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Canonical methods can be used to construct effective actions from deformed covariance algebras, as

implied by quantum-geometry corrections of loop quantum gravity. To this end, classical constructions are

extended systematically to effective constraints of canonical quantum gravity and applied to model

systems as well as general metrics, with the following conclusions: (i) Dispersion relations of matter and

gravitational waves are deformed in related ways, ensuring a consistent realization of causality.

(ii) Inverse-triad corrections modify the classical action in a way clearly distinguishable from curvature

effects. In particular, these corrections can be significantly larger than often expected for standard

quantum-gravity phenomena. (iii) Finally, holonomy corrections in high-curvature regimes do not signal

the evolution from collapse to expansion in a ‘‘bounce,’’ but rather the emergence of the Universe from

Euclidean space at high density. This new version of signature-change cosmology suggests a natural way

of posing initial conditions, and a solution to the entropy problem.

DOI: 10.1103/PhysRevD.86.104018 PACS numbers: 04.60.Pp

I. INTRODUCTION

A major consequence expected for quantum gravity is
the emergence of nonclassical space-time structures such
as discrete or noncommutative ones. Any such modifica-
tion by quantum properties deforms the standard notion of
covariance and thus gives rise to possible new actions and
interaction terms. Developments in this direction are of
interest for a fundamental understanding of space and time,
and also for potential observations of quantum gravity:
Unexpected structures may give rise to new effects, or
magnify others. One example is early-universe cosmology.
Assuming the classical space-time structure with the usual
notion of covariance results in higher-curvature terms in an
effective action, and only small quantum corrections are
possible, suppressed by factors of ‘P=‘H of the Planck
length by the Hubble distance. Nonclassical space-time
structures, on the other hand, can sometimes circumvent
such limitations and magnify expected effects compared to
what standard higher-curvature terms would deliver (as
realized explicitly in Refs. [1,2]).

However, relaxing conditions on covariance in a consis-
tent way is not a straightforward task. Space-time proper-
ties such as discreteness or noncommutativity are often
obtained at some kind of kinematical quantum level far
removed from direct space-time analysis. One may, for
instance, look at operators that quantize geometrical quan-
tities such as distances or areas, or analyze the behavior of
test particles or, mathematically, test functions on quantum
space-time. These concepts are not directly related to the
dynamics of space-time itself, and so it is initially not clear
what form of deformed covariance principle could be used
to formulate dynamics on such modified space-times and
to find the possible correction terms analogous to higher-
curvature effective actions.

Fortunately, an abstract but powerful substitute exists in
canonical formulations: Any generally covariant theory in
four space-time dimensions has a gauge algebra of four
local generators per space-time point, which serve as con-
straints on suitable initial values and generate space-time
transformations on phase-space functions by canonical
transformations. If quantization leads one to modified
expressions for these generators, covariance is realized—
albeit perhaps deformed—if the generators still obey an
algebra of the classical dimension. From the perspective of
general gauge theory, the same number of spurious degrees
of freedom is then removed by the constraints as classically,
and all equations of motion derived for the system are
guaranteed to be consistent. The theory is anomaly-free.
More specifically, in generally covariant theories there

are three smeared constraints per point labeled by spatial
vector fields, the diffeomorphism constraintD½Ni� depend-
ing on an arbitrary shift vector Ni, and a fourth one labeled
by a function, the Hamiltonian constraint H½N� depending
on the lapse N. Classically, these phase-space functions
obey the hypersurface-deformation algebra [3]

fD½Ni�; D½Mj�g ¼ D½LMjNi�; (1)

fH½N�; D½Nj�g ¼ H½LNjN�; (2)

fH½N1�; H½N2�g ¼ D½gijðN1@jN2 � N2@jN1Þ�; (3)

