thermodynamical laws could also be similar.
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I. INTRODUCTION

The two main predictions of quantum field theory in
curved space, namely black hole radiation [1–3] and pri-
mordial spectra in inflation [4–6], share many properties.
In particular, both spectra stem from vacuum fluctuations
with extremely short wave lengths [7]. They are therefore
in principle sensitive to the ultrahigh frequency behavior of
the theory. To check this sensitivity, following [8], non-
linear dispersion relations, which break the local Lorentz
invariance, have been used in the context of black holes
[9–13] and in cosmology [14–17]. However so far, these
studies have been conducted separately and with different
means. In homogeneous cosmology, time dependent
modes with a fixed comoving wave vector have been
used, whereas for black holes, the analysis was based on
stationary modes. In spite of this, the two cases are unex-
pectedly similar, as we shall show.

In the present work, we analyze dispersive fields in de
Sitter space for two reasons. First, since de Sitter endowed
with a cosmological preferred frame is both homogeneous
and stationary, high frequency dispersion can be studied
along both approaches. This will allow us to relate them in
a very precise way. We shall see that their compatibility
relies on a two-dimensional symmetry group which is a
subgroup of the de Sitter isometry group [18]. Because the
generators of the two symmetries do not commute, in each
approach only one symmetry is manifest, while the other is
somehow hidden. In fact, this extra symmetry has been
exploited in the black hole near horizon approximation of
Refs. [9–13], but without noticing (in general) that it relies
on properties that are exact in de Sitter space.

Second, the main consequence of high frequency dis-
persion, that is the loss of the thermality of the spectrum,
has raised deep questions concerning the relationships
between Lorentz symmetry and black hole thermodynam-
ics [19–21]. It has been claimed that this loss should lead to

violations of the second law [22–24]. These issues are
particularly relevant when working with extended theories
of gravity, such as Einstein-aether [25] or Horava gravity
[26], see Ref. [27]. To consider them in a simpler context,
we study the Bunch-Davies (BD) vacuum of dispersive
fields propagating in de Sitter space. In practice, we ana-
lyze the two-point function evaluated in this state. For all
dispersion relations, we show that it is stationary and
periodic in imaginary time with period 2�=H, where H
is the Hubble factor, as it is for Lorentz invariant theories.
However, in spite of this, we demonstrate that the BD
vacuum is no longer a thermal state when restricted to
the static patch (because the two-point function looses an
analytical property which is part of the KMS conditions
[3,28]). We also argue that the violations of thermality find
their origin in the fact that the stationary Hamiltonian
restricted to the static patch is no longer bounded from
below, and that this loss is not necessarily related to the
presence of event horizons. (For subluminal dispersion it
can occur in stationary backgrounds without Killing hori-
zon.) In spite of these violations, for free fields, we show
that the BD vacuum is the only stationary state which is
regular (in a sense that shall be made precise in the text)
and that the other regular states ‘‘flow’’ towards this state.
We expect that this will remain true for interacting theo-
ries, such as ��4. We then argue that the lessons obtained
in de Sitter should apply to black holes because there is a
precise correspondence between dispersive effects in de
Sitter and in black hole metrics.
The paper is organized as follows. In Sec. II we present

the basic properties of high frequency dispersion in de
Sitter space. In Sec. III, we demonstrate that the Bunch-
Davies vacuum is no longer thermal for any (superluminal)
dispersion relation. We also show that it is the only
stationary stable state. In Sec. IV, the departures from
thermality and the S-matrix are exactly calculated for a
quartic superluminal dispersion relation. We summarize
our results in the conclusions section. In Appendix A, we
discuss the group theoretical properties characterizing high
frequency dispersion in de Sitter, and in Appendix B we
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study the correspondence between de Sitter and black
holes.

II. DISPERSIVE FIELDS IN DE SITTER SPACE

A. Ultraviolet dispersion

We work in 1þ 1 dimensions and consider the flat sec-
tions of de Sitter space. They can be described by ds2 ¼
�dt2 þ a2dz2, where a ¼ eHt=H is the scale factor, and t
the cosmological time orthogonal to the flat sections. We
assume that the preferred frame associated with high energy
dispersion coincides with the cosmological frame. Following
Ref. [21], we describe it by a unit timelike vector field u,
treated as a given background field. When considering its
dynamics it can be shown that u flows to the cosmological
rest frame [29–31], like peculiar velocities in expanding
universes flow to rest. We also introduce the unit spacelike
vector s that is orthogonal to u. We use covariant expressions
because we want to be able to transpose the present descrip-
tion to black hole metrics. In the above coordinate system
ðt; zÞ, one has u� ¼ ð�1; 0Þ, and s� ¼ ð0; 1=aÞ.

The fields u, s define the preferred frequency and mo-
mentum by� ¼: u�@�, P ¼: s�@�. The dispersion relation

then reads

�2 ¼ F2ðP2Þ ¼ m2 þ P2 þ fðP2Þ: (1)

We suppose that f vanishes faster than P2 for P ! 0, so as
to recover a relativistic relation for P � �, where � gives
the ultraviolet dispersive scale. As such, Eq. (1) can be
viewed as the Hamilton-Jacobi equation for the corre-
sponding dispersive particle [9,11]. Using g�� þ u�u� ¼
s�s�, this equation reads

g��@�S@�Sþm2 þ fððs�@�SÞ2Þ ¼ 0; (2)

where Sðt; zÞ is the action of the particle. On the other hand,
Eq. (1) can also be viewed as the dispersion relation
governing some field. However there is some ambiguity
because of the ordering of the differential operators, and
nonminimal couplings. In this paper, we work with [32,33]

½�g��D�D� þm2 þ fð�s�D�s
�D�Þ�� ¼ 0; (3)

where D� is the covariant derivative. For other approaches

based on condensed matter models, see Refs. [34–36].
At this point it should be observed that the homogeneous

Killing field Kz ¼ @z commutes with our u field. In cos-
mological backgrounds, the comoving momentum k ¼
@z ¼ aP is thus conserved for all dispersion relations f.
What is peculiar about de Sitter space is that the settings
are also stationary. This can be easily seen when using the
preferred coordinates ðt; XÞ defined by dt ¼: u�dx

� and

@X ¼: s�@�, see Fig. 1. (They are often called Lemaı̂tre or

Painlevé-Gullstrand coordinates [37].) The preferred time
coincides with the cosmological time, and the new spatial
coordinate is related to z by X ¼ aðtÞz. In these coordi-
nates, the de Sitter metric reads

ds2 ¼ �dt2 þ ðdX � vðXÞdtÞ2; (4)

where v ¼ HX. The vector field Kt ¼ �@tjX, with the
derivative defined at fixed X, is manifestly a stationary
Killing field. One also verifies that Kt commutes with u.
In the presence of dispersion, this is a necessary condition
for its eigenvalue! ¼ �@tjX to be conserved. The relation
between the preferred and the constant frequency is
� ¼ !� vðXÞP.
Because of these two symmetries, Eqs. (2) and (3) can be

analyzed either in the k, t representation as done in cos-
mology [14–17], or in the !, X representation as done in
black hole physics [9–11]. However one cannot simulta-
neously exploit both symmetries because the two Killing
fields do not commute. In fact they obey [18]

½Kt; Kz� ¼ HKz: (5)

This is the algebra of a subgroup of the two-dimensional de
Sitter group SOð1; 2Þ. It corresponds to the affine group of
R: the algebra contains the translation operator @z and the
dilatation operatorHz@z acting on functions of z. Unlike the
full de Sitter group, it is compatible with dispersion and/or
dissipation. As explained in Appendix A, this follows from
the fact that both � and P are invariant under its action.
The connection with black hole physics is easily made

since the norm of Kt is K
2
t ¼ �1þ ðHXÞ2. It vanishes on

the (black) horizons located at HX� ¼ �1. We call them
black because the preferred momentum at fixed !
decreases as P� e�Ht, as found near the horizon in black
hole metrics endowed with a freely falling frame [9,11]. In
fact, the differences between that situation and the present
one only arise from the velocity profile v. In de Sitter, v ¼
HX is globally linear; whereas, for black holes, v is linear
near the horizon region only in a finite domain. As a result,
if the stationary Killing field Kt ¼ �@tjX is common to
both cases, Kz is only an ‘‘approximate’’ Killing field in
black hole backgrounds, as explained in Appendix B.

B. Mode analysis

Given the two symmetries, the solutions of Eq. (3) can
be decomposed either as

FIG. 1. The Penrose diagram of the two-dimensional de Sitter
space. The triangle surrounded by the thick line characterizes the
Poincaré patch covered by the coordinates t, X of Eq. (4). Dotted
lines represent t ¼ Cst, and dashed lines X ¼ Cst. The static
patch �1<HX < 1 is the square of the middle of the figure.
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� ¼
Z 1

�1
dkffiffiffiffiffiffiffi
2�

p eikz�kðtÞ; (6)

or as

� ¼
Z 1

�1
d!ffiffiffiffiffiffiffi
2�

p e�i!t�!ðXÞ: (7)

We have introduced the bold notation k to differentiate the
norm of k, k > 0, from k itself which belongs to ð�1;1Þ.
In the k-representation, Eq. (3) gives the second order
equation �

1

aðtÞ@taðtÞ@t þ F2

�
k2

aðtÞ2
��
�kðtÞ ¼ 0: (8)

As in all cosmological spaces, see e.g., Ref. [17], the
general solution thus lives in a two-dimensional space
and takes the form

�kðtÞ ¼ Ak�kðtÞ þ ðB�k�kðtÞÞ�: (9)

In de Sitter, and in de Sitter only, the k and t dependences
in Eq. (8) can be combined in a single variable which,
moreover, turns out to be the preferred momentum
P ¼ Hke�Ht. Indeed Eq. (8) can be rewritten as

ðH2P2@2P þ F2ðP2ÞÞ�ðPÞ ¼ 0: (10)

This possibility is due to the presence of the ‘‘spectator’’
Killing field Kt. Whereas Kz guarantees that k-modes
separate, Kt tells us that Eq. (8) is invariant under

k ! keHT; t ! tþ T; P ! P: (11)

This implies that �kðtÞ only depends on t only through P.
The same is true for the action SkðtÞ ¼ Sðt; zÞ � kz, where
Sðt; zÞ is solution of Eq. (2).

On the other hand, in the !-representation, the spatial
modes obey the higher order equation

½�ð!þ i@XvÞð!þ iv@XÞ þ F2ð�@2XÞ��!ðXÞ ¼ 0: (12)

Unlike what is found in the k-representation, at fixed!, the
dimensionality of the space of solutions now depends on
the dispersion relation: it is 2nwhen the highest power of P
in fðP2Þ is 2n. In spite of this it is possible, and very
instructive, to relate the solutions of Eq. (12) to those of
Eq. (8). To this end, it is useful to consider the Fourier
transform,

~�!ðPÞ ¼
Z 1

�1
dXffiffiffiffiffiffiffi
2�

p e�iPX�!ðXÞ; (13)

where P designates the wave vector, and P> 0 its norm. In
the !, P-representation, Eq. (12) becomes

½�ð!� iHP@PÞð!� iH@PPÞ þ F2ðP2Þ� ~�! ¼ 0: (14)

As in the k-representation, this is a second order equation

(in @P). Moreover one verifies, that ~�! exactly factorizes
as [9]

~�!ðPÞ ¼ P�i!H�1 � ~�ðPÞ; (15)

where ~� is independent of !. In addition, one also verifies
that ~� obeys Eq. (10). These unusual properties are due to
the other Killing field Kz. In fact because of Eq. (11), in
ðt; PÞ representation, irrespectively of Lorentz violating
term fðP2Þ, the modes trivially depend on t through a
delta-function: �ðP�HkeHtÞ. When working in the
ð!;PÞ representation, this implies both the factorization of
Eq. (15), and the fact that ~� obeys Eq. (10). The extra factor
of 1=P in Eq. (15) is due the Jacobian dt=dP ¼ �1=HP.
Since Eq. (14) is second order and singular at P ¼ 0, the

dimensionality of the space of solutions of ~�!ðPÞ is 4,
because P has both signs. The physical meaning of this
four-dimensional space, and its relation with the two-
dimensional one found in the k-representation, are given
below.

C. Scalar product and BD vacuum

To complete the comparison between the solutions of
Eqs. (8) and (12), we consider the conserved scalar prod-
uct. It is given by [8]

ð�1;�2Þ ¼ i
Z

dl
�
��

1�2 ���
1�2

�
; (16)

where � ¼ �u�@�� is the momentum conjugated to �.

