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We construct a well-defined lattice-regularized quantum theory formulated in terms of fundamental

fermion and gauge fields, the same type of degrees of freedom as in the Standard Model. The theory is

explicitly invariant under local Lorentz transformations and, in the continuum limit, under diffeomor-

phisms. It is suitable for describing large nonperturbative and fast-varying fluctuations of metrics.

Although the quantum curved space turns out to be, on the average, flat and smooth owing to the

noncompressibility of the fundamental fermions, the low-energy Einstein limit is not automatic: one needs

to ensure that composite metrics fluctuations propagate to long distances as compared to the lattice

spacing. One way to guarantee this is to stay at a phase transition. We develop a lattice mean-field method

and find that the theory typically has several phases in the space of the dimensionless coupling constants,

separated by the 2nd order phase transition surface. For example, there is a phase with a spontaneous

breaking of chiral symmetry. The effective low-energy Lagrangian for the ensuing Goldstone field is

explicitly diffeomorphism invariant. We expect that the Einstein gravitation is achieved at the phase

transition. A bonus is that the cosmological constant is probably automatically zero.
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I. INTRODUCTION

We live in a world with fermions, and they must be
included into general relativity. The standard way one
couples Dirac fermions to gravity is via the Fock-Weyl
action [1,2]: Fermions interact with the frame field eA� (also

known as vierbein, repère, or tetrad) and with the spin
connection !AB

� being the gauge field of the local Lorentz

group. The frame and the spin connection are a priori
independent field variables. The bosonic part of the action
has to be written through e� and !� accordingly. This is

known for the last 90 years as Cartan’s formulation of
general relativity [3]. Speaking generally, it is distinct
from the classic Einstein-Hilbert formulation based on
the Riemann geometry, since it allows for a nonzero tor-
sion. We stress that the presence of fermions in nature
forces us to make a definite choice in favor of the Cartan,
as contrasted to the Riemann geometry.

In practice, however, it is hardly possible to detect the
difference. In the leading order in the gradient expansion of
the gravitational action written down in terms of e� and

!�, the saddle-point equation for!� says that torsion is on

the average zero. Therefore, Cartan’s theory reduces to that
of Einstein.

In the next order in p2=M2
P whereMP is the Planck mass

and p is the characteristic momentum, a four-fermion
contact interaction appears from integrating out torsion.
Its strength is many orders of magnitude less than that of
weak interactions [4] therefore this correction will hardly
be detected any time soon in the laboratory. In principle, it
modifies, e.g., the Friedman cosmological evolution equa-
tion that follows from the purely Riemannian approach.

However, the correction remains tiny as long as fermions
in the Universe have Fermi momentum or temperature
that are much less than MP [5]. If they reach that scale
such that the four-fermion correction becomes of the order
of the leading stress-energy term, the theory itself fails
since the gradient expansion [5,6] from where it has been
derived, becomes inapplicable. There is no agreed upon
idea what the theory looks like at the Planck scale; in
particular, quantum gravity effects are supposed to set up
there.
Being indistinguishable from Einstein’s equation in the

range where observations are performed, Cartan’s theory,
however, has a critical feature when one attempts to quan-
tize it. The bosonic part of the action is written in terms of
e� and !�. To preserve the required general covariance or

invariance under the change of the coordinate system,
called diffeomorphism, any action term is necessarily
odd in the antisymmetric Levi-Civita tensor �����. That
makes all possible diffeomorphism-invariant action terms
not sign definite [7].
The simplest example is the invariant volume itself or

the cosmological term,
R
d4x detðeÞ. If the frame field is

allowed to fluctuate, as supposed in quantum gravity, the
sign of detðeÞ can continuously change from positive to
negative or vice versa. Of course, detðeÞ ¼ 0 is a singular-
ity where the curved space effectively loses one dimension
but it is not possible to forbid such local happenings in the
world with a fluctuating metric; see the illustration in
Fig. 1, left. Moreover, if detðeÞ goes to zero linearly in
some parameter t, it has to change sign by continuity; see
Fig. 1, right. The same is true for any diffeomorphism-
invariant action term.
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In the standard Riemannian formulation, one writes the

invariant integration measure with the help of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

where g�� ¼ eA�e
A
� is the metric tensor, hence detðgÞ ¼

ðdetðeÞÞ2 is sign definite. Its square root, however, should

be understood as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp ¼ detðeÞ and can have any sign.

If it passes through zero it changes sign by continuity [8].
This fundamental pathology of any diffeomorphism-

invariant quantum theory has not been stressed before,
probably for two reasons. First, one commonly deals
with the perturbative quantization about a flat or, e.g., a
de Sitter metric such that the main concern is the absence
of runaway fluctuations from that point only. However,
when quantizing gravity, one has to be concerned with
large nonperturbative fluctuations as well. Second, usually
Minkowski space-times are considered where the integra-
tion measure expðiActionÞ is oscillating anyway indepen-
dently of the action sign. However, a theory with a
sign-indefinite action in Euclidian space where the weight
is expð�ActionÞ is usually fundamentally sick also in
Minkowski space. An illustration is provided by the scalar
�3 theory; see Fig. 2. Perturbation theory exists there in the
usual sense near� ¼ 0. However, if in Euclidian space the
theory does not exist, in Minkowski space one cannot
define properly the nonperturbative Feynman propagator.
There will be also other pathologies related to the possi-
bility of tunneling to a bottomless state.

In gravity theory, the Euclidian formulation has its own
right, for example, in problems related to thermodynamics
and to tunneling, like in the Hawking radiation problem
where paradoxes are encountered just because we do not
know how to quantize Euclidian gravity. If a theory is well
defined for a Euclidian signature, it is usually possible to

Wick rotate it to the Minkowski world. Therefore, for
clearness we shall discuss here Euclidian gravity.
Any diffeomorphism-invariant action, with any number

of derivatives, is not sign definite in Euclidian space
and hence cannot serve to define quantum gravity
nonperturbatively.
At this time, we see only one way to overcome the sign

problem, and that is to use in part fermionic variables
in formulating quantum gravity microscopically, rather
than only bosonic ones. Integrals over anticommuting
Grassmann variables are well defined irrespectively of the
overall sign in the exponent of a fermionic action. The
reason is that in fermionic integrals introduced by Berezin
[9] one actually picks up only certain finite order in the
Taylor expansion of the exponent of the action, such that
the overall sign does not matter. One calls it spinor quan-
tum gravity. It has been advocated by Akama [10], Volovik
[11], and recently in a series of papers by Wetterich
[12–15] on other grounds.
More specifically, we suggest [7] (see also Ref. [16])

that at the fundamental, microscopic level gravity theory is
defined as a theory of certain fundamental anticommuting
spinor fields c y, c . We wish to preserve local gauge
Lorentz symmetry exactly at all stages, and for that we
need the explicit connection field !�. The frame field e�
and the metric tensor g�� will be composite fields making

sense only at low energies. The basic independent variables
will be c y, c and the gauge field !�, the same type of

degrees of freedom as in the Standard Model. We believe
that using the same type of variables as in the Standard
Model will help to unify all interactions [7]. As far as only
gravity is concerned, the fundamental spinor fields c y, c
may or may not be related to the fundamental matter fields.
We introduce the main building blocks of the theory in
Sec. II.
A quantum field theory is well defined if it is regularized

in the ultraviolet. We shall regularize spinor quantum
gravity by introducing simplicial lattice (made of triangles
in 2 dimensions, tetrahedra in 3 dimensions, 5-cells or
pentachorons in 4 dimensions, etc.) covering an abstract
space, such that the simplex vertices are characterized
and counted by integers i. Only the topology of this
abstract number space matters, e.g., the number of nearest
neighbors, etc.
Each vertex i in the number space corresponds to the real

world coordinate by a certain map x�ðiÞ. Diffeomorphism

FIG. 2. The �3 theory is fundamentally sick both in Euclidean
space where it is unbounded, and in Minkowski space where it
can tunnel to a bottomless state.
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FIG. 1 (color online). Left: An example of a space with alternating sign of detðeÞ; Right: detðeÞ changes sign by continuity of the
frame field.
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invariance means that the theory should not depend on the
coordinates x�ðiÞ we ascribe to the vertices. Also, in the
continuum limit (implying slowly varying fields) the action
should be of the form

R
ddxLðxÞ and invariant under

diffeomorphisms, x� ! x0�ðxÞ. The integration measure
over the fields in the path integral formulation should be
also diffeomorphism invariant. In addition, we require
exact gauge invariance under local Lorentz transforma-
tions. We build fermionic actions satisfying these condi-
tions in Sec. III, and regularize them by putting on a lattice
in Sec. IV.

After constructing a completely well-defined lattice-
regularized quantum theory, the next question to address is
whether the continuum limit can be achieved and whether
it reduces to the Einstein-Cartan theory in the low-energy
limit. The continuum limit is obtained when and if field
correlations spread over a large distance in lattice units.
The trouble is that the quantum theory one deals with in
this approach is a typical strong-coupling theory where
most of the correlations die out over a few lattice cells.
Contrary to the standard lattice gauge theory where long-
range correlations are ensured by simply taking the weak-
coupling limit �! 1, in spinor quantum gravity there is
no obvious handle to make the correlations long ranged.

The main trick and the invention of this paper is to
ensure long-range correlations by adjusting the bare di-
mensionless coupling constants to the point (or line, or
surface) where the theory undergoes a phase transition of
the 2nd kind. At such point, all correlation functions
become long ranged, and the Einstein theory will be guar-
anteed in the low-momenta limit by the inherent diffeo-
morphism invariance.

Second-order phase transitions occur in theories
where there is an order parameter, usually related to the
spontaneous breaking of a continuous symmetry. Our
primary goal in this project is to demonstrate that
second-order phase transitions are typical in the kind of
diffeomorphism-invariant theories we consider. We de-
velop in Sec. V an original mean-field method well suited
for the search of the phase transitions, and check its accu-
racy in the Appendix where it is probed in an exactly
solvable model, with very satisfactory results. Using
this method, we unveil the phase diagram of a generic
2-dimensional lattice spinor gravity in the space of the
bare coupling constants, Sec. VI. The model has two
continuous symmetries: the Uð1Þ chiral symmetry and
the Uð1Þ symmetry related to the fermion number conser-
vation; both can be, in principle, spontaneously broken.

