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Dense enough compact objects were recently shown to lead to an exponentially fast increase of the

vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a

consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be

overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry

and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show

that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final

stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on

the duration of the unstable epoch and final stationary configuration, which are open issues at this point.

We emphasize that the particle creation coming from the tachyonic instability will occur even in the

adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct

from the usual particle creation due to the change in the background geometry.
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I. INTRODUCTION

It was recently shown that relativistic stars may become
unstable due to quantum-field effects [1,2]. The so-called
vacuum awakening effect occurs for a free scalar field
� properly coupled to the spacetime curvature [1]. This
effect is characterized by an exponential point-dependent
increase and decrease of the vacuum expectation value of

the stress-energy-momentum tensor hT̂abi. This is caused
by a tachyonic-like instability, which induces an exponen-

tial growth of h�̂2i. Once the effect is triggered and the
scalar field exits its initial quiescent regime, few milli-
seconds would be enough for the vacuum to overwhelm
the energy density of the compact object. The star destiny
is presently uncertain because it depends on how scalar
field and spacetime geometry evolve in the unstable phase
to reach a final stable configuration. As recently argued in
Ref. [3], in some cases the appearance of a proper scalar
field could restabilize the star, a phenomenon usually
called spontaneous scalarization [4]. This would typically
change the star gravitational mass by a few percent.
However, depending on how the star enters the unstable
phase, it seems possible that the scalar field does not react
fast enough, leading to some dramatic implosion/explosion
event. Whatever turns out to be the final configuration,
being the star somehow rebalanced or destroyed, the un-
stable phase must be detained and the vacuum must evolve
to some new stationary regime. This observation alone
allows us to extract quite important information about the

final state of the scalar field as the vacuum ‘‘falls asleep’’
again. In particular, we show that the vacuum fluctuation
built up during the unstable epoch leads to particle creation
in the final stationary state. The amount of created particles
will depend mostly on the duration of the unstable epoch
and final stationary configuration.
The paper is organized as follows. In Sec. II, we discuss

the quantization procedure for a free scalar field in a curved
spacetime in the presence of tachyonic-like modes. In
Sec. III, we apply the previous-section results to review
the vacuum awakening effect in relativistic stars. In
Sec. IV, we probe the unstable phase using Unruh-DeWitt
detectors. In this period, no natural particle content can be
ascribed to the scalar field and the use of detectors is
particularly useful to investigate the behavior of the vacuum
fluctuation. We show in this section that even assuming a
static spacetime in the unstable phase when the vacuum is
‘‘awake,’’ particle detectors following orbits of the time-like
isometry will copiously excite. This is possible according to
co-static observers because each detector excitation is
accompanied by a corresponding decrease in the energy
stored in the field due to the excitation of a nonstationary
(tachyonic) mode which contributes with negative energy.
Then, in Sec. V, we show that at least part of the quantum
fluctuations built up in the awaken phase eventually draws to
particle creation as the unstable period ends and the vacuum
falls dormant again. We emphasize that the particle creation
occurs even assuming that the spacetime change is arbi-
trarily slow and, thus, differs, e.g., from the well-known
phenomenon of particle creation in evolving universes in-
duced by the change of the background geometry [5–7].
A toy model is also offered to illustrate in a concrete
scenario the conclusions above. We close the paper with
our final remarks in Sec. VI.
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II. PRELIMINARIES: FREE SCALAR
FIELD QUANTIZATION WITH
TACHYONIC-LIKE MODES

A. Standard field quantization in globally
hyperbolic spacetimes

In this section, we review the standard quantization of
free scalar fields in curved spaces [8,9] giving particular
attention to the case of static spacetimes with tachyonic-
like modes. Let us begin by considering a globally hyper-
bolic spacetime ðM; gabÞ foliated with Cauchy surfaces
�t labeled with a parameter t. Now, let us cover the �t

surfaces with xi (i ¼ 1, 2, 3) coordinates satisfying
narax

i ¼ 0, where na is the future-directed unit vector
field normal to �t. In terms of coordinates x ¼ ðt; xiÞ, we
can write the spacetime line element as

ds2 ¼ N2ð�dt2 þ hijðxÞdxidxjÞ; (1)

where N ¼ NðxÞ> 0 is the lapse function and ð3Þgij ¼
N2hij is the three-dimensional spatial metric induced on

each Cauchy surface �t.
We define the dynamics of a real scalar field � with

mass m in ðM; gabÞ through the action

S � � 1

2

Z
M

d4x
ffiffiffiffiffiffiffi�g

p ðra�ra�þm2�2 þ �R�2Þ; (2)

where g � detðgabÞ and � 2 R determines the nonminimal
coupling between the scalar field and the scalar curvature
R. This leads to the following Klein-Gordon equation:

�rara�þm2�þ �R� ¼ 0: (3)

Next, we define the Klein-Gordon inner product between
any two solutions u and v of Eq. (3) as

ðu; vÞKG � i
Z
�t

d�na½u�rav� vrau
��; (4)

where d� is the proper-volume element on �t, and we
recall that Eq. (4) does not depend on the choice of �t.

The conjugate-momentum density �ðxÞ is defined as

� � �S=� _� ¼
ffiffiffiffiffiffiffiffi
ð3Þg

q
nara�; (5)

where “ _ ” � @t and
ð3Þg � detðð3ÞgijÞ. The canonical quan-

tization procedure consists of promoting field and momen-

tum density to operators �̂ and �̂, respectively, satisfying
canonical commutation relations:

½�̂ðt;xÞ; �̂ðt;x0Þ��t
¼ ½�̂ðt;xÞ; �̂ðt;x0Þ��t

¼ 0; (6)

½�̂ðt;xÞ; �̂ðt;x0Þ��t
¼ i�3ðx;x0Þ; (7)

where x � ðx1; x2; x3Þ.
In order to realize a representation of these commutation

relations, consider positive- and negative-norm solutions

of Eq. (3), uðþÞ
� and uð�Þ

� � ðuðþÞ
� Þ�, respectively, which

together form a complete set of normal modes satisfying

ðuðþÞ
� ; uðþÞ

� ÞKG ¼ �ðuð�Þ
� ; uð�Þ

� ÞKG ¼ �ð�;�Þ; (8)

ðuðþÞ
� ; uð�Þ

� ÞKG ¼ 0: (9)

Here, �ð�;�Þ is the delta function associated with the
quantum numbers formally described by �, �. Then, we

construct the field operator using fuðþÞ
� ; uð�Þ

� g as
�̂ ¼

Z
d�ð�Þ½â�uðþÞ

� þ ây�uð�Þ
� �; (10)

where � is a measure defined on the set of quantum
numbers and in order to satisfy Eqs. (6) and (7), the

annihilation â� and creation ây� operators must satisfy

the usual commutation relations ½â�; ây�� ¼ �ð�;�Þ,
½â�; â�� ¼ 0. The vacuum state j0i of this representation
is defined by requiring â�j0i ¼ 0 for all �.

