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We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The

stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto

equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the

isometry group action generated by the Killing vector. We take a linear combination of a time-translation

vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of

stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their

configurations and properties.
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I. INTRODUCTION

Existence of extended objects such as strings attracts
much attention in the connection of unified theories and
cosmologies. Microscopic strings are one of fundamental
objects describing elementary particles including gravity in
superstring theories. On the other hand, many unified mod-
els of particles predict formation of macroscopic strings by
spontaneous symmetry breaking in the early universe, called
cosmic strings [1]. In both fields of modern physics it is
important to discuss the dynamics of strings.

Recently, attention is focused on a possibility that strings
are formed at the end of brane inflation [2–5] in the context
of braneworld scenarios [6–9] in which our Universe might
have large extra dimensions. Such strings may have astro-
nomical sizes, and are called cosmic superstrings [10,11]
(and see Ref. [12] for review).

Properties of strings in higher-dimensional spacetime
are quite different in the case of four-dimensional space-
times. One of the crucial features of the string in higher-
dimensional spacetime is the reduction of reconnection
probability [13,14] (and see also Ref. [15]), while the
probability is almost unity in four-dimensional spacetime.
One of the qualitative understandings is that if a string
apparently intersects in our visible Universe then strings
can still avoid intersection in extra dimensions [16].
Another crucial feature appears in cusp formation, which
is a point where a string segment reaches the speed of light
and its extrinsic curvature diverges. Cusps are formed on
closed string loops generically in four-dimensional space-
times [17,18]. In contrast, the probability of cusp formation
is to be almost zero in higher-dimensional spacetimes.

Let us review the discussion of cusp formation for closed
Nambu-Goto strings. We consider a string that is described
by the two-dimensional world sheet � embedded in

D-dimensional target spacetime ðM;g��Þ. The world sheet
� is represented by the mapping functions y�ð�; �Þ, where
y� are coordinates ofM, and � and � are parameters on �.
We assume that dynamics of a string is governed by the
Nambu-Goto action

SNG ¼ ��
Z
�
d2�

ffiffiffiffiffiffiffiffi��
p

; (1)

where � is the string tension and � is the determinant of
the induced metric on �, which is given by

�ab ¼ g��

@y�

@�a

@y�

@�b
; (2)

where �0 ¼ � and �1 ¼ �.
Let us consider a solution of the closed Nambu-Goto

string in the D-dimensional flat spacetime with the
Cartesian coordinates ðt; y1; y2; . . . ; yD�1Þ. We use the
conformal gauge such that

�01 ¼ 0; �00 þ �11 ¼ 0: (3)

Then the equations of motion are simply

ð�@2� þ @2�Þy� ¼ 0: (4)

We can fix the residual gauge freedom by setting t ¼ �. In
this case, a string y ¼ ðy1; . . . ; yD�1Þ in the flat spacetime is
described by right moving and left moving waves as

yð�; �Þ ¼ 1

2
½FðuþÞ þ Gðu�Þ�; (5)

where F and G are arbitrary functions of u� :¼ �� �.
The gauge conditions require that F and G should satisfy

F0ðuþÞ2 ¼ G0ðu�Þ2 ¼ 1; (6)

where the prime denotes the differentiation with respect
to the argument. That is, F0 and G0 are confined to the
(D� 2)-dimensional unit sphere, known as the Kibble-
Turok sphere.
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For closed strings we require the periodicity yð�;�Þ ¼
yð�; �þ �pÞ which leads to

F0ðuþ þ �pÞ ¼ F0ðuþÞ; G0ðu� � �pÞ ¼ G0ðu�Þ:
(7)

Furthermore, in the center of the mass frame of the
string, where the total momentum vanishes, these vector
functions should satisfyZ

F0d� ¼
Z

G0d� ¼ 0: (8)

Hence, F0 and G0 draw closed curves on the Kibble-Turok
sphere, and their averaged positions coincide with the
center of the sphere.

In the case D ¼ 4, such two closed curves on the two-
dimensional sphere intersect quite generally. The intersect-
ing points correspond to the emergence of cusps [17,18]
(see also Ref. [1]). It is proposed that cosmic string cusps
can give rise to gravitational wave emission that is detect-
able by future experiments [19–21]. However, in the
higher-dimensional spacetime where D> 4, the intersect-
ing probability of the curves on the (D� 2)-dimensional
sphere is almost zero. Therefore, we conclude that cusp
formation is not a generic event in the higher-dimensional
spacetime. The absence of cusp formation in higher di-
mensions make a difference in gravitational wave emission
compared with the four-dimensional case. Detectability of
burst gravitational radiation from the cosmic superstring
near cusps is discussed in Refs. [22–25].