It turns out that there is a range of bare couplings where
the fermionic lattice system experiences spontaneous
breaking of chiral symmetry. In the particular model we
studied we did not observe spontaneous breaking of the
fermion number; however, it can happen in other models.
This is an interesting finding per se but it may be also of
use in the attempts to unify quantum gravity with the

Standard Model. On this route, one expects one or several
spontaneous breakups of continuous symmetries.
The 2-dimensional model we consider in some detail has

certain nice features. First, the physical (invariant) volume
hVi is extensive, i.e., proportional to the number of lattice
points taken. This is not altogether trivial since nonpertur-
bative metric fluctuations allow, in principle, ‘‘crumpling’’
of the space, and that is what some researchers indeed
typically observe in alternative nonperturbative approaches
to gravity. In spinor gravity, it is a natural result following
from the noncompressibility of fermions. Second, the
quantum average of the curvature turns out to be zero such
that the empty space without sources is effectively flat.
This is also a welcome feature since the natural result in
nonperturbative gravity is that the curvature is of the order
of the cutoff, that is, of the Planck mass, which is unac-
ceptable. Third, despite flatness, the theory definitely de-
scribes a fluctuating quantum vacuum, as exemplified by
the fact that the physical volume variance or susceptibility
hV2i � hVi2 is nonzero.
As a result of the spontaneous breaking of continuous

symmetry (here: chiral symmetry), a Goldstone field ap-
pears. We check by an explicit calculation in Sec. VII that
the low-momentum effective (‘‘chiral’’) Lagrangian for the
Goldstone field is diffeomorphism invariant as expected.
This invariance is rooted in the way we construct the
original lattice action for spinors. The appearance of a
Goldstone particle means that a definite bilinear combina-
tion of fermions is capable of propagating to large dis-
tances. However, this is not enough: in order for the system
to totally lose memory about the original lattice, all de-
grees of freedom have to propagate to long distances in
lattice units. This happens only at a phase transition where
we expect that the Einstein-Hilbert action emerges as a
low-energy effective action for the classical metric, with
the cosmological constant being automatically zero; see
Sec. VIII. In Sec. IX we discuss the dimensions of various
quantities and fields used throughout the paper. We sum-
marize in Sec. X.

II. COMPOSITE FRAME FIELDS

Following Ref. [7] we introduce a composite frame field
eA� built as a bilinear fermion ‘‘current.’’ In d dimensions

the frame field transforms as a vector of the SOðdÞ Lorentz
gauge group:

eA�ðxÞ!LorentzOABðxÞeB�ðxÞ: (1)

Since A; B; . . . ¼ 1; . . . ; d are flat Euclidean indices, we
can equivalently write them either as subscripts or super-
scripts. The frame field transforms also as a rank-one
tensor (world vector) with respect to diffeomorphisms
x� ! x0�ðxÞ:

eA�ðxÞ!diffeomorphism
eA�0 ðx0Þ

@x0�0

@x�
: (2)
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Our basic objects are fermion fields c ðxÞ, c yðxÞ as-
sumed to be world scalars under diffeomorphisms, and
transforming according to the spinor representation of the
Lorentz group,

c ðxÞ!VðxÞc ðxÞ; c yðxÞ! c yðxÞVyðxÞ; V2SOðdÞ;
c ;c yðxÞ! c ;c yðx0ðxÞÞ: (3)

The dimension of the spinor representation is df ¼ 2½d=2�,
see, e.g., Ref. [17].

We introduce the covariant derivative in the spinor
representation,

r�¼ @�� i

2
!AB

� �AB; r
 

�¼ @
 
�þ i

2
!AB

� �AB; (4)

where !AB
� is the spin connection in the adjoint represen-

tation of the SOðdÞ group, and �AB are its df � df
generators,

�AB ¼ i

4
½�A�B�; (5)

built from Dirac matrices �A satisfying the Clifford
algebra,

f�A�Bg ¼ 2	AB1df�df : (6)

In the adjoint (antisymmetric tensor) representation the
corresponding covariant derivative is

DAB
� ¼ @�	

AB þ!AB
� : (7)

Its commutator defines the curvature

½D�;D��AB ¼ F AB
��; ½r�;r�� ¼ � i

2
F AB

���AB; (8)

where

F AB
�� ¼ @�!

AB
� þ!AC

� !CB
� � ð�$ �Þ: (9)

One can built two distinct bilinear combinations of the
fermion fields, transforming as the frame field (1) and (2):

eA� ¼ iðc y�Ar�c þ c yr
 

��
Ac Þ; (10)

fA� ¼ c y�Ar�c � c yr
 

��
Ac : (11)

To check that eA� and fA� transform as a vector (1) one needs

the relation between the matrix V rotating spinors (3) and
the matrix O rotating vectors,

OAB ¼ 1

df
TrðVy�AV�BÞ:

Given that c , c y anticommute, the above bilinear opera-
tors are Hermitian.

We can define the bilinear fermion operator that plays
the role of the torsion field, for example,

TA
��ðeÞ¼d 1

2
ðDAB

� eB� �DAB
� eB�Þ ¼ i

4
F AB

��ðc y�Bc Þ; (12)

and similarly for the other composite frame field f� (11).

III. DIFFEOMORPHISM-INVARIANT
ACTION TERMS

One can now construct a sequence of many-fermion
actions that are invariant under local Lorentz transforma-
tions and also diffeomorphism invariant, using either eA� or

fA� (or both) as building blocks:

Sk ¼
Z

ddx
1

d!
��1�2...�d�A1A2...AdðF A1A2

�1�2 � � �F A2k�1A2k
�2k�1�2kÞ

� ðeA2kþ1
�2kþ1 � � � eAd

�dÞ; k ¼ 0; 1; . . . ; ½d=2�; (13)

where ��1�2...�d is the totally antisymmetric (Levi-Civita)
tensor. Notice that S0 is the analog of the cosmological
term but there are many of them since one can replace any
number of eA� ’s by fA�’s, S1 is the analog of the Einstein-

Hilbert-Cartan action linear in curvature, and the last ac-
tion term S½d=2� for even d is a full derivative. Apart from

full derivatives, there are 3 possible action terms in 2d,
6 terms in 3d, 8 terms in 4d, 12 terms in 5d, etc.
The use of ��1�2...�d is obligatory to support diffeomor-

phism invariance. In principle, one can construct Lorentz-
invariant action terms by contracting the flat indices with
Kronecker deltas instead of �A1...Ad ; however, that will
make the action term P and T odd. For example, there is
a well-known P, T-odd term in four dimensions, called
sometimes the Holst action, �����F AB

��e
A
�e

B
� [18,19], but

we do not consider such terms here.
One can add to the list of admissible action terms any of

the actions (13) multiplied by any power of the world and
Lorentz-group scalar (c yc ); we shall consider such kinds
of terms later on in relation to the spontaneous breaking of
chiral symmetry.
All action terms (13) are apparently invariant under two

global Uð1Þ rotations:
(i) phase rotation related to the fermion number conser-

vation, c ! ei
c , c y ! c ye�i
,
(ii) chiral rotation for even dimensions d, c !

ei��dþ1c , c y ! c yei��dþ1 , where �dþ1 ¼ id=2

�1�2 . . .�d, f�dþ1�dg ¼ 0, �2
dþ1 ¼ 1,

since both eA� and fA� are invariant under these transforma-

tions. The two corresponding Nöther currents are con-
served. However, both symmetries can be spontaneously
broken by interactions, and we shall see that this is what
indeed typically happens.

IV. SPINOR GRAVITY ON THE LATTICE

In order to formulate quantum theory properly one has
to regularize it at short distances. The most clear-cut
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regularization is by (lattice) discretization, however, dif-
feomorphism invariance imposes severe restrictions on it;
see recent discussion by Wetterich [13–15]. We impose
two basic requirements:

(i) explicit invariance under local gauge transforma-
tions of the Lorentz group, small or large (as in
lattice gauge theory),

(ii) if the fields vary slowly in lattice units, i.e., in the
continuum limit, the lattice action reduces to one of
the diffeomorphism-invariant action terms (13) and
the like.

A. Triangulation by simplices

To that end, we introduce an abstract discretized space
where only the topology of vertices and edges connecting
neighbor vertices is chosen beforehand and fixed. We find
that the simplest hypercubic topology does not work. Only
in two dimensions it is possible, for accidental reasons,
to fulfill item 2 above by introducing a square lattice. In
higher dimensions, the simplest but sufficient construction
is to use a simplicial lattice. For uniformity, in two dimen-
sions we also consider a triangle lattice made of three-
vertex cells. In 3d simplices are tetrahedra or 4-cells, in 4d
these are pentachorons or 5-cells, and so on.

It is always possible to cover the whole d-dimensional
space by (dþ 1)-cells or simplices, although the number
of edges entering one vertex may not be the same for all
vertices. Alternatively, the number of edges coming from
all vertices is the same but then the edges lengths may vary,
if one attempts to force the lattice into flat space. Since
only the topology of the nearest neighbors matters and the
abstract ‘‘number’’ space does not need to be flat, this is
also acceptable. The important thing is that the chosen set
of cells should fill in the space without holes and without
overlapping [20].

All vertices in a simplicial lattice can be characterized
by a set of d integers. For brevity we label these d numbers
by a single integer i. Each vertex has its unique integer
label i, supplemented with a rule regarding which labels
are ascribed to the neighbor vertices forming elementary
cells. We shall denote the dþ 1 labels belonging to one
cell by i ¼ 0; 1; . . . ; d. In this section, we write down the
full lattice action as a sum over actions for individual
simplicial cells; therefore, we shall not be concerned
with the precise geometric arrangement of the cells.

Each vertex in the abstract number space corresponds to
the real world coordinate by a certain map x�ðiÞ. The goal
is to write possible action terms in such a way that if the
fields vary slowly from one vertex (or link) to the topo-
logical neighbor one, the action reduces to one of the
possible diffeomorphism- and local Lorentz-invariant ac-
tion term in Eq. (13).