The integral must be evaluated along u�dx
� ¼ dt ¼ 0,

and the line element is dl ¼ dX ¼ aðtÞdz.
In the k-representation, for �k ¼ eikz�k and �k0 ¼

eik
0z�k0 , one has

ð�k;�k0 Þ¼2��ðk�k0Þ�½aðtÞð��
ki@t�k0 ��k0 i@t�

�
kÞ�:
(17)

The standard normalization ð�k;�k0 Þ ¼ 2��ðk� k0Þ
imposes to work with modes �k that have a unit positive
current with respect to aðtÞi@t. When considering � of
Eq. (10), it is convenient to reexpress this condition as

H�i@P�
� �H��i@P� ¼ 1: (18)

That is, the � mode is imposed to be of unit positive
Wronskian. However, because Eq. (10) is second order, �
is not completely fixed by Eq. (18). To identify the inmode
which describes particles at early time, one has to impose
that it behaves as the positive frequency WKB mode at
early time [2]. Using Eq. (11) to reexpress this condition in
terms of P, the in mode �BD must obey

�BD �P!1
ei
R

P
FðP02ÞdP0

P0Hffiffiffiffiffiffiffiffiffiffiffiffi
2 FðP2Þ

P

q : (19)

Then the modes �k with unit positive norm can all be
written as
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�kðtÞ ¼ 1ffiffiffi
k

p ½Ak�BDðPÞ þ ðB�k�BDðPÞÞ��; (20)

where Ak and B�k satisfy jAkj2 � jB�kj2 ¼ 1, and where

the extra factor of
ffiffiffiffiffiffiffiffi
1=k

p
ensures that ð�k;�k0 Þ ¼

2��ðk� k0Þ is found when �BD obeys Eq. (18). The state
which is vacuum with respect to �BD for all values of k,
i.e., Bk ¼ 0 for all k, is the Bunch-Davies (BD) vacuum
[38,39].

To handle the mode identification in the!-representation,
it is appropriate to work with the Fourier mode of Eq. (15)
and to separate solutions with positive and negative values
of P. In the WKB approximation, positive norm solutions
describe right moving (U) particles for P> 0, left moving
(V) particles for P< 0, and vice versa for negative norm
solutions. However, the exact solutions of Eq. (14) mix U
and V modes. The general solution should thus be decom-
posed as

~�!ðPÞ ¼
�
P

H

��i!H�1
�
�ðPÞ
H

½AU
!�BD þ ðBV�!�BDÞ��

þ �ð�PÞ
H

½AV
!�BD þ ðBU�!�BDÞ��

�
; (21)

where the 4 coefficients weigh the initial (BD) contributions
with positive (negative) norm A (B), and with U or V
content. In fact, the scalar product of two such modes

�! ¼ e�i!t�!, �!0 ¼ e�i!0t�!0 is

ð�!;�!0 Þ ¼ 2�H�ð!�!0ÞðjAU
!j2

� jBU�!j2 þ jAV
!j2 � jBV�!j2Þ: (22)

This is exact and can be verified be expressing Eq. (16) in
the P-representation [11]. Imposing the positive norm con-
dition ð�!;�!0 Þ ¼ 2�H�ð!�!0Þ on the mode basis con-
straints the above parenthesis to be unity. Hence, in de Sitter,
irrespectively of the dispersion relation of Eq. (1), the
complete set of positive norm stationary modes contains 2
modes�U

!, �
V
! for ! 2 ð�1;1Þ. One verifies that 2n� 4

solutions of Eq. (12) are not asymptotically bounded in X,
and cannot be normalized. These modes should not be used
when decomposing the canonical field obeying Eq. (3) [40].
It is interesting to notice that the completeness of the sta-
tionary modes follows from the completeness of the Mellin
transform [41], in a manner similar that the completeness of
the homogeneous mode basis follows from that of the
Fourier transform, see the end of Appendix A for more
details. With this remark, we have verified that the set of
the asymptotically bounded solutions of Eq. (12) matches
that of the solutions of Eq. (8).

To conclude this section, we point out that the S-matrix
in the k-representation factorizes into 2-mode sectors con-
taining particles with opposite wave vectors k, because the
space in homogeneous. Instead, in the !-representation,
the S-matrix factorizes in different sectors with !> 0,
each of them being a 4-mode sector which contains two

U modes �U
!, ð�U�!Þ� and two V modes �V

!, ð�V�!Þ�. The
4� 4 character of the S-matrix in this representation
results from the composition of the cosmological mixing
of U and V modes with the stationary mixing of modes of
opposite frequency, see Sec. IVC for details.

D. The two Hamiltonians

In preparation for the analysis of the stability of the BD
vacuum, we study the Hamiltonian of our dispersive field.
We first point out that the fields u and Kt define two
different Hamiltonian functions, that we call, respectively,
Hu and Ht. Using the conjugated momentum � ¼
�u�@�� and the Lagrangian density L ¼ ��Ô�=2,

where Ô� ¼ 0 is Eq. (3), they are respectively given by

Hu ¼:
Z

dl
�
�@tjz�� L

�
;

Ht ¼:
Z

dl
�
�@tjX�� L

�
;

(23)

where we recall that @tjz ¼ �u�@� and @tjX ¼ �K
�
t @�.

Hu thus engenders time translations at fixed z, while Ht

does it at fixed X. In de Sitter space, Hu and Ht differ
because u ¼ Kt � vs � Kt since the flow v ¼ HX does
not vanish. In Minkowski space endowed with a Cartesian
u field, which is obtained in the limiting case H ! 0, the
two Hamiltonians coincide since u ! Kt when H ! 0.
This implies that in de SitterHt andHu share the properties
that the Hamiltonian possessed in Minkowski space.
On the one hand, the stationary Ht

Ht ¼ 1

2

Z 1

�1
dXfð@t�Þ2 þm2�2

þ ð1� v2Þð@X�Þ2 þ�fð�@2XÞ�g (24)

is conserved for all dispersion relations. However, for both
Lorentz invariant theories and dispersive ones with
fðP2Þ � 0, it is not positive definite precisely because Kt

is space like outside the horizons. (Recall that its norm is
�K2

t ¼ 1� v2.) Notice also that when working in the P
representation one easily verifies that the last term in Ht is
positive definite for f > 0. For dispersive theories with
f < 0, such as phonons in Helium4, the density of Ht

becomes negative where v reaches the critical Landau
velocity [7,42]. In any case, in de Sitter, when using the
stationary modes of Eq. (21), Ht can be decomposed asR1
0 d!H!, where

H! ¼ !ðjAU
!j2 þ jAV

!j2 � jBU�!j2 � jBV�!j2Þ: (25)

Ht is thus manifestly conserved and not positive definite.
On the other hand, the cosmological Hu can be decom-

posed as Hu ¼
R1
�1 dkHk where

HkðtÞ ¼ aðtÞ
2

�
j@t�kðtÞj2 þ F2

�
k2

aðtÞ2
�
j�kðtÞj2

�
: (26)
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Hu is thus positive definite whenever F2 > 0. (Notice that
theories with F2 < 0 are dynamically unstable even in
Minkowski space.) However, Ht is not conserved because
d lna=dt ¼ H � 0. The nonconservation of HkðtÞ engen-
ders nonadiabatic transitions [43] which describe pair cre-
ation of quanta of opposite k, see Sec. IVA for a particular
example. When using Eq. (20), the time dependence of Hk

can be entirely expressed through P ¼ Hke�Ht as

HkðtÞ ¼ jAkj2 þ jB�kj2
2P

ðjHP@P�BDj2 þ F2ðP2Þj�BDj2Þ

þ Re

�
AkB�k

P
ððHP@P�BDÞ2 þ F2ðP2Þ�2

BDÞ
�
:

(27)

We also see that when imposing jAkj2 � jB�kj2 ¼ 1, the
minimization of Hk (more precisely, its integral over one
period) implies B�k ¼ 0. This is the classical equivalent of
saying that the BD vacuum is the lowest energy state with
respect to the preferred frame field u.

To conclude, we clearly see the complementary roles
played by the Hubble constant H. In the stationary repre-
sentation, it is responsible for an energetic instability, i.e.,
for a conserved Hamiltonian Ht unbounded from below.
Instead in the homogeneous representation, H is respon-
sible for the time dependence of the positive definite Hu,
which engenders pair creation, i.e., a vacuum instability.
These two properties are valid for all dispersion relations,
and therefore they also apply to Lorentz invariant theories.
This is a reminder that field theories in de Sitter space, and
in black hole metrics, are threatened by dynamical insta-
bilities, i.e., complex frequency modes [44,45]. In addition,
as argued below, violations of thermodynamical laws are
also related to an energetic instability.

III. THE CONSEQUENCES OF
LORENTZ VIOLATIONS

In de Sitter space, when considering Lorentz invariant
fields, the Bunch-Davies vacuum possesses many remark-
able properties. On one hand, it is homogeneous and sta-
tionary, and on the other hand, it is an Hadamard state. In
fact, it is the only stationary Hadamard state [38,46]. In
addition, it can be shown that all other Hadamard states
flow towards the BD vacuum. By this we mean that the
n-point functions evaluated in these states flow towards the
corresponding one evaluated in the BD vacuum. In this
sense, the BD vacuum is the only stable regular state.
Finally, when evaluated in the static patch jHXj< 1, the
n-point functions are all thermal [28]. They indeed obey
the double KMS condition: they are periodic in imaginary
time with period 2�=H, and they are analytic in the strip
0< Imt < 2�=H.

When considering dispersive fields, we shall see that, for
free fields at least, the BD vacuum still satisfies all these
properties, save the very last. In fact, even though the

periodicity in Im t is still exactly found, the analyticity in
the strip is always lost when there is high frequency
dispersion. This means that the BD vacuum is no longer
a thermal state.

A. Stationarity and periodicity

Since we work with free fields and since the BD vacuum
is a Gaussian state, we only need to consider the 2-point
function. When using the settings of the former section, the
Wightman function in the BD vacuum can be written as [2]

GBDðz; t; z0; t0Þ

¼
Z 1

�1
dk

eikðz�z0Þ

2�k
�BDðkHe�HtÞ��

BDðkHe�Ht0Þ: (28)

When considered at fixed t0 and t, this function is mani-
festly homogeneous. It is also stationary, when considered
at fixed X0 ¼ aðt0Þz0 and X ¼ aðtÞz. Indeed in terms of
P ¼ k=aðtÞ, one gets

GBDðX; t; X0; t0Þ ¼
Z 1

0
dP

i sinðPX � PX0e
Hðt�t0ÞÞ

�P

� �BDðPÞ��
BDðPeHðt�t0ÞÞ; (29)

which is a function of t� t0 only. Hence, for all dispersion
relations imposed in the cosmological frame, the BD vac-
uum is both stationary and homogeneous, as it is for
relativistic fields. More surprisingly, GBD is also periodic
in the imaginary time lapse, with the usual period 2�=H,
exactly as for Lorentz invariant fields, and for thermal
functions.
We expect that homogeneity, stationarity and the above

periodicity will be exactly preserved when considering the
n-point functions of interacting fields evaluated in the BD
vacuum, because these properties are protected by the
affine group of Eq. (5). In other words, the n-points func-
tions will always be invariant under this subgroup.

