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Aretakis has proved the existence of an instability of a massless scalar field at the horizon of an extreme

Kerr or Reissner-Nordström black hole: for generic initial data, a transverse derivative of the scalar field at

the horizon does not decay, and higher transverse derivatives blow up. We show that a similar instability

occurs for linearized gravitational, and electromagnetic, perturbations of an extreme Kerr black hole. We

show also that the massless scalar field instability occurs for extreme black hole solutions of a large class

of theories in various spacetime dimensions.
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I. INTRODUCTION

Extreme (zero temperature) black holes are of special
interest because they do not emit Hawking radiation.
Hence, they are expected to have a simpler description in
any candidate theory of quantum gravity. This expectation
has been realized within string theory, which has been used
to give a statistical mechanics derivation of the Bekenstein-
Hawking entropy for certain supersymmetric (therefore
extreme) black hole solutions to various supergravity theo-
ries [1]. Recently, there has been considerable interest in
the proposal that an extreme Kerr black hole can be
described by a conformal field theory [2].

Given their importance, it is natural to ask: are extreme
black holes stable? We will say that an extreme black hole
is stable if any perturbation that is small initially remains
small for all time and, at late time, ‘‘settles down’’ to a
stationary perturbation corresponding to a small variation
of parameters within the family of stationary black hole
solutions to which the extreme black hole belongs. (Such a
variation of parameters generically makes the black hole
slightly nonextreme.)

A heuristic argument suggests that extreme black holes
might be classically unstable [3]. Near-extreme black holes
usually possess an inner horizon which is believed to be
unstable. In the extreme limit, the inner and outer horizons
coincide, which suggests that the outer (i.e., event) horizon
might be unstable in this limit.1

Before discussing the stability of extreme black holes,
wewill review briefly some stability results for nonextreme
black holes. Consider a massless scalar field c in the
Schwarzschild spacetime. The scalar field can be regarded
as a toy model for the more interesting case of linearized

gravitational perturbations. Pick a spacelike hypersurface
�0 which intersects the future horizonHþ and extends to
null or spacelike infinity. Prescribe initial data for the
scalar field on �0 which vanishes at an appropriate rate
at infinity. Let �� denote the surface obtained by trans-
lating �0 into the future a parameter distance � along the
orbits of the timelike Killing vector field. It has been
proved (see Ref. [4] for a review) that the scalar field
decays outside Hþ and also in a neighbourhood of
Hþ. In particular, along the horizon, c and all its deriva-
tives decay at least as fast as certain negative powers of �.
Similar stability results have been achieved for a massless
scalar field in a nonextreme Reissner-Nordström [5] or
nonextreme Kerr [6] spacetime.
Consider now the case of an extreme black hole.

Recently, strong evidence for the existence of a classical
instability has been obtained byAretakis. He has considered
the evolution of a massless scalar field c in the background
of an extreme Reissner-Nordström black hole. He proved
that, for arbitrary initial data specified on a spacelike sur-
face�0 intersecting the future even horizonHþ, c decays
on and outsideHþ [7]. However, transverse derivatives of
c do not decay on Hþ: if ðv; r; �; �Þ denote advanced
Eddington-Finkelstein coordinates then, for generic initial
data,@rc does not decay onHþ and@krc blows-up asvk�1

for large v [8].
Aretakis has also investigated the case of a massless

scalar field c in an extreme Kerr spacetime. He has proved
decay of axisymmetric solutions c , on and outside Hþ
[9]. However, just as in the Reissner-Nordström case, he
finds that, for generic axisymmetric initial data, derivatives
of c transverse to Hþ do not decay, and higher order
transverse derivatives blow-up along Hþ [10].
In this paper, we will consider linearized gravitational

perturbations of an extreme Kerr black hole. Aretakis’s
results suggest that such perturbations might exhibit insta-
bilities in extreme black hole spacetimes. We will prove in
Sec. II that this is indeed the case.We do this by showing that
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1An extreme rotating black hole also has a quantum mechani-

cal instability involving spontaneous emission of superradiant
quanta. We will discuss only classical stability.
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Aretakis’s arguments can be applied to the Teukolsky equa-
tion governing linearized gravitational (or electromagnetic)
perturbations of Kerr. Our result implies that small linearized
gravitational perturbations of an extreme Kerr black hole
generically do not settle down to the stationary perturbation
corresponding to a small variation of parameters within the
Kerr family of solutions. Hence, an extreme Kerr black hole
exhibits a linearized gravitational instability.2

Section III presents generalizations of Aretakis’s work
on massless scalar field instabilities. We prove that his
nondecay result can be extended to any extreme black
hole and that his blow-up result extends to extreme black
hole solutions of a large class of theories in various
dimensions.