B. Quantum fields in static spacetimes

Now, we restrict our analysis to static spacetimes in
which case the line element (1) is cast as

ds2 ¼ N2ð�dt2 þ hijðxÞdxidxjÞ; (11)

where N ¼ NðxÞ> 0. Under this condition, we write the
field equation (3) in the form

�@2 ~�

@t2
¼ ½��þ VeffðxÞ� ~�; (12)

where ~� � N�, � is the Laplace operator associated with
hij, and

VeffðxÞ ¼ N�1�N þ N2ðm2 þ �RÞ
¼ ð1� 6�ÞN�1�N þ N2m2 þ �K (13)

is the effective potential with K ¼ KðxÞ being the scalar
curvature associated with hij.

The existence of a time-like Killing field �b ¼ ð@tÞb
associated with spacetime (11) suggests that we look for

solutions of Eq. (12) in the form ~uðþÞ
� / F�ðxÞ expð�i!�tÞ

corresponding to solutions uðþÞ
� / N�1F�ðxÞ expð�i!�tÞ

for Eq. (3). In this case, F�ðxÞ will satisfy
½��þ VeffðxÞ�F�ðxÞ ¼ ��F�ðxÞ; �� ¼ !2

�; (14)

with proper boundary conditions. At this point, the only
restriction on �� is the one imposed by Hermiticity of the
operator ��þ VeffðxÞ, which demands �� 2 R.
Let us consider first solutions of Eq. (14) with positive

eigenvalues: �� � $2
� > 0. Then, the corresponding

positive-norm solutions satisfying Eq. (3) will be the usual
oscillatory modes:

vðþÞ
� ¼ e�i$�tffiffiffiffiffiffiffiffiffiffi

2$�

p
NðxÞF�ðxÞ; $� > 0; (15)
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where we demandZ
�t

d3x
ffiffiffi
h

p
F�ðxÞ�F�ðxÞ ¼ �ð�;�Þ (16)

in order to guarantee that modes (15) are properly normal-
ized according to Eqs. (8) and (9).

Now, we note that in some cases Eq. (14) also allows for
solutions with negative eigenvalues: �� � ��2

� < 0.
These solutions are associated with solutions of Eq. (12)
with exponentially increasing and decreasing expð���tÞ
time dependence. Under such circumstances, fvðþÞ

� ; vð�Þ
� g

must be supplemented by an extra set of modes

fwðþÞ
� ;wð�Þ

� g in order to generate a basis for the solution

space of Eq. (3). Normalized positive-norm modes wðþÞ
�

can be found and read

wðþÞ
� ¼ ei��

ðe��t�i�� þ e���tþi��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� sinð2��Þ

p
NðxÞ F�ðxÞ; �� > 0;

(17)

where �� 2�0; 	4� and, for the sake of convenience, we

did not vanish the arbitrary global phase �� yet. By
choosing, e.g., �� ¼ �� ¼ 	=4, Eq. (17) would assume
the simple form

wðþÞ
� ¼ ðe��t þ ie���tÞ

2
ffiffiffiffiffiffiffiffi
��

p
NðxÞ F�ðxÞ; �� > 0 (18)

but we shall adopt here the same choice as in Ref. [1],
where �� ¼ 0 and �� ¼ 	=12:

wðþÞ
� ¼ ðe��t�i	=12 þ e���tþi	=12Þffiffiffiffiffiffiffiffiffiffi

2��

p
NðxÞ F�ðxÞ; �� > 0;

(19)

in order to makewðþÞ
� look ‘‘as similar as possible’’ to vðþÞ

� .

Because wðþÞ
� and wð�Þ

� grow exponentially in time, we
borrow from cosmology the ‘‘tachyonic’’ term (see, e.g.,
Ref. [10]) and refer to these modes accordingly. (It should
be noted, however, that in the cosmological context the
scalar field is self-interacting, as ruled by some interacting
potential, in contrast to our present case where it is free.)

As a result, the field operator �̂ðxÞ can be constructed

using fvðþÞ
� ; vð�Þ

� g and fwðþÞ
� ; wð�Þ

� g as

�̂ ¼
Z

d�ð�Þ½b̂�vðþÞ
� þ b̂y�v

ð�Þ
� �

þX
�

½ĉ�wðþÞ
� þ ĉy�wð�Þ

� �; (20)

where ½b̂�; b̂y�� ¼ �ð�;�Þ, ½ĉ�; ĉy�� ¼ �ð�;�Þ (with the

other commutators vanishing), and we have used the sum-
mation symbol in the right-hand side of Eq. (20) because
the tachyonic modes will be labeled later with quantum
numbers assuming discrete values. We recall that the

vacuum state j0i satisfies b̂�j0i ¼ ĉ�j0i ¼ 0 for all �.

We note that in contrast to the vðþÞ
� and vð�Þ

� modes, wðþÞ
�

and wð�Þ
� are not frequency eigenstates of i@=@t. As a

result, the vacuum j0i and the other Fock states do not
have in general any natural particle-content interpretation
(see Refs. [11,12] for a field-theoretic discussion on the
Fock space in the presence of tachyonic modes). This
feature will lead us to use Unruh-DeWitt detectors to probe
vacuum fluctuations of the scalar field in Sec. IV.
Nevertheless, important pieces of information are

directly provided through the (formal) stress-energy tensor
operator:

T̂ab¼ð1�2�Þra�̂rb�̂þ�Rab�̂
2�2��̂rarb�̂

þð2��1=2Þgab½rc�̂rc�̂þðm2þ�RÞ�̂2� (21)

and the corresponding Hamiltonian:

Ĥ �
Z
�t

d�a�bT̂
ab ¼

Z
�t

d�
̂; (22)

where d�a � d�na, �b ¼ ð@tÞb,

̂ � na�bT̂

ab (23)

is the energy-density operator in �t associated with the
time-like isometry, and we recall that Eq. (22) does not

depend on the �t choice because rað�bT̂
abÞ ¼ 0. Thus,

the total energy is conserved. By using Eq. (20) in the
Hamiltonian operator (22), we obtain

Ĥ �
Z
�t

d�N�1T̂00

¼ 1

2

Z
d�ð�Þðb̂y�b̂� þ b̂�b̂

y
�Þ$� þX

�

Ĥ �; (24)

where

Ĥ ���½ ffiffiffi
3

p
=2ðĉy�ĉ�þ ĉ�ĉ

y
�Þþ ĉ�ĉ�þ ĉy�ĉy����: (25)

In contrast to the first term in the right-hand side of Eq. (24),

associated with the oscillatory vð�Þ
� modes, which always

gives a positive-definite contribution to the energy expecta-
tion value for every state choice, the second term, associated

with the tachyonic modes wð�Þ
� , gives a negative contribu-

tion to the energy expectation value for some states. This can
be easily seen by rewriting Eq. (25) as

Ĥ � ¼ ð1� ffiffiffi
3

p
=2Þp̂2

� � ð1þ ffiffiffi
3

p
=2Þ�2

�q̂
2
�; (26)

where we have defined the position- and momentum-like
operators

q̂� � 1ffiffiffiffiffiffiffiffiffiffi
2��

p ðĉ� þ ĉy�Þ; (27)
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p̂� � i

ffiffiffiffiffiffiffiffi
��

2

s
ðĉy� � ĉ�Þ; (28)

respectively, satisfying ½q̂�; p̂�� ¼ iÎ with Î being the iden-
tity operator. Equation (26) is formally identical to the
Hamiltonian of a nonrelativistic particle in a harmonic
potential turned upside down [13]. It is clear, then, that the
‘‘potential’’ term gives a negative contribution to the energy
expectation value. In particular, for states j�i satisfying

ĉy�ĉ�j�i ¼ �j�i; � 2 N; (29)

which include the vacuum state, it is easy to see that

h�jĉ�ĉ� þ ĉy�ĉy�j�i ¼ 0 and, thus,

h�jĤ �j�i ¼ � ffiffiffi
3

p ð1=2þ�Þ�� < 0: (30)

Hence, for these states the negative contribution coming
from the ‘‘potential’’ in Eq. (26) dominates over the corre-
sponding positive one coming from the ‘‘kinetic’’ term. (We
shall return to this point when we discuss the excitation
of Unruh-DeWitt detectors in Sec. IV.) The fact that the
right-hand side of Eq. (30) may be arbitrarily negative for

sufficiently large � reflects the fact that Ĥ � is unbounded
from below.