B. Thermality

For Lorentz invariant theories, it has been shown by
Gibbons and Hawking [47] that freely falling observers
immersed in the BD vacuum detect a thermal bath with a
temperature TH ¼ H

2� in natural units kB ¼ ℏ ¼ c ¼ 1. It

was also understood that, when restricted to the static patch
�1<HX < 1, the reduced density matrix of any quantum
field theory (interacting or not) is a thermal state at that
temperature. Interestingly, this result is always violated for
dispersive fields.
To demonstrate this, we consider particle detectors

which follow orbits that are stationary with respect to the
Killing field Kt. Because K

2
t ¼ �1þH2X2, the only sta-

tionary orbits are at fixed X, and with jHXj< 1 when they
are timelike. The detector transition rate of spontaneous
excitation R� (de-excitation Rþ) is proportional to [3,48]
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R�ð!;XÞ ¼
Z 1

�1
Hdte�i!tGBDðX; t;X; 0Þ: (30)

To relate the detector energy gap �E> 0 to the Killing
frequency !, one must take into account the X dependent

redshift factor (�E ¼ !=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2X2

p
) coming from the

detector’s kinematics, which also enters in Tolman law

TlocðXÞ ¼ Tgl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2X2

p
relating the local temperature

to the globally defined one [49,50]. In what follows, we
shall work with the globally defined temperature and with
!. To study the deviations from thermality, it is convenient
to use the temperature function Tglð!;XÞ defined by

R�ð!;XÞ
Rþð!;XÞ ¼ e�!=Tglð!;XÞ: (31)

For relativistic fields, one has Tglð!;XÞ ¼ TH ¼ H=2�,

for all jHXj< 1 and for 0<!<1, in accord with
Tolman law and the Planck spectrum. To compute Tgl in

the presence of dispersion, we shall use the fact that the
rates are given by

R�ð!;XÞ ¼ j�BD;U
�! ðXÞj2 þ j�BD;U

�! ð�XÞj2; (32)

where �BD;U
! is the positive norm BD mode that is initially

right moving, i.e., AU ¼ 1, AV ¼ BU ¼ BV ¼ 0 in
Eq. (21). Similarly, ð�BD;U�! Þ� is given by the negative
norm, negative frequency, mode: BU ¼ 1. In the above
equation we have used the symmetry X ! �X to express
the contribution of the left movingV-mode evaluated atX as
that of the right U-moving one at �X. Explicitly, �BD;U

! is

�BD;U
! ðXÞ ¼

Z 1

0

dPffiffiffiffiffiffiffi
2�

p
H
eiPX

�
P

H

��i!=H�1
�BDðPÞ; (33)

where �BD obeys Eq. (10). To prove that thermality is
violated it is sufficient to work with X ¼ 0 and to consider
very high frequencies !=� 	 1. In this limit the integral is
dominated by high values of P, and therefore by the leading
term of the dispersion relation, that we parametrize here by

fnðP2Þ ¼ P2n

�2n�2
: (34)

In the high P regime, the WKB expression of Eq. (19) offers
a reliable approximation of �BD. Hence, up to irrelevant
constants, one gets

�BD;U
! ðX ¼ 0Þ 


Z dP

P
P�i!H�n�1

2 eiP
n
: (35)

Using Q ¼ Pn as integration variable, one obtains a �
function, namely

�BD;U
! ðX ¼ 0Þ 
 e!�=2nH � �

�
� i!

nH
� n� 1

2n

�
: (36)

Using this result in Eqs. (32) and (31), gives

Tglð! 	 �; X ¼ 0Þ ¼ n
H

2�
; (37)

i.e., n times the standard temperature TH.
Instead, for !=� � 1 and H=� � 1, Tglð!;X ¼ 0Þ

reduces approximatively to the standard temperature TH

[13]. Hence the BD vacuum is no longer thermal. This
result is nontrivial since GBD of Eq. (29) is still periodic in
imaginary time, with the standard period. From the above
equations and from P� e�Ht, one understands that the
power n of Eq. (34) reduces the domain of analyticity of
GBD in Im ðtÞ by a factor of n. Indeed since �BD � eiP

n
for

large P, the integral in Eq. (29) contributes as 1=ð1� enHtÞ
which is analytic in the reduced strip 0< ImðtÞ< 2�=nH
only. The observation that Tglð!;X ¼ 0Þ ¼ nTH for

!=� 	 1 shall be verified, for n ¼ 2, in a exactly solvable
model in Sec. IVB.

C. Regular states and stability

In this section, we show that some of the ingredients of
event horizon thermodynamics [47,51] are still present
when adding high frequency dispersion. Namely, we
show, firstly that the BD vacuum is the only stationary
state which is regular and, second, that the other regular
states flow towards the BD state. (As explained below, the
notion of regular states should be understood as the gen-
eralization of Hadamard states in the presence of short
distance dispersion.) Hence for free fields at least, the
BD state is the only stable state. To prove these claims
we shall use concepts that are common to Lorentz invariant
and dispersive fields.
Before proceeding, let us discuss our criterion of stability.

We say that the BD vacuum is stable because, at large time,
observables computed in nearby states converge towards
those evaluated in the BD vacuum. Hence, for these observ-
ables, the perturbed states will be asymptotically indistin-
guishable from the BD vacuum. This flow is often referred
to as a cosmic no hair theorem [52–54] as it closely follows
the Price’s no hair theorem [49]. We adopted this criterion
because there is no stationary Killing field which is globally
timelike in de Sitter. As a consequence, there is an energetic
instability, see Eq. (25), which means that stability cannot be
deduced from a spectrum bounded from below. It is worth
mentioning that to study the thermalization in interacting
quantum field theories, the flow towards stationary thermal
states is established in Ref. [55] by studying some n-point
functions. Even though the purity of the initial state is
preserved by the Hamiltonian evolution, after a while, these
functions become indistinguishable from thermal ones. In
that case as well, the stability of the state is thus inferred
from the flow of some observables, rather than from the
evolution of the state itself.
Since high frequency dispersion modifies the short dis-

tance behavior of the 2-point function, we first need to
define what we mean by ‘‘regular states’’ because the
standard definition of Hadamard state is precisely based
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on this behavior [2]. In homogeneous cosmological spaces,
this difficulty can be overcome because one can rephrase
the standard definition in terms of an adiabatic expansion of
the solutions of Eq. (8) at fixedk. Since these new terms are
common to both Lorentz invariant and dispersive field, one
can implement the subtraction procedure to dispersive
fields. Let us recall the key elements, for more details, see
Ref. [56]. In de Sitter, because of Eq. (5), the adiabatic
expansion can be done in terms of a single mode�, solution
of Eq. (10), and of unit Wronskian, see Eq. (18). This
expansion generalizes Eq. (19) and is best expressed as

�adiab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2WðPÞ

s
ei

1
H

R
P
WðP0ÞdP0

; (38)

where W obeys the nonlinear equation

W2 ¼ F2ðP2Þ
P2

�H2

2

�
@2PW

W
� 3

2

ð@PWÞ2
W2

�
; (39)

and where F2 determines the dispersion relation in Eq. (1).
When working with Lorentz invariant fields inD dimen-

sions, the first 1þD=2 terms in a iterative solution of
Eq. (46) should be taken into account when determining
the 1þD=2 quantities that need to be subtracted. This
guarantees that the renormalized stress tensor evaluated in
the BD vacuum is finite in cosmological spaces, and thus in
de Sitter. This is not a surprise since �BD and �adiab obey
the same condition for P ! 1. Hence their differences
develop at finite P, and because of the expansion H.
When working with dispersive fields, this finiteness is still
found when F2 is positive, sufficiently regular, and grows
faster that P2 for P ! 1. Indeed the higher the power n in
the leading term of Eq. (39), the more suppressed are the
next order terms in the adiabatic expansion [56]. For
instance, in two dimensions, for F2

n � P2n=�2n�2, with
n � 2, the second quantity which is usually subtracted in
the stress tensor is already finite. It can thus be either
subtracted or not.1 In either case, in the BD vacuum of
de Sitter, the renormalized values of 	 ¼ u�u�T�� and

� ¼ s�s�T�� are constant in space and time, while the

flow J ¼ u�s�T�� vanishes.

We now consider the change of the stress tensor with
respect to that of the BD vacuum when working with some
(possibly mixed) state � described by the density matrix
	̂�. For free fields, this change is determined by the
difference of the 2-point functions �G� ¼ G� �GBD.

This difference can be expressed in terms of the positive
norm BD modes �BD

k as

�G� ¼ 2Re
Z dkdk0

2�
½eiðkz�k0z0Þ�BD

k ðtÞfn�ðk;k0Þ
� ð�BD

k0 ðt0ÞÞ� þ c�ðk;k0Þ�BD
k0 ðt0Þg�; (40)

where n�ðk;k0Þ and c�ðk;k0Þ are expectation values of
normal ordered products of BD destruction and creation

operators ak; a
y
k0 :

n�ðk;k0Þ ¼ Tr½	̂�a
y
k0ak�;

c�ðk;k0Þ ¼ Tr½	̂�aka�k0 �:
(41)

They respectively encode the power spectrum and the
coherence of 	̂ at the Gaussian level [57].
To establish the stability of the BD vacuum, we first

point out that the other stationary states are all singular.
The reason comes from the fact that the stationarity of G�

implies that, irrespectively of c�, k� n�ðk;k0Þ only
depends on the ratio k=k0. Therefore, the change of the
expectation value of Hu of Eq. (23) with respect to the BD
vacuum, necessarily diverges because the contribution of
high k is not suppressed enough, as n�ðk;kÞ / 1=k. This
is true for dispersion functions FðPÞ � 
 > 0 for P ! 1,
and therefore true for Lorentz invariant theories. This
generalizes the fact [46] that the �-vacua, which are in-
variant under the full de Sitter group and therefore sta-
tionary, are all singular, save the BD vacuum.
In our second step we consider states that describe, at

some initial time, local perturbations containing a finite
number of BD particles: Ntot ¼

R
dkn�ðk;kÞ<1.

Moreover, to be able to handle all dispersion relations at
once, we suppose that there exists a cut off wave number
kmax above which the number of particles decreases expo-
nentially, i.e.,

n�ðk;kÞ � e�bk; 8k > kmax; (42)

with b > 0. Then Schwartz inequalities and the hermiticity
of 	̂� implies the following inequalities generalizing those
of Ref. [57]

jn�ðk0;kÞj2 � jn�ðk;kÞjjn�ðk0;k0Þj; (43)

and��������
Z

dk1fk1
c�ðk1;kÞ

��������2� n�ðk;kÞ

�
	Z

dk1dk2fk1
f�k2

ðn�ðk1;k2Þ þ �ðk1 � k2ÞÞ


;

(44)

for all test functions fk 2 C.
Using these inequalities one can study the behavior of

Eq. (40) at large time. Since there is a momentum cutoff
kmax, at large time only low momenta P matter. Hence for
all dispersion relations of Eq. (1), the dominant term is the

1As a result, in Ref. [56], it is proposed to subtract only the
first term. We claim instead that the first two terms should be
subtracted, as done when dealing with Lorentz invariant fields.
Indeed only this choice guarantees that the stress tensor would
remain finite when taking the limit � ! 1. In addition, in our
proposal, the two manners to consider � become compatible. �
can be either seen as a (Lorentz violating) regulator to be sent at
1 when computing observables, or as a physical finite ultraviolet
parameter, but which enters suppressed in observables.
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mass term. One should then distinguish massive fields with
m>H=2 [see Eq. (48) for the origin of this condition]
from massless fields. At this point, one also needs to
consider the pair creation amplitudes relating the initial
BD mode �BD

k [obeying Eq. (19)] to the out mode �out
k

defined at low momentum. Using the techniques of
Ref. [43] and the fact that Eq. (10) is second order for all
F2, we can verify that for both m>H=2 and m ¼ 0, the
�k, �k coefficients of Eq. (50) are bounded for dispersion
relations with F2 > 0. Using this result, at large time and
for massive fields, one finds that

��G< e�Hðtþt0Þ=2; (45)

i.e., ��G decreases exponentially in time. This implies that
the changes of density, current and pressure with respect to
the BD vacuum �	� ¼ u�u��T�

��, �J� ¼ u�s��T�
�� and

��� ¼ s�s��T�
�� also flow exponentially to 0. On the

other hand, when m ¼ 0, at large times the dispersive
modes become conformally invariant, i.e., proportional to
eikz�ik where  / e�Ht is the conformal time. As a result,
both scalar derivatives u�@��G� and s�@��G� flow to 0

as in Eq. (45). This implies that �	�, �J� and ��� also
flow exponentially fast to 0.

In conclusion, we have shown that for all dispersion
relations, the mean stress tensor Trð	�T��Þ computed

with an arbitrary localized state containing a finite number
of BD quanta flows towards that computed in the BD
vacuum. This follows from the cosmological expansion
a� eHt which redshifts the momenta P� ke�Ht, and
dilutes the particles. In our proof we have used the condi-
tion of Eq. (42) because, for all polynomial dispersion
relations, it guarantees that the change of the stress tensor
with respect to its value in the BD vacuum is finite. Less
restrictive conditions, and therefore a larger set of states,
can certainly be used once having chosen some class of
dispersion relations. One could also relax the condition that
the perturbation is local. However a detailed study of these
extensions goes beyond the scope of this paper.