One of the simplest and fundamental problems in string
dynamics is finding stationary configurations in a back-
ground spacetime. Stationary open string configuration has
been studied extensively, after the pioneering work by
Burden and Tassie [26,27]. Nontrivial configurations of a
stationary string in four-dimensional flat spacetime were
discovered in various approaches [28–31]. Indeed, in the
flat spacetimes, general solutions to Eq. (4) are easily
obtained, but it is a nontrivial problem to select out sta-
tionary solutions that satisfy the nonlinear conditions (3).

The stationary strings, defined in Sec. II, are in one of
the classes of cohomogeneity-one strings as was discussed
in Ref. [32]. All possible cohomogeneity-one strings in
four-dimensional flat spacetime were completely classified
into seven families [32]. It was shown that equations
for all types of cohomogeneity-one strings are exactly
solvable [33]. Such a classification was also done in a
five-dimensional anti-de Sitter background [34].

In four-dimensional flat spacetime, we have no station-
ary closed string solution to the Nambu-Goto equations
because of the cusp formation. Indeed, in four dimensions,
closed string solutions are constructed explicitly in flat
background [35], de Sitter background [36–38], cosmo-
logical background [39,40], and black hole background
[41,42], but all of them are not stationary. Even if not
cusp formation, string loops collapse to a point or a double

line in a period because string tension works inward.
However, in higher dimensions, stationary closed loops
are not forbidden. The recent investigations of string
dynamics in higher-dimensional spacetimes have revealed
that stationary loop solutions do exist. This is closely
related with the absence of cusp formation. Special solu-
tions of stationary loop configuration were provided, and
their properties were discussed in five-dimensional flat
spacetime [43,44]. Furthermore, separability of equations
for stationary string configurations, and the solutions were
demonstrated in higher-dimensional black hole spacetime
[44,45]. The purpose of the present paper is to study sta-
tionary configurations of closed strings extensively in
higher-dimensional flat spacetime.
The organization of this paper is as follows. In the

following section, we introduce a stationary string in
five-dimensional flat spacetime by the use of a timelike
Killing vector, and reduce Nambu-Goto action to a geode-
sic action in four-dimensional Riemannian space deter-
mined by the Killing vector. Using the Hamilton-Jacobi
method, we demonstrate the separation of variables of the
geodesic equations to ordinary differential equations of
single variables due to the existence of a rank-2 Killing
tensor. In Sec. III, we show stationary configuration of
closed strings by solving the equations. This section con-
sists of two parts: special cases and general cases. The
special cases include solutions of stationary toroidal spiral
strings, which are obtained in the previous works [43–45].
We also consider a special class of stationary strings called
planar strings that lie on a two-dimensional plane. In
general cases, we demonstrate typical configurations of
closed strings. The final section presents summary and
discussion. We use the sign convention �þþþþ for
the metric, and units in which c ¼ G ¼ 1.

II. STATIONARY STRINGS IN FIVE-
DIMENSIONAL FLAT SPACETIME

Let ðM;g��Þ be a spacetime that possesses a Killing

vector ��, where �, � run from 0 to 4. Then we consider a
string with a world sheet � tangent to ��, which is called
a cohomogeneity-one string [32]. In particular, if �� is a
timelike Killing vector, the cohomogeneity-one string
associated with �� is called a stationary string.
Let G be the isometry group generated by ��. The set of

all integral curves of �� defines the orbit space of G
denoted by M=G. The metric on M=G is naturally intro-
duced by

h�� ¼ g�� � ����=f; (9)

where f ¼ ����. As discussed in Ref. [46], the problem

of finding a cohomogeneity-one Nambu-Goto string
reduces to solving the geodesic equation in the orbit
space M=G with the norm weighted metric fh�� derived

by the action
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S ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�fh��dy
�dy�

q
: (10)

In what follows, we analyze this system in the five-
dimensional flat background. We introduce coordinates �t,
��, ��, �	 , �c in the five-dimensional flat spacetime so that the
metric takes the form

ds2 ¼ �d�t2 þ d ��2 þ ��2d ��2 þ d �	2 þ �	2d �c 2: (11)

We consider a linear combination of a time-translation
Killing vector and two rotation Killing vectors in the
five-dimensional flat spacetime in the form

�� ¼ @��t þ 
@��� þ �@��c ; (12)

where 
 and � are constants. Then we have

f ¼ �1þ 
2 ��2 þ �2 �	2: (13)

We can assume that 
 and � are non-negative because the
negative case is obtained by the reflection of coordinates ��
and �c . Hence, by Eqs. (9), (12), and (13), the metric,
�fh��, is expressed in the form

ds2M=G ¼ �fh��dy
�dy�

¼ �f½d ��2 þ ��2ðd ��� 
d�tÞ2 þ d �	2

þ �	2ðd �c � �d�tÞ2� þ ½
 ��2ðd ��� 
d�tÞ
þ � �	2ðd �c � �d�tÞ�2: (14)