III. AWAKING THE VACUUM IN RELATIVISTIC
STARS DUE TO TACHYONIC INSTABILITY

Now, we shall see how tachyonic modes can appear in
neutron-like stars and discuss their consequences [1,2]. Let
us assume the case in which (A) classical matter initially
scattered throughout space with very low density eventu-
ally collapses to form (B) a static and stable star according
to general relativity. Spacetimes associated with situations
A-B are well described by the line elements [see Eq. (11)]

ds2 ¼
8<
:�dt2 þ dx2 ðAÞ
N2

ðBÞð�dt2 þ hðBÞij dxidxjÞ ðBÞ : (31)

We note that for the time being we will restrict our inves-
tigation to the static regions A and B of the spacetime.
Comments about how our present analysis can be com-
pleted as one takes into account the time evolution between
the static eras are made along the text. For the sake of
obtaining explicit results, we make an extra simplification
in this section and consider spherically symmetric stars in
which case Eq. (31) is replaced by

ds2¼
8<
:�dt2þdx2 ðAÞ
�fðdt2�d�2Þþr2ðd�2þsin2�d’2Þ ðBÞ ; (32)

where f ¼ fð�Þ> 0 and r ¼ rð�Þ � 0 satisfy fð�Þ ! 1
and rð�Þ=� ! 1 for � ! 1, and dr=d� > 0 so that no
trapped light-like surface is present.

We construct the field operator similarly as in Eq. (10):

�̂ ¼
Z

d3k½âkuðþÞ
k þ âyku

ð�Þ
k �; (33)

where we choose here uð�Þ
k such that they assume the

usual flat-space stationary form in the asymptotic past
(region A):

uð�Þ
k ¼ðAÞð16	3!kÞ�1=2 exp½�ið!kt� k � xÞ� (34)

with k 2 R3 and !k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. This choice is moti-

vated by the fact that we shall assume hereafter the scalar
field to be in the no-particle state j0iin as described by static
observers in the asymptotic past: akj0iin ¼ 0.

Now, let us represent �̂ in terms of positive- and
negative-norm modes in region B, when the star has settled
down, as [see Eq. (20)]

�̂ ¼ X
l�

Z
d$½b̂$l�v

ðþÞ
$l� þ b̂y$l�v

ð�Þ
$l��

þ X
�l�

½ĉ�l�w
ðþÞ
�l� þ ĉy�l�w

ð�Þ
�l��; (35)

where [14]

vðþÞ
$l�¼ðBÞe�i$t F$lð�Þffiffiffiffiffiffiffi

2$
p

rð�ÞYl�ð�;
Þ; $>0; (36)

wðþÞ
�l� ¼ðBÞðe�t�i	=12 þ e��tþi	=12Þ

	 F�lð�Þffiffiffiffiffiffiffi
2�

p
rð�ÞYl�ð�;
Þ; �> 0: (37)

Here, Yl�ð�;
Þ are the usual spherical harmonics

(l ¼ 0; 1; 2; . . . and � ¼ �l;�lþ 1; . . . ; l), F$lð�Þ and
F�lð�Þ satisfy

� d2

d�2
F$l þ VðlÞ

effF$l ¼ $2F$l (38)

and

� d2

d�2
F�l þ VðlÞ

effF�l ¼ ��2F�l; (39)

respectively, and

VðlÞ
eff � f

�
m2 þ �Rþ lðlþ 1Þ

r2

�
þ 1

r

d2r

d�2
(40)

is the effective potential. For perfect-fluid stars, the effec-
tive potential (40) can be cast as

VðlÞ
eff ¼f

�
m2þ lðlþ1Þ

r2
þ
�
��1

6

�
Rþ8	G

3
ð �
�
Þ

�
; (41)

where 
 ¼ 
ð�Þ is the mass-energy density of the stellar
fluid and
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�
ð�Þ � 3Mð�Þ
4	½rð�Þ�3 (42)

is the corresponding average density up to the radius coor-
dinate rð�Þ, which encompasses a mass Mð�Þ. We remind
that according to general relativity R¼8	Gð
�3pÞ,
where p is the hydrostatic pressure which bears the star up
against its weight.

As discussed in Sec. II B, the appearance of tachyonic
modes in the present context will depend on the existence
of nontrivial solutions for Eq. (39). They are expected to
exist for negative enough effective potentials satisfying

jVðlÞ
effjR2

s * 1; (43)

where r ¼ Rs is the star radius. Because the centrifugal
barrier in Eq. (41) is positive, we look for tachyonic
solutions of Eq. (39) with l ¼ 0 which are the most likely
ones to exist (if any). By taking f
 1 and assuming �

 
,
we obtain from Eq. (41) that

Vð0Þ
eff 
m2 þ ð�� 1=6ÞR:

Clearly, only the second term in the right-hand side can be
negative. Then, Eq. (43) implies that a necessary condition
for the existence of tachyonic modes with � � 1 is




1015 g=cm3

�
Rs

7 km

�
2
* 1 (44)

and

m2=ð3:5	 10�11 eVÞ2

=ð1015 g=cm3Þ � 1; (45)

where we have set 

 p. Equations (44) and (45) show
that the appearance of tachyonic modes for small � values
in the spacetime of typical neutron stars requires the scalar
field to be light: m & 10�11 eV.