We start by writing the volume of an elementary cell
(simplex) in a given coordinate system in d dimensions.
It can be presented as a determinant of a d� d matrix,

Vsimplex ¼ 1

d!
detð�;iÞðx�i � x�0 Þ; (14)

where x
�
0 is the coordinate ascribed to one of the vertices,

and x
�
i , i ¼ 1; . . . ; d are the coordinates ascribed to all the

other vertices. We introduce the notion of a ‘‘positive
order’’ of vertices i in the cell: it is such that for smooth
functions x�i the volume (14) is positive. An odd permuta-
tion of vertices in this set makes a ‘‘negative order.’’
It will be convenient to use the antisymmetric symbol

�i0i1...id ¼

8>>><
>>>:
0 if ik does not belong to a given cell;

1 if the set i0; i1 . . . id is in the positive order;

�1 if the set i0; i1 . . . id is in the negative order:

(15)

With the help of this symbol the cell volume (14) can be
written as

Vsimplex ¼ �i0i1i2...id

ðdþ 1Þ!
��1�2...�d

d!
ðx�1

i1
� x�1

i0
Þðx�2

i2
� x�2

i0
Þ . . .

� ðx�d

id
� x

�d

i0
Þ: (16)

B. Lattice action

The building blocks of our construction are anticommut-

ing spinor fields c i, c
y
i that are world scalars and ‘‘live’’

on lattice vertices i, and the parallel transporter Uij. As in

any lattice gauge theory, we replace the connection !� by

a unitary matrix ‘‘living’’ on lattice links [7],

Uij¼Pexp

�
� i

2

Z xj

xi

!AB
� �ABdx�

�
; Uji¼Uyij: (17)

In terms of these lattice variables, the discretized versions
of the composite frame fields (10) and (11) are

~e A
i;j ¼ iðc yj Uji�

AUijc j � c yi �Ac iÞ; (18)

~f A
i;j ¼ c yi �AUijc j � c yj Uji�

Ac i: (19)

The difference between ~e and ~f is that the first has both
fermions in the same vertex whereas in the second, fermi-
ons are residing in the neighbor vertices.
Expanding all fields in Eqs. (18) and (19) around the

center of a cell x ¼ 1
dþ1

P
d
i¼0 xi we obtain

~e A
i;j ¼ ðx�j � x�i ÞeA�ðxÞ þOð�x2Þ; (20)

~f A
i;j ¼ ðx�j � x

�
i ÞfA�ðxÞ þOð�x2Þ; (21)

where eA�, f
A
� are given by their continuum expressions

(10) and (11), and the correction term is proportional to the
derivatives of the fields and to the squares of the lengths of
the cell edges. If the fields are slowly varying, meaning that
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the derivatives are small, the correction term can be ne-
glected. This is what we mean by the continuum limit.

We also need the discretized version of the curvature
tensor F AB

��: it is a plaquette. In our case the plaquettes are

triangles, and we define the parallel transporter along a
closed triangle spanning the i, j, k vertices:

Pijk ¼ UijUjkUki; PAB
ijk ¼

1

df
Trð�ABPijkÞ: (22)

Expanding Pijk around the center of the cell x we obtain

Pijk ¼ 1� i

4
ðx�j � x�i Þðx�k � x�i ÞF ��ðxÞ þOð�x3Þ;

and

PAB
ijk ¼ �

i

4
ðx�j � x�i Þðx�k � x�i ÞF AB

��ðxÞ þOð�x3Þ:

Using the above ingredients one can easily construct
the lattice-regularized version of the action terms (13).
For example, the discretized cosmological term S0 has
the form:

~S 0 ¼
X

all cells

�i0i1...id

ðdþ 1Þ!
�A1A2...Ad

d!
~eA1

i0i1
~eA2

i0i2
. . . ~e

Ad

i0id
; (23)

where any number of ~e’s can be replaced by ~f’s. In the
continuum limit one uses Eqs. (20) and (21) and obtains

~S0 ¼
X

all cells

�i0i1...id

ðdþ 1Þ!
��1�2...�d

d!
ðx�1

i1
� x�1

i0
Þ . . . ðx�d

id
� x�d

i1
Þ

� detðeÞ½1þOð�xÞ�: (24)

The coordinate factors combine into the volume of the cell
(16) and one gets

~S0 ¼
X
cells

VðcellÞ detðeÞ½1þOð�xÞ� !
Z

ddx detðeÞ

¼ S0; (25)

where detðeÞ is composed from the continuum tetrad (10)
and is attributed to the center of a cell. Eq. (25) proves that
the lattice action (23) becomes the needed continuum
action (13) if the fields involved are slowly varying from
one lattice vertex to the neighbor ones.

Similarly, one finds the lattice version of all other action
terms Sk of Eq. (13):

~Sk ¼ ð4iÞk
X
cells

�i0i1...id

ðdþ 1Þ!
�A1A2...Ad

d!
ðPA1A2

i0i1i2
P
A3A4

i0i3i4
. . .PA2k�1A2k

i0i2k�1i2kÞ

� ð~eA2kþ1
i0i2kþ1 . . . ~e

Ad

i0id
Þ ! Sk; (26)

where the total number of plaquette factors P (22) is k,
k ¼ 0; 1; . . . ; ½d=2�. In fact one can write a variety of such
action terms replacing any number of composite frame

fields ~e (18) by the composite frame fields ~f (19).

C. Lattice partition function

The lattice-regularized partition function for the spinor
quantum gravity is quite similar to that of the common
lattice gauge theory. One integrates with the Haar measure
over link variables Uij living on lattice edges, and over

anticommuting fermion variables c i, c
y
i living on lattice

sites. The lattice, though, must be simplicial, otherwise the
trick used, e.g., in Eq. (24) to get the diffeomorphism-
invariant action in the continuum limit, would not work.
Because of the requirement of diffeomorphism invari-

ance, the lattice action is quite different from those used
in common lattice gauge theory. Typically one has many-
fermion terms in the action. There are no action terms
without fermions. One can write 3 action terms in 2d (all
of them are four-fermion), 6 terms in 3d (four are six-
fermion and two are two-fermion), 8 terms in 4d (five are
eight-fermion and three are four-fermion), etc. We assume
that spinor fields are dimensionless since we normalize the
basic Berezin integrals as

Z
dc c ¼ 1;

Z
dc yc y ¼ 1;

Z
dc ¼ 0;

Z
dc y ¼ 0; (27)

hence, all quantities in Eq. (26) are dimensionless.
Therefore, the ‘‘coupling constants’’ �k one puts as arbi-

trary coefficients in front of the action terms ~Sk (26) are all
dimensionless.
The partition function is

Z ¼ Y
vertices i

Z
dc yi dc i

Y
links ij

Z
dUij

� exp

�X
cells

�ðmÞk
~SðmÞk ðc y; c ; UÞ

�
; (28)

where ~SðmÞk are lattice actions of the type (26) with any

number of composite frame fields ~e (18) replaced by the

other composite frame fields ~f (19).

V. MEAN-FIELD APPROXIMATION

The partition function (28) defines a new type of
a theory, and new methods—exact, numerical, and
approximate—have to be developed.
In principle, in order to compute the partition function

(28) as well as correlation functions, etc., one has to Taylor
expand the exponent in Eq. (28) to certain powers of the
fermionic action terms Sk such that at all lattice sites there
is precisely the same number of fermion operators c y and
c as there are integrations, since all other contributions are
identically zero by the Berezin integration rule (27) for
anticommuting variables. The subsequent integration over
link variables with the Haar measure is simple [7] since
link matrices Uij never appear in a large power. Moreover,
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the majority of potentially possible contributions are killed
by link integration.

In practice, however, the arising combinatorial problem
is tremendous, and we did not manage yet to find a com-
putational algorithm that would be faster than the exponent
of the lattice volume. So far we have done a toy model in
1d exactly (see the Appendix) and succeeded in computing
numerically correlation functions in 2d for limited vol-
umes. There is a hope that the 2d model may be solved
exactly but the method can hardly be extended to higher
dimensions.

Therefore, for this pilot study, we have developed an
approximate mean-field method to get the first glance on
the dynamics of the new interesting theory at hand.
Comparing the results with an exactly solvable model we
see that the mean-field accuracy is within a few percent.
In the 2d model there are a few exact functional relations
that are satisfied with the accuracy better than 15%, and
this can be systematically improved. More important, the
mean-field approximation reveals a nontrivial phase struc-
ture of the theory in the space of the coupling constants �k.
This is the main finding of this study that may have
important physical implications; see the Introduction.

The mean-field approximation we use is an extension of
methods developed in condensed matter physics that go
under the names ‘‘dynamical mean-field approach’’ or
‘‘local impurity self-consistent approximation’’ or ‘‘cavity
method’’; see Ref. [21] for a review. Roughly speaking, the
idea of the method is the following: One first picks up a
simple element of the lattice (e.g., one simplex or a group
of simplices with or without the boundary, let us call this
fixed element ‘‘the cavity’’), and calculates the effective
action for the fields inside the cavity in the collective
background of the fields outside it, replacing the back-
ground by the supposed mean field. At the second stage,
one makes the method self-consistent, namely, one calcu-
lates the mean field by integrating over the ‘‘live’’ variables
inside the chosen cavity using the effective action found
and expressed through the mean field at the first stage. As a
result, one gets a system of highly nonlinear self-consistent
equations for a set of mean values of the field operators.
Solving those equations one obtains the mean-field values

as function of the coupling constants �ðmÞk . This gives the

phase diagram of the theory in the space of the coupling
constants.

The method has the advantage that it can be systemati-
cally improved by enlarging the chosen cavity. In the limit
when the cavity covers the whole lattice, it is an exact
calculation. Also, it is known that the accuracy of the
mean-field method is better the more nearest neighbors
there are [21]. In simplicial lattices, the number of neigh-
bor cells is large, and the mean-field method becomes
exact in the limit d! 1.