By the new coordinates xi given by

ðx1; x2; x3; x4Þ ¼ ð�;�; 	; c Þ ¼ ð ��; ��� 
�t; �	; �c � ��tÞ;
(15)

the four-dimensional Riemannian metric components
covering M=G are

ds2M=G ¼ �fhijdx
idxj

¼ �f½d�2 þ �2d�2 þ d	2 þ 	2dc 2�
þ ð
�2d�þ �	2dc Þ2: (16)

Note that �fhij is singular at points satisfying f ¼ 0,

where the scalar curvature,

R ¼ 6½
2 þ �2 � 
2�2ð�2 þ 	2Þ�
ð�1þ 
2�2 þ �2	2Þ3 ; (17)

diverges.
We solve the geodesic equations in ðM=G;�fhijÞ by the

Hamilton-Jacobi method. It is convenient to rewrite the
action (10), which has reparametrization invariance, to
the equivalent action,

S ¼ 1

2

Z
d�ð�N�1fhijx

0ix0j þ �NÞ; (18)

where the prime denotes the differentiation with respect to
the parameter �, and � is a constant, and an arbitrary

function N of � is a Lagrange multiplier that is related to
the reparametrization invariance of geodesic orbits. The
Hamiltonian of the system is of the form

H ¼ �N

2
ðf�1hijpipj þ �Þ

¼ � N

2f

�
p2
� þ p2

	 þ
1� 
2�2

�2
L2
1

þ 1� �2	2

	2
L2
2 � 2
�L1L2 þ �f

�
; (19)

where the canonical momentum pi conjugate to xi is
defined by pi ¼ �N�1fhijx

0j, and L1 ¼ p� and L2 ¼
pc denote constants of motion.

We attempt to apply the Hamilton-Jacobi method to
Eq. (19). Let S be Hamilton’s principal function, which
is a function of the parameter � and coordinates xi, and the
Hamilton-Jacobi equation is given by

@S

@�
þ N

2

hij

f

@S

@xi
@S

@xj
¼ 0: (20)

We suppose that S is a complete solution, which includes
the same number of constants as the dimensions of M=G,
i.e., four constants in this case, and takes the form of the
complete separation of variables,

S ¼ �

2

þ L1�þ L2c þ S�ð�Þ þ S	 ð	Þ; (21)

where 
 is a function of � such that 
0 ¼ N, and S� and S	
are functions that depend only on � and 	 , respectively.
Substitution of this expression into Eq. (20) yields

�
�
dS	
d	

�
2 � 1� �2	2

	2
L2
2 þ 
�L1L2 þ 1� 2�2	2

2
�

¼
�
dS�
d�

�
2 þ 1� 
2�2

�2
L2
1 � 
�L1L2 � 1� 2
2�2

2
�

¼ K; (22)

where K is a separation constant. The existence of the
quadratic constant K in pi implies that the metric (16)
admits the rank-2 Killing tensor Kij of the form

Kij ¼ 1

2f

�
ð1� 2�2	2Þ@i�@j� � ð1� 2
2�2Þ@i	@j	

� 2
�ð
2�2 � �2	2Þ@ði�@jÞc
þ ð1� 
2�2Þð1� 2�2	2Þ

�2
@i�@

j
�

� ð1� �2	2Þð1� 2
2�2Þ
	2

@ic@
j
c

�
: (23)

From Eqs. (21) and (22), we obtain the complete
solution by virtue of the separability of the Hamilton-
Jacobi equation,
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S ¼ �

2

þ L1�þ L2c þ s�

Z
d�

ffiffiffiffiffiffiffi
��

q
þ s	

Z
d	

ffiffiffiffiffiffiffi
�	

q
;

(24)

where

�� ¼ � 1� 
2�2

�2
L2
1 þ 
�L1L2 þ 1� 2
2�2

2
�þ K;

(25)

�	 ¼ � 1� �2	2

	2
L2
2 þ 
�L1L2 þ 1� 2�2	2

2
�� K;

(26)

where s� and s	 denote �1. By setting partial derivatives

of S with respect to �, L1, L2, K to zero, we obtain


 ¼ s�

2

Z
d�

1� 2
2�2ffiffiffiffiffiffiffi
��

q þ s	
2

Z
d	

1� 2�2	2ffiffiffiffiffiffiffi
�	

q ; (27)

� ¼ s�

2

Z
d�

2ð��2 � 
2ÞL1 � 
�L2ffiffiffiffiffiffiffi
��

q � s	
2

Z
d	


�L2ffiffiffiffiffiffiffi
�	

q ;