Although light scalars are widely considered in astro-
physics and cosmology, there is the issue about how much
extra mass they could acquire from Planck-scale radiative
corrections. For axions, e.g., a general expression for the
mass shift can be cast as �m2

a 
 Kaf
nþ2
a =Mn

P, where Ka is
some unknown coupling constant, fa 
 1012 GeV is the
energy scale of the Peccei-Quinn symmetry breaking,
MP 
 1019 GeV is the Planck energy, and n is a model-
dependent positive integer (associated with the dimension
of the symmetry-breaking operators appearing in the ef-
fective Lagrangian) [15]. We see, then, that �ma can easily
exceed, e.g., 10�5 eV (ruling out axions as a dark matter
candidate) unless Ka and n turn out to be small and large
enough, respectively (see Ref. [16] and references therein).
Fortunately, explicit models showing how scalar fields can
be protected from acquiring large mass due to quantum
gravity effects have already been worked out (see, e.g.,
Ref. [17]). In our context, assuming the electroweak sym-
metry breaking of the standard model which has an energy
scale of 	ESM 
 100 GeV, the corresponding mass shift

would be �m2 
 K	nþ2
ESM=M

n
P, where again K and n are

unknown. Here, we pragmatically assume that Planck-
scale effects will not shift the mass of our scalar field
beyond 10�12 eV. At this point, it is difficult to say how
strong this assumption is because of our lack of under-
standing of the Planck-scale physics. Still, this is much less
demanding than what is usually required for quintessence
fields where the mass shift cannot typically exceed the
mass scale defined by the Hubble constant 10�33 eV
[18]. A detailed analysis of this issue would be welcome
but goes far beyond the scope of this paper. For computa-
tional purposes, we take our scalar field to be massless.
By assuming stars with uniform and parabolic density

profiles and suitable � values (typically � > 1=6 and
� & �2), it was shown in Ref. [2] that tachyonic modes do
appear forM=Rs ratios compatible with neutron-like stars.
Now, let us proceed by recalling that the positive-norm

in-modes uðþÞ
k , which in region A look like as exhibited in

Eq. (34), will emerge, in general, as a combination of

positive- and negative-norm modes fvðþÞ
$l�; v

ð�Þ
$l�g and

fwðþÞ
�l�; w

ð�Þ
�l�g in region B [see Eqs. (36) and (37)].

Hence, not only the in-vacuum will not coincide in general
with the out-vacuum but also at least some of the in-modes
will certainly go through a phase of exponential growth
provided, of course, the existence of tachyonic modes

wð�Þ
�l�. This leads to what was denominated vacuum awak-

ening effect in relativistic stars, i.e., an exponential ampli-
fication of the vacuum fluctuations [1,2]. In order to see
this, we use Eq. (35) to calculate

inh0j�̂2j0iin 
ðBÞ � e2
��t

8	 ��

�
F ��0ð�Þ
rð�Þ

�
2½1þOðe��tÞ�; (46)

where F ��0ð�Þ denotes the solution of Eq. (39) with the

most negative eigenvalue,� ��2 (taking l ¼ 0, which is the
most favorable case), � ¼ const> 0, and � is a constant of
order unity whose value depends on (i) projections of

modes uð�Þ
k on wð�Þ

��l�
and (ii) the quantum state, assumed

here to be the in-vacuum j0iin. It is worthwhile to empha-
size that ultraviolet divergences, which should be renor-

malized to obtain h�̂2i, are associated with the $ ! 1
sector of the oscillatory modes [see Eq. (35)] and does not

concern the tachyonic modes (�2 
 ��2 <1), which are
the ones giving the dominant contribution in Eq. (46)

(because of the expð2 ��tÞ term). Accordingly, the expecta-
tion value of the vacuum energy density (23), namely,

inh0j
̂j0iin � na�b
inh0jT̂abj0iin;

experiences an exponential amplification:

inh0j
̂j0iin

ðBÞ

�
��e2

��t

16	
ffiffiffi
f

p
�
1�4�

2r2
d

d�

�
r2

d

d�

�
F ��0

��r

�
2
�

þ �
��2r2

d

d�

�F2
��0

f

df

d�

��
½1þOðe��tÞ�: (47)

PARTICLE CREATION DUE TO TACHYONIC . . . PHYSICAL REVIEW D 86, 104025 (2012)

104025-5



The time scale which rules how fast the vacuum energy

density increases is given by ���1 
 jVð0Þ
eff j�1=2 
 Rs [see

Eq. (43)]. By using this, we rewrite Eq. (47) as

inh0j
̂j0iin 

ðBÞ ��hð�rÞe2 ��t=R3

s 
ðBÞ hð �rÞ

	 exp

�
t=ð10�5 sÞ
Rs=ð10 kmÞ

�
10�62 g=cm3

R4
s=ð10 kmÞ4 ; (48)

where hð�rÞ is a dimensionless function of �r � r=Rs (which
vanishes asymptotically and is of order unity for �r
 1). We
see from Eq. (48) that once the effect is triggered by a
neutron-like star with Rs � 10 km, few milliseconds would
be enough for the vacuum energy density to become domi-
nant over the star classical mass-energy density (which can
be as high as 1014–1017 g=cm3). We must emphasize that
at some point the spacetime must backreact against the
growth of the vacuum energy density, affecting the field
and ceasing the instability by taming the tachyonic modes.
Eventually, field and spacetime must reach a new stable
configuration. As argued in Ref. [3], one possibility would
be that for some values of � the spontaneous scalarization
mechanism [4] could restabilize the star. In our context,
this would correspond to a symmetry breaking which would

lead h�̂i, which is null as calculated in the j0iin vacuum
state, to acquire a nonzero large value compatible with the

exponentially amplified h�̂2i [see Eq. (46)]. Whether the
star will end up destroyed or somehow rebalanced is
unknown at this point.

We close this section explaining how the vacuum energy
density amplification is consistent with energy conserva-
tion discussed below Eq. (23). For this purpose, let us note

that rað�bT̂
abÞ ¼ 0 can be rewritten as

@t
̂þ 1ffiffiffiffiffiffiffiffi
ð3Þg

q @i

� ffiffiffiffiffiffiffiffi
ð3Þg

q
ĵi
�
¼ 0; (49)

where ĵi � � ffiffiffi
f

p
T̂i
0 is the energy-current density. The

corresponding vacuum expectation value can be calculated
and reads

inh0jĵij0iin 

ðBÞ � ��Við �rÞe2 ��t=R3

s ; (50)

where ð3ÞriV
i � ðð3ÞgÞ�1=2@ið

ffiffiffiffiffiffiffiffi
ð3Þg

q
ViÞ ¼ 2 ��hð�rÞ. Thus,

the total energy is conserved because the gravitational field
redistributes the vacuum energy density in such a way that
an amplification of inh0j
̂j0iin somewhere with positive

magnitude must be compensated elsewhere by a corre-
sponding amplification with negative magnitude.

IV. PROBING THE AWOKEN PHASE
USING DETECTORS

Now, in order to probe the building up of the vacuum
energy density in region B, where the vacuum is awake by
the presence of tachyonic modes, we will look directly at
the response of Unruh-DeWitt detectors. We shall do so

because, as discussed in Sec. II B, the Fock-space states
have no natural particle-content interpretation [see discus-
sion below Eq. (20)]. Here, we relax the spherical symme-
try assumption of the previous section and consider regions
A and B as described by the line elements (31). Because we
want to avoid any contributions in the response coming
from the motion of the apparatus, the detector (with proper
time �) is made to lie static following an integral curve
x ¼ xð�Þ of the time-like isometry.
We consider here a two-level Unruh-DeWitt detector

represented by a Hermitian operator m̂0 acting in a
Hilbert space spanned by unexcited and excited energy
eigenstates jE0i and jEi (E> E0), respectively. The detec-
tor is prepared to be initially unexcited. For our purposes, it
is convenient to switch it on in the very beginning of region
B, where we set � � 0. At the tree level, the excitation
probability as a function of the proper-time interval T is
given by [7]