Let us formulate the method more mathematically. We
choose the cavity, for example, the elementary simplex

with the boundary. We label the ‘‘live’’ fields belonging
to the cavity by m; n; . . . , and the fields outside the cavity
(that will be replaced by mean fields) by i; j; . . . . The full
partition function can be written symbolically as

Z ¼
Z
dc ymdc mdUmne

Smn

Z
dUmie

Smi

Z
dc yi dc idUije

Sij ;

(29)

where Smn is the part of the action that contains only fields
from the cavity, Sij contains only fields from outside the

cavity, and Smi contains both. The link elements Umi are
connecting vertices from the cavity with their nearest
neighbors outside.
The last integral in Eq. (29) is the full partition function

with the cavity cut out. When the lattice volume goes to
infinity, cutting out a finite cell does not change the aver-
ages of operators as compared to the averages computed on
a full lattice; we denote them as

hhOii ¼
R
dc yi dc idUije

SijOðc yi ; c i; UijÞR
dc yi dc idUije

Sij
: (30)

The integration over the links Umi connecting the cavity
with the outside neighborhood must be performed explic-
itly in Eq. (29). We expand eSmi in powers of the mixed
action; since Smi is a fermion operator, the power series is
finite. Integrating over Umi splits all terms involved into a
sum of products of operators composed of the cavity fields

Oðc ym; c m;UmnÞ and those living outside the cavity

O0ðc yi ; c i; UijÞ:Z
dUmie

Smi ¼ 1þX
p

Opðc ym; c m;UmnÞO0pðc yi ; c i; UijÞ;

(31)

where the sum goes over various fermion operators labeled
by p. Operators built from the cavity fields are left intact
whereas the outside operators are replaced by the averages
according to Eq. (30). We, thus, obtain the effective action
for the fields inside the cavity:

eSeff;mn ¼ eSmn

�
1þX

p

Opðc ym; c m;UmnÞhhO0pii
�
: (32)

Finally, we make the calculation self-consistent by request-
ing that the operator averages hOpi computed from the

cavity fields alone with the effective action (32) coincide
with the full ones hhOpii:

hOpi ¼
R
dc ymdc mdUmne

Seff;mnOpðc ym; c m;UmnÞR
dc ymdc mdUmne

Seff;mn

¼ hhOpii: (33)

Since Seff depends on the averages hhOpii the self-

consistency equation, (33), is in fact a set of nonlinear
equations on the mean values of the operators introduced
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in this derivation. Solving those equations, one finds the
values of the average operators as function of the coupling
constants of the theory.

Of special interest are the cases where certain operator
averages (the ‘‘condensates’’) violate the continuous sym-
metries of the original theory. It signals the spontaneous
breaking of symmetry and leads to a nontrivial phase
diagram for the theory. In the next section we illustrate it
in a general 2d model.

VI. TWO-DIMENSIONAL SPINOR GRAVITY

The partition function is defined by Eq. (28) where the
action has, in general, three terms with three arbitrary
coupling constants �1;2;3,

S ¼
Z

d2x

�
�1 detðeÞ þ �2 detðfÞ þ �3

1

2!
�AB���eA�f

B
�

�
;

A; B ¼ 1; 2: (34)

The lattice-regularized version of it is, according to
Eq. (23),

~S ¼ X
cells

�ijk

3!

�AB

2!
ð�1~e

A
ij~e

B
ik þ �2

~fAij ~f
B
ik þ �3~e

A
ij
~fBikÞ; (35)

where i, j, k ¼ 0, 1, 2 label the vertices of a cell which in
2d is a triangle. Using integration by parts, the first term in
(34) can be rewritten as �F 12

12ðc yc Þ2. It gives an alter-
native discretization for the same continuum action:

~S ¼ X
cells

�ijk

3!

�AB

2!

�
�
� i

3
�1P

AB
ijkðc yi c iÞ2 þ �2

~fAij ~f
B
ik þ �3~e

A
ij
~fBik

�
: (36)

Although in the continuum limit the lattice actions (35) and
(36) differ by a full derivative, the lattice mean-field ap-
proximation gives numerically slightly different results
depending on whether we start from Eq. (35) or from
Eq. (36). The deviation serves as one of the checks of the
accuracy of the approximation, and we find it consistent
with other accuracy checks.

In d ¼ 2 the Lorentz group is the Abelian SOð2Þ ’ Uð1Þ
group. The spinors are two component, and the � matrices
are the Pauli matrices �A ¼ �A, A ¼ 1, 2. The Lorentz
rotations generator is �12 ¼ ��3=2; see Eq. (5).
The analog of the ‘‘gamma-five’’ matrix in 2d is �3 ¼ i�1

�2 ¼ ��3.
Both variants of the frame field eA� and fA� as well as

their lattice extensions, ~eAij and
~fAij, are invariant under two

global Uð1ÞV �Uð1ÞA transformations:

vector transformation :c!ei
�
2c ; c y!c ye�i

�
2 ; (37)

axial transformation : c!ei


2�

3
c ; c y!c yei
2�3

: (38)

Therefore, both the continuum (34) and the lattice (35)
actions possess these two global symmetries also; the
corresponding Nöther currents are conserved. The vector
symmetry means that the fermion number is conserved
whereas the axial means that the difference between the
numbers of ‘‘left-handed’’ and ‘‘right-handed’’ fermions
(described by the upper and lower components of the
spinors, respectively) is also conserved. It is also called
the helicity conservation, or chiral symmetry.

A. Exact results

In the 2d partition function (28), there are four integrals

per site over fermion variables c 1, c 2, c y1 , c
y
2 , and one

integration per link over the Abelian matrix Uij ¼
expð�i !ij

4 �3Þ. Berezin’s integrals over fermions (27) are

nonzero only when every lattice site takes exactly four
fermion operators from the action exponent. Meanwhile,
each term in the action (35) or (36) is four-fermion. From
counting the number of fermion fields coming from the
action (which must be equal to the number of integrations)
we conclude that the partition function Z is a homogenous
polynomial of the coupling constants �1;2;3 of order N,

where N is the total number of sites in the lattice,

Z ¼ �N
1 F

�
�2

�1

;
�3

�1

�
!

8>>><
>>>:
C1�

N
1 �2;3 ! 0

C2�
N
2 �1;3 ! 0

C3�
N
3 �1;2 ! 0:

(39)

Since there are two types of frame fields, e and f, we can
define three types of ‘‘physical’’ or invariant volumes of
the generally curved space, averaged over quantum fluctu-
ations of the composite frame fields,

hV1i¼d
�Z

d2x detðeÞ
�
¼ 1

Z
@Z
@�1

¼ @ logZ
@�1

; (40)

hV2i¼d
�Z

d2x detðfÞ
�
¼ 1

Z
@Z
@�2

¼ @ logZ
@�2

; (41)

hV3i¼d
�Z

d2x
1

2!
�AB���eA�f

B
�

�
¼ 1

Z
@Z
@�3

¼@logZ
@�3

: (42)

The immediate conclusion from Eqs. (39)–(42) is that the
average action is

hSi ¼ �1hV1i þ �2hV2i þ �3hV3i ¼ N ¼ M

2
; (43)

irrespective of the coupling constants, where M is the
number of triangle cells, which is twice the number of
vertices N for large simplicial lattices.
Further on, one can introduce ‘‘physical volume suscep-

tibility’’ or variance

h�V2
1 i¼d hðV1 � hV1iÞ2i ¼ hV2

1 i � hV1i2 ¼ @2 logZ
@�2

1

; (44)
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h�V2
2 i¼d hðV2�hV2iÞ2i ¼ hV2

2 i� hV2i2¼ @2 logZ
@�2

2

; (45)

h�V2
3 i¼d hðV3�hV3iÞ2i¼ hV2

3 i�hV3i2¼@2 logZ
@�2

3

: (46)

Therefore, from Eq. (39) we know exactly the average
physical volumes and volume susceptibilities at least at
the edges of the parameter space �¼dð�1; �2; �3Þ:

hV1i�2;3!0¼ M

2�1

; hV2i�1;3!0¼ M

2�2

; hV3i�1;2!0¼ M

2�3

;

(47)

h�V2
1 i�2;3!0 ¼ � M

2�2
1

; h�V2
2 i�1;3!0 ¼ � M

2�2
2

;

h�V2
3 i�1;2!0 ¼ � M

2�2
3

; (48)

whereM ¼ 2N is the total number of simplicial cells in the
lattice. The proportionality of these quantities to M is a
very general property (valid not only at the edges of the
parameter space but everywhere) following from Eq. (39).
It shows that the physical volume is an extensive quantity,
as it should be. This is not altogether trivial since
nonperturbative metric fluctuations allow, in principle,
‘‘crumpling’’ of the space, or the formation of ‘‘branched
polymers,’’ and that is what some researchers observe in
alternative nonperturbative approaches to gravity. In spinor
gravity, it is a natural result following physically from the
noncompressibility of fermions and mathematically ex-
pressed by Eq. (39).

The susceptibilities (48) are also extensive, as should be
expected. In the classical ground state there are no quantum
fluctuations, so�V ¼ 0. The fact that (48) is nonzeromeans
that we are dealing with a fluctuating quantum vacuum.
At the same time for large volumes, the relative strength of

the fluctuations die out:
ffiffiffiffiffiffiffiffiffiffi
�V2
p

=V � 1=
ffiffiffiffiffi
M
p ! 0.

There are theorems for mixed derivatives, valid in the
whole parameter space �, that can be used to check the
accuracy of approximate calculations, for example,

@hR d2x detðeÞi
@�2

¼ @ logZ
@�1@�2

¼ @hR d2x detðfÞi
@�1

: (49)

Finally, there is an exact statement about the average
curvature. The number of link variables in all terms of the
action (35) is even. That gives a nonzero result from
integration over links for the partition function. However,
if one attempts to compute the average of the curvature
proportional to F that in the lattice formulation is given
by a product of three links [see Eq. (22)], the number of
link variables becomes odd, and link integration yields an
identical zero. Therefore, we conclude that the average
Cartan curvature proportional to the average scalar curva-
ture is zero,

hdetðeÞRi ¼ 2hF 12
12i ¼ 0: (50)

This result in 2d is, of course, in conformity with the
zero Euler characteristic of a torus; no other result
could be correct. It is illuminating, however, to see how
‘‘microscopically’’ the Euler theorem works for fluctuating
spaces. In higher dimensions detðeÞR is not a full derivative
but it still may be possible to find its average in a similar
way.
At the same time, owing to quantum fluctuations

the average curvature squared is generally nonzero and
extensive, ��Z

d2x detðeÞR
�
2
�
�M; (51)

implying that the volume-independent combination dies
out in the thermodynamic limit,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðR d2x detðeÞRÞ2i
q
hRd2x detðeÞi

� 1ffiffiffiffiffi
M
p ! 0: (52)

Equations (47), (50), and (52) mean that although we
apparently deal with a quantum fluctuating vacuum, the
space is on the average large and flat in the absence of
external sources. Therefore, one can say that the model
describes a flat background metric G�� that is a unity

matrix in a particular frame representing the flat space
but transforms as a tensor under the change of coordinates.
We shall use this notion in Sec. VII.