(28)

c ¼ s	
2

Z
d	

2ð	�2 � �2ÞL2 � 
�L1ffiffiffiffiffiffiffi
�	

q � s�

2

Z
d�


�L1ffiffiffiffiffiffiffi
��

q ;

(29)

s�
Z d�ffiffiffiffiffiffiffi

��

q ¼ s	
Z d	ffiffiffiffiffiffiffi

�	

q : (30)

It is useful for analysis to express the first-order differential
equations,

�02 ¼N2

f2

�
�1�
2�2

�2
L2
1 þ

1� 2
2�2

2
�þKþ
�L1L2

�
;

(31)

	 02 ¼N2

f2

�
�1��2	2

	2
L2
2 þ

1� 2�2	2

2
��Kþ
�L1L2

�
;

(32)

�0 ¼ �N

f

�
1� 
2�2

�2
L1 � 
�L2

�
; (33)

c 0 ¼ �N

f

�
1� �2	2

	2
L2 � 
�L1

�
: (34)

III. SOLUTIONS FOR STATIONARY
CLOSED STRINGS

In this section, we present stationary string solutions
explicitly by integrating Eqs. (31)–(34). In particular, we
focus on stationary closed strings and discuss their con-
figuration and properties.
Suppose that the Lagrange multiplier N takes the form1

N ¼ �f ¼ 1� 
2�2 � �2	2; (35)

then Eqs. (31)–(34) are simplified as

�02 þU ¼ P; (36)

	 02 þ V ¼ Q; (37)

�0 ¼ L1

�2
� 
C; (38)

c 0 ¼ L2

	2
� �C; (39)

where C is defined by

C ¼ 
L1 þ �L2; (40)

and P and Q are constants given by

P ¼ 
L1Cþ 1

2
þ K; (41)

Q ¼ �L2Cþ 1

2
� K: (42)

The functions U and V in Eqs. (36) and (37) are defined by

U ¼ L2
1

�2
þ 
2�2; (43)

V ¼ L2
2

	2
þ �2	2; (44)

respectively.
Equations (36) and (37) show that the configuration

of a stationary string is described by a couple of one-
dimensional particle motions in the effective potentials
U and V with energies P and Q. In the case 
 ¼ 0
(or � ¼ 0), the second term of U (or V) vanishes, and
then the stationary strings are unbounded and have infinite
lengths. On the other hand, for nonvanishing 
 and �,
stationary strings are confined in the range

0 � �� � �ð�Þ � �þ; (45)

0 � 	� � 	ð�Þ � 	þ; (46)

where

1Note that the gauge choice (35) is not the conformal gauge.
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�2� ¼ P�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4l21

q
2
2

; (47)

	2� ¼ Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4l22

q
2�2

; (48)

and l1 ¼ 
L1, l2 ¼ �L2.
For real non-negative �� and 	�, we have P � 0, P2 �

4l21 � 0, Q � 0, and Q2 � 4l22 � 0. From these inequal-
ities we obtain

� 1þ C2

2
� l1; l2 � 1þ C2

2
; (49)

� 1þ C2

2
� l2 � l1 � 1þ C2

2
; (50)

� 1þ jCjð1þ C2Þ
2

� K � 1þ jCjð1þ C2Þ
2

: (51)

Furthermore, from the requirement for stationarity of a
string, the Killing vector �� must be timelike, i.e.,

f ¼ �1þ 
2�2ð�Þ þ �2	2ð�Þ< 0; (52)

then, we see


2�2þ þ �2	2� < 1 and 
2�2� þ �2	2þ < 1: (53)

Substituting Eqs. (47) and (48) into these inequality we
obtain

C2 < 1� � and C2 < 1þ�; (54)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4l21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4l22

q
: (55)

Therefore, we have

�1<C ¼ l1 þ l2 < 1: (56)

From the inequalities (49)–(51) and (56) we have

�1< l1; l2 < 1; (57)

�1< l2 � l1 < 1; (58)

� 3

2
<K <

3

2
: (59)

A stationary solution in this class is closed if its geodesic in
the orbit space is closed.

A. Special cases

1. Toroidal spiral strings

In this section, we discuss special solutions of
Eqs. (36)–(39) that are given by constant � and 	 . Such

strings are called the stationary toroidal spiral strings
[44,45] (see also Ref. [43]).
Let us discuss stationary toroidal spiral string solutions.