D. Discussion and lessons for black holes

For all dispersion relations, we showed that the BD vac-
uum is the only state which is stationary, regular, and stable.
For Lorentz invariant fields, this stability goes together with
the fact that the BD vacuum is a thermal state when restricted
to the static patch, jHXj< 1. Therefore, the flow of nearby
states towards the BD vacuum can be meaningfully consid-
ered as a no hair theorem compatible with the laws of event
horizon thermodynamics applied to de Sitter. For dispersive
fields instead, there is a tension because we have demon-
strated that the BD vacuum is no longer in thermal equilib-
rium when probed by static particle detectors.

Before considering possible consequences [22,23] of this
loss, it is important to identify its origin. It can be traced to

the loss of the positivity of Ĥstat
t , the stationary Hamiltonian

operator of Eq. (24) restricted to the static patch, i.e., for
jHXj< 1. To explain this, let us first recall the key prop-
erties found with relativistic fields [2,3,48]. For these fields,
there exists a complete set of (positive norm) negative
frequency modes ��! in which all modes identically van-
ish in the static patch, see Eq. (59) for the massless case. As
a result, only positive frequency modes live in the patch,

and the spectrum of Ĥstat
t is bounded from below.

For dispersive fields, this property is lost because the
corresponding negative frequency modes no longer exactly
vanish for jHXj< 1. For instance, for superluminal dis-
persion, they are decaying in this domain, see e.g.,

Ref. [13] for details. When Ĥstat
t it is no longer bounded

from below, given a certain energy in the static patch, it is
no longer meaningful to look for the maximum of the
entropy. In other words, one is lacking a necessary condi-
tion for the ordinary second law of thermodynamics (OSL)
to hold. In this we do not agree with the claim ‘‘only the
validity of the GSL is in question’’ [23], where GSL refers
to the generalized second law involving black holes. The
fact that the violations of thermality are neither necessarily
related to black holes, nor to event horizons, is clear when
considering subluminal dispersion relations. In that case,
as pointed out after Eq. (24), when v exceeds the Landau
critical velocity, Ht is no longer bounded from below. As a
result, there exist stationary metrics without Killing hori-
zons where there is pair creation of quanta of opposite
frequency. (An interesting illustration of this can be found
in Ref. [42].) In these cases, the ordinary zeroth law will be
violated, i.e., the spectra will not be thermal. Notice that
the importance of the violations will depend on the inten-
sity of the mixing of modes with opposite frequency
(which governs the instability of the system). When the
UV scale� is much higher than the typical value of spatial
gradient @Xv, this mixing could be strongly suppressed,
and therefore the violations of the thermodynamical laws
accordingly so (because the system will be long living).
Having clarified these aspects, we now point out that in de

Sitter the nonthermal behavior manifests itself in the
!-representation, whereas the stability proof heavily used
time dependent effects in the homogeneous k-representation.
However, we know that these two descriptions ought to be
compatible with each other. The lesson therefore seems to
be that in the presence of ultraviolet dispersion, the BD
vacuum is still an equilibrium state, albeit with unusual
(nonthermal) properties when considered in the stationary
picture. So instead of viewing the violations of thermality
as an indication that horizon thermodynamics might no
longer exist, these laws could still exist, albeit in some
modified and still unknown guise.
Since the flow towards the BD vacuum of Eq. (45) is

engendered by the cosmological expansion, a� eHt, it
seems a priori difficult to apply the stability proof to black
hole backgrounds, because these are stationary. However,
the effects of dispersion in black hole backgrounds turn out
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to be essentially the same as in de Sitter when the surface
gravity � ¼ H � � (see Appendix B). Hence, there exist
good reasons to believe that what applies to de Sitter could
also apply to black holes.

Let us present here the essential aspects of this corre-
spondence. First, when the preferred frame is freely falling,
the commutator of u and s obeys Eq. (B1) which is the
generalization of Eq. (A5). Equation (B1) in turn implies
Eq. (B4) which gives, near the horizon, P� e��t both for
outgoing and infalling modes, as if they were propagating
in an expanding de Sitter universe. Second, at the level of
the quantum theory, the deviations from the relativistic
black hole spectrum are governed by the quantity D of
Eq. (B3) which controls the spatial extension of the near
horizon region which can be mapped on a de Sitter space
endowed with a preferred cosmological frame. This shows
that the black hole-de Sitter correspondence is not only
qualitative, but quantitatively determines the spectral devi-
ations. Third, when the preferred frame is not freely fall-
ing, the above analysis possesses a generalization which is
briefly described in footnote4. On this basis, two alternative
physical scenarios can be envisaged when dealing with a
dispersive theory of gravity, such as Einstein-aether [25] or
Horava gravity [26]. Either black holes are dynamically
unstable in this theory, and there is no question of thermo-
dynamical laws when the life time (inverse growth rate) of
the instability is sorter or comparable to time scale of the
processes under study. Or they are stable, and one can
conjecture that the modified black hole thermodynamical
laws will be quantitatively the same as those applying to de
Sitter.

IV. QUARTIC SUPERLUMINAL DISPERSION

It is of value to explicitly compute the modifications of
the observables which are due to high frequency dispersion.
In de Sitter there are a priori two types of observables: first,
the pair creation rates which are due to cosmological ex-
pansion, and second, the thermal-like response of stationary
particle detectors. In Sec. IVC we shall study a third type
of observables, namely asymptotic pair creation rates in
the !-representation, which combines the former two
phenomena.

To get analytical expressions, we consider the quartic
superluminal dispersion, i.e., f ¼ P4=�2. In this case, the
general solution of Eq. (10) is given by

� ¼ Cffiffiffiffi
p

p M

��i�

4
;
i�

2
;
ip2

�

�
þ Dffiffiffiffi

p
p W

��i�

4
;
i�

2
;
ip2

�

�
;

(46)

where C andD are the two integration constants, and where
M and W are two Whittaker functions, see Ch. 13 in
Ref. [58]. For simplicity, we introduced the adimensional

quantities � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2 � 1
4

q
, � ¼ �=H, p ¼ P=H. Using

Eq. (19) to characterize the initial large P behavior, the

unit Wronskian BD mode, when complex conjugated, is
given by [17,56]

��
BD ¼

ffiffiffiffiffiffi
�

2p

s
e
���
8 W

��i�

4
;
i�

2
;
ip2

�

�
: (47)

A. Cosmological pair creation rates

To get the pair creation rates, we need to identify the
combination of M and W that corresponds to the final
mode �out. As Eq. (19) does not offer a reliable approxi-
mation for P ! 0, the identification should be done using
the cosmological time t. Using Eq. (8), one finds that
asymptotic positive norm solutions are proportional to
e�i�Ht at large t. When m< H

2 , � is imaginary and the

modes grow or decay at large time [46]. Hence it is not
possible to define asymptotic out modes. When m> H

2 ,

there is no difficulty: when reexpressing e�i�Ht in terms of
P / e�Ht, one gets

�out �p!0

p
1
2þi�ffiffiffiffiffiffiffi
2�

p : (48)

Using this behavior, the positive unit Wronskian out mode
is found to be

�out ¼ ð�i�Þ1þi�
2

ffiffiffiffiffiffiffiffiffiffi
1

2�p

s
M

��i�

4
;
i�

2
;
ip2

�

�
: (49)

The in—out Bogoliubov transformation is given by

�out ¼ �k�BD þ �k�
�
BD: (50)

We put a subscript k to the above (k-independent) coeffi-
cients to remind the reader that all these calculations are
done in the k-representation. Using Sec 13.1 in Ref. [58],
one finds, see Appendix B.2 in Ref. [17],

j�kð�;�Þj2 ¼ 1

e2�� � 1
ð1þ e���

2 � e��Þ: (51)

For � 	 1, up to exponentially small correction, one
recovers the relativistic result, i.e., the first term in the
above equation. For � � 1, there is an enhancement of
the pair creation probability by a factor equal to e��.
Even though the asymptotic out modes cannot be

defined for 0<m � H=2, whenm ¼ 0, it is again possible
to define these modes since for t ! 1, they behave as
e�ik where d ¼ dt=aðtÞ is the conformal time. It is
then possible to identify the massless out combination of
M and W, and to extract the Bogoliubov coefficients. In
this case, the norm of �k is

j�kð�Þj2¼ �ffiffiffiffi
�

p j�ð14þ i�4Þj2e��=4
þ �

ffiffiffiffi
�

p

4j�ð34þ i�4Þj2e��=4
�1

2
:

(52)

For � 	 1, one gets j�kj2 � 1=ð64�4Þ, i.e., a power law
decrease, unlike what we found above for the massive case.

DISPERSIVE FIELDS IN DE SITTER SPACE AND . . . PHYSICAL REVIEW D 86, 104033 (2012)

104033-9



Eq. (52) corrects an error in Eq. (131) of Ref. [11] but
without altering the conclusions of that section.

B. Deviations from thermality

Following Sec. III B, our aim is to exactly compute
Tglð!;XÞ of Eq. (31) using Eq. (32). To this end, we

need to evaluate Eq. (33) for quartic dispersion. Using
Eq. (47), we get

ð�BD;U�! ðXÞÞ� ¼
ffiffiffiffiffiffiffi
�

4�

s
e
���
8

Z 1

0
dpe�ipHX

� p�i!H�3
2W

��i�

4
;
i�

2
;
ip2

�

�
: (53)

Surprisingly, it turns out that this integral can be exactly
done, see Appendix C. Since the final expression is a sum
that converges as 2�n for large n, one can accurately
compute the ratio of Eq. (31) in terms of known hyper-
geometric functions. To study the consequences of quartic
dispersion, we plot the temperature function Tglð!;XÞ in
various cases.

In Fig. 2, we plot Tglð!Þ=TH as a function of !=H, for

various values of �, and evaluated at X ¼ 0, i.e., for an
inertial detector. First, when !=� and 1=� are both much
smaller than 1, we see that this ratio is very close to 1, as
expected from former analysis [9–13]. In this robust
regime, the detector will perceive a Planck law at the
standard temperature, up to negligible corrections.
Second, in the high frequency limit, for !=� 	 1, in
agreement with the analysis of Sec. III B, the ratio goes
to 2 irrespectively of the value of �. This last point is not
clear from the figure but can be verified analytically from
the expressions of Eq. (C9) and the fact that jA!=A�!j!1
when � ! 0þ. Third, we see that there is a sharp transition
from the robust relativistic regime to a new regime. An

examination of Eq. (C9) confirms that the transition occurs
at a critical frequency !crit ¼ �=2.
In Fig. 3, we plot log10jTglð!Þ=TH � 1j to study the

small deviations from the relativistic regime for !<!crit.
We first notice that the sharp peaks are due to the fact that
Tglð!Þ=TH � 1 crosses 0 while decreasing for ! ! 0.

A careful examination of the envelope reveals that

jTglð!Þ=TH � 1j � e���=4þ�!=2H: (54)

Hence, at fixed !, the deviations decrease exponentially
with �, whereas, at fixed �, they grow exponentially till !
reaches !crit.
In Fig. 4 we study the X dependence of Tglð!;XÞ=TH.

This describes violations of the Tolman global equilibrium
law. We see that the transition from the robust regime to the
new regime occurs at different critical frequencies when
considering detectors following different orbits labeled by
X. Interestingly, this dependence can be expressed as

!crit ¼ �

2

�
1� aX

H
� a2X

2H2
þO

�
aX
H

�
3
�
; (55)

where aX ¼ H2jXj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2X2

p
is the detector proper ac-

celeration at fixed X. In addition, on the left panel and for
jHXj � 0:9, we notice that the low frequency temperature
significantly differs from the standard one. This effect is
related to the broadening of the horizon that was observed
in Refs. [13,59]. In those papers, when considering per-
turbed metric profiles v ¼ vbackgrd þ �v, it was found that

the asymptotic black hole temperature differs from the
standard one when the spatial extension across the horizon

of the perturbation �v is smaller than �x� ð�=�Þ2=3. Here
we find that the temperature seen by a particle detector
differs from the standard one precisely when it enters this
region. In a log-log plot, we have numerically found that
the extension of this region (defined by the locus where the
relative temperature difference is 1%) depends on� with a
power equal to 0:675� 0:01 in accord with the 2=3 of the
above references. Two lessons are here obtained. First, the
near horizon properties can be probed either by perturbing
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FIG. 2. The ratio of Tglð!;XÞ of Eq. (31) over the standard
relativistic temperature TH as a function of !