B. Mean-field approximation for one simplex cavity

In this subsection we apply the mean-field method for-
mulated in Sec. V to the lattice action (36) where we first
put for simplicity �3 ¼ 0. At the end of this section we
formulate the main results for �3 � 0.
In the first approximation to the mean-field method,

we choose the elementary triangle cell ðm; n; pÞ as the
‘‘cavity’’; see Fig. 3. The fields inside the triangle cavity
are considered as real quantum fields, whereas the fields
outside the cavity are combined into certain gauge-
invariant operators that are frozen to their mean-field

FIG. 3. The simplest triangle cavity ðm; n; pÞ and its neighbors
used in the mean-field calculation.
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values. The triangle cavity is surrounded by three black
triangles of the type ði; m; nÞ with a common edge, and by
nine white triangles of the type ði; j; mÞ with a common
vertex. The effective action for the fields inside the cavity
gets contributions from both types of neighbors.

Following the method of Sec. V, we expand the action
exponent for every border cell, and integrate over the link
variables Umi connecting the cavity with the outer lattice.
As a result, we obtain the product of operators built of the
fields inside the cavity and those built of the outside fields.
The latter operators are replaced by the averages to be
found later from the self-consistency condition. We stress
that, after integrating over Uim, the operators on both sides
can be only gauge invariant.

For the single cell cavity we obtain operators of two
types: single-site operators (they arise from the white
cells), and double-site operators built from fermions at
adjacent vertices (they arise from black cells).

Here is the list of operators that appear in this calcula-
tion. First of all, there are operators that are invariant under
the Uð1ÞV �Uð1ÞA transformations described in Eqs. (37)
and (38)

O1ðiÞ ¼ ðc yi c iÞ2;
O2ði; jÞ ¼ ðc yi Uijc jÞ2 þ ðc yj Ujic iÞ2

þ ðc yi c iÞðc yj c jÞ � ðc yi �3c iÞðc yj �3c jÞ;
O3ði; jÞ ¼ ðc yi c iÞ2ðc yj c jÞ2: (53)

O1 is a single-site operator whileO2 andO3 are double-site
operators.

To be able to study the potential breaking of theUð1ÞV �
Uð1ÞA symmetries we introduce operators that transform
under those rotations. The chiral noninvariant operators
that transform under Uð1ÞA (38) are

C1ðiÞ¼ iðc yi c iÞ; �C1ðiÞ¼ iðc yi �3c i;Þ;
C2ði;jÞ¼ i½ðc yi c iÞ2ðc yj c jÞþðc yj c jÞ2ðc yi c iÞ�;
�C2ði;jÞ¼ i½ðc yi c iÞ2ðc yj �3c jÞþðc yj c jÞ2ðc yi �3c iÞ�:

(54)

Fermion number violating operators transforming under
Uð1ÞV (37) are

W1ðiÞ ¼ c i;1c i;2;

W2ði; jÞ ¼ ðc yi c iÞ2c 1
jc

2
j þ ðc yj c jÞ2c 1

i c
2
i :

(55)

All operators are Hermitian.
The effective action for the fields inside the triangle

cavity is computed as described in Sec. V. From the black
neighbors we obtain the double-site effective action

eSðm;nÞ ¼ 1þ 8

9
�2
1½ðO1ðmÞ þO1ðnÞÞhO1i þO3�

þ �2
2

36
½O2hO1i � 2ðWy2 hW1i þW2hWy1 iÞ

� C2hC1i þ �C2h �C1i�; (56)

where all double-site operators refer to the cavity vertices
m and n. From the white neighbors we obtain the one-site
effective action

eSðmÞ ¼ 1þ 8

9
�2
1½2O1hO1i þ hO3i� þ �2

2

36
½O1hO2i

� 2ðWy1 hW2i þW1hWy2 iÞ � C1hC2i þ �C1h �C2i�:
(57)

Actually, the operator averages in Eqs. (56) and (57) imply
averaging over the cyclic permutation of lattice sites in the
cavity: e.g., hO1i ¼ 1

3 hO1ðmÞ þO1ðnÞ þO1ðpÞi, and simi-

larly for the double-site operators. The full effective action
for the cavity is a sum over all 12 neighbor cells,

eSeff ¼ exp½Sðm; n; pÞ þ ðSðm; nÞ þ Sðn; pÞ
þ Sðp;mÞÞ þ 3ðSðmÞ þ SðnÞ þ SðpÞÞ�; (58)

where Sðm; n; pÞ is the original action for the cavity tri-
angle ðm; n; pÞ, as given by Eq. (36).
We see that the effective action for the fields living in the

cavity cell depend explicitly on the yet unknown operator
averages hOi, hCi, hWi. To find them, one equates the
operator averages as defined by the effective action (58)
to those introduced previously; see Eq. (33). As a result,
one obtains a system of nonlinear self-consistency
equations on the averages hOi, hCi, hWi. Solving those
equations, one finds the averages as function of the cou-
pling constants �1;2.

This calculation is straightforward but the equations are
rather lengthy. Therefore, we just comment here on its
most important features.
First of all, we notice that Seff is quadratic in the sym-

metry breaking operators C1;2 and W1;2, as it should be;

therefore, one gets a system of linear homogeneous self-
consistency equations on the averages hC1;2i, hW1;2i that
always have a zero solution, unless the determinant of this
set of linear equations is zero. If the determinant is nonzero
in the whole range of the parameter space �, there is no
spontaneous symmetry breaking. If the determinant passes
through zero at some surface in the� space, it is where the
second order phase transition takes place. Inside the do-
main where one of the Uð1Þ symmetries is spontaneously
broken, the condensates hC1;2i or hW1;2i are nonzero and

are found as anomalous solutions of the nonlinear
equations, together with the symmetry-preserving averages
hO1;2;3i.
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In the absence of symmetry breaking one puts hC1;2i ¼
hW1;2i ¼ 0 and solves the system of three nonlinear equa-

tions on the averages hO1;2;3i. There are, in general, several
solutions but none are real in the whole � space. We pick
up the solution that is real near the line �2 ¼ 0. However,
it develops a cut and becomes complex at the lines j�2j ¼
8:69j�1j signalling that there can be a phase transition
along these lines. A careful study in the next subsection
shows that, indeed, these are the border lines separating
the phase with spontaneous chiral symmetry breaking; see
Fig. 4.

Outside this domain, i.e., at j�2j< 8:69j�1j, chiral sym-
metry is not broken, the solution for the normal, symmetry-
preserving operators is real, and one can approach the line
�2 ¼ 0 where we can check the accuracy of the mean-field
method by comparing the average physical volume hV1i �P

cellshdetð~eÞi where the average is computed over one
(cavity) cell with the effective action (58), with the exact
result (47). We find numerically

hV1i�2;3!0¼0:572
M

�1

ðmean fieldÞ vs 0:5
M

�1

ðexactÞ;
(59)

where M is the total number of lattice cells. We note that
the functional dependence on �1 is correct whereas the
numerical coefficient deviates from the exact one by 15%.
Amore powerful check comes from computing the average
action hSi which turns out to be a constant up to the third
digit in the whole range of analyticity in �1;2;3, equal to

0.57, instead of the exact result (43) being 0.5. This is the
typical accuracy with which other checks with exact results
are fulfilled.

We have also tested a more primitive mean-field ap-
proximation where the cavity is taken in the form of two
neighbor vertices connected by a link. It is also capable of
detecting the spontaneous breaking of chiral symmetry but
the accuracy is, of course, worse: it is at a level of 40%.

C. Spontaneous chiral-symmetry breaking

An accurate way to study spontaneous breaking of a
continuous symmetry is to introduce a small term in the
action that violates the symmetry in question explicitly.
Since we are interested in the spontaneous breaking of the
Uð1ÞA or chiral symmetry we introduce the simplest
diffeomorphism-invariant ‘‘mass term’’

S�-odd ¼
Z

d2x detð~eÞimc yc ; (60)

that is not invariant under chiral rotations (38). Its
discretized lattice version is obvious; see the first term
in Eq. (35).
Adding this term we repeat the same mean-field deriva-

tion of the effective action for the triangle cavity as in
Eqs. (56) and (57) which now obtain an additional

S�-oddðm;nÞ¼�2m

27
ðO3hC1iþC2hO1iÞ�m2

54
O3hO1i; (61)

S�-oddðmÞ¼�2m

27
ðC1hO3iþO1hC2iÞ�m2

54
O1hO3i: (62)

Let us note that the terms linear in the mass parameter
m are also linear in the chirality-odd operators C1;2.

With this addition to the previous effective action (58),
we now turn to solving the self-consistency equations for
the operator averages hO1;2;3i and hC1;2i, h �C1;2i. At m � 0
there is a solution for the chiral condensates hC1;2i in the

whole ð�1; �2Þ plane (we still keep for simplicity �3 ¼ 0).
However, the dependence of the chiral condensates on the
mass parameterm is totally different depending on whether
we are in region I where chiral symmetry is broken, or in
region II where it is preserved.
In region II the dependence of the chiral condensates on

the mass is linear at small m; if m goes to zero the chiral
condensates vanish. In region I the dependence of the
chiral condensates on the small parameter m that breaks

2

1

II

II

II

1.0 0.5 0.5 1.0

0.10

0.05

0.05

0.10

FIG. 4. The phase diagram of the 2d spinor gravity in the
ð�1; �2Þ plane at �3 ¼ 0. Region I corresponds to the chiral-
symmetry broken phase; region II is a regular phase. The dots
show the lines of the 2nd phase transition: j�2j ’ 8:69j�1j.

C1

m

1 0.1

1 0.11

1 0.12

0.04 0.02 0.02 0.04

0.6

0.4

0.2

0.2

0.4

0.6

FIG. 5. The dependence of the chiral condensate hC1i on the
mass parameter m with the varying value of �1 at fixed value
of �2. The steplike behavior �signðmÞ signals the spontaneous
breaking of symmetry. In this example, �1 ¼ 0:12 is the 2nd
order phase transition point where the chiral condensate abruptly
vanishes when m ¼ 0.
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the symmetry explicitly is nonanalytic. Actually the chiral
condensates are proportional to the sign functions of m,
hC1;2i � signðmÞ; see Fig. 5. The behavior of the chiral

condensate hC1;2i in the whole ð�1; �2Þ plane (at �3 ¼ 0) is
shown in Fig. 6.

Figures 5 and 6 clearly demonstrate that there is a range
of coupling constants where the theory undergoes sponta-
neous breaking of the continuous Uð1ÞA chiral symmetry,
with a line of the 2nd order phase transition separating the
phases.