II. GRAVITATIONAL INSTABILITY
OF EXTREME KERR

A. Naive instability

Before we introduce our generalization of Aretakis’s
work, we will discuss a more obvious candidate instability
of an extreme black hole.

Consider a Kerr-Newman (KN) black hole in Einstein-
Maxwell theory. Take an initial spacelike surface �0 as
described above, i.e., intersecting Hþ and extending to
infinity. We assume that�0 extends a finite distance behind
Hþ. Initial data specified on �0 uniquely determines the
black hole solution in the future domain of dependence
Dþð�0Þ. This region includes those parts of the black hole
exterior and event horizon which lie to the future of �0. If
the black hole is nonextreme, it is believed that the solution
is nonlinearly stable against arbitrary small perturbations
of the initial data on �0.

This does not seem to be the case for an extreme black
hole. Consider a perturbation of the data on �0 which
corresponds simply to reducing the mass, remaining within
the KN family. The effect of this perturbation is drastic: the
resulting spacetime is a portion of a super-extreme KN
solution, which does not possess an event horizon.

Is this an instability of the extreme KN solution? To
answer this, we must decide what initial data is admissible
on a surface such as �0. In an extreme black hole, �0 is
necessarily geodesically incomplete, terminating either at
the singularity or at an inner boundary behind Hþ.
Usually one does not consider initial data on such a surface
since it is not clear whether the incompleteness is physical.
Incompleteness may not be a problem if the singularity is
hidden behind a marginally outer trapped surface (MOTS),
which is the case when perturbing a nonextreme black
hole. But in the extreme case, the perturbed initial data
we have just described does not contain a MOTS.

In the nonextreme case, we do not have to confront the
problem of dealing with a perturbation specified on an
incomplete surface; instead we could choose �0 to be
complete, either extending into a second asymptotically
flat region, or intersecting the matter which collapses to
form the black hole. But in the extreme case we have no
choice: there are no complete spacelike surfaces �0 which
intersect Hþ.3 So how are we to decide which kinds of
initial data are admissible on �0?
One possibility is to dictate that initial datawith an incom-

plete �0 is admissible only if the incompleteness is hidden
behind a MOTS. Thus extreme KN initial data is admissible
but superextremeKN initial data is not. This approach seems
unsatisfactory because it simply ‘‘defines away’’ the possi-
bility of a perturbation destroying the MOTS.
Alternatively, consider the case in which the extreme

black hole forms by gravitational collapse. For example, it
is possible to form an extreme Reissner-Nordström (RN)
black hole by spherically symmetric gravitational collapse
of charged matter (e.g., see Ref. [12] for collapse of
charged shells). In this case, it is natural to impose initial
conditions on a complete asymptotically flat hypersurface
that does not intersect the horizon, corresponding to a time
before the collapse has occurred. For suitable matter,
such initial data will satisfy the mass-charge inequality
M � jQj [13], which excludes the superextreme perturba-
tion just discussed. This supports the view that this pertur-
bation is not admissible for extreme RN. However, it does
not appear possible to exclude the superextreme perturba-
tion of extreme Kerr by this kind of argument.4

To summarise: we have observed that the question of
stability of an extreme black hole involves subtleties not
present in the nonextreme case. These prevent us from
determining the admissibility of the superextreme pertur-
bation of extreme Kerr. Nevertheless, in the next section,
we will argue that generic admissible initial data will lead
to a gravitational instability of extreme Kerr.

B. Teukolsky equation for extreme Kerr

Let f‘; n;m; �mg be a null tetrad. Using this we can define
the Newman-Penrose Weyl scalars�A, A ¼ 0, 1, 2, 3, 4. A
transformationm ! ei�m is called a spin and a quantity c
has spin-weight s if c ! eis�c under a spin. For example,
�A has s ¼ 2-A. The Kerr spacetime is type D, which
means that we can choose the tetrad so that only �2 is

2We emphasize that nonextreme Kerr black holes are expected
to be stable (at least in vacuum gravity), no matter how small the
nonextremality. See Ref. [11] for a discussion of the Teukolsky
equation inside a Kerr black hole.