H , for X ¼ 0 and

m ¼ 0, and for four values of �, namely 1, 5, 10, and 50. One
clearly sees that for large values �, the spectrum is accurately
Planckian and at the standard temperature, until ! reaches a
certain critical value !crit, which is equal to H�=2. For !>
!crit, Tð!;X ¼ 0Þ increases sharply and reaches 2TH. This
figure is essentially unchanged when we use a massive field
with �< �=2.
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FIG. 3. The log10 of the temperature difference jTð!Þ=TH � 1j
as a function of !, for X ¼ 0 and m ¼ 0, and for four values of
�, namely 10, 20, 40, and 80. We see that jTð!Þ=TH � 1j
increases exponentially in ! until ! reaches !crit. It can be
shown analytically that jTð!Þ=TH � 1j follows Eq. (54).

XAVIER BUSCH AND RENAUD PARENTANI PHYSICAL REVIEW D 86, 104033 (2012)

104033-10



the background metric v, or by introducing a local particle
detector, with coherent outcomes. Second, since these
responses are locally determined, they are common to de
Sitter and black holes, in accord with the analysis of
Appendix B.
Finally, it is also interesting to study the behavior of

Tglð!Þ=TH when varying � at fixed ! and for X ¼ 0 (see

Fig. 5). When � is large enough, i.e., larger than the critical
value �crit ¼ 2!=H, the deviations from the standard tem-
perature are extremely small, in agreement to what we saw
in Fig. 3. Instead, for � ! 0, Tð!;X ¼ 0Þ=TH always
flows to 2, with a slope that depends on the value of
!=H. An examination of these slopes shows that the slope
decrease when ! increases: dT=d�j�¼0 goes from 1:02�
0:005 to 0. This is the behavior at small �. The behavior at
large � was given by Eq. (54).

C. Asymptotic S-matrix in the !-representation

In this section, we compute the Bogoliubov transforma-
tion between the initial BD modes and the asymptotic out
modes in the ! representation. In this representation, the
modes are identified through their spatial asymptotic
behavior, and not their temporal one we used in
Sec. IVA. Hence the Bogoliubov transformation can be
viewed as an S-matrix. This is the description which is
appropriate to study the mode mixing on an analogue black
hole horizon. For more details about mode identification in
the !-representation, we refer to Ref. [13].
In the present case, at fixed ! each basis contains 4

modes. Hence the Bogoliubov coefficients form a 4� 4
matrix. This matrix is an element of Uð2; 2Þ since the two
modes�U

!,�
V
! have a positive norm, while ð�U�!Þ�, ð�V�!Þ�

have a negative one. In what follows we first study the
massless case, and then the massive case m>H=2. In
both cases we shall see that the S-matrix possesses unusual
factorization properties that are due to the two symmetries
governed by Kz and Kt. We shall also see that the elements
of this matrix combine the cosmological aspects of Sec IVA
and the stationary thermal-like aspects of Sec. IVB.
To compute the coefficients of the S-matrix, we first need

to identify the incoming and outgoingmodes. At fixed!, for
quartic dispersion, the general solution of Eq. (14) contains 8
asymptotic branches, 4 for X ! 1, and 4 for X ! �1. In
addition, when forming wave packets in !, one finds that 4
propagate towards X ¼ 0, whereas 4 propagate away from
it. The mode identification is based on this second aspect:
The 4 incoming modes, are, by definition, the 4 solutions
that only possess one incoming asymptotic branch. These
incoming modes are simply given by the Fourier transform

of the stationary BD modes ~�BD
! , thereby showing that the

definitions of inmodes based on their temporal behavior and
the spatial one are perfectly consistent.
To see this, let us consider as an example ð�BD;U�! Þ�.

Using Eq. (C11), its asymptotic behavior can be found
using [60]. Up to an irrelevant overall constant, one finds
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FIG. 5. The ratio of the temperature Tð!Þ
TH

(on the top) and
log10jTð!Þ=TH � 1j (on the bottom) as a function of �, for X ¼
0 and m ¼ 0, and for four values of !=H, namely 1, 5, 10, and
20. The decay of Eq. (54) can be observed.
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FIG. 4. The same ratio as in Fig. 2 (on the top) and Fig. 3 (on
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tions, namelyHX ¼ 0, 0.3, 0.5, 0.7, 0.9, and 0.95. On the bottom,
the last two curves have not been plotted since they are too far
from the other ones. The corresponding values of the accelera-
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that Tð!;XÞ=TH becomes larger than 2 when X � 0. One also
sees that the deviations at fixed ! increase with aX.
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ð�BD;U�! Þ� �X!�1 ð1� 1Þ � e
ix2

2

�
ix2

2

��i�4�3
4�i !2H

þ
�
Z!;�;�;� �

��ix2

2

��1
4þi !2H�i�2 þ ð� ! ��Þ

�
; (56)

where x ¼ HX
ffiffiffiffi
�

p
and where the coefficient Z is

Z!;�;�;� ¼ 2�i��i�4þi !2H�ð�i�Þ�ð12 � i !H þ i�Þffiffiffiffi
�

p
�ð12 � i �2 þ i �4Þ

� e�ð�i�=4þ��=2��!=2HÞ: (57)

The first term in Eq. (56) describes the incoming high
momentum branch, as can be verified by computing its
group velocity dX=dt ¼ 1=@!P!, where P! ¼ @XS! is
the corresponding root of Eq. (2). The last two terms
describe the 4 low momentum outgoing branches. One
verifies that they propagate away from the static patch,
two for X ! 1 and two for X ! �1. In Fig. 4(c) we
schematically represent the space-time pattern associated
with a wave packet made with �BD;U

! .
We now have to identify the outmode basis, i.e., the four

unit norm asymptotic outgoing modes. As in Sec. IVA, we
treat separately the massless and the massive case.

1. The massless case

Since asymptotic outgoing modes have low momentum
P, they obey the two-dimensional d’Alembert equation. At
fixed !, the equation for the right moving U-modes is

ði!�HX@XÞ�U
! ¼ @X�

U
!: (58)

For !> 0, the out U-modes of positive and negative unit
norm are

�U;out
! ¼ �ð1þHXÞ ð1þHXÞi!=Hffiffiffiffiffiffiffiffiffiffiffiffiffi

2!=H
p ;

ð�U;out�! Þ� ¼ �ð�1�HXÞ ð�1�HXÞi!=Hffiffiffiffiffiffiffiffiffiffiffiffiffi
2!=H

p :

(59)

The V-modes �V;out
! , ð�V;out�! Þ� are obtained by replacing X

by �X in the above.
We put the 4 modes in a vector in the following order

�! ¼ ð�U
!; ð�U�!Þ�; �V

!; ð�V�!Þ�Þ, both for the BD and the
out modes, and we define the S-matrix by �BD

! ¼ S!�
out
! .

We find that S! factorizes as

S!¼

�k 0 0 �k

0 ��
k ��

k 0

0 �k �k 0

��
k 0 0 ��

k

2
666664

3
777775

�H
! �H

! 0 0

�H
! �H

! 0 0

0 0 �H
! �H

!

0 0 �H
! �H

!

2
666664

3
777775: (60)

Moreover, the Bogoliubov coefficients �k, �k are those
of Eq. (52), and �H

!, �H
! are the standard relativistic

coefficients, taken real, and obeying �H
!=�

H
! ¼ e��!=H

and j�H
!j2 � j�H

!j2 ¼ 1. To get these real coefficients we
chose the (arbitrary) phases of the out modes in an

appropriate manner. There are only 4 different coefficients
in S!, and they all have a clear meaning when considering
one BD mode. In Fig. 6, we represent the mode

�BD;U
! ¼ �!�

out;U
! þ �!ð�out;U�! Þ�

þ A!�
out;V
! þ B!ð�out;V�! Þ�: (61)

The �!, �! coefficients weigh the mode mixing amongst
U-modes of opposite norm, whereas A! and B! describe,
respectively, the elastic and the anomalous U-V mode
mixing. The norm of these four coefficients obey

j�!j2 ¼ j�kj2 � ðnH! þ 1Þ; j�!j2 ¼ j�kj2 � nH!;

jA!j2 ¼ j�kj2 � nH!; jB!j2 ¼ j�kj2 � ðnH! þ 1Þ;
(62)

where nH! ¼ 1=ðe!=TH � 1Þ is the Planck spectrum at the
standard temperature TH. We see that the deviations from
the relativistic spectrum are proportional to j�kj2 � 1 ¼
j�kj2 � ��4, as those breaking the relativistic U-V decou-
pling. Thus both deviations from the relativistic theory are
governed the cosmological pair creation rates at fixed k.
We notice that the decay of the deviations from thermality
in 1=�4 is in agreement with the decay in 1=!4

max found in
a black hole metric when working at fixedD, see Fig. 14 of

FIG. 6. In this figure, unlike in Fig. 1, t ¼ Cst are horizontal
lines, and X ¼ Cst vertical ones. The two vertical lines represent
the Killing horizons at HX ¼ �1. An incoming (BD) high
momentum positive norm U-mode (in thick line) splits into
four out modes with low momenta: an outgoing positive norm
U-mode (thick line), a negative norm U-mode (dots), a positive
norm V-mode (small dashes), and a negative norm V-mode
(large dashes). The respective amplitudes of these four outgoing
modes are given in Eq. (61). To draw these characteristics, we
work with m ¼ 0, !=H ¼ 5 and �=H ¼ 1000. The lapse of
time spent very close to the horizon is H�t� lnð�=!Þ. It
diverges for � ! 1, in which case one recovers the relativistic
behavior, and ultrahigh initial momenta.
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Ref. [40]. We also notice that irrespectively of ! and �,
the elastic jA!j is the smallest coefficient. We finally
emphasize that these extremely simple results are exact,
and follow from the hypergeometric functions 2F2 of
Eq. (C11).

2. The massive case

As in Sec. IVA, the massive out modes should be
handled with care. An orthonormal basis for these out
modes is given by the following right modes (R):

�out
R;! ¼ �ðXÞ ðHXÞi!H�i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�HX
p ; �out�

R;�! ¼ �ðXÞ ðHXÞi!Hþi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðHXÞp ;

(63)

together with the L-modes obtained by replacing X by�X
in the above expressions. We have used this R-L separation
in the place of the U-V one based on the sign of the group
velocity, because, for massive modes the asymptotic
group velocity with respect to the flow v ¼ HX is no
longer well defined.

We now put the 4 out modes in a vector in the following
order�!¼ð�R

!;ð�R�!Þ�;�L
!;ð�L�!Þ�Þ, while the 4 inmodes

are ordered in the same order as in the massless case.
Defining again the S-matrix by �BD

! ¼ S!�
out
! , we obtain

S!¼

�k 0 0 �k

0 ��
k ��

k 0

0 �k �k 0

��
k 0 0 ��

k

2
666664

3
777775

T! 0 R! 0

0 T�! 0 R�!

R! 0 T! 0

0 R�! 0 T�!

2
666664

3
777775: (64)

On the left matrix, the �k, �k coefficients are those of
Eq. (51). Hence, as far as this matrix is concerned, we obtain
the same structure as in Eq. (60). Instead on the!-dependent
right matrix, the coefficients are

T! ¼ e��ð��!=HÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh�ð��!=HÞp ;

R! ¼ e�ð��!=HÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh�ð��!=HÞp :

(65)

They obey jT!j2 þ jR!j2 ¼ 1. Hence unlike what was
found in Eq. (60) the right matrix now describes an elastic
scattering between modes of the same norm. As a result, the
main difference between the massless and the massive case is
that the final occupation number of massive particle no
longer diverge as TH=! for ! ! 0. This disappearance of
the thermal like divergence was already found in Ref. [61] in
black hole metrics.