D. No fermion number violation

The effective action (58) contain operators W1;2 violat-

ing theUð1ÞV symmetry (37) related to the fermion number
conservation. If hW1;2i � 0, it signals the spontaneous

violation of this symmetry. Fermion number conservation
is spontaneously broken, e.g., in ordinary superconductors
and ‘‘color’’ superconductors in QCD. However, in con-
trast to chiral symmetry that is also broken in QCD,
spontaneous fermion condensation usually happens not in
the vacuum but at nonzero chemical potential for fermions,
since interactions are effectively amplified near the Fermi
surface. In this subsection we look for the spontaneous
fermion number nonconservation in the same 2d model
where we observe spontaneous breaking of the Uð1ÞA
symmetry in the mean-field approximation.

Following the same logic as in the previous subsection,
we introduce a small action term that violates the Uð1ÞV
symmetry explicitly,

SB-odd ¼
Z

d2x detð~eÞbc 1c 2:

This operator preserves the chiral Uð1ÞA symmetry. The
correction to the effective one-triangle action is

SB-oddðm; nÞ ¼ �2b

27
ðW2hO1i þO3hW1iÞ;

SB-oddðmÞ ¼ �2b

27
ðO1hW2i þW1hO3iÞ:

We solve again the self-consistency equations on the op-
erator averages but now with this addition, and look for
nonanalytic dependence on the small parameter b. In con-
trast to the case of spontaneous chiral symmetry breaking,
we do not find such solutions in the whole parameter space
� ¼ ð�1; �2; �3Þ.
We conclude that the fermion number conservation is

not broken spontaneously in the model, except maybe
along the line of the chiral phase transition. We did not
study the inclusion of a chemical potential for fundamental
fermions—that would explicitly violate Lorentz symmetry
but presumably make the phase diagram of the model more
rich.
There are no reasons why fermion number conservation

would not break spontaneously, say, in 4d, and the mean-
field method suggested here is a simple way to detect it.

E. Full phase diagram

The full action compatible with the principles pro-
claimed has, in 2d, three terms and consequently three
coupling constants. In the previous subsections we have
restricted our study to the case of �3 ¼ 0.
Actually, we repeat all the steps described above also for

�3 � 0. The algebra becomes more cumbersome but still
doable. We find that the chiral symmetry breaking phase I
occupies the cone

�2
2 < 77:23�2

1 þ 5:36�2
3; (63)

FIG. 6 (color online). The value of the chiral condensate hC1i
in the ð�1; �2Þ plane. At the phase transition line j�2j ¼ 8:69j�1j
the condensate vanishes with an infinite first derivative.

FIG. 7 (color online). Spontaneous chiral symmetry breaking
takes place inside a cone in the full parameter space
� ¼ ð�1; �2; �3Þ.
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shown in Fig. 7; Fig. 4 is its section at �3 ¼ 0. We remark
that the accuracy of the mean-field approximation for some
reason deteriorates as �3 grows. Still the exact relation (43)
holds even at �3 ! 1 up to a factor of 1.6.

VII. LOW-ENERGYACTION FOR
PROPAGATING FIELDS

The theory defined by the partition function (28) is in
fact ultralocal: all correlation functions of gauge-invariant
operators generally decay exponentially at the separation
of a few lattice cells. This is clear on general grounds but
we have also checked it by numerical simulations on a 2d
lattice of limited volumes. Special measures should be
taken to ensure that certain degrees of freedom propagate
to distances that are large in lattice units. The situation here
is different from the common lattice gauge theory where it
is sufficient to take the limit �! 1 where � is the inverse
gauge coupling to guarantee long-range correlations in
lattice units. In our theory, there is no such obvious handle.

However, there are ways to guarantee that long-range
correlations appear; moreover, that can be checked in the
mean-field approximation. An example which we consider
here is provided by the Goldstone theorem: If a global
continuous symmetry is broken spontaneously, the associ-
ated Goldstone bosons are exactly massless and hence
propagate to large distances.

In the previous section we have shown that the continu-
ous Uð1ÞA or chiral symmetry is spontaneously broken in
a broad range of the space of the coupling constants.
Supposing the coupling constants are chosen inside that
range (inside the cone in Fig. 7), there is a massless
Goldstone excitation 
ðxÞ which is the phase of the
Uð1ÞA rotation (38).

Under this rotation, the chirality-violating operators C1;2

and �C1;2 transform as

C�1 ¼ C1 � �C1 ! e�i
C�1 ;

C�2 ¼ C2 � �C2 ! e�i
C�2 :
(64)

To derive the low-energy action for the Goldstone field we
allow the phase 
 to vary slowly from cell to cell:

hC�1;2i ¼ 1;2e
�i
ðcellÞ: (65)

We parametrize the operator averages hC�1;2i in the same

way and rederive the effective action (58) for the fields
inside the triangle cavity, taking now into account that the
operator averages have slightly different phases in the cells
surrounding the cavity. Then, integrating over the fields
inside the cavity we find the effective one-cell partition
functionZ1 modified by the varying nearest neighborhood.
If 
 is the same for all neighboring cells, it is the same
expression as in Sec. V; let us call it Z10. However, there
will be further terms depending on the gradients of 
ðxÞ,
we are now after.

The full partition function is, in the mean-field approxi-
mation, a product of Z1’s over all cells whose number is
M. Therefore, the action for the Goldstone field 
ðxÞ is
SG ¼ �M lnZ1

¼ �M lnZ10 �M

�
1

Z10

@Z1

@
i

�
i þ 1

2Z10

�
@2Z1

@
i@
j

� 1

Z10

@Z1

@
i

@Z1

@
j

�
�
i�
j þOð�
3Þ

�
; (66)

where 
i is the value of the phase attributed to one of the
12 neighbor cells i, and �
i is the difference between 
i

and 
0 attributed to the central cavity cell; the summation
goes over all neighbor cells. It is important that the depen-
dence of Z1 on 
i starts from quadratic terms, which is the
consequence of chiral symmetry; hence, @Z1=@
i ¼ 0,
and we are left with second derivatives.
Ignoring the first 
-independent term in Eq. (66), we

find that the action is quadratic in the jumps �
 from one
cell to the neighbor ones,

SG ¼ �M 1

2Z10

@2Z1

@
i@
j

�
i�
j þOð�
3Þ: (67)

We now introduce a coordinate system by mapping the
centers of the cells to coordinates x�ðiÞ (Sec. IV). If the
changes of 
 from a cell to neighbor cells are small we can
expand

�
i ¼ @�
�x
�
i þ

1

2
@�@�
�x

�
i �x

�
i þ . . . ; (68)

where �x
�
i ¼ x�ðiÞ � x�ð0Þ is the distance between the

coordinate attributed to the cell i and that attributed to the
cavity cell, in a given coordinate frame x�ðiÞ. Putting this
expansion into Eq. (67) we obtain

SG¼�M 1

2Z10

@2Z1

@
i@
j

�x�i �x
�
j @�
@�
þOð�x3Þ: (69)

The first factor M, the full number of cells on the lattice
can be written as

M ¼ X
cells

¼
Z d2x

VðcellÞ ; (70)

where VðcellÞ is the cell volume in a given frame; see
Eq. (14). The combination

lim
�x!0

1

VðcellÞ
1

Z10

@2Z1

@
i@
j

�x
�
i �x

�
j ¼d �

ffiffiffiffi
G
p

G��; (71)

transforms under the change of the map x� ! x0�ðxÞ as a
product of the contravariant tensor times the square root of
the determinant of a covariant tensor, hence the notations in
the right-hand side or Eq. (71). Its particular form depends,
of course, on the coordinate system chosen. For a concrete
map to the Cartesian coordinates of the lattice drawn in
Fig. 3 we find that it is proportional to a unity tensor,
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ffiffiffiffi
G
p

G��jregular lattice ¼ Tð�1;2;3Þ	��; (72)

where the proportionality coefficient Tð�1;2;3Þ is shown in

Fig. 8; it is proportional to a combination of the moduli of
the chiral condensates 1;2; see Eq. (65). This result is in

conformity with the average flatness of the space found in

Sec. VIA. If one chooses another coordinate map
ffiffiffiffi
G
p

G��

changes accordingly.
We thus arrive at a diffeomorphism-invariant low-

energy action for the massless Goldstone field:

SG ¼ 1

2

Z
d2x

ffiffiffiffi
G
p

G��@�
@�
: (73)

This field can propagate infinitely far in lattice units since
its masslessness is guaranteed by the Goldstone theorem.

To complete our study of the spontaneous chiral
symmetry breaking, we derive the analog of the Gell-
Mann–Oakes–Renner relation for the pion mass in QCD,
expressed through the quark masses. If chiral symmetry
is broken explicitly by a small fermion mass term (60) the
phase of the chiral condensate becomes a pseudo-
Goldstone field with a mass proportional to the square
root of the fermion mass m.

Indeed, the addition of the mass term (60) changes the
effective one-cavity partition function:

Z 1 ! Z1 þmZm þOðm2Þ: (74)

The Zm piece depends explicitly on the chiral condensate
phase 
 introduced in Eq. (65), and from symmetry con-
siderations it is clear that the expansion starts from the 
2

term; direct calculation confirms it.
Summing up the mean-field action over the whole lat-

tice, one uses the relation (70) where the right-hand side

behaves as �R
d2x

ffiffiffiffi
G
p

according to the transformation

properties under the change of the coordinate system
x�ðiÞ attributed to the lattice. We obtain thus the action
for the pseudo-Goldstone mode in the continuum limit

SG ¼ 1

2

Z
d2x

ffiffiffiffi
G
p ðG��@�
@�
þ�2
2Þ

þOð@2
@2
Þ þOð
4Þ; �2 �m; (75)

where � is proportional to the pseudo-Goldstone boson
mass. We see that it is proportional to the square root of the
mass parameter m that breaks chiral symmetry explicitly.
In QCD, this is known as the Gell–Mann–Oakes–Renner
relation for the pion mass. The coefficient in this relation
depends on the coupling constants �1;2;3. At the 2nd order

phase transition surface of the cone in Fig. 7 the pseudo-
Goldstone mass goes to zero at fixed m.
There is a famous Mermin-Wagner theorem stating that a

continuous symmetry cannot be spontaneously broken in
2d as the resulting Goldstone bosons would have an unac-
ceptably large, actually divergent free energy. Since the
mean-field approximation misses the Goldstone physics,
one can argue that the spontaneous chiral symmetry break-
ing we observe is an artifact of the approximation. If,
however, the Goldstone field 
ðxÞ is Abelian as here, the
actual phase is, most likely, that of Berezinsky-Kosterlitz-
Thouless where the chiral condensate ei
 indeed vanishes
owing to the violent fluctuations of 
ðxÞ defined on a circle
ð0; 2�Þ, but the correlation functions of the type hei
ðxÞ
e�i
ðyÞi have a powerlike behavior, and there is a phase
transition depending on the original couplings of the theory.
In any case, our primary goal here is to learn how to deal

with the lattice-regularized spinor quantum gravity which
is a new type of a theory. The mean-field approximation is
one possible approach that is expected to work even better
in higher dimensions where, as a matter of fact, the
Mermin-Wagner theorem does not apply.