3One might choose �0 not to intersect the horizon but instead
to contain the asymptotic ‘‘throat’’ region of the extreme black
hole geometry. But then we still have the problem of deciding
which initial data on �0 are admissible, i.e., which boundary
conditions should be imposed in the throat region.

4One problem is that the (vacuum) mass-angular momentum
inequality M � ffiffiffiffiffiffijJjp

[14] requires axisymmetry, so this inequal-
ity cannot exclude the possibility of a spacetime containing a
complete hypersurface on which the initial data is superextreme
Kerr outside a compact set and nonaxisymmetric inside this set.
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nonvanishing. Now consider a linearly perturbed Kerr
spacetime. Take the tetrad to be an arbitrary linear pertur-
bation of the one just discussed. Then ��0 and ��4 (the
perturbations in �0 and �4) are invariant under infinitesi-
mal diffeomorphisms and infinitesimal changes in the tet-
rad [15]. Teukolsky showed that the gauge-invariant
quantities ��0 and ��4 each satisfies a second-order
wave equation. These two equations take the same form

if written in terms of ��0 or �
�4=3
2 ��4 respectively [15].

Starting from the Kerr metric in Boyer-Lindquist coor-
dinates ðt; r; �;�Þ, convert to Kerr coordinates ðv; r; �; �Þ
defined by

dv ¼ dtþ r2 þ a2

�
dr; d� ¼ d�þ a

�
dr; (1)

where � ¼ r2 � 2Mrþ a2 (we will not assume extrem-
ality yet). This gives a coordinate chart regular acrossHþ,
which is at � ¼ 0. Choose the following tetrad for the
background Kerr spacetime:

‘ ¼ 2ðr2 þ a2Þ @

@v
þ 2a

@

@�
þ �

@

@r
;

n ¼ � 1

2ðr2 þ a2cos2�Þ
@

@r
;

m ¼ 1ffiffiffi
2

p ðrþ ia cos�Þ
�
ia sin�

@

@v
þ @

@�
þ i

sin�

@

@�

�
:

(2)

The vector fields ‘ and n coincide with the principal null
directions, with ‘ tangential toHþ. This tetrad is regular in
a neighbourhood ofHþ except at � ¼ 0,�. By performing
a spin one can introduce a new tetrad which is regular at
either� ¼ 0 or � ¼ �, but it is not possible to define a tetrad
which is globally regular with ‘, n alignedwith the principal
null directions. Instead one has toworkwith different tetrads
related by spins on coordinate chart overlaps (a spin with
� ¼ �� gives a tetrad regular at � ¼ 0, �). This is not a
problem because the Teukolsky equation can be written in a
form which is manifestly covariant under spins [16]
although we will not use this form here.

For the above choice of tetrad and coordinates, the
Teukolsky equation is5

@

@v

�
Nðc Þþ2a

@c

@�
þ2½ð1�2sÞr� iascos��c

�

¼Oc ��
@2c

@r2
�2ðr�MÞð1�sÞ@c

@r
�2a

@2c

@�@r
; (3)

where we have introduced the smooth vector field

N ¼ 2ðr2 þ a2Þ @
@r

þ a2sin2�
@

@v
(4)

and the operator

Oc ¼ � 1

sin�

@

@�

�
sin�

@c

@�

�
� 1

sin2�

@2c

@�2

� 2is
cos�

sin2�

@c

@�
þ ðs2cot2�þ sÞc : (5)

Note that N is transverse to Hþ. The quantity c appear-
ing in the above equation is determined by the value of s:

c ¼��0 if s¼2 and c ¼��4=3
2 ��4 if s ¼ �2. For s¼0

this equation is just the massless scalar wave equation.
Electromagnetic perturbations correspond to s ¼ �1 [15].
The operator O appears in the theory of spin-weighted

spherical harmonics. Using the notation of Ref. [17], we
have O ¼ �ð�ð ¼ ��ððþ 2s. It is readily checked that,
with respect to the standard measure on the unit sphere
d� ¼ sin�d� ^ d�, the adjoint of ð is��ð and, hence,O is
a non-negative, self-adjoint operator. The eigenfunctions
of O are the spin-weighted spherical harmonics sYjm.