with the spatial metric gijðxÞ. (In this article we denote the

metric on a spatial 3 manifold in space-time by gijðxÞ, and
by �ijðxÞ its conjugate momentum, using for the sake of
easier comparison the notation of the articles [4,5] which
we will follow closely in some parts. For an overview of
canonical methods, the reader is referred to Ref. [6]).
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Gauge transformations �F ¼ fF;H½N� þD½Ni�g of a
phase-space function F then agree with the changes im-
plied by infinitesimal deformations of the spatial hyper-
surfaces in space-time. In a passive picture, this gauge
transformation agrees with a coordinate change along a
space-time vector field �� with components given in terms
of the spatial fieldsN and Ni (see e.g., Ref. [7]). The whole
hypersurface-deformation algebra presents a large exten-
sion of the local Poincaré algebra, which is recovered for
linear N and Ni in a local coordinate patch [8]. A general
property of the algebra is that it is largely insensitive to the
dynamics of the underlying covariant theory: all higher-
curvature theories have constraints obeying the same
algebra; see e.g., Ref. [9] for an explicit calculation. This
uniqueness statement can be reversed if the derivative
order of one’s theory is constrained to be at most two in
the equations ofmotion, inwhich case the formof the action
(up to the values of Newton’s and the cosmological con-
stant) can uniquely be recovered from the hypersurface-
deformation algebra [4,5]. Mimicking the usual tensorial
arguments to fix the terms of the Einstein-Hilbert action, the
dynamics, to the lowest order of derivatives, are thus
uniquely determined by the algebra of constraints.

The algebra itself is rather rigid as well, making it
difficult to implement new covariance principles and
correction terms other than higher-derivative ones. A new
result of recent years, however, is that loop quantum grav-
ity, if it can be consistent at all, gives rise to modified
hypersurface-deformation algebras. With different kinds
of quantum corrections characteristic of the theory, this
has been seen for perturbative inhomogeneity [10–12], in
2þ 1 dimensions [13,14] and in spherically symmetric
models [15–17]. Different physical consequences for cos-
mology [1,18,19] and for properties of black holes [20–22]
have resulted. As a common form of the modified con-
straint algebra, one can write

fHð�Þ½N1�; Hð�Þ½N2�g ¼ D½�gijðN1@jN2 � N2@jN1Þ� (4)

in terms of a phase-space function �½gij; �ij� determined

by the quantum corrections considered. Poisson brackets in
(1) involving the diffeomorphism constraint remain un-
modified (except in the case of Ref. [11] which has been
superseded by Ref. [12]).

That a closed algebra still arises is far from trivial, and
shows that general relativity, at least in the models consid-
ered, can be deformed consistently. The systems obtained
correspond to a more general form of space-time covari-
ance than usually taken into account [23]. In this article, we
will assume an algebra of the form (4) and analyze what
the possible consequences for action principles are. With
action principles at hand, the interpretation of deformed
constraint algebras will become more intuitive. Moreover,
they provide manifestly covariant (in the deformed sense)
formulations of the underlying models of loop quantum

gravity from which the quantum corrections have been
extracted.
The conclusions we will be able to derive are surpris-

ingly rich: (i) We will obtain a clear separation of some
corrections from others. In particular, inverse-triad correc-
tions in loop quantum gravity will play a much more
characteristic role than holonomy corrections of the same
theory, or higher-curvature corrections of general form.
(ii) The dynamics of loop quantum gravity near a spacelike
classical singularity takes on a specific form in which
spatial derivatives become subdominant. A scenario simi-
lar to but more generic than the Belinsky-Khalatnikov-
Lifshitz (BKL) picture follows. (iii) Loop quantum gravity
will be seen to give rise to signature change in strong-
curvature regimes. This new feature of the theory, over-
looked so far in minisuperspace models, gives rise to new
and improved cosmological scenarios.

II. OVERVIEW OF DEFORMED CONSTRAINT
ALGEBRAS IN LOOP QUANTUM GRAVITY

Canonically, the quantum effects of interacting gravita-
tional theories, often expressed by higher-curvature effec-
tive actions, are derived from quantum backreaction [28]:
While expectation values of semiclassical states follow
nearly the classical trajectories, additional state parameters
such as fluctuations and other moments influence the quan-
tum trajectory. Coupled equations of motion for expecta-
tion values and the moments can, in some regimes of
adiabatic nature, be reformulated as the usual equations
of low-energy effective actions [29].
Obviously, these effects should play a large role for