The minima of each effective potential (43) and (44),
which are given by dU=d� ¼ 0 and dV=d	 ¼ 0, are

�2
0 ¼

jl1j

2

; (60)

	20 ¼ jl2j
�2

: (61)

We assume that l1 � 0 and l2 � 0, i.e., �0 � 0 and 	0 � 0.
Since �0 ¼ 	 0 ¼ 0, we see that

PþQ ¼ C2 þ 1 ¼ 2ðjl1j þ jl2jÞ: (62)

In the case l1l2 < 0, from Eq. (62) and the definition ofC in
Eq. (40) we obtain

l1 ¼ ðCþ 1Þ2
4

; (63)

l2 ¼ �ðC� 1Þ2
4

; (64)

where we have assumed l1 > 0 without loss of generality
because discussion of l1 < 0 is equivalent to replacing �
by ��. From P�Q, we see easily that

K ¼ Cð3� C2Þ
4

: (65)

On the other hand, if l1l2 > 0, we find C ¼ �1, which
contradicts with Eq. (56). Then, we consider the case
l1 > 0, l2 < 0 in this subsection.
The equations for the angular variables,�0 ¼ 
ð1� CÞ,

c 0 ¼ ��ð1þ CÞ, can be immediately integrated, and then

�0 ¼ 1þ C

2

; (66)

	0 ¼ 1� C

2�
; (67)

�ð�Þ ¼ 
ð1� CÞ�; (68)

c ð�Þ ¼ ��ð1þ CÞ�; (69)

where the integration constants are suitably chosen. After
reparametrizations ð
=ð1þ CÞ, �=ð1� CÞ, ð1� C2Þ�Þ !
ð
;�;�Þ the solutions are simply represented as

�0 ¼ 1

2

; (70)

	0 ¼ 1

2�
; (71)
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�ð�Þ ¼ 
�; (72)

c ð�Þ ¼ ���: (73)

The string described by the solution has a shape of a
toroidal spiral that lies on the two-dimensional torus with
the metric

ds2
S1�S1

¼ d�2

4
2
þ dc 2

4�2
: (74)

The toroidal spiral string solutions have two parameters 

and �.2

Both angular solutions must be periodically identified
with periods �1 ¼ 2�=
 and �2 ¼ 2�=�, i.e., we have

�ð�þ n1�1Þ ¼ �ð�Þ; (75)

c ð�þ n2�2Þ ¼ c ð�Þ; (76)

where n1 and n2 are relatively prime integers that denote
winding numbers of the string in the �-� and 	-c plane,
respectively.

When we restrict attention to closed loops, we must
require n1�1 ¼ n2�2, then we have

n2
n1

¼ �1

�2

¼ �



¼ �0

	0
; (77)

where Eqs. (70) and (71) were used in the last equality. In
particular, the stationary toroidal spiral string with
n1=n2 ¼ 	0=�0 ¼ 1 is called the Hopf loop, which is dis-
cussed in Refs. [44,45].

In addition to the Killing vector ��, the vector

�� ¼ @
�
� ¼ 
@

�
��
� �@

�
�c
; (78)

which is tangent to a world sheet of a toroidal spiral string,
is a spacelike Killing vector. As a result, the world sheet of
the toroidal spiral string is flat because it is spanned by two
commutable Killing vectors �� and ��. Even if we con-
sider a cohomogeneity-one string with a spacelike Killing
vector, we can obtain a stationary toroidal string solution as
is discussed in Refs. [44,45].

2. Planar strings

In this section, we discuss other special solutions with
L1 ¼ L2 ¼ 0. In this case, the potentials are in proportion
to �2 and 	2 in Eqs. (36) and (37), respectively. It is clear
from Eqs. (38) and (39) that we can choose solutions to be
�ð�Þ ¼ c ð�Þ ¼ 0, � without loss of generality. In order
to solve the residual equations, we introduce the rotating
frame,

ðX; Y; Z;WÞ ¼ ð� cos�;� sin�; 	 cosc ; 	 sinc Þ: (79)

Then Eqs. (36) and (37) are rewritten in the form

X02 þ 
2X2 ¼ 1

2
þ K; (80)

Z02 þ �2Z2 ¼ 1

2
� K; (81)

and Yð�Þ and Wð�Þ vanish. Solutions for X and Z are
given by

Xð�Þ ¼ 1




ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ K

s
cosð
�Þ; (82)

Zð�Þ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� K

s
cosð��þ �Þ; (83)

where � is an integral constant.
In the Cartesian coordinates �T, �X, �Y, �Z, �W in the five-

dimensional flat spacetime, i.e., ds2 ¼ �d �T2 þ d �X2 þ
d �Y2 þ d �Z2 þ d �W2, the solutions are represented as

�T ¼ �; (84)

�X ¼ 1




ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ K

s
cosð
�Þ cosð
�Þ; (85)

�Y ¼ 1




ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ K

s
sinð
�Þ cosð
�Þ; (86)