These are defined for j ¼ jsj; jsj þ 1; . . . and jmj � j
with eigenvalues

O ðsYjmÞ ¼ ½jðjþ 1Þ � sðs� 1Þ�ðsYjmÞ: (6)

We will assume that s is an integer; hence, so is j. The
eigenspace with zero eigenvalue, which is given by j¼�s,
exists only for s � 0 and is equal to the kernel of �ð. Note
@�ðsYjmÞ ¼ imðsYjmÞ, so sYj0 is independent of the azimu-

thal angle �.
So far, the discussion applies to any Kerr black hole but

now we restrict to an extreme Kerr black hole:M ¼ a > 0,
with horizon at r ¼ a. Let HðvÞ denote a S2 cross section
of the future event horizon Hþ i.e., a surface with r ¼ a
and constant v. We will now follow reasoning similar to
that of Aretakis [10] but with spherical harmonics replaced
with spin-weighted harmonics.
First consider s � 0. Restrict (3) to r ¼ a and project

onto sYjm with j ¼ �s and m ¼ 0. The terms on the rhs

give zero contribution, showing that the quantity

IðsÞ0 ¼
Z
HðvÞ

d�ðsY�s0Þ�fNðc Þþ2a½ð1�2sÞ� iscos��c g
(7)

is independent of v, i.e., it is conserved along Hþ. For
s ¼ 0 this agrees with the conserved quantity found by
Aretakis [10]. Let �0 be a spacelike surface whose inter-
section with Hþ is Hðv0Þ. We are free to specify initial
data for c on �0. A generic perturbation will have initial

data for which IðsÞ0 is nonzero. Since IðsÞ0 is conserved, it

remains nonzero for all v > v0. It follows that c and the
j ¼ �s component of its transverse derivativeNðc Þ do not
both decay along Hþ as v ! 1.

5Note that ‘ ¼ �‘K, n ¼ ��1nK where a superscript K refers
to the Kinnersley tetrad used in Ref. [15]. This change of tetrad
results in a corresponding change in the quantity occurring in the
Teukolsky equation: c ¼ �sc K. So an easy way to obtain the
Teukolsky equation in the tetrad and coordinates used here is to
take the equation given in Ref. [15], substitute c K ¼ ��sc ,
multiply by �s, and convert to Kerr coordinates.
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One might question the assertion that generic initial data

give nonzero IðsÞ0 . Above, we discussed the difficulties

associated to defining data on an incomplete surface �0.
Perhaps admissible initial data on �0 always has vanishing

IðsÞ0 . To see why not, consider, for simplicity, the case of a

massless scalar in extreme RN, instead of extreme Kerr.
The results of Ref. [10] (or Sec. III of the present paper)
show that, for a massless scalar in extreme RN, there is a

conserved quantity I exactly analogous to Ið0Þ0 . As dis-

cussed above, one can form an extreme RN black hole
by spherically symmetric gravitational collapse of charged
matter. In this case, one can take �0 to be a complete
surface which intersects Hþ after the matter has fallen
through it and intersects the collapsing matter behindHþ.
Let �� be a complete asymptotically flat spacelike surface
which does not intersectHþ, i.e., it corresponds to a time
before the black hole has formed. It is uncontroversial that
we are free to prescribe arbitrary smooth initial data for c
on �� subject to appropriate boundary conditions at infin-
ity. Cauchy evolution gives a one-to-one correspondence
between data on �� and data on �0. Hence, we are free to
specify arbitrary data on �0. Such data generically has
nonvanishing I. This is for extreme RN but there is no
reason why extreme Kerr should be any different. Hence,

generic admissible data has nonvanishing IðsÞ0 .