quantum gravity and cosmology. But in addition to the
ubiquitous quantum backreaction (or corrections from
loop diagrams in perturbative terms), there are character-
istic quantum corrections expected for loop quantum
gravity, providing two distinct quantum-geometry effects:
(i) higher powers of spatial curvature components (intrinsic
and extrinsic) stemming from the appearance of holono-
mies of the Ashtekar-Barbero connection instead of direct
connection components in quantized constraints [30,31],
and (ii) natural cutoff functions of divergences of factors
containing inverse components of the densitized triad,
arising from spatial discreteness [31,32]. The first type of
quantum-geometry corrections is usually referred to as
‘‘holonomy corrections,’’ the second as ‘‘inverse-triad cor-
rections’’ (or, in the context of nearly isotropic cosmology,
‘‘inverse-volume corrections’’). Both can be expanded as
series of corrections by components of spatial tensors in the
constraints, not by scalar invariants of space-time tensors as
one is used to from covariant effective actions. Neither the
reconstruction of an action principle from the constraints
nor properties of covariance are obvious in such a situation,
and the only systematicway to determine such features is an
analysis of the constraint algebra. As shown in several
model systems so far, the hypersurface-deformation algebra
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is generically deformed by quantum geometry. In particu-
lar, corrections cannot bewritten purely as higher-curvature
terms added to the Einstein-Hilbert action, as often ex-
pected for quantum gravity. One of the main questions to
be addressed in this article is what actions and covariance
properties could be realized instead [33].

In this section, we summarize the models investigated so
far for their properties of deformations of the constraint
algebra, split into the two types of quantum-geometry cor-
rections. (Quantum backreaction has not yet been analyzed
to completion in this context, but the procedure would
follow Refs. [29,36,37]). The set of models in which con-
sistent deformations have been achieved is quite diverse,
but the general form of� appears to be insensitive to model
specifications. The constraint algebra therefore displays
universal implications for covariant space-time structure.

A. Inverse-triad corrections

In loop quantum gravity, space-time geometry is
described by canonical fields AI

i and Ei
I, a connection

related to curvature and the densitized triad, instead of
the spatial metric gij and its momentum �ij. These fields

have advantages for a background independent quantiza-
tion because they can be smeared without reference to an
auxiliary metric structure: The connection is integrated
along curves e in space to obtain holonomies heðAÞ ¼
P expðRe �IA

I
i _e

id�Þ, and the densitized triad, dual to a

2-form, is integrated to fluxes FSðEÞ ¼
R
S �

IEi
Inid

2y
through surfaces S in space. Here, �I ¼ 1

2 i�I are genera-

tors of SU(2), related to the Pauli matrices. The canonical

structure fAI
i ðxÞ; Ej

JðyÞg ¼ 8�	G�j
i�

I
J�ðx; yÞ with the

Barbero-Immirzi parameter 	 [38,39] provides a regular
relation for fheðAÞ; FSðEÞg free of delta functions [40].

Holonomies and fluxes are promoted to basic operators
of the resulting quantum theory, and they represent the
canonical fields in all composite operators such as
Hamiltonians. Both types of basic operators imply some
form of nonlocality because they are integrated rather
than pointlike fields. Using holonomies for connection
components, moreover, implies that there are higher-order
corrections when the exponential is expanded, compared
with classical expression, which are usually polynomials of
degree at most 2 in the connection. Fluxes also give rise to
corrections in addition to their nonlocality: They are quan-
tized to operators with discrete spectra, containing zero as
an eigenvalue. Such operators are not invertible, and yet an
inverse of the densitized triad (or its determinant) is needed
to quantize matter Hamiltonians (usually in the kinetic
part) and the Hamiltonian constraint. Well-defined opera-
tors with inverse densitized triad components as their
classical limit do exist [31], but they have strong quantum
corrections for small values of the fluxes. Correction func-
tions, obtained from expectation values of inverse-triad
operators [41], then primarily depend on the fluxes, or on
the densitized triad and the spatial metric. In non-Abelian

situations, there can also be some dependence on the
connection via higher-order terms [42].
Inverse-triad corrections cannot easily be formulated

consistently in homogeneous models, where the rescaling
freedom of the scale factor under changes of coordinates
may be broken unless one properly refers to underlying
discreteness scales. However, with some inhomogeneous
input, consistent formulations exist [2,19,43] and show
the importance of these quantum-geometry corrections.
Quantization of the dynamics can proceed only if a sub-

stitute for the nonexisting inverse of an elementary flux F̂
is found, which according to Ref. [31] is possible by using
Poisson-bracket identities. If we write schematically [44]
jFjq�1sgnðFÞ ¼ ð8