Pexc ¼ jhEjm̂0jE0ij2F ð�EÞ; (51)

where �E � E� E0 and the response function is

F ð�EÞ ¼
Z T

0
d�

Z T

0
d�0e�i�Eð���0ÞGþ

in½xð�Þ; xð�0Þ� (52)

with

Gþ
in½xð�Þ; xð�0Þ� � inh0j�̂½xð�Þ��̂½xð�0Þ�j0iin:

The two-point function is written throughout the spacetime
in terms of the in-modes as

Gþ
in½x; x0� ¼

Z
d3kuðþÞ

k ðxÞuð�Þ
k ðx0Þ; (53)

where we recall that in the asymptotic past uð�Þ
k ðxÞ take the

simple form given in Eq. (34). Next, we suitably decom-

pose uðþÞ
k in terms of fvð�Þ

� g and fwð�Þ
� g as

uðþÞ
k ¼ ��

�kw
ðþÞ
� � ��kw

ð�Þ
�

þ
Z

d�ð�Þð��
�kv

ðþÞ
� � ��kv

ð�Þ
� Þ; (54)

where, for the sake of simplicity, we have assumed that the
scalar field is made unstable in region B by the existence of
a single tachyonic mode [see Eq. (19)]:

wðþÞ
� ¼ðBÞðe

�t�i	=12þe��tþi	=12Þffiffiffiffiffiffiffi
2�

p
NðBÞðxÞ

FðBÞ
� ðxÞ; �>0: (55)

The tachyonic mode above will be labeled by � (with the
other quantum numbers being omitted to simplify notation),
while the oscillatory modes are cast here as [see Eq. (15)]

vðþÞ
� ¼ðBÞ e�i$�tffiffiffiffiffiffiffiffiffiffi

2$�

p
NðBÞðxÞ

FðBÞ
� ðxÞ; $� > 0: (56)

The Bogoliubov coefficients in Eq. (54) are
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��k ¼ ðuðþÞ
k ; vðþÞ

� ÞKG; ��k ¼ �ðuð�Þ
k ; vðþÞ

� ÞKG;
��k ¼ ðuðþÞ

k ; wðþÞ
� ÞKG; ��k ¼ �ðuð�Þ

k ; wðþÞ
� ÞKG

as calculated in any Cauchy surface.
Now, we must proceed and evaluate the response

function (52). For this purpose, it is convenient to use
Eqs. (54)–(56) to calculateZ T

0
d�e�i�E�uðþÞ

k ½xð�Þ�

¼
Z

d�ð�Þ
�
��
�k

FðBÞ
�

NðBÞ
c �þ � ��k

FðBÞ�
�

NðBÞ
c �

��
�
x¼xd

þ
�
��
�k

FðBÞ
�

NðBÞ
�þ � ��k

FðBÞ�
�

NðBÞ
���

�
x¼xd

; (57)

where we have defined

�� �
Z T

0
d�

e�i�E�ðe��=NðBÞ�i	=12 þ e���=NðBÞþi	=12Þffiffiffiffiffiffiffi
2�

p

¼ 1ffiffiffiffiffiffiffi
2�

p
�
ei	=12ð1� e�ð�=NðBÞ�i�EÞTÞ

�=NðBÞ � i�E

þ e�i	=12ðeð�=NðBÞ�i�EÞT � 1Þ
�=NðBÞ � i�E

�
; (58)

c �� � 1ffiffiffiffiffiffiffiffiffiffi
2$�

p
Z T

0
d�e�ið$�=NðBÞ��EÞ�

¼ 2e�ið$�=NðBÞ��EÞT=2ffiffiffiffiffiffiffiffiffiffi
2$�

p sin½ð$�=NðBÞ ��EÞT=2�
$�=NðBÞ ��E

;

(59)

and x ¼ xd is the detector’s spatial position. Then, we
write the detector response function (52) with the help of
Eq. (57) as

F ð�EÞ ¼ ½F 0 þF 1 þF 2�x¼xd
; (60)

where

F 0 ¼
Z

d3k

����������
�k

FðBÞ
�

NðBÞ
�þ � ��k

FðBÞ�
�

NðBÞ
���

��������2

; (61)

F 1 ¼
Z

d3k
Z

d�ð�Þ

	 2Re

��
��
�k

FðBÞ
�

NðBÞ
�þ � ��k

FðBÞ�
�

NðBÞ
���

�

	
�
��k

FðBÞ�
�

NðBÞ
c �

�þ � ��
�k

FðBÞ
�

NðBÞ
c ��

��
; (62)

F 2¼
Z
d3k

��������
Z
d�ð�Þ

�
��
�k

FðBÞ
�

NðBÞ
c �þ���k

FðBÞ�
�

NðBÞ
c �

��
���������2

:

(63)

The physical meaning of the response F ð�EÞ is more
easily grasped in the case where the proper time interval
T is ‘‘large’’, i.e., T � �E�1 (in addition to T � ��1

whenever the tachyonic mode is present) and we will
assume this hereafter up to the end of this section. In this
case, Eqs. (58) and (59) can be written as

�� � e�ið	=12��EÞTeT�=NðBÞffiffiffiffiffiffiffi
2�

p ð�=NðBÞ � i�EÞ (64)

and

c �� �
ffiffiffiffiffiffiffiffiffi
2	2

$�

s
e�ið$�=NðBÞ��EÞT=2�ð$�=NðBÞ ��EÞ; (65)

respectively. For the sake of comparison, we shall discuss

separately the situations where the tachyonic mode wðþÞ
� is

present from the one where it is absent.

In the case where the tachyonic mode wðþÞ
� is absent,

FðBÞ
� ¼ 0 and, thus, the detector response becomes simply

F ð�EÞ ¼ F 2jx¼xd
:

This is the usual result whose interpretation is straightfor-
ward: assuming that the detector stays switched on for an
arbitrarily long time T, we have fromEq. (65) that c �þ � 0
and according to Eq. (63) the detector excites by the ab-
sorption of particles created due to the spacetime transition
from regions A to B (��k � 0). [Note that when no restric-
tion is posed on T, the detector excitation will also have a
contribution coming from the process of switching it on and
off (c �þ � 0) [19].]
It is also interesting to note that in the absence of the

tachyonic mode, the response will not grow faster than T.
By recalling from Eq. (65) that c �þ � 0, we write the
response as [see Eq. (63)]

F ð�EÞ�
Z
d3k

��������
Z
d�ð�ÞF

ðBÞ�
�

NðBÞ
��kc

�
��

��������2

x¼xd



Z
d3k

�Z
d�ð�Þj��kj2

�

	
�Z

d�ð�Þjc ��j2 jF
ðBÞ
� j2
N2

ðBÞ

�
x¼xd

; (66)

where we have used above the Cauchy-Schwarz inequality.
Now, by using Eq. (59) [or directly Eq. (65)] in conjunction
with the identity limA!1sin2ð!AÞ=!2A ¼ 	�ð!Þ, we
obtain

jc ��j2 � ð	T=$�Þ�ð$�=NðBÞ � �EÞ: (67)

This is used in Eq. (66) to conclude indeed that the
response will not grow faster than T:

F ð�EÞ & C2T (68)

with
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C2 ¼
Z

d3k

�Z
d�ð�Þj��kj2

�

	
�
	

�E

Z
d�ð�Þ jF

ðBÞ
� j2
N2

ðBÞ
�ð$� � NðBÞ�EÞ

�
x¼xd

:

(69)

On the other hand, assuming that the tachyonic mode

wðþÞ
� is present, the detector response will be dominated

by Eq. (61) and, thus, F ð�EÞ � F 0jx¼xd
. Thus, we use

Eq. (64) in Eq. (61) to obtain

F ð�EÞ
�Zexp½2T�=NðBÞðxdÞ�

	
Z
d3k

����������
�k

FðBÞ
�

NðBÞ
e�i	=12���k

FðBÞ�
�

NðBÞ
ei	=12

��������2

x¼xd

;

(70)

where

Z ¼ 1

2�½�E2 þ�2=N2
ðBÞðxdÞ�

:

The exponential increase in the detector response reflects
the growth of the vacuum fluctuations and will continue as
long as the unstable phase is not forced to terminate. This is
possible because each excitation of the detector is accom-
panied by a corresponding decrease of the energy stored in

the field due to the excitation of a tachyonic mode ĉy�j0iin
with negative energy expectation value [see Eq. (30) and
corresponding discussion]. The copious excitation of the
detector realizes the fact that in the unstable phase the
scalar field functions as an energy reservoir only limited
by backreaction effects.

V. FALLING ASLEEP OF THE VACUUM AND
PARTICLE CREATION

A. General discussion

As already mentioned, at some point the unstable phase
must cease, leading the system back to some stationary
configuration. This will be represented by the static region
C in Eq. (71), which completes the scenario presented by
Eq. (31):

ds2 ¼

8>>><
>>>:
�dt2 þ dx2 ðAÞ
N2

ðBÞð�dt2 þ hðBÞij dxidxjÞ ðBÞ
N2

ðCÞð�dt2 þ hðCÞij dxidxjÞ ðCÞ
: (71)

Here, NðJÞ ¼ NðJÞðxÞ> 0, J 2 fB;Cg, are smooth func-

tions and hðJÞij ¼ hðJÞij ðxÞ (i, j ¼ 1, 2, 3). We note that for

the sake of simplicity we are using the same coordinate
notation ðt;xÞ for the three epochs.

Because the field is assumed to be deprived of tachyonic

modes in region C, we expand �̂ as

�̂ ¼
Z

d�ð�Þ½d̂��ðþÞ
� þ d̂y��

ð�Þ
� �; (72)

where f�ðþÞ
� ; �ð�Þ

� g are normal modes which in region C
satisfy

�ðþÞ
� ¼ðCÞ e�i$�tffiffiffiffiffiffiffiffiffiffi

2$�

p
NðCÞðxÞ

FðCÞ
� ðxÞ; $� > 0; (73)

and analogously for �ð�Þ
� . All symbols in Eq. (73) can be

inferred from Eq. (56) by replacing ‘‘B’’ by ‘‘C.’’
Moreover, because region C is also static, we may wonder
what will be the particle content of the scalar field in this
region. The key point consists in realizing that the in-
vacuum fluctuations which were exponentially amplified
during the unstable phase cannot, in general, be accom-
modated as mere fluctuations of the out-vacuum state (the
one defined by d�j0iout � 0 for all � and which represents
absence of particles according to static observers in region
C). In conclusion, a burst of particles is expected as the
field exits the unstable phase B.
Let us estimate the expectation number of created par-

ticles in the simplified case where the spacetime is sym-
metric by time reflection with respect to some Cauchy
surface �tS in region B. Hence, we consider a particular

case of Eq. (71), namely,

ds2 ¼

8>>><
>>>:
�dt2 þ dx2 ðAÞ
N2

ðBÞð�dt2 þ hðBÞij dxidxjÞ ðBÞ
�dt2 þ dx2 ðCÞ

; (74)

although we emphasize that we have chosen regions A
and C to be flat only for the sake of simplicity; the same
reasoning presented below may be straightforwardly
applied to other static spacetimes. Now, we focus on the

normal modes uð�Þ
k and �ð�Þ

k with respect to which asymp-

totic observers in regions A and C define their no-particle
states, respectively. In the past and future regions, they
assume the following forms:

uð�Þ
k ¼ðAÞð16	3!kÞ�1=2 exp½�ið!kt� k � xÞ�; (75)

�ð�Þ
k ¼ðCÞð16	3!kÞ�1=2 exp½�ið!kt� k � xÞ�: (76)

We are interested in uð�Þ
k and �ð�Þ

k evolved forward and

backward to the beginning and end of region B, namely,

uð�Þ
k ðt0;xÞ and �ð�Þ

k ðt0 þ T;xÞ, respectively. Here, t ¼ t0 �
tS � T=2 determines the beginning of the unstable phase B
and T represents its coordinate-time duration. Because of
our assumption that the spacetime is symmetric by time
reflection with respect to�tS , we have (up to global phases)

uðþÞ
k ðtS � t;xÞ ¼ �ð�Þ

�kðtS þ t;xÞ:
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In particular, for t ¼ T=2:

�ð�Þ
�kðt0 þ T;xÞ ¼ðBÞ uðþÞ

k ðt0;xÞ:
Then, we use Eq. (54) to decompose uðþÞ

k in terms of vð�Þ
�

and wð�Þ
� , obtaining

�ð�Þ
�kðt0 þ T;xÞ ¼ðBÞ��

�kw
ðþÞ
� ðt0;xÞ � ��kw

ð�Þ
� ðt0;xÞ

þ
Z

d�ð�Þ½��
�kv

ðþÞ
� ðt0;xÞ

� ��kv
ð�Þ
� ðt0;xÞ�; (77)

where we assume again the existence of a single tachyonic
mode for the sake of simplicity.

In order to investigate particle creation in region C, we

must, e.g., project uðþÞ
k ðt0 þ T;xÞ into �ð�Þ

k ðt0 þ T;xÞ,
where [see Eq. (54)]:

uðþÞ
k ðt0þT;xÞ¼��

�kw
ðþÞ
� ðt0þT;xÞ���kw

ð�Þ
� ðt0þT;xÞ

þ
Z
d�ð�Þ½��

�kv
ðþÞ
� ðt0þT;xÞ

���kv
ð�Þ
� ðt0þT;xÞ�: (78)

It is easy to see that

vð�Þ
� ðt0 þ T;xÞ ¼ expð�i$�TÞvð�Þ

� ðt0;xÞ; (79)

while we obtain from Eq. (55) that

wð�Þ
� ðt0 þ T;xÞ ¼ �2i sinhð�T � i	=6Þwð�Þ

� ðt0;xÞ
� 2i sinhð�TÞwð�Þ

� ðt0;xÞ: (80)

Then, by using Eqs. (77) and (78), we obtain for large
enough �T that

ð�ð�Þ
k0 ; u

ðþÞ
k ÞKG 
 e�T�kk0 ;

where the Klein-Gordon inner product was realized on the
�t0þT Cauchy surface and

�kk0 ¼ i½ð��
�ke

�i	=6 � ��kÞ���k0

� ð��
�k � ��ke

i	=6Þ��
��k0 �:

This leads to an expectation number of created particles
with quantum numbers k0 given by

hNk0 i 
 e2�T
Z

d3kj�kk0 j2;

which grows exponentially as scaled by the product�T. In
particular, even if the transitions from regions A to B and
from regions B to C were made arbitrarily slow in order to
minimize any particle creation due to background change
(��k � 0), this would not alter the fact that a large amount
of particles would be eventually created as the vacuum falls
asleep (at least in the present scenario; see additional com-
ments at the end of Sec. VB).