Now, still with s � 0, act on (3) with the vector field N,
set r ¼ M ¼ a and again project onto sYjm with j ¼ �s,

m ¼ 0. This gives

@vJ
ðsÞ
0 ¼ �2ð1� sÞ

Z
HðvÞ

d�ðsY�s0Þ�Nðc Þ; (8)

where

JðsÞ0 ðvÞ ¼
Z
HðvÞ

d�ðsY�s0Þ�fNðNðc ÞÞ

þ 2a½ð1� 2sÞ � is cos��Nðc Þ � a2sin2�Oc

þ 2a2½4ð1� 2sÞ � ð1� sÞsin2��c g
¼

Z
HðvÞ

d�ðsY�s0Þ�fNðNðc ÞÞ

þ 2a½ð1� 2sÞ � is cos��Nðc Þ
þ 2a2½2ð3� 5sÞ � ð4� 3sÞsin2��c g (9)

and the second equality follows from integration by parts
and using the identity

O ½sin2�ðsY�s0Þ� ¼ 2½2ðs� 1Þ þ ð3� 2sÞsin2��ðsY�s0Þ:
(10)

Consider the case in which c ! 0 along Hþ as v ! 1.

Conservation of IðsÞ0 implies

Z
HðvÞ

d�ðsY�s0Þ�Nðc Þ ! IðsÞ0 (11)

as v ! 1 and, therefore,

@vJ
ðsÞ
0 ! �2ð1� sÞIðsÞ0 : (12)

For generic initial data, IðsÞ0 � 0 and, hence, JðsÞ0 blows up

linearly:

JðsÞ0 ��ð2ð1� sÞIðsÞ0 Þv: (13)

Inspecting JðsÞ0 it follows that, if c ! 0 then eitherNðc Þ or
the j ¼ �s component of NðNðc ÞÞ must blow up at least
as fast as v as v ! 1 on Hþ.
In summary, we have proved that for an axisymmetric6

perturbation c , if s � 0 then c and the j ¼ �s compo-
nent of its transverse derivative Nðc Þ cannot both decay
along Hþ as v ! 1. For s ¼ 0, it is known that c does
decay [9], and this seems likely also for s � 0 (although
proving this would involve a detailed global analysis). In
this case, the j ¼ �s component of Nðc Þ cannot decay
and Nðc Þ or the j ¼ �s component of NðNðc ÞÞ must
blow up at least as fast as v along Hþ as v ! 1.
Presumably, one could extend the above analysis to prove
that higher derivatives of c blow up even faster: for s ¼ 0
Aretakis states that the kth transverse derivative blows up
as vk�1.
Following Aretakis, we may go further and derive an

infinite set of higher order conserved quantities for any s.
First differentiate (3) p times with respect to r,7 set r ¼
M ¼ a and project onto sYjm. The result is

@

@v

Z
HðvÞ

d�ðsYjmÞ�
@p

@rp
fNðc Þ þ 2½ð1� 2sÞr

� ias cos�þ ima�c g
¼

Z
HðvÞ

d�ðsYjmÞ�
�
ðjþ pþ 1� sÞðj� pþ sÞ @

pc

@rp

� 2ima
@pþ1c

@rpþ1

�
: (14)

Note the surprising simplification of the rhs with the first
three terms on the rhs of (3) reducing to a single term.
Now setm ¼ 0 and j ¼ p� s. Since j � jsj, we must take
p � maxð0; 2sÞ. The rhs above is now zero and, hence, we
have an infinite set of conserved quantities:

IðsÞp ¼
Z
HðvÞ

d�ðsYp�s0Þ�
@p

@rp
fNðc Þ þ 2½ð1� 2sÞr

� ias cos��c g: (15)

Note that for s � 0 we may take p ¼ 0 which reduces to
our earlier conserved quantity (7).

6Projecting to m ¼ 0 eigenspaces is equivalent to considering
axisymmetric perturbations.

7We could act p times with N rather than with @=@r. This also
leads to a conserved quantity, but it is harder to write down
explicitly.
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To obtain higher derivative analogues of JðsÞ0 , use

Eq. (14) with p!pþ1, j¼p�s andm ¼ 0, which gives

@vJ
ðsÞ
p ¼�2ðpþ1�sÞ

Z
HðvÞ

d�ðsYp�s0Þ�N
�
@pc

@rp

�
; (16)

where

JðsÞp ðvÞ ¼
Z
HðvÞ

d�ðsYp�s0Þ�
�
4a2

@pþ1

@rpþ1
fNðc Þ

þ 2½ð1� 2sÞr� ias cos��c g
� 2ðpþ 1� sÞa2sin2�@

pc

@rp

�
: (17)

Note that for s � 0 and p ¼ 0, this again agrees with our
earlier formulas (8) and (9).