VIII. HOW TO OBTAIN EINSTEIN’S LIMIT?

The apparent diffeomorphism-invariance of Eq. (75) is
built in by our construction of the lattice and lattice action
in Sec. IV. As soon as there are degrees of freedom that can
propagate to long distances, their low-energy effective
action is diffeomorphism-invariant in the continuum limit.
In the previous Section the appearance of long-

propagating mode has been guaranteed by the Goldstone
theorem. However, it concerns only the specific Goldstone
modes associated with the spontaneous breaking of con-
tinuous symmetry. Other degrees of freedom remain
heavy: their correlation functions decay exponentially after
a few lattice cells. If one attempts to write an effective low-
energy action for the classical metric tensor gcl�� (see below

its exact definition) it will have the diffeomorphism-
invariant form,

Slow ¼
Z

dx
ffiffiffiffiffiffi
gcl

q
ð�c1 þ c2RðgclÞ þ . . .Þ; (76)

with the constants c1;2 computable, in principle, from

the original coupling constants of the lattice-regularized
theory. However, if one does not take special measures, the

FIG. 8 (color online). The normalization factor Tð�1; �2; 0Þ in
the low-energy effective chiral Lagrangian, Eq. (72).
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ratio
ffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
, playing the role of the graviton mass, will be

on the order of the inverse lattice spacing. In such a
situation, it is senseless to introduce the metrics in the first

place. It makes sense only if
ffiffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
happens to be zero or

very small, such that the graviton and the Newton force
propagates to large distances.

To ensure it, it is sufficient to stay, e.g., at the phase
transition of the second order, where all degrees of freedom
become massless. The classical metric tensor gcl�� and the

effective action functional �½gcl��� can be introduced by

means of the Legendre transform (proposed in this context
also by Wetterich [14]). One introduces first the generating
functional for the stress-energy tensor ��� as an external
source,

eW½�� ¼
Z

dc ydc d!� exp

�
Sþ

Z
ĝ���

��

�
; (77)

where S the fermionic action and ĝ�� is a four-fermion

operator built from the frame fields (10) and (11) or, after
discretization, from their lattice versions (18) and (19). The
classic metric field is by definition

gcl��¼d hĝ��i ¼ 	W½��
	��� : (78)

This equation can be solved to give the functional
���½gcl�. Using it one can construct the effective action
as the Legendre transform:

�½gcl� ¼ W½�� � gcl���
��: (79)

At the phase transition fluctuations are long ranged. For
long-range fluctuations it is legal to take the continuum
limit of the lattice, which is diffeomorphism invariant. The
low-energy limit of diffeomorphism-invariant actions for a
quantity transforming as a metric tensor is uniquely given
by Eq. (76). Moreover, the cosmological term necessarily
has a zero coefficient, c1 ¼ 0, since otherwise the graviton

would propagate to a finite distance
ffiffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
, which contra-

dicts the masslessness of the fluctuations at the phase
transition. This is how one can recover Einstein’s gravity
from the lattice-regularized spinor theory.

In principle, the effective Einstein-Hilbert action from
spinor quantum gravity can be derived in the mean-field
approximation similarly to our derivation of the low-
energy effective chiral Lagrangian in Sec. VII. However,
in 2d, where we have so far succeeded in developing the
mean-field method, the Einstein-Hilbert action is a full
derivative and there are no gravitons or the Newton force.
Therefore, the derivation of Eq. (76) has to be postponed
until higher dimensions are studied along the lines of the
present paper.

IX. DIMENSIONS

In this paper, we use unconventional dimensions of the
fields, which, however, we believe are natural and adequate

for a microscopic theory of quantum gravity. The fermion
fields are normalized by the Berezin integral (27) and
are dimensionless; hence, the composite frame field (10)
has the dimension 1/length and the metric tensor has
the dimension 1=length2, in contrast to the conventional
dimensionless metric tensor. On the other hand, all
diffeomorphism-invariant quantities are dimensionless in
our approach. In this section we explain why it is conve-
nient, and what is the relation to the usual approach.
The historic tradition in general relativity is that the

space-time at infinity is flat, and therefore one can safely
choose the coordinate system such that g�� is a unitymatrix

there. This sets the traditional dimensions of the fields. In
particular, the scalar curvature has the dimension 1=length2,

the fermion fields have the dimension 1=length
3
2, etc.

However, in a diffeomorphism-invariant quantum theory
where one can perform arbitrary change of coordinates,
x�!x0�ðxÞ not necessarily identical at infinity, for example,
a dilatation x� ! x�=, andwhereg�� can a priori strongly

fluctuate at infinity, this convention is not convenient.
The natural dimensions of the fields are those that are in

accordance with their transformation properties: any con-
travariant vector transforms as x� and has the dimension of
length, a covariant vector, in particular, the frame field e�
transforms as a derivative and has the dimension 1/length,
g�� has the dimension 1=length2, etc. World scalars like

the scalar curvature and the fermion fields are, naturally,
dimensionless. In fact it is a tautology: a quantity invariant
under diffeomorphisms is, in particular, invariant under
dilatations and hence has to be dimensionless.
In this convention, any diffeomorphism-invariant action

term is, by construction, dimensionless and is accompanied
by a dimensionless coupling constant, as in Eq. (28).
Let us suppose that we have a microscopic quantum

gravity theory at hand that successfully generates the first
terms in the derivative expansion of the effective action,

� ¼ �c1
Z

d4x
ffiffiffi
g
p þ c2

Z
d4x

ffiffiffi
g
p

Rþ . . . ; (80)

where c1;2 are certain dimensionless constants expressed

through the dimensionless couplings �1;2;... of the original

microscopic theory. The ground state of the action (1) is the
space with constant curvature R ¼ 2c1=c2, represented,
e.g., by a conformal-flat metric

g�� ¼ 6c2
c1

�
2

ððx� x0Þ2 þ 2Þ
�
2
	��; (81)

where x0 and  are arbitrary. At the vicinity of some
observation point x0, it can be made a unity matrix by
rescaling the metric tensor,

g�� ¼ m2 �g��; �g�� ¼ 	��; m ¼
ffiffiffiffiffiffiffiffi
6c2
c1

s
2


; (82)

where the rescaling factor m has the dimension of mass,
and �g�� has the conventional zero dimension. At this point
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one can rescale other fields to conventional dimensions,
in particular, and introduce the new fermion field �c of

conventional dimension m3=2:

c ¼ m�3=2 �c ; c y ¼ m�3=2 �c y: (83)

The new composite dimensionless tetrad field compatible
both with Eqs. (82) and (83) is

�e A
� ¼ 1

m
eA� ¼ 1

m4
ið �c y�Ar�

�c þ �c yr
 

��
A �c Þ: (84)

One can now rewrite the action (80) together with the
fermionic matter in terms of the new rescaled fields de-
noted by a bar,

S ¼ � c1m
4|ffl{zffl}

2�¼�4

Z
d4x

ffiffiffi
�g

p þ c2m
2|ffl{zffl}

M2
P¼1=

ffiffiffiffiffiffiffiffiffiffiffi
16�GN

p
Z

d4x
ffiffiffi
�g

p
�R

þm0
Z

d4x
ffiffiffi
�g

p
�eA�ð �c y�Ar�

�c þ H:c:Þ: (85)

Underbraced are the cosmological constant and the
Plank mass squared, respectively; numerically, � ¼
2:39� 10�3 eV,MP ¼ 1:72� 1018 GeV. The dimension-
less ratio of these values,

�

MP

¼
�
c1m

4

c22m
4

�1
4 ¼

�
c1
c22

�1
4 ¼ 1:39� 10�30; (86)

is the only meaningful quantity in pure gravity theory,
independent of the arbitrary scale parameter m. If a fer-
mion obtains an effective mass, e.g., as a result of the
spontaneous chiral symmetry breaking, leading to an addi-
tional term in the effective low-energy action,

Sm ¼
Z

d4x
ffiffiffi
g
p

c yMc ¼ mM|{z}
fermion mass mf

Z
d4x

ffiffiffi
�g

p
�c y �c ;

(87)

then the ‘‘theory of everything’’ has to predict also other
dimensionless ratios. For example, taking the top quark
mass mt ¼ 172 GeV one has to be able to explain the ratio

mtffiffiffiffiffiffiffiffiffiffi
�MP

p ¼ M

c
1
4

1c
1
2

2

¼ 0:0848: (88)

In other words, one can measure the Newton constant
(or the Planck mass) or the cosmological constant in units
of the quark or lepton masses or the Bohr radius. Only
dimensionless ratios make sense and can be, as a matter
of principle, calculated from a microscopic theory. To
that end it is convenient and legitimate to use natural
dimensions when g�� has the dimension 1=length2

whereas all world scalars are dimensionless, be it the scalar
curvature R, the interval ds, the fermion field c , or any
diffeomorphism-invariant action term.

X. CONCLUSIONS

We have formulated a lattice-regularized spinor
quantum gravity that is well defined and well behaved
both for large-amplitude and high-frequency fluctuations.
In any number of dimensions one can construct a variety of
fermionic actions that are invariant (i) under local Lorentz
transformations and (ii) under diffeomorphisms in the
continuum limit. We have built quite a few action terms
satisfying (i) and (ii) for any number of dimensions. In fact
our list of possible fermionic action terms can be expanded
further if some of the additional requirements are relaxed.
Therefore, we actually formulate a whole class of new
kinds of theories in any number of dimensions, character-
ized by a set of dimensionless coupling constants �1;2;....