�Z ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� K

s
cosð��Þ cosð��þ �Þ; (87)

�W ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� K

s
sinð��Þ cosð��þ �Þ: (88)

At a moment �T ¼ const we find �Y= �X ¼ const and �W= �Z ¼
const. Then the string described by (84)–(88) lies on the
two-dimensional plane that is the intersection of two three-
dimensional flat planes, �Y= �X ¼ const and �W= �Z ¼ const.
Therefore, we call such a string as a planar string. The
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X

0.2

0.1

0.1

0.2

Z

1.0 0.5 0.5 1.0
X

1.0

0.5

0.5

1.0
Z

FIG. 1 (color online). The self-intersecting planar string con-
figuration with 
 ¼ 1 and � ¼ 2 (left) and the planar loop with

 ¼ � ¼ 1 (right) on the �X- �Z plane at the � ¼ 0 surface, where
we have chosen K ¼ 1=4 and � ¼ �=2.

2The two parameters 
 and � are related to the parameters 

and L in Ref. [44] by 
 $ �=
 and L $ 1=ð4
�Þ.
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TABLE I. Possible combinations of ðk; m; �k; �mÞ for k � 8 in
the case l1 > 0 and l2 > 0. The value of C is given by C ¼
1� 2m=k.

ðk;m; �k; �mÞ
(3, 1; 3, 1)

(4,1; 4,1)

(5, 1; 5,1), (5, 2; 5, 2)

(6, 1; 6, 1)

(7, 1; 7, 1), (7, 2; 7, 2), (7, 3; 7, 3)

(8, 1; 8, 1), (8, 3; 8, 3)

� � �

TABLE II. Possible combinations of ðk;m; �k; �mÞ for k � 8
in the case l1 > 0 and l2 < 0. The value of C is given by
C ¼ 1� 2m=k ¼ �1� 2 �m= �k.

ðk;m; �k; �mÞ
(2,1;2,� 1)
(3, 1; 3, �2)
(4, 1; 4, �3)

(5, 1; 5, �4), (5, 2; 5, �3), (5, 3; 5, �2), (5, 4; 5, �1)
(6, 1; 6, �5), (6, 5; 6, �1)

(7, 1; 7, �6), (7, 2; 7, �5), (7, 2; 7, �5), (7, 3; 7, �4), (7, 4; 7,
�3), (7, 5; 7, �2), (7, 6; 7, ð�1)

(8, 1; 8, �7), (8, 3; 8, �5), (8, 5; 8, �3), (8, 7; 8, �1)
� � �
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FIG. 2 (color online). The projected closed orbits (a)–(f) for various parameters l1 > 0, l2 > 0, ðk;m; �k; �mÞ on the �-� plane (upper
panels) and the 	-c plane (lower panels). The radius �þ is normalized to �þ ¼ 1=2, and we choose 
 ¼ � ¼ 1. Dashed circles show
�þ, �� in the upper panels, and 	þ, 	� in the lower panels. (a) l1 ¼ 1=6, l2 ¼ 1=6, ðk;m; �k; �mÞ ¼ ð3; 1; 3; 1Þ; (b) l1 ¼ 1=12, l2 ¼
5=12, ðk; m; �k; �mÞ ¼ ð4; 1; 4; 1Þ; (c) l1 ¼ 1=8, l2 ¼ 3=40, ðk;m; �k; �mÞ ¼ ð5; 2; 5; 2Þ; (d) l1 ¼ 1=7, l2 ¼ 4=7, ðk;m; �k; �mÞ ¼ ð7; 1; 7; 1Þ;
(e) l1 ¼ 1=7, l2 ¼ 2=7, ðk;m; �k; �mÞ ¼ ð7; 2; 7; 2Þ; (f) l1 ¼ 1=14, l2 ¼ 1=14, ðk;m; �k; �mÞ ¼ ð7; 3; 7; 3Þ.
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solutions show Lissajous figures on the two-dimensional
plane, as illustrated in Fig. 1. While the solutions have
self-intersecting points in the case 
 � �, the string con-
figuration in the special case 
 ¼ � is described by an oval
on the two-dimensional plane, as illustrated in Fig. 1. We
call the string the planar loop. The parameters K, � are a
measure of ellipticity of the planar loop and inclination of
the major axis. Because we can adjust the inclination angle
to zero by coordinate rotation, we can fix � ¼ �=2 without
loss of generality, and then the planar loop solution satisfies

�X2 þ �Y2

1=2þ K
þ �Z2 þ �W2

1=2� K
¼ 
�2: (89)

That is, the planar loop lies on the ellipsoid (89). In particu-
lar, in the case K ¼ 0 the planar loop lies on the three-
dimensional round sphere and we represent the solution in
new coordinates

�X� ¼ �X � �Wffiffiffi
2

p ¼ 1

2

cos
ð�� �Þ; (90)

�Z� ¼ � �Z� �Yffiffiffi
2

p ¼ � 1

2

sin
ð�� �Þ; (91)

where the spacetime metric takes the form ds2 ¼ �dT2 þ
dX2þ þ dZ2þ þ dX2� þ dZ2�. This solution reproduces the
Hopf loop solution discussed at the end of the previous
section.