Now consider s > 0. The smallest permitted value of p

in IðsÞp is p ¼ 2s, so the argument starts from the conserved

quantity IðsÞ2s . Generically this will be nonzero, from which

it follows that at least one of the following quantities
cannot decay along Hþ: @2s�1

r c , @2sr c and the j ¼ s
component of @2sr ðNðc ÞÞ. Hence, the best one can hope
for is decay of c and its first 2s derivatives and nondecay

of @2sþ1
r c . In this case, using ½N; @pr � ¼ �4pr@pr �

2pðp� 1Þ@p�1
r , implies that @vJ

ðsÞ
2s ! �2ðsþ 1ÞIðsÞ2s , and,

hence,

JðsÞ2s ��ð2ðsþ 1ÞIðsÞ2s Þv (18)

as v ! 1, which implies that @2sþ2
r c must blow up.

Let us now apply these results to linearized gravitational
perturbations (s ¼ �2). If the extreme Kerr black hole
were stable then an arbitrary initial perturbation would
settle down to a stationary perturbation corresponding to
a small variation of parameters within the Kerr family of
solutions. Such a perturbation preserves the type D condi-
tion and so has ��0 ¼ ��4 � 0. Hence, if the black hole

were stable, we could evaluate IðsÞp at large v to deduce

IðsÞp ¼ 0. It follows that initial data for which one of the

IðsÞp � 0, cannot settle down to such a stationary perturba-
tion and, hence, the extreme Kerr solution has a linearized
gravitational instability.

Furthermore, we learn that if ��4 decays, then a trans-
verse derivative of ��4 generically does not decay along
Hþ and certain second transverse derivatives will blow up
alongHþ. If ��0 and its first four derivatives decay, then
a fifth transverse derivative generically will not decay, and
a sixth transverse derivative will blow up. It appears that
the Weyl component perturbation ��4 exhibits worse
behavior than ��0. Note that the former involves two
factors of the transverse basis vector field na in its defini-
tion (�4 ¼ na �mbnc �mdCabcd), whereas the latter involves
only tangential basis vector fields (�0 ¼ ‘amb‘cmdCabcd).
This means that �4 corresponds to the most tangential
components of the Weyl tensor (C� ‘m‘m) and �0 to
the most transverse (C� n �mn �m). The former is usually

associated with outgoing radiation and the latter with
ingoing radiation.
It is natural to ask about the evolution of this linearized

instability in the full nonlinear theory. One possibility
is that a small initial perturbation becomes large but,
nevertheless, the spacetime eventually settles down to a
slightly nonextreme Kerr black hole. Another possibility is
that the spacetime develops a null singularity instead of a
horizon [3].

III. SCALAR FIELD INSTABILITY OF GENERAL
EXTREME HORIZONS

In this section, we will extend Aretakis’s argument for
an instability of a massless scalar field in certain four-
dimensional axisymmetric extreme black hole spacetimes
[10]. We will show that his nondecay result can be gener-
alized to any extreme black hole, and his blow-up result
can be generalized to extreme black hole solutions of a
large class of theories in various dimensions.
We will work in Gaussian null coordinates [18], which

for convenience we now recall. Let ðM;gÞ be a
D-dimensional spacetime and Hþ a smooth, degenerate,
Killing horizon of a Killing vector fieldK. LetH0 be aD-2
dimensional spacelike submanifold of Hþ and assume
that each orbit of K is isomorphic to R and intersects H0

precisely once.8 The manifold H0 is called a cross section
and below we will assume these are compact. The degen-
eracy condition means that the Killing vector K is tangent

to affinely parametrized null generators ofHþ: let V̂ 2 R
be this affine parameter distance from H0. Let (x̂

a) be
coordinates on H0 containing some point p 2 H0. This

defines coordinates ðV̂; x̂aÞ in a tubular neighbourhood of
the integral curve of K through p in Hþ (the x̂a are
extended into this neighbourhood by being taken to be
constant along integral curves of K).
Now let U be the unique past-directed null vector field

on Hþ satisfying U 	 K ¼ 1 and U 	 @=@xa ¼ 0. Assign

coordinates ðV̂; �̂; x̂aÞ to the point affine parameter distance

�̂ along the null geodesic starting at the point onHþ with

coordinates ðV̂; x̂aÞ with tangent vector U there. These are

called Gaussian null coordinates. In these coordinates K ¼
@=@V̂, U ¼ @=@�̂ and it can be shown that the metric is

ds2 ¼ �̂2F̂dV̂2 þ 2dV̂d�̂þ 2�̂ĥadV̂dx̂
a þ 	̂abdx̂

adx̂b;