V. CONCLUSIONS

In this paper we obtain three kinds of results, precise
mathematical ones characterizing dispersive fields in de
Sitter space, those concerning the correspondence between
dispersive effects in de Sitter and for black holes, and

finally more general ones associated with the observation
that thermality is violated when Lorentz invariance is
broken at high energy.
Concerning the first kind, in Sec. II, we used the group

associated with the two residual symmetries of dispersive
fields in de Sitter to provide precise relationships between
the two representations of the field, based respectively on
the homogeneity and on the stationarity of the settings. The
key result is that the homogeneous modes and the sta-
tionary ones can be all expressed in terms of the single
BD mode �BDðPÞ and its complex conjugated, where �BD

obeys Eqs. (10) and (19), see Eqs. (20) and (21). For free
fields, all observables are thus encoded in that single mode.
The algebraic properties associated with the residual group
are further explored in Appendix A and shown to be
compatible with both dispersive and dissipative effects.
Having identified this group, we present in Appendix B

the precise correspondence between high frequency disper-
sion in de Sitter and in black hole backgrounds. Because the
de Sitter case is also stationary, many aspects are common to
both cases, with one exception. In de Sitter, when the
preferred frame coincides with the cosmological frame,
the fields u, s obey the affine algebra of Eq. (A5). Instead,
in stationary black hole space-times endowed with a freely
falling frame, u and s obey the local algebra of Eq. (B1)
governed by�ðxÞ, the expansion of u. Since this is basically
the only difference, the observables of dispersive fields
computed in black hole backgrounds, such as the
S-matrix, possess the same properties as in de Sitter, up to

inverse powers of D3=2�=�, where � is the dispersive
frequency, � ¼ �0 is the expansion evaluated on the hori-
zon, D ¼ �x gives the extension of the near horizon black
hole region which can be mapped onto de Sitter, and where
the power 3=2 characterizes quartic dispersion [13]. As
indicated in footnote 4, this correspondence possesses a
generalization when the preferred frame is not freely falling.
In Sec. III we show that the two-point function com-

puted in the BD vacuum is still stationary and periodic in
Imt with period 2�=H, as it is for Lorentz invariant fields.
In spite of this, we then show that the BD vacuum is no
longer a thermal state when restricted to the static patch. In
particular, we show that the temperature function of
Eq. (31) is, for ultrahigh frequency !=� 	 1, n times
the standard one, where n is the highest power of P2 in
the dispersion relation of Eq. (1). In Sec. IVB, by consid-
ering the response function of particle detectors with dif-
ferent acceleration, we also show that the Tolman law is
violated. Even though the BD vacuum is no longer in
thermal equilibrium, we prove that (for free fields at least)
it is still the only stationary, regular, and stable state, as it is
in relativistic theories [52–54]. In other words, for disper-
sive fields, there is no (regular) KMS state on de Sitter
space. We believe that these properties will remain true
when considering interacting fields. Finally, we explain the
origin of the violations of thermality in terms of the loss of
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the positivity of the stationary Hamiltonian restricted to the
static patch. Whereas this operator possesses a spectrum
bounded from below for Lorentz invariant theories, this is
no longer true for dispersive fields. As a result the ordinary
second law of thermodynamics is no longer protected,
violations of this law are possible, and the system might
develop dynamical instabilities.

In this respect the fact that the BD vacuum is shown to
be stable in de Sitter becomes a nontrivial result. Moreover,
because of the precise correspondence between dispersive
effects in de Sitter and in black hole metrics, we conjecture
that the properties found in de Sitter should apply to black
holes, when these are dynamically stable, or sufficiently
long living, in the adopted theory of gravity that violates
Lorentz invariance at high energy.
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APPENDIX A: AFFINE SUBGROUP AND
ULTRAVIOLET DISPERSION

In this Appendix we explore the relationships between
the residual affine group based on the two generators Kt,
Kz of Eq. (5), and the possibility of considering modifica-
tions of the field equation that encode dispersive and/or
dissipative effects. In a sense we are performing a group
theoretical approach to dispersion and dissipation on de
Sitter space. For a similar approach based on the full de
Sitter group, we refer to Ref. [46].

The three generators of SOð1; 2Þ can be taken to be

Kt ¼ @t �Hz@z; Kz ¼ K� ¼ @z;

Kþ ¼ �Hz@t þ
�
z2H2 þ e�2Ht

2

�
@z:

(A1)

They are linked to the usual generators by K� ¼ Kx � Ky,

and they obey

½Kt;Kz�¼HKz; ½Kt;Kþ�¼�HKþ; ½Kþ;Kz�¼HKt:

(A2)

We now wish to characterize the set of local differential
operators that commute with both Kt and Kz. The most
general local operator acting on scalar fields can bewritten as

Ô ¼ X1
n;m¼0

�n;mðt; zÞ@nz@mt : (A3)

Imposing that Ô commutes with Kz, implies that the �’s
depend only on t. Imposing that it also commutes with Kt

implies �n;mðtÞ ¼ �n;me
�nHt, where �n;m are constants.

Hence, Ô is necessarily of the form

Ô ¼ X1
n;m¼0

�n;mP̂
n�̂m; (A4)

where P̂ ¼ �ie�Ht@z ¼ �is�@� is the preferred momen-

tum operator, and �̂ ¼ i@t ¼ �iu�@� is the preferred fre-

quency entering in Eq. (1). What we learned here is that the
only vector fields that commute withKt andKz are the u and
s fields associated with the cosmological frame. In addition
we notice that u and s obey

½u; s� ¼ Hs; (A5)

which is the affine algebra of Eq. (5). Hence this algebra is
intrinsic to the cosmological frame on de Sitter space.2

Notice also that Eq. (A5) is exact only in de Sitter.
However, an interesting generalization of this equation exists
in black hole spaces, see Eq. (B1).

Our program is to treat Ô as defining the field equation

that generalizes Eq. (3). To this end, we impose that Ô be

second order in �̂. This leads to

Ô ¼ ��̂2 þ gðP̂Þ�̂þ hðP̂Þ: (A6)

Next we impose the invariance under the discrete parity
symmetry z ! �z. This implies that g and h are even

functions of P̂. In higher dimensions, this condition would
follow from the requirement of isotropy. The last important

condition is that Ô be compatible with a unitary evolution
[62]. The proper way to specify this condition is the

following: the part of Ô that is even in �̂ describes dis-
persive effects and should be self-adjoint, whereas the odd
part describes dissipative effects and should be anti-self-
adjoint, where the adjoint is defined byZ

d2x
ffiffiffiffiffiffiffi�g

p
��ðÔ�Þ ¼

Z
d2x

ffiffiffiffiffiffiffi�g
p ðÔy�Þ��: (A7)

To sort out the contributions which are due to the expan-

sion, is useful to introduce the self-adjoint operators �̂sa ¼
1
2 ð�̂þ �̂yÞ ¼ �̂þ i H2 , and �̂2

sa ¼ �̂2 þ iH�̂� H2

4 .

Then, the ‘‘unitary’’ operators are given by

Ô ¼ ��̂2
sa � ið�sa�̂sa þ �̂sa�saÞ þ Fsa; (A8)

where �sa and Fsa are both real functions of P̂
2. To be more

explicit, when applied to eikz�kðtÞ, the field equation

Ô� ¼ 0 gives�
1

a
@ta@t þ 2ð�saaÞ1=2 1a @tð�saaÞ1=2

þ
�
Fsa þH2

4

��
�kðtÞ ¼ 0; (A9)

where a is the scale factor, and where the argument
of �sa and Fsa is k2=aðtÞ2. Because of the affine group,

2Equation (A5) follows from the fact that the commutator
½u; s� must be a linear combination of u and s since they are the
only fields that commute with Kt and Kz. It is equal to Hs
because u has been chosen to be freely falling, see footnote 4 for
the general case.
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this equation can be simplified using the function �ðPÞ¼
�kðtÞ introduced in Sec II B. In the present more gen-
eral case, one still gets a single equation valid for all �k

modes: �
H2P2@2P �

�
�sa

P

�
1=2

HP2@P

�
�sa

P

�
1=2

þ
�
Fsa þH2

4

��
� ¼ 0: (A10)

The function F ¼ Fsa þ H2

4 describes the dispersion effects

compatible with the affine group, exactly as in Eq. (8).
Instead, the function �sa, which multiplies the odd term in
�, describes the dissipative effects compatible it. It pre-
cisely matches the set of � functions introduced in
Refs. [62,63] to describe dissipative effects that are local
in time, and that obey the generalized equivalence principle,
which states that the action must be a sum of scalars under
general coordinate transformations which reproduce those
one had in Minkowski space-time endowed with a homoge-
neous static u field. This agreement is nontrivial and follows
from the fact that, on one side, the GEP implies that the field

equation can only depend on the two scalars �̂ and P̂
defined by the metric g and the u field, whereas, on the

other side, �̂ and P̂ are the two invariants under the gen-
erators Kt and Kz of the affine group.

It is interesting to impose the invariance under the third
generator, namely Kþ. In that case, the only invariant

operator is Ô ¼ ��̂2
sa þ P̂2 ¼ �K2

t þ KþK� þ K�Kþ
which is the Casimir of SOð1; 2Þ. We thus see that neither
dispersion nor dissipation is compatible with the full de
Sitter group. We also notice that the affine group has no
Casimir operator in the sense that the universal enveloping
algebra of the affine group has no element, but the identity,
that commute with the affine group.

As a final comment, we notice that the affine group
is closely related to Fourier and Mellin analysis [41].
When working on L2ðRÞ, the eigenmodes of �iKz ¼
�i@z of eigenvalue k are the plane waves eikz, whereas
those of �iKt ¼ �iHðz@z þ 1=2Þ of eigenvalue !, are

��
! ¼ �ð�zÞð�zÞi!=H�1=2. The latter live on either side

of z ¼ 0 and they correspond to Mellin modes. They are
complete for ! 2 R (since invertible) on L2ðRþÞ. Hence,
to have completeness on functions of R, one need two
families of Mellin modes, on either side of z ¼ 0, given
by ��

! .

APPENDIX B: BLACK HOLE—DE
SITTER CORRESPONDENCE

Let us start afresh with a stationary black hole metric
and a preferred frame that we describe by a unit time-like
vector field u. We also introduce the unit space-like vector
field s orthogonal to u. To perform the comparison with the
de Sitter case in meaningful terms we shall use quantities,
and coordinates, that are invariantly defined.

To get a situation which is closer to that of Sec. II A, we
now add two assumptions. We first assume that the pre-
ferred frame is freely falling, i.e., �� ¼: u�D�u

� ¼ 0. This

implies that the commutator of u and s obeys

½u; s� ¼ �s; (B1)

where �ðx�Þ ¼: �D�u
� is the expansion of the u field.

This important equation generalizes Eq. (A5). [To obtain it,
we used g ¼ �uuþ ss which implies�D�u� ¼ u��� þ
�s�s�, and the Lie derivative Luðs�  s�Þ ¼ Luðg��Þ ¼
�D�u� �D�u� ¼ u��� þ u��� þ 2�s�s�. Hence,

½u; s� ¼ �sþ �u where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
����

p
]. We then assume

that u commutes with the stationary Killing fieldK�. Under
these assumptions, when using the preferred frame coor-
dinates d� ¼: u�dx

�, @x ¼: s�@�, the metric reads

ds2 ¼ �d�2 þ ðdx� vðxÞd�Þ2; (B2)

the expansion of u is � ¼ @xv, and the norm of K� ¼
�@�jx is K2

� ¼ �1þ v2. The location of the Killing
horizon, where K2

� ¼ 0, is taken to be x ¼ 0. Then the
behavior of v in near horizon region (NHR) is v��1þ
�x, where � ¼ �0 is the expansion evaluated on the hori-
zon [64]. When � > 0 and v < 0, one has a black hole
horizon, since null outgoing geodesics follow x� x0e

�� in
the NHR.
The important lesson here is that under the assumptions

of stationarity and freely fallingness, the black hole metric
and the preferred frame are completely, and invariantly,
determined by vðxÞ. Since the de Sitter background fields
of Sec. II A can be described by the same settings with the
extra condition that vdS is linear in x, the comparison of
dispersive effects associated with Eq. (1) can be easily
done for the solutions of both Eqs. (2) and (3). In particular,
we can already predict that the deviations between de Sitter
and the black hole case will be governed by the spatial
extension of the black hole NHR where v is approxima-
tively linear in x. When v ¼ �1þD tanhð�x=DÞ, the
extension is, roughly speaking, given by j�xj ¼ D.3

Using this velocity profile, near the horizon, Eq. (B1) is
given by

½u; s� ¼ �ðxÞs ¼ �s

�
1� ð�xÞ2

D2
þOð�xÞ4

�
; (B3)

which clearly shows that the deviations with respect to
Eq. (A5) are governed by �x=D.