B. General cases

Now, we discuss the generic configuration of
stationary rotating closed strings. The general solutions
to Eqs. (36)–(39) are written as

�2ð�Þ ¼ �2þ � �2�
2

cosð2
�Þ þ �2þ þ �2�
2

; (92)
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FIG. 3 (color online). The same as Fig. 2 in the case l1 > 0, l2 < 0.We choose
 ¼ � ¼ 1 for (a), (c), and (e), and
 ¼ 1,� ¼ 1=2 for
(b), (d), and (f). The radius 	þ is normalized to 	þ ¼ 1=2. (a) l1 ¼ 1=6, l2 ¼ �1=6, ðk;m; �k; �mÞ ¼ ð2; 1; 2;�1Þ; (b) l1 ¼ 3=8, l2 ¼
�1=24, ðk; m; �k; �mÞ ¼ ð3; 1; 3;�2Þ; (c) l1 ¼ 0:51, l2 ¼ �0:02, ðk; m; �k; �mÞ ¼ ð4; 1; 4;�3Þ; (d) l1 ¼ 0:61, l2 ¼ �0:01, ðk;m; �k; �mÞ ¼
ð5; 1; 5;�4Þ; (e) l1 ¼ 0:33, l2 ¼ �0:13, ðk;m; �k; �mÞ ¼ ð5; 2; 5;�3Þ; (f) l1 ¼ 0:68, l2 ¼ �0:02, ðk;m; �k; �mÞ ¼ ð6; 1; 6;�5Þ.
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	2ð�Þ ¼ 	2þ � 	2�
2

cos½2ð��þ �Þ� þ 	2þ þ 	2�
2

; (93)

�ð�Þ ¼ sgnðl1Þ
�
arctan

�
��
�þ

tanð
�Þ
�

þ �

�

�þ �=2

�

��
� 
C�; (94)

c ð�Þ ¼ sgnðl2Þ
�
arctan

�
	�
	þ

tanð��þ �Þ
�

þ �

�
��þ �þ �=2

�

��
� �C�; (95)

where � is an integral constant, ��, 	� are given by
Eqs. (47) and (48), and bxc and sgnðxÞ denote the floor
function and the sign function of x, respectively.

By periodicity of � and 	 in Eqs. (92) and (93), the
solutions satisfy

�ð�þ �pÞ ¼ �ð�Þ; (96)

	ð�þ ��pÞ ¼ 	ð�Þ; (97)

�ð�þ k�pÞ ¼ �ð�Þ þ �kðsgnðl1Þ � CÞ; (98)

c ð�þ �k ��pÞ ¼ c ð�Þ þ � �kðsgnðl2Þ � CÞ; (99)

where �p ¼ �=
, ��p ¼ �=�, and k, �k are natural

numbers.
In order that projections of orbits on the �-� plane and

the 	-c plane are closed, the constant C must satisfy

�kðsgnðl1Þ � CÞ ¼ 2�m; (100)

� �kðsgnðl2Þ � CÞ ¼ 2� �m; (101)

where m and �m are integers. We can assume ðk; jmjÞ and
ð �k; j �mjÞ are pairs of relatively primes.
From Eqs. (56), (100), and (101), we find that C is a

rational number in the range �1<C< 1. Since we can
assume l1 > 0 without loss of generality, we consider the
following three cases: l2 > 0, l2 ¼ 0, and l2 < 0,
separately.
In the case l1 > 0 and l2 > 0, we see k ¼ �k,m ¼ �m, and

C is in the range 0<C< 1, and then we have

0<m ¼ �m<
k

2
¼

�k

2
: (102)

In the case l1 > 0 and l2 < 0, we see k ¼ �k, m� k ¼ �m,
and C can be in the range �1<C< 1, and then we have

0<m< k and � �k < �m< 0: (103)