Next, we shall show that the burst of particles calculated
above does not rely on phase B being static; it will occur as
long as the in-vacuum fluctuations get significantly
amplified.

B. A toy model

In order to illustrate our general conclusion above,
let us make an explicit calculation assuming a concrete
scenario complying with the asymptotic static regions A
and C considered in Eq. (74) but assuming some time
evolution in the intermediate region B. This is in agree-
ment with the idealized situation where initially spread
out matter collapses to form a compact object and even-
tually disperses back to infinity. Instead of calculating
the particle production over the whole space, we shall
restrict attention to the interior of a small cubical box
with coordinate volume L3 (oblivious to the matter form-
ing the star), initially empty (of � particles), placed in
the very beginning at the spatial position where the star
core will form. The convenience of introducing a small
box is that we can cover its interior with approximately
Cartesian spatial coordinates ~x (in which first-order spa-
tial derivatives of the metric are negligible), writing the
line element as

ds2 � a2ð�dt2 þ d~x2Þ: (81)

Here, a ¼ aðtÞ> 0 is introduced to reflect the background
time evolution at the star’s center (a ¼ 1 in regions A and
C) and we have omitted the second-order spatial depen-
dence of the metric (which, nevertheless, contribute to the
scalar-curvature term). The background evolution is chosen
such that at some point the vacuum in the box is awaken
by the presence of (sixfold degenerate) tachyonic modes
[20]. After the unstable phase is terminated, we calculate
the number of massless scalar particles which were created
inside the box.
Using Eq. (81), we write Eq. (3) as

1

a4
@

@t

�
a2

@�

@t

�
� 1

a2
r2�þ �R� ¼ 0; (82)

where r2 � P
j@

2=@~xj
2
is the usual Laplace operator.

Assuming, for the sake of simpilicity, periodic boundary
conditions, we look for solutions of Eq. (82) in the form


kðt; ~xÞ ¼ �kðtÞ
aðtÞ

ffiffiffiffiffiffi
L3

p eik�~x; (83)

where k � 2	n=L with n 2 Z3 (n � 0). By using
Eq. (83) in Eq. (82) we find that�

� d2

dt2
� VeffðtÞ

�
�k ¼ k2�k; (84)

where

VeffðtÞ ¼ a2�R� a�1d2a=dt2: (85)
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Equation (83) makes explicit another neat feature of intro-
ducing the small box: the boundary condition which it
imposes locks the spatial dependence of the modes so that
the time evolution can only mix modes with the same ~x
dependence. This property will be used later to simplify the
Bogoliubov-coefficient calculation.

Now, we assume that energy density and pressure
of ordinary matter at the center of the star drives R in
Eq. (85) to induce the following simple form for the
effective potential:

VeffðtÞ¼
�
0 for t
0 and t��0

4V0ðt=�0Þðt=�0�1Þ for 0<t<�0

; (86)

where �0, V0 ¼ const> 0. We see that VeffðtÞ has a
parabolic form in the region 0< t < �0 and reaches its
minimum, �V0, at t ¼ �0=2 (see Fig. 1).

Convenient sets of in-modes fUð�Þ
k g for t 
 0 and

out-modes fVð�Þ
k g for t � �0 are exhibited below:

Uð�Þ
k ¼t
0 e�ið!kt�k�~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L3!k

p ; Vð�Þ
k ¼t��0 e

�ið!kt�k�~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L3!k

p ; (87)

where !k �k k k. The general expression of Uð�Þ
k which

complies with Eq. (83) and fits with its form (87) in region
A is

Uð�Þ
k ðt; ~xÞ ¼ �ð�Þ

k ðtÞ
aðtÞ

ffiffiffiffiffiffi
L3

p e�ik�~x (88)

with �ð�Þ
k ðt 
 0Þ ¼ e�i!kt=

ffiffiffiffiffiffiffiffiffi
2!k

p
. From the spatial depen-

dence of the modes, we readily see that [recall the discussion
below Eq. (85)]

UðþÞ
k ðt; ~xÞ ¼ �kV

ðþÞ
k ðt; ~xÞ þ ��kV

ð�Þ
�k ðt; ~xÞ; (89)

where the Bogoliubov coefficients between the bases fUð�Þ
k g

and fVð�Þ
k0 g are

�kk0 ¼ �k0�kk0 ; �kk0 ¼ �k0�k�k0 :

For �ðþÞ
k in region C, Eqs. (87)–(89), imply

�ðþÞ
k ðtÞ ¼t��0

�k

e�i!ktffiffiffiffiffiffiffiffiffi
2!k

p þ ��k

ei!ktffiffiffiffiffiffiffiffiffi
2!k

p ;

from where �k and �k ¼ ��k can be easily obtained in

terms of �ðþÞ
k and _�ðþÞ

k � d�ðþÞ
k =dt evolved into region C:

�k ¼
�
ei!ktffiffiffiffiffiffiffiffiffi
2!k

p ð!k�
ðþÞ
k þ i _�ðþÞ

k Þ
�
t��0

;

�k ¼
�
e�i!ktffiffiffiffiffiffiffiffiffi
2!k

p ð!k�
ðþÞ
k � i _�ðþÞ

k Þ
�
t��0

:

[It can be easily verified using Eqs. (84) and (86) that the
expressions for�k and�k above do not depend on the value
of t � �0.] Therefore, assuming that the field is initially in
the no-particle state j0iin with respect to asymptotic past

observers as defined by the in-modes Uð�Þ
k , the expectation

value of created particles in region C [7,21]

inh0jN̂outj0iin ¼
X
k;k0

j�kk0 j2

is given by

inh0jN̂outj0iin¼
X
k

j�kj2

¼X
k

�j _�ðþÞ
k j2
2!k

þ!kj�ðþÞ
k j2
2

�1

2

�
t��0

; (90)

where N̂out �
P

kd̂
outy
k d̂outk with d̂outk and d̂outyk being the

annihilation and creation operators defined with respect to

the out-modes Vð�Þ
k , respectively. This provides an expres-

sion for obtaining the expectation number j�kj2 of created
particles with quantum numbers k once the oscillatory in-

mode �ðþÞ
k is (numerically) evolved until region C.

The assumption to illustrate the appearance of tachyonic
modes consists in choosing a star which becomes dense
enough and a coupling � such that�Veff � ð!min

k Þ2 > 0 for
the least energetic (sixfold degenerate) modes allowed in
the box, !min

k ¼ 2	=L, for some time interval. As a result,

the corresponding �ðþÞ
k solutions satisfying Eq. (84) are

verified to exponentially grow for some time rather than to
oscillate, triggering the vacuum awakening effect (see
Fig. 1). In Fig. 2, we plot j�kj2 as a function of �0, which

k
min 2

L2

Veff L2

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

t 0

k
2 2 L

FIG. 1 (color online). We plot�Veff as a function of t for V0 ¼
1:6=ðL=2	Þ2 with the three smallest !k � 2	 k n k =L possible

values (see horizontal dashed lines). We also plot j�ðþÞ
k j2 for

k k k¼ !min
k assuming �0 ¼ 5L=2	. Initially j�ðþÞ

k j2 equals

L=4	, then grows exponentially in the unstable region, where
�Veff � ð!min

k Þ2 > 0, and eventually oscillates around ðj�kj2 þ
1=2ÞðL=2	Þ. The large amplitude which characterizes j�ðþÞ

k j2 at
the end of the unstable phase reflects the fact that the in-vacuum
fluctuations do not evolve into mere fluctuations of the out-
vacuum state.
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scales with the time interval during which the vacuum stays
awakened.