3Even though the parameter D plays no role when computing
the Hawking spectrum using relativistic fields, it plays important
roles in black hole physics. First, the deviations with respect to
the Hawking spectrum due to dispersion are governed by D
[13,40,59]. Second, the nonlocal correlations across a black hole
horizon are also governed by D, in that they start to differ from
vacuum correlations when �x�D [65,66].
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We now wish to show that this correspondence is
not limited to the background fields, but extends to the
dynamics of dispersive fields. At the classical level, this is
most clearly seen by considering Hamilton’s equations. In
particular, irrespectively of the choice of f in Eq. (1), the
time derivative of the momentum p ¼ @xS ¼ s�@�S obeys

dp

d�
¼ � 1

@!x!ðpÞ ¼ �p�ðx!ðpÞÞ; (B4)

where x!ðpÞ is the root of Eq. (1) at fixed !, i.e., with �
expressed as � ¼ !� vðXÞP. We learn here that Eq. (B4)
is the dynamical equivalent of Eq. (B1). This establishes
how the preferred frame algebra imprints the particle’s
dynamics. Having understood that, as long as �x � D,
Eqs. (B4) and (B3) guarantee that p obeys

pð�Þ ¼ p0e
���; (B5)

as in the de Sitter cosmology where P ¼ k=aðtÞ. It is worth
pointing out that this exponential redshift applies for both
signs of p, i.e., for both right and left moving solutions. This
correspondence in p-space also applies to the classical
trajectories in x-space. At fixed!, xð�Þ obeys!� vðxÞp ¼
�FðpÞ, where pð�Þ is the solution Eq. (B4), and where þ
(�) describes right moving trajectories. As long as
v��1þ �x furnishes a good description of v, the dis-
persive trajectories x!ð�Þ in the black hole metric are indis-
tinguishable from those in de Sitter, i.e., x!ð�Þ is the same
function as XdS

! ðtÞ � 1=H for H ¼ � and t ¼ �.4

The correspondence further extends at the level of the
dispersive field because the stationary modes �! still
(exactly) obey Eq. (12) in the black hole case. Therefore,
near the Killing horizon, the black hole Fourier modes
~�!ðpÞ factorize as in Eq. (15), where � will obey
Eq. (10) with H ¼ �. At this point we make two

observations. First, Eq. (10) resulted in de Sitter from the
coexistence of Kt and Kz, and their algebra of Eq. (5).
Second, Eq. (10) was used in all analytical treatments of
the scattering of dispersive modes on a black hole horizon
[9–13]. These observations raise several questions:
(i) What is the relevance of this correspondence for the

S-matrix?
(ii) What is the validity domain of this correspondence

in terms of time lapses?
(iii) Can we define a field Kz which is approximatively

Killing near the horizon?
The first question is certainly the most important one.

As shown in Refs. [13,59,70], in the black hole case, when
�=� 	 1, the leading deviations from the Planck spec-
trum at the standard Hawking temperature are governed
by inverse powers of the parameter D which enters in
Eq. (B3). This means that these deviations are in fact
defined with respect to the corresponding dispersive spec-
trum evaluated in de Sitter space. This is perfectly coherent
because in de Sitter, the deviations due to dispersion with
respect to the relativistic spectrum are very small, see
Sec. IVA and IVC much smaller than those of the black
hole case. In brief, this explains why the parameter D of
Eq. (B3), which governs the extension of the black hole
near horizon region which can be mapped in de Sitter, also
governs the spectral deviations of the black hole flux.
Concerning the second question, as far as space is

concerned, the validity range of the linearized expression
of v around K2

� ¼ 0 is trivially fixed by D. What is less
trivial concerns the lapse of time during which this linear-
ized expression can be used, given the dispersion relation of
Eq. (1). It is at this level that the separation between the
background scale � ¼ �0 and the dispersive scale� enters.
When �=� 	 1, the lapse of time during which the right
moving U-particles of frequency !� � stay in the NHR

scales, for quartic dispersion, as ���� logðD3=2�=�Þ.
Correspondingly, the accumulated redshift from the high

initial momentum till the final one scales as pin=pout �
e��� �D3=2�=�. We see that it combines in a nontrivial
manner the scale separation and the spatial extension of the
NHR. In Ref. [70] it was explicitly shown that ���, the
adimensional lapse of time spent in the de Sitter like region,
governs the properties of the black hole spectrum.
Having clarified these issues, it is worth returning to

geometrical aspects by investigating how a vector field
Kz ¼ @z can be introduced in black hole space-times and
to what extent it could be considered as an ‘‘approximate
Killing field’’. It should be first pointed out that, a priori,
there exist several ways to introduce a new coordinate z.
Indeed, in de Sitter, KdS

z obeys several properties that can
be used to define the vector field in the black hole case. For
instance, the commutator ½u; KdS

z � vanishes. Using this
property to define z, one gets the construction of
Ref. [62] where the black hole metric reads ds2 ¼ �d�2 þ
a2dz2, with a ¼ vðxð�; zÞÞ=vðzÞ � e��� in the NHR. The

4When the preferred frame is not freely falling, as found in
extended theories of gravity [27,67–69] and in analogue gravity,
there exists an interesting generalization. Eqs. (B1) and (B2)
are replaced by ½u; s� ¼ �sþ �u, and ds2 ¼ �c2d�2þ
ðdx� vd�Þ2, where x is still defined by s�@� ¼ @x. When
½u; K�� ¼ 0, one has @xv ¼ c� and @xc ¼ c�. The acceleration
� is thus described by what plays the role of a varying speed of
light cðxÞ. Using c, we get

� ¼ @xðcþ vÞjx¼0 ¼ c0ð�0 þ �0Þ; (B6)

thereby recovering the expression of the surface gravity used in
condensed matter models [35,37], and generalizing [64].
Moreover, Eq. (B4) becomes dp=d� ¼ �cð�pþ �FðpÞÞ. In
the NHR, this gives dp=d� ¼ ��p� c0�0ðFðpÞ � pÞ. Using
the techniques of Ref. [13], one finds no spectral deviation at first
order in �0 for sufficiently low !. Finally, the black hole–de
Sitter correspondence is maintained when considering a pre-
ferred frame in de Sitter whose acceleration matches �0.
The new field u�0

is related to those of Eq. (A5) by a boost:
u�0

¼ u cosh� þ s sinh� , where �0 ¼ H sinh� . In this case,
there is a ‘‘universal horizon’’ [27,69] at HX ¼ coth� , as in
black hole metrics. We are planning to study the spectral con-
sequences of �0 in a forthcoming publication.
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disadvantage of this choice is that the lapse of time during
which the exponential is found is much shorter than the
lapse �� we above discussed. A posteriori, it turns out that
a better choice is provided by imposing that Eq. (5) be
satisfied:

½K�; Kz� ¼ �Kz: (B7)

This implies that Kz ¼: e�t@x is the derivative with respect
to the new coordinate z ¼ xe��t. We then have the follow-
ing commutation relations

½Kz; u� ¼ ð�ðxÞ � �ÞKz; (B8)

and

D�Kz� þD�Kz� ¼ �ðxÞ � �

2
ðs�u� þ u�s�Þ: (B9)

Since � ¼ �ðx ¼ 0Þ, we see that the deviations from the
Killingness, i.e., the second equation, and from the homo-
geneous de Sitterness, the first equation, are both governed
by the gradient of � in the NHR, and not from �0 ¼ �
itself. It is thus geometrically meaningful, and dynamically
relevant, to say that a stationary black hole metric endowed
with a freely falling frame possesses, in the NHR, an
approximate homogeneous Killing field Kz obeying the
affine algebra of Eq. (B7).

APPENDIX C: EVALUATION OF EQ. (53)

To obtain an explicit expression for ð�BD;U�! Þ� of Eq. (53),
we shall compute a more general function AðzÞ to be able to
exploit some analytical property in z. It is given by

AðzÞ ¼: ei�ð�þ1Þ=4 Z 1

0
dpp�e�ipxWð�; �; izp2Þ e

iðz�1Þp2

z
1
2

;

(C1)

and which is related to the BD mode by

ð�BD;U�! ðXÞÞ� ¼e�i�ð�þ1Þ=4
ffiffiffiffiffiffiffi
�

4�

s
e
���
8 �ð�þ1Þ=2Aðz¼1Þ: (C2)

To simplify notations, we introduced � ¼ �3=2� i!=H,

� ¼ �i�=4, �¼ i�=2, x¼HX
ffiffiffiffi
�

p
and rescaled p ! p

ffiffiffiffi
�

p
.

Making a rotation in complex p plane of angle �=4,
one gets

AðzÞ ¼
Z 1

0
dpp�e�pxei�=4Wð�; �; zp2Þ e

ðz�1Þp2

z
1
2

: (C3)

The Whittaker is then expressed as a sum Wð�; �; zp2Þ ¼
Bð�Þ þ Bð��Þ where [58]

Bð�Þ ¼ ��

sin2��

e�zp2=2z1=2þ�p1þ2�

�ð1=2� �� �Þ�ð1=2þ �� �Þ
� X1

n¼0

�ð1=2þ �� �þ nÞ
n!�ð1þ 2�þ nÞ ðzp2Þn: (C4)

Then the amplitude A is expressed as

�AðzÞ sin2��
�

¼ z�Aþ�ðzÞ � z��A��ðzÞ
�ð1=2� �� �Þ�ð1=2þ �� �Þ ;

(C5)

where

Aþ�ðzÞ¼:
Z 1

0
dpp�e�pxei�=4e�p2=2

�X1
n¼0

�ð1=2þ���þnÞ
n!�ð1þ2�þnÞ ðzp2Þn

¼X1
n¼0

�ð1=2þ���þnÞ
n!�ð1þ2�þnÞ zn

�
Z 1

0
dpp�þ2ne�pxei�=4e�p2=2; (C6)

and where � ¼ �þ 1þ 2�. The last equality is valid only
inside the radius of convergence of the power series which
is jzj< 1=2. We notice that z ¼ 1 is not in the radius, this is
why we introduced the extra variable z. Expanding the
oscillating exponential in x as a series, we getZ 1

0
dpp�þ2ne�pxei�=4e�p2=2

¼ X1
k¼0

ð�1Þkxkeik�=4
k!

2ð��1þkÞ=2þn�

�
�þ 1þ kþ 2n

2

�
:

(C7)

Using this expression, the sum over n can be done
and gives

Aþ�ðzÞ¼
X1
k¼0

ð� ffiffiffiffiffi
2i

p
xÞk�ð1=2þ���Þ�ððkþ1þ�Þ=2Þ

k!�ð1þ2�Þ

�2ð��1Þ=2
2F1

�
1

2
þ���;

kþ1þ�

2
;1þ2�;2z

�
:

(C8)

Using Eq. (15.3.8) of Ref. [58] and Eq. (C5), one obtains

AðzÞ ¼ X1
k¼0

�ð1þ ðkþ �Þ=2þ �Þ�ð1þ ðkþ �Þ=2� �Þ
�ð��þ ðkþ 3þ �Þ=2Þ

� ð� ffiffiffiffiffi
2i

p
xÞk

k!
2�=22F1

�
1

2
þ �� �;

1

2
� �� �;

� �þ kþ 3þ �

2
; 1� 1

2z

�
: (C9)

The above expressions are all valid for jzj< 1=2. However,
since both A and the sum are analytic onC, the result is still
valid at z ¼ 1.
It is then convenient to express the 2F1 as

2F1ða; b; c;uÞ ¼
X1
n¼0

�ðaþ nÞ�ðbþ nÞ�ðcÞ
�ðaÞ�ðbÞ�ðcþ nÞn! un; (C10)
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to split the sum between odd and even k, and to notice that
each sum over k gives an hypergeometric function

Að1Þ ¼ X1
n¼0

2�n �ð1=2þ �� �þ nÞ�ð1=2� �� �þ nÞ
n!�ð1=2þ �� �Þ�ð1=2� �� �Þ

� 2�=2½Bð�; 1
2
Þ � ei�=4x

ffiffiffi
2

p
Bð�þ 1

2
;
3

2
Þ�; (C11)

where

Bð�;
Þ¼�

�
1þ�

2
þ�

�
�

�
1þ�

2
��

�

� 2F2ð1þ�
2þ�;1þ�

2��;
;n��þ 3þ�
2 Þ;ix22 Þ

�ðn��þð3þ�Þ=2Þ :

(C12)

We verified that the above expression is a solution of the
4th order differential Eq. (12). From the symmetries of
Eq. (12), four independent solutions are

ð�BD;U�! ðXÞÞ�; �BD;U
þ! ðXÞ;

ð�BD;U�! ð�XÞÞ�; �BD;U
þ! ð�XÞ:

(C13)

The last two ones give the V modes evaluated at X. These
four functions are independent because they are orthogonal
to each other when using the scalar product of Eq. (16).
In addition, to validate our long calculation, we

compared the final expression of Eq. (C11) with the
original integral of Eq. (53) evaluated numerically with
MATHEMATICA�. We found a perfect agreement.