Examples of possible combinations of ðk;m; �k; �mÞ are
shown in Tables I and II. As illustrated in Fig. 2 for the
l2 > 0 case, and in Fig. 3 for the l2 < 0 case, the projected
closed orbits on the �-� plane are rounded polygons or
rounded star polygons, where each segment is a curve
starting from �þ through �� and ending at �þ. The
rounded (star) polygon with ðk;mÞ has k segments, and
the closed curvewraps the center of two-dimensional plane
m times. The projected closed orbits on the 	-c plane with
ð �k; �mÞ have the same properties.
The limits l2 ! 0þ in the positive l2 case and l2 ! 0�

in the negative l2 case give the same solutions for l2 ¼ 0.
Projected closed orbits are shown in Fig. 4, where the curves
on the 	-c plane pass through the central point 	 ¼ 0.
In order that the string is closed, we should additionally

require the condition
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FIG. 4 (color online). The same as Fig. 2 in the case l1 > 0, l2 ¼ 0. We choose 
 ¼ 1, � ¼ 1=2. The radius 	þ is normalized to
	þ ¼ 1=2. (a) l1 ¼ 1=3, l2 ¼ 0, ðk;m; �k; �mÞ ¼ ð3; 1; 3; 1Þ ¼ ð3; 1; 3;�2Þ; (b) l1 ¼ 3=5, l2 ¼ 0, ðk;m; �k; �mÞ ¼ ð5; 1; 5; 1Þ ¼
ð5; 1; 5;�4Þ; (c) l1 ¼ 1=5, l2 ¼ 0, ðk;m; �k; �mÞ ¼ ð5; 2; 5; 2Þ ¼ ð5; 2; 5;�3Þ
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nk�p ¼ �n �k ��p; (104)

where n and �n are relatively prime. On a closed curve
of the string, the pattern of the rounded (star) polygon with
ðk;mÞ appears n times while the rounded (star) polygon
with ð �k; �mÞ appears �n times. Since k ¼ �k we find from
Eq. (104) that

�



¼ �n

n
; (105)

then the ratio �=
 is a rational number.

IV. SUMMARYAND DISCUSSION

In this paper, we have obtained general solutions
for stationary rotating closed Nambu-Goto strings in
five-dimensional flat spacetime. The world sheet of the
string admits a timelike Killing vector that is a linear
combination of a time-translation Killing vector and two
commutable rotation Killing vectors. The problem of find-
ing solutions for the strings reduces to solving the geodesic
equation in the orbit space defined by the projection with
respect to the timelike Killing vector. We have found that
the separation of variables occurs in the Hamilton-Jacobi
equation due to the existence of residual two Killing vec-
tors and a Killing tensor that are commutable to each other
in the orbit space. We have shown that a variety of
stationary closed configurations of string can exist in the
five-dimensional spacetime explicitly in contrast to the
case in four-dimensional spacetime, where stationary
closed strings are prohibited by the cusp formation.

A configuration of a stationary closed string is repre-
sented by a closed geodesic in the orbit space. In the five-
dimensional flat spacetime spanned by the Cartesian
coordinates ðT; X; Y; Z;WÞ, there are two orthogonal
planes, say the X-Y plane and the Z-W plane, on which
the X-Y rotation Killing vector commutes with the Z-W
rotation Killing vector. The stationary rotating closed
string winds the center of the X-Y plane while the string
winds the center of the Z-W plane. The winding string
rotates in the X-Y plane and rotates in the Z-W plane,
simultaneously. The stationary closed string configuration

is achieved by the balance of the centrifugal repulsion of
two independent rotations and the string tension.
We have discussed two special solutions: toroidal spiral

strings and planar strings. The closed toroidal spiral string
that lies on a two-dimensional torus, S1 on the X-Y plane
times S1 on the Z-W plane [44]. The toroidal spiral string
has an homogeneous world sheet, that is, tangent to two
linearly independent Killing vectors. The other special
case is the planar strings that lies on a rotating two-
dimensional plane. The planar strings are described by
Lissajous figures on the plane, and have self-intersecting
points in general, except for simple loops described by
Lissajous ovals. Special closed loops which belong to
both toroidal spirals and planar loops are simple loops
which we called Hopf loops in Ref. [44]. In the general
cases, a projection of snapshots of closed strings on the
X-Y and Z-W planes are rounded polygons or rounded star
polygons which are characterized by two sets of relatively
primes. There exist lots of variation for stationary closed
strings.
The string solutions obtained in the present paper are a

stationary states for a test string. If we take gravitational
interaction into account, the strings would emit gravitational
waves [47]. It would be expected that the closed strings in
higher dimensions emit gravitational waves constantly, not
burst like waves. The closed strings lose energy and angular
momenta gradually by the emission. Therefore, it is an
interesting problem to clarify the relation between shapes
of closed strings and emission rates of gravitational waves,
and evolutions of closed strings by gravitational wave emis-
sions. The backreaction problem of gravitational wave emis-
sion to the strings is a challenging issue [48–50]. If the closed
strings live a long time in the Universe, they would be a
candidate of dark matter in the framework of higher-
dimensional cosmology.
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