The continuum limit shows up if all degrees of freedom,
or at least some of them, are slowly varying fields from one
lattice cell to another. This is, generally, not fulfilled, ge-
nerically, all correlation functions decay exponentially over
a few lattice cells. For such ‘‘massive’’ degrees of freedom
the theory is at the ‘‘strong coupling’’ regime where the
continuum limit is not achieved and remains dormant.
There must be special physical reasons for massless

excitations in the theory, for which the continuum limit
makes sense and diffeomorphism-invariance becomes
manifest. One such reason is spontaneous breaking of
continuous symmetry where the existence of massless
fields is guaranteed by the Goldstone theorem. To show
that spontaneous breaking may be typical in such kinds of
theories, we have developed a new mean-field approxima-
tion. We have checked its accuracy in a 1d exactly solvable
model, and in a full 2d theory where certain exact relations
can be derived. The exact relations tell us nice things: the
physical or invariant volume occupied by the system is
extensive as due to the noncompressibility of fermions, the
volume variance (or susceptibility) is also extensive show-
ing that it is a true quantum vacuum, and the average
curvature is, at least in 2d, zero meaning that the quantum
space is on the average flat. They also tell us that our mean-
field approximation is rather accurate, and the accuracy
can be systematically improved.
We show, within the mean-field method, that the sponta-

neous breaking of chiral symmetry happens in a broad range
of the coupling constants and that in this range the low-
energy action for the Goldstone field (or pseudo-Goldstone
if we add a term explicitly breaking symmetry) is diffeo-
morphism invariant, as expected.
To obtain the low-energy Einstein limit, one has to stay

at the second-order phase transition surface in the space of
the coupling constants. There the masslessness of excita-
tions, and not only of the Goldstone ones, is guaranteed.
Hence, one can go to the continuum limit where the diffeo-
morphism invariance is also guaranteed by construction.
Therefore, we expect that the effective low-energy action
for the classical metric tensor, derived through the
Legendre transform, is just the Einstein-Hilbert action,
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with the zero cosmological term. This can be probably seen
already in the mean-field approach for dimensions higher
than two. This work is in progress.
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APPENDIX A: MEAN-FIELD METHOD
IN A 1d MODEL

We consider here a 1d toy model with fermions andUð1Þ
gauge symmetry, that can be solved exactly. We then apply
the mean-field method to this model to check how accu-
rately it reproduces the exact solution. We obtain quite
satisfactory results.

We take the same fields as in the full 2d model, namely

the doublet of fermion fields c 
, c y
, 
 ¼ 1, 2, that trans-
form under the Uð1Þ gauge transformation as c ! Vc ,
c y ! c yVy, V ¼ expði
�3Þ. The gauge field is repre-
sented by link variables Uij ¼ expð�i!ij�

3=4Þ that trans-
form as Uij ! ViUijV

y
j .

We construct the lattice version of the two ‘‘frame’’
fields, as in Eqs. (18) and (19),

~eAi;j ¼ iðc yj Uji�
AUijc j � c yi �Ac iÞ; A ¼ 1; 2;

~fAi;j ¼ c yi �AUijc j � c yj Uji�
Ac i; (A1)

(which, however, do not have the meaning of frame fields
in 1d), and form the action that is quite similar to the full
2d action (36):

S ¼XN
i¼1

�
�1

8
ð~eAi;iþ1~eAi;iþ1 þ ~eAiþ1;i~eAiþ1;iÞ þ

�2

4
~fAi;iþ1 ~f

A
i;iþ1

þ 2�ðc yi c iÞ2ðc yiþ1c iþ1Þ2
�
; (A2)

where �1;2 and � are the coupling constants. The partition

function is defined as a product of Berezin integrals on the
1d lattice with N points:

Z ¼YN
i¼1

Z
dc 1

i dc
2
i dc

y
i1dc

y
i2dUi;iþ1eS: (A3)

We imply antiperiodic boundary conditions for fermion
fields and periodic boundary conditions for link variables.

The partition function (A3) is exactly computable by a
kind of transfer-matrix method. Diagonalizing the transfer
matrix we obtain a nontrivial result:

Z ¼ 2ð1þ ð�1ÞNÞ�N
2 þ ð�1 �

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1 þ �2

2 þ�
q

ÞN

þ ð�1 þ
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1 þ �2

2 þ�
q

ÞN: (A4)

The fact that the partition function has the form of a sum of
extensive exponents means that actually it describes simul-
taneously four independent phases or states of the system
that do not compete and hence do not mix up in the
thermodynamic limit N ! 1. The stable phase is the one
with the lowest free energy, that is, with the largest parti-
tion function.
Depending on the relation between the coupling con-

stants, one of the terms in Eq. (A4) prevails at N ! 1:
(i) Phase 0: j�2j> j�1j and �ð�2

1 þ �2
2Þ<�<� 1

2 �ð�1 � �2Þ2; the partition function is given by the first
term,

(ii) Phase 1: �>� 1
2 ð�1 þ �2Þ2, �1 < 0; the partition

function is given by the second term,
(iii) Phase 2: �>� 1

2 ð�1 þ �2Þ2, �1 > 0; the partition

function is given by the third term,
(iv) Phase 3: �<�ð�2

1 þ �2
2Þ, j�1j> j�2j; the parti-

tion function is complex and has no smooth ther-
modynamic limit.

In phase 0 fermions in the neighbor lattice sites form an
ordered state of the type ‘‘pair-gap-pair-gap. . .’’ all over
the lattice, where the ‘‘pair’’ means that there are four link
matrices in the integration over link variables, and ‘‘gap’’
means zero matrices. It can be realized only on even-N
lattices; hence, it is a lattice artifact, and we do not consider
it further. Phases 1 and 2 are states where two link matrices
appear in all link integrations. We concentrate of phases 1
and 2 only in what follows.
We also calculate exactly average values of the follow-

ing four-fermion operators:

h~eAij~eAiji ¼

8>>><
>>>:
4
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1
þ�2

2
þ�

p
� ffiffi

2
p ð�2

2
þ�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1�

2
2þ�ð2�2

2þ�2
1þ2�Þ

p in phase 1

4
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1
þ�2

2
þ�

p
þ ffiffi

2
p ð�2

2
þ�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1
�2
2
þ�ð2�2

2
þ�2

1
þ2�Þ

p in phase 2;

(A5)

hfAij ~fAiji ¼

8>>><
>>>:
4

ffiffi
2
p

�2ð�1þ
ffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1
þ�2

2
þ�

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1�

2
2þ�ð2�2

2þ�2
1þ2�Þ

p in phase 1

4
ffiffi
2
p

�2ð��1þ
ffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1
þ�2

2
þ�

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1�

2
2þ�ð2�2

2þ�2
1þ2�Þ

p in phase 2;

(A6)

hOi¼d hðc yc Þ2i ¼
8><
>:

�1
2
ffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1
þ�2

2
þ�

p in phase 1

1

2
ffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
1þ�2

2þ�
p in phase 2:

(A7)

We now turn to constructing the mean-field approxima-
tion to the model, to check its accuracy against the exact
calculation. We apply the general method of Sec. V, which
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is rather straightforward in this simple case. We first take
the ‘‘cavity’’ in the form of two neighbor lattice sites
connected by a link (1st approximation), and then three
adjacent sites connected by two links (2nd approximation).
Both mean-field approximations give satisfactory accuracy
when compared to the exact results but the second is, of
course, better.

In both cases, the cavity boundary is just the neighbor
sites connected to the cavity by link variables Umi.
Expanding eSmi up to the second power (higher powers
are zero because of too many fermion operators) and
integrating overUmi, we obtain several operator structures.
Splitting them into the product of operators composed of
fields inside the chosen cavity, and the operator built of the
outside fields, we replace the latter by the averages, to be
found self-consistently. Most of the operators break the �3

symmetry of the original action, and we ignore them. The

only operator with proper symmetries left isO ¼ ðc yi c iÞ2.
We find the effective action for the two-site cavity

eSðmÞ ¼ 1þ �1ðhOi þ ðc ymc mÞ2Þ þ 2ð�2
1 þ �2

2 þ�ÞhOi
� ðc ymc mÞ2: (A8)

To obtain the self-consistency equation we equate the
average of O found from the effective action (A8), to hOi.
The resulting nonlinear equation on hOi has three solu-
tions. We choose the solutions hOið�1; �2; �Þ that are real
in the ranges 1 and 2 above.
The results for the averages of the three operators in the

first and second approximations as well as their exact values
(A5)–(A7) are presented in Fig. 9. There is a ‘‘phase tran-
sition’’ between phases 1 and 2 at �1 ¼ 0. We see that the
second mean-field approximation corresponding to a three-
site, two-segment cavity gives a very satisfactory accuracy.
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FIG. 9. Averages of three operators in the 1dmodel. The bold line is the exact result, the dashed line is the result of the 1st mean-field
approximation using one lattice segment, and the solid line is the result of the 2nd (two-segment) mean-field approximation.

ALEXEYA. VLADIMIROVAND DMITRI DIAKONOV PHYSICAL REVIEW D 86, 104019 (2012)

104019-18

http://dx.doi.org/10.1007/BF01339714
http://dx.doi.org/10.1051/jphysrad:019290010011039200
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1080/01422418608228774
http://dx.doi.org/10.1080/01422418608228774
http://dx.doi.org/10.1103/PhysRevD.72.104002
http://dx.doi.org/10.1103/PhysRevD.72.104002
http://dx.doi.org/10.1103/PhysRevD.84.124042
http://dx.doi.org/10.1103/PhysRevD.84.124042
http://dx.doi.org/10.1088/0264-9381/28/21/215017
http://dx.doi.org/10.1088/0264-9381/28/21/215017
http://arXiv.org/abs/1109.0091
http://dx.doi.org/10.1063/1.2917066
http://dx.doi.org/10.1143/PTP.60.1900
http://dx.doi.org/10.1016/0921-4526(90)90016-N
http://dx.doi.org/10.1103/PhysRevLett.94.011602
http://dx.doi.org/10.1016/j.physletb.2011.09.059
http://dx.doi.org/10.1103/PhysRevD.85.104017
http://arXiv.org/abs/1201.2871
http://dx.doi.org/10.1016/j.aop.2012.04.005
http://dx.doi.org/10.1016/j.aop.2012.04.005
http://dx.doi.org/10.1016/j.physletb.2012.04.053
http://dx.doi.org/10.1016/j.physletb.2012.06.005
http://dx.doi.org/10.1103/PhysRevD.22.1915
http://dx.doi.org/10.1103/PhysRevD.22.1915
http://dx.doi.org/10.1016/0375-9601(80)90348-5
http://dx.doi.org/10.1103/RevModPhys.68.13