[1] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[2] N. Birrell and P. Davies, Quantum Fields in Curved Space,

Cambridge Monographs on Mathematical Physics

(Cambridge University Press, Cambridge, U.K., 1984).
[3] R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys.

Rep. 260, 329 (1995).
[4] A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
[5] V. F. Mukhanov and G.V. Chibisov, Sov. Phys. JETP 56,

258 (1982).
[6] V. F. Mukhanov, H. Feldman, and R.H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[7] T. Jacobson, Prog. Theor. Phys. Suppl. 136, 1 (1999).
[8] W. Unruh, Phys. Rev. D 51, 2827 (1995).
[9] R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys.

Rev. D 52, 4559 (1995).
[10] S. Corley and T. Jacobson, Phys. Rev. D 54, 1568

(1996).
[11] R. Balbinot, A. Fabbri, S. Fagnocchi, and R. Parentani,

Riv. Nuovo Cimento 28, 1 (2005).
[12] W.G. Unruh and R. Schutzhold, Phys. Rev. D 71, 024028

(2005).
[13] A. Coutant, R. Parentani, and S. Finazzi, Phys. Rev. D 85,

024021 (2012).
[14] J. Martin and R.H. Brandenberger, Phys. Rev. D 63,

123501 (2001).
[15] J. C. Niemeyer, Phys. Rev. D 63, 123502 (2001).
[16] J. C. Niemeyer and R. Parentani, Phys. Rev. D 64, 101301

(2001).
[17] J. Macher and R. Parentani, Phys. Rev. D 78, 043522

(2008).
[18] C. Eling and T. Jacobson, Phys. Rev. D 74, 084027

(2006).
[19] T. Jacobson, Phys. Rev. D 44, 1731 (1991).
[20] T. Jacobson, Phys. Rev. D 48, 728 (1993).
[21] T. Jacobson, Phys. Rev. D 53, 7082 (1996).
[22] S. Dubovsky and S. Sibiryakov, Phys. Lett. B 638, 509

(2006).

[23] C. Eling, B. Z. Foster, T. Jacobson, and A. C. Wall, Phys.
Rev. D 75, 101502 (2007).

[24] T. Jacobson and A. C. Wall, Found. Phys. 40, 1076 (2010).
[25] C. Eling, T. Jacobson, and D. Mattingly, Deserfest (World

Scientific, Singapore, 2006) pp. 163–179.
[26] P. Horava, Phys. Rev. D 79, 084008 (2009).
[27] D. Blas and S. Sibiryakov, Phys. Rev. D 84, 124043

(2011).
[28] B. S. Kay and R.M. Wald, Phys. Rep. 207, 49 (1991).
[29] T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028

(2001).
[30] E. A. Lim, Phys. Rev. D 71, 063504 (2005).
[31] B. Li, D. F. Mota, and J. D. Barrow, Phys. Rev. D 77,

024032 (2008).
[32] T. Jacobson and D. Mattingly, Phys. Rev. D 63, 041502

(2001).
[33] M. Lemoine, M. Lubo, J. Martin, and J.-P. Uzan, Phys.

Rev. D 65, 023510 (2001).
[34] R. Schutzhold and W.G. Unruh, Phys. Rev. D 66, 044019

(2002).
[35] J. Macher and R. Parentani, Phys. Rev. A 80, 043601

(2009).
[36] W. Unruh, in Analog Gravity—Proceedings of the Como

Summer School, 2011, edited by D. Faccio et al.

(Springer-Verlag, Berlin, 2012).
[37] C. Barcelo, S. Liberati, and M. Visser, Living Rev.

Relativity 8, 12 (2005), http://www.livingreviews.org/lrr-
2005-12.

[38] C. Schomblond and P. Spindel, Ann. Poincare Phys.
Theor. 25, 67 (1976).

[39] T. S. Bunch and P. C.W. Davies, Proc. R. Soc. A 357, 381
(1977).

[40] J. Macher and R. Parentani, Phys. Rev. D 79, 124008
(2009).

[41] P. Morse and H. Feshbach, Methods of Theoretical

Physics, International Series in Pure and Applied
Physics, vol. 1 (McGraw-Hill, New York, 1953).

XAVIER BUSCH AND RENAUD PARENTANI PHYSICAL REVIEW D 86, 104033 (2012)

104033-18

http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1016/0370-1573(95)00008-5
http://dx.doi.org/10.1016/0370-1573(95)00008-5
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1143/PTPS.136.1
http://dx.doi.org/10.1103/PhysRevD.51.2827
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1103/PhysRevD.54.1568
http://dx.doi.org/10.1103/PhysRevD.54.1568
http://dx.doi.org/10.1393/ncr/i2006-10001-9
http://dx.doi.org/10.1103/PhysRevD.71.024028
http://dx.doi.org/10.1103/PhysRevD.71.024028
http://dx.doi.org/10.1103/PhysRevD.85.024021
http://dx.doi.org/10.1103/PhysRevD.85.024021
http://dx.doi.org/10.1103/PhysRevD.63.123501
http://dx.doi.org/10.1103/PhysRevD.63.123501
http://dx.doi.org/10.1103/PhysRevD.63.123502
http://dx.doi.org/10.1103/PhysRevD.64.101301
http://dx.doi.org/10.1103/PhysRevD.64.101301
http://dx.doi.org/10.1103/PhysRevD.78.043522
http://dx.doi.org/10.1103/PhysRevD.78.043522
http://dx.doi.org/10.1103/PhysRevD.74.084027
http://dx.doi.org/10.1103/PhysRevD.74.084027
http://dx.doi.org/10.1103/PhysRevD.44.1731
http://dx.doi.org/10.1103/PhysRevD.48.728
http://dx.doi.org/10.1103/PhysRevD.53.7082
http://dx.doi.org/10.1016/j.physletb.2006.05.074
http://dx.doi.org/10.1016/j.physletb.2006.05.074
http://dx.doi.org/10.1103/PhysRevD.75.101502
http://dx.doi.org/10.1103/PhysRevD.75.101502
http://dx.doi.org/10.1007/s10701-010-9423-5
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1016/0370-1573(91)90015-E
http://dx.doi.org/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1103/PhysRevD.71.063504
http://dx.doi.org/10.1103/PhysRevD.77.024032
http://dx.doi.org/10.1103/PhysRevD.77.024032
http://dx.doi.org/10.1103/PhysRevD.63.041502
http://dx.doi.org/10.1103/PhysRevD.63.041502
http://dx.doi.org/10.1103/PhysRevD.65.023510
http://dx.doi.org/10.1103/PhysRevD.65.023510
http://dx.doi.org/10.1103/PhysRevD.66.044019
http://dx.doi.org/10.1103/PhysRevD.66.044019
http://dx.doi.org/10.1103/PhysRevA.80.043601
http://dx.doi.org/10.1103/PhysRevA.80.043601
http://www.livingreviews.org/lrr-2005-12
http://www.livingreviews.org/lrr-2005-12
http://dx.doi.org/10.1098/rspa.1977.0174
http://dx.doi.org/10.1098/rspa.1977.0174
http://dx.doi.org/10.1103/PhysRevD.79.124008
http://dx.doi.org/10.1103/PhysRevD.79.124008


[42] L. P. Pitaevski, JETP Lett. 39, 511 (1984).
[43] S. Massar and R. Parentani, Nucl. Phys. B513, 375 (1998).
[44] T. Damour, N. Deruelle, and R. Ruffini, Lett. Nuovo

Cimento 15, 257 (1976).
[45] A. Coutant and R. Parentani, Phys. Rev. D 81, 084042

(2010).
[46] E. Joung, J. Mourad, and R. Parentani, J. High Energy

Phys. 08 (2006) 082.
[47] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2738

(1977).
[48] W. Unruh, Phys. Rev. D 14, 870 (1976).
[49] C.W. Misner, K. S. Thorne, J. A. Wheeler, J. Wheeler, and

K. Thorne, Gravitation (Physics Series) (W.H. Freeman,
San Francisco, 1973), 1st ed.

[50] R. C. Tolman, Phys. Rev. 35, 904 (1930).
[51] T. Jacobson and R. Parentani, Found. Phys. 33, 323

(2003).
[52] D. Marolf and I. A. Morrison, Phys. Rev. D 84, 044040

(2011).
[53] D. Marolf and I. A. Morrison, Gen. Relativ. Gravit. 43,

3497 (2011).
[54] S. Hollands, arXiv:1010.5367.
[55] A. Giraud and J. Serreau, Phys. Rev. Lett. 104, 230405

(2010).
[56] D. L. Nacir, F. Mazzitelli, and C. Simeone, Phys. Rev. D

72, 124013 (2005).

[57] D. Campo and R. Parentani, Phys. Rev. D 72, 045015
(2005).

[58] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1964), 5th ed.

[59] S. Finazzi and R. Parentani, Phys. Rev. D 83, 084010
(2011).

[60] Wolfram Research, Inc., http://functions.wolfram.com/
07.25.06.0009.01 (2001).

[61] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot, and
P. Anderson, Phys. Rev. D 86, 064022 (2012).

[62] R. Parentani, Proc. Sci., QG-PH (2007) 031.
[63] J. Adamek, D. Campo, J. C. Niemeyer, and R. Parentani,

Phys. Rev. D 78, 103507 (2008).
[64] T. Jacobson and R. Parentani, Classical Quantum Gravity

25, 195009 (2008).
[65] R. Schutzhold and W.G. Unruh, Phys. Rev. D 81, 124033

(2010).
[66] R. Parentani, Phys. Rev. D 82, 025008 (2010).
[67] C. Eling and T. Jacobson, Classical Quantum Gravity 23,

5643 (2006).
[68] E. Barausse, T. Jacobson, and T. P. Sotiriou, Phys. Rev. D

83, 124043 (2011).
[69] P. Berglund, J. Bhattacharyya, and D. Mattingly, Phys.

Rev. D 85, 124019 (2012).
[70] S. Finazzi and R. Parentani, Phys. Rev. D 85, 124027

(2012).

DISPERSIVE FIELDS IN DE SITTER SPACE AND . . . PHYSICAL REVIEW D 86, 104033 (2012)

104033-19

http://dx.doi.org/10.1016/S0550-3213(97)00718-9
http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1103/PhysRevD.81.084042
http://dx.doi.org/10.1103/PhysRevD.81.084042
http://dx.doi.org/10.1088/1126-6708/2006/08/082
http://dx.doi.org/10.1088/1126-6708/2006/08/082
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRev.35.904
http://dx.doi.org/10.1023/A:1023785123428
http://dx.doi.org/10.1023/A:1023785123428
http://dx.doi.org/10.1103/PhysRevD.84.044040
http://dx.doi.org/10.1103/PhysRevD.84.044040
http://dx.doi.org/10.1007/s10714-011-1233-3
http://dx.doi.org/10.1007/s10714-011-1233-3
http://arXiv.org/abs/1010.5367
http://dx.doi.org/10.1103/PhysRevLett.104.230405
http://dx.doi.org/10.1103/PhysRevLett.104.230405
http://dx.doi.org/10.1103/PhysRevD.72.124013
http://dx.doi.org/10.1103/PhysRevD.72.124013
http://dx.doi.org/10.1103/PhysRevD.72.045015
http://dx.doi.org/10.1103/PhysRevD.72.045015
http://dx.doi.org/10.1103/PhysRevD.83.084010
http://dx.doi.org/10.1103/PhysRevD.83.084010
http://functions.wolfram.com/07.25.06.0009.01
http://functions.wolfram.com/07.25.06.0009.01
http://dx.doi.org/10.1103/PhysRevD.86.064022
http://dx.doi.org/10.1103/PhysRevD.78.103507
http://dx.doi.org/10.1088/0264-9381/25/19/195009
http://dx.doi.org/10.1088/0264-9381/25/19/195009
http://dx.doi.org/10.1103/PhysRevD.81.124033
http://dx.doi.org/10.1103/PhysRevD.81.124033
http://dx.doi.org/10.1103/PhysRevD.82.025008
http://dx.doi.org/10.1088/0264-9381/23/18/009
http://dx.doi.org/10.1088/0264-9381/23/18/009
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1103/PhysRevD.85.124019
http://dx.doi.org/10.1103/PhysRevD.85.124019
http://dx.doi.org/10.1103/PhysRevD.85.124027
http://dx.doi.org/10.1103/PhysRevD.85.124027