Clearly, the final state is dominated bymodeswith!min
k ¼

2	=L, which have experienced a phase of exponential
growth. The intensity of the particle burst is strongly influ-
enced by how long the vacuum remains awake. The inset of
Fig. 2 focuses on modes with !k > 2	=L, which are not
exponentially enhanced, and stresses the usually modest
particle creation observed in time-varying spacetimes with
asymptotic flat regions [7,21]. We note that in the adiabatic
limit, where the background geometry changes arbitrarily
slowly (�0 ! 1), particle creation for modes with !k >
2	=L goes to zero as expected, in contrast to the ones for
!min

k ¼ 2	=L, which diverges. For a 10 m side box, an
awakening time interval corresponding to �0 
 10�6 s
would eventually lead to a massive creation of particles,
with energy 2	=L, engendering densities of 1014 g=cm3,
which is the typical density for some compact stars. If
we relax our small box assumption and take L
 10 km,
the same density would be reached for �0 
 10�3 s.
Interestingly enough, this corresponds to the time interval
for the vacuum energy density to take control over the
evolution of the compact star once the vacuum awakening
effect is triggered [see discussion below Eq. (48)].

We stress that the conclusions above are derived by
assuming the effective potential (86), which is symmetric
by time reflection, and can change depending on the star
evolution. In order to show this, let us discuss the ener-
getics of particle creation in the context of our toy model.
For this purpose, it is useful to make the transformation

� ! ~� ¼ a� to write Eq. (82) for ~� as

½@2=@t2 �r2 þ VeffðtÞ� ~� ¼ 0: (91)

Thus, we have translated the problem into the simpler one

of a scalar field ~� in a flat spacetime ðR4; �abÞ subject to an
external time-dependent potential VeffðtÞ.
The action which gives rise to Eq. (91) and its corre-

sponding stress-energy tensor are

S � � 1

2

Z
R4

d4x
ffiffiffiffiffiffiffiffi��

p ð@a ~�@a ~�� þ Veff
~�~��Þ (92)

and

Tab ¼ @ða ~�@bÞ ~�� � 1

2
�ab½@c ~�@c ~�� þ Veff

~�~���; (93)

respectively. Next, it can be shown from Eqs. (91) and (93)
that

@aðTa
bð@tÞbÞ ¼ � 1

2

dVeff

dt
j ~�j2; (94)

which can be rewritten as

@


@t
þr � j ¼ 1

2

dVeff

dt
j ~�j2; (95)

where


 � 1

2

�
@ ~�

@t

@ ~��

@t
þr ~� � r ~�� þ Veffj ~�j2

�
and

j � � 1

2

�
@ ~��

@t
r ~�þ @ ~�

@t
r ~��

�
:

We see from Eq. (95) that the energy stored in the scalar
field is not locally conserved whenever dVeff=dt � 0. The
extra energy pumped into or out of the field is accounted by
the ‘‘external agent’’ responsible to change Veff . Moreover,
notice from Eq. (95) that even if VeffðtÞ is symmetric under
time reflection, the decrease in the field energy when it
enters the unstable phase (dVeff=dt < 0 and small vacuum

fluctuations h�̂2i) is more than compensated by the
increase in the field energy when it exits the unstable phase

(dVeff=dt > 0 and large vacuum fluctuations h�̂2i). In fact,
the latter can be overwhelmingly larger than the former,
with the net extra energy being responsible for the particle
burst. This analysis implies that in a physical situation, the
final verdict concerning the amount of created particles
will depend on a more detailed understanding on the space-
time evolution in the unstable phase, which would inform
us about how long the vacuum would stay awake, and on
the final classical configuration reached by the gravita-
tional and scalar fields, which would tell us how much
energy would turn out available for particle creation.
A closing remark for this section is in order. In our

calculations the expectation value of the field remains
zero throughout the background evolution. However, this

field configuration h�̂i ¼ 0 is obviously unstable during
the intermediate phase when the vacuum is awake. Thus,
one may speculate whether during the transition to the

FIG. 2 (color online). The expectation value of created parti-
cles j�kj2 with quantum numbers k ¼ 2	n=L is exhibited as a
function of �0, where we have assumed that for some time
interval the star becomes dense enough such that �Veff �
ð!min

k Þ2 > 0, while for !k >!min
k we always have �Veff �

!2
k < 0 (see Fig. 1). Here, we have chosen V0ðL=2	Þ2 ¼ 1:6.
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intermediate phase the classical field profile h�̂i could
continuously adjust itself to nonzero values (‘‘continuous
spontaneous scalarization’’) in order to stabilize the sys-
tem, in which case tachyonic-like modes would never
really be present. Unfortunately, a definite verdict to this
question is beyond the scope of semiclassical gravity since
it involves the subtleties of decoherence of a free field,
initially in a state which is symmetric by the exchange

� $ ��, to a symmetry-broken phase in which h�̂i � 0.
Notwithstanding, a reasonable conjecture seems to be that
coherence can be sustained for as long as the background
geometry (which can be regarded as the sole classical
‘‘apparatus’’ with which the field interacts) is oblivious

to �. In other words, it seems quite possible that h�̂i ¼ 0
until backreaction becomes important. But when that hap-

pens, the fluctuations h�̂2i will already be amplified to the
point where they cannot be accommodated as mere vac-
uum fluctuations. A burst of particles should follow,

regardless whether h�̂i remains null or spontaneous scala-
rization takes place. Another important point is that spon-
taneous scalarization takes place only for negative values
of � [3]. Therefore, for � > 0 the whole scenario of a

gradually changing h�̂i ensuring the stability of the system
seems even more unlikely.

VI. FINAL REMARKS

After a review of the vacuum awakening effect in rela-
tivistic stars, we have probed the exponential increase of
the quantum field fluctuations using Unruh-DeWitt

detectors. The fast increase of these fluctuations may
lead eventually to an important burst of free-field particles
after the vacuum is forced to fall asleep again. This burst of
particles would draw a significant amount of energy from
the initial system. The amount of created particles will
depend on the duration of the unstable epoch and on the
final gravitational and scalar field configuration, which are
open issues at this point. A possible signal favoring the
vacuum awakening effect for a free field would be the
unveiling of astrophysical events outpouring less amounts
of visible energy than would be expected. This may also
provide an efficient way of converting energy initially
stored in the form of ordinary matter (forming the star)
into a ‘‘dark’’ component which couples only to gravity.
Simultaneous to the completion of this article, it was

posted a classical analysis showing that during the scala-
rization process a strong emission of scalar radiation
should occur [22], which is in line with the conclusions
presented here, especially with the discussion at the end of
the previous section.
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