(19)

where all components are smooth functions of ð�̂; x̂aÞ.
Degeneracy of the horizon is what implies gV̂ V̂ ¼ Oð�̂2Þ.
The coordinates (x̂a) in the above construction are arbi-

trary; under a change of these coordinates, ĥa and 	̂ab

8These assumptions are satisfied by all known stationary
extreme black hole solutions. Such Killing horizons can also
arise in nonblack hole spacetimes.
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transform as the components of a one-form and a
Riemannian metric on H0.

It is convenient to generalize these coordinates slightly
by using a different affine parameter along the geodesics.

Define coordinates ðV; �; xaÞ by V̂ ¼ V, �̂ ¼ �ðxÞ� and
x̂a ¼ xa where � is a smooth positive function. The metric
becomes

ds2 ¼ �2FdV2 þ 2�dVd�þ 2�hadVdx
a þ 	abdx

adxb;

(20)

where F ¼ �2F̂, ha ¼ �ĥa þ @a�, 	ab ¼ 	̂ab are all
smooth functions of ð�; xaÞ. Let SðV; �Þ denote a surface
of constant ðV; �Þ, and Da the covariant derivative induced
on SðV; �Þ. Note that HðVÞ � SðV; 0Þ is a cross section of
the horizon and Hð0Þ ¼ H0. It turns out that there is a
preferred choice for the function �9:

Lemma 0.—There exists a unique (up to scale), smooth,
positive function � on H0 such that ðDah

aÞj�¼0 ¼ 0.

Proof.—On H0, write �Dah
a ¼ �D2��Daðĥa�Þ �

L�. We need to show existence of a positive solution of
the elliptic partial differential equation L� ¼ 0. Any
second-order smooth linear elliptic operator on a compact
manifold possesses a principal eigenvalue 
 (which is real
and less that or equal to the real part of any other eigen-
value), whose associated eigenfunction � is everywhere
positive and unique up to scaling [19]. Integrating L� ¼

� over H0 then implies 


R
H0

� ¼ 0 and, hence, since

�> 0 everywhere, 
 ¼ 0. Therefore, L� ¼ 0 and,
hence, taking � to be (up to scale) the principal eigenfunc-
tion of L gives the required function.

We will consider a massless scalar field c in the above
geometry. Initial data is prescribed on the spacelike surface
�0 intersecting Hþ and we assume that boundary con-
ditions are imposed so that c ¼ 0 at infinity. Hence, if
stable, c should decay along Hþ.

Writing out the massless scalar wave equation in the
above coordinates gives

0 ¼ �
ffiffiffiffi
	

p
hc

¼ @V

� ffiffiffiffi
	

p �
2@�c þ @�	

2	
c

��
� @�½�2 ffiffiffiffi

	
p

A@�c �

� @�ð� ffiffiffiffi
	

p
ha@ac Þ � �@að ffiffiffiffi

	
p

ha@�c Þ
þ @að� ffiffiffiffi

	
p

	ab@bc Þ; (21)

where 	 ¼ det	ab, h
a ¼ 	abhb, 	

ab is the inverse of 	ab,
and we have defined the function

A ¼ F� hah
a

�
: (22)

Integrate the above equation over SðV; �Þ: the final two
terms are total derivatives and so drop out, leaving

@V
Z
SðV;�Þ

ffiffiffiffi
	

p �
2@�c þ @�	

2	
c

�

¼ @�

�
�2

Z
SðV;�Þ

ffiffiffiffi
	

p
A@�c � �

Z
SðV;�Þ

ffiffiffiffi
	

p ðDah
aÞc

�
;

(23)

where in the final term we have integrated by parts. We can
now state the first main result of this section:
Lemma 1.—Choose � as in Lemma 0. Then the follow-

ing quantity is a constant along Hþ (i.e., independent of
V):

I ¼
Z
HðVÞ

ffiffiffiffi
	

p �
2
@c

@�
þ @�	

2	
c

�
: (24)

Proof.—Evaluate (23) at � ¼ 0 and use Dah
aj�¼0 ¼ 0.

Note that @�	=ð2	Þ ¼ �r
ð��1ð@=@�Þ
Þ, where r
 is

the spacetime covariant derivative; hence, this is a smooth
quantity. It is also worth noting that converting back to
Gaussian null coordinates gives

I ¼
Z
HðV̂Þ

ffiffiffiffî
	

p
�½2Uðc Þ þ ðr
U


Þc �: (25)

It is easy to see this conserved quantity agrees with that
for extreme RN [10]. We have also checked that it agrees
with the conserved quantity (7) (with s ¼ 0) for extreme
Kerr [10].10

Corollary 1.—Generic initial data has I � 0 and, hence,
for such data c and @�c cannot both decay along Hþ as
v ! 1.
This is a nondecay result that applies to any extreme

black hole. To demonstrate blow-up, we need an extra
assumption about the black hole, whose validity we will
discuss at the end of this section.
Lemma 2.—Let � be a smooth positive function on H0

as in Lemma 0. Suppose further that Aj�¼0 ¼ A0 where
A0 � 0 is a constant. Let

JðVÞ �
Z
HðVÞ

@�

� ffiffiffiffi
	

p �
2@�c þ @�	

2	
c

��
: (26)

If c ! 0 along Hþ as V ! 1 and I � 0, then JðVÞ
blows up linearly: JðVÞ � A0IV along Hþ as V ! 1.
Proof.—Act on (23) with @� and evaluate at � ¼ 0 to

obtain

@VJðVÞ ¼ 2
Z
HðVÞ

ffiffiffiffi
	

p ½A@�c � @�ðDah
aÞc �: (27)

By assumption c ! 0, so the final term on the rhs of (27)
decays and the first term on the rhs asymptotically

9In all examples known to us, this choice of � ensures that ha

is a Killing vector field on H0. However, we will not assume this.

10In particular, we have checked �Uðc Þj�̂¼0 ¼ð4a2Þ�1Nðc Þjr¼a for any axisymmetric function c , where N
is the vector field (4), and � ¼ ð1þ cos2�Þ=2 can be read off
from the near-horizon geometry (see, e.g., Ref. [20]). It then
easily follows that I ¼ Ið0Þ0 , where Ið0Þ0 is the conserved quantity
(7) with s ¼ 0.
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approaches A0I. Therefore, as V ! 1, @VJðVÞ ! A0I and
integrating this proves the result.

Corollary 2.—If c ! 0 along Hþ as V ! 1 for ge-
neric initial data then either @�c or @2�c diverges along
Hþ as V ! 1 (and if @�c diverges then it most do so
consistently with constancy of I).

In summary,we have shown that for generic initial data,we
must have one of the following possibilities: (i) c does not
decay alongHþ or (ii) c decays, @�c , does not decay and,
subject to the assumption about A of Lemma 2, one of the
quantities @�c , @2�c blows up as V ! 1 along Hþ. The
‘‘most stable’’ outcome consistent with our results is (ii) with
@�c nondecaying but bounded and @2�c blowing up.

Let us return to the assumption in Lemma 2. Since this
involves a quantity intrinsic to the horizon, it can be
regarded as an assumption about the near-horizon geome-
try of the extreme black hole in question (defined by V !
V=�, � ! �� and � ! 0, see, e.g., Ref. [21]).

This assumption is true for a large class of near-horizon
geometries in various dimensions and theories. All extreme
black holes solutions known to us satisfy this assumption.
For many examples, it follows from the near-horizon
AdS2-symmetry theorems proved in Refs. [21,22]. The
results of Ref. [21] imply that the assumption is valid
(with A0 < 0) for extreme black hole solutions of a class
of theories in D ¼ 4, 5 dimensions consisting of Einstein

gravity coupled to arbitrarily many Abelian vectors and
uncharged scalars, assuming that the black hole has D-3
commuting rotational symmetries and that the horizon
topology is nontoroidal. Reference [22] determined the
near-horizon geometries of extreme Myers-Perry black
holes [23], and these also satisfy our assumption with
A0 < 0. In that work, it was also shown that the assumption
is valid for D> 5 extreme vacuum black holes with
cohomogeneity-one near-horizon geometries possessing
certain non-Abelian rotational symmetry groups.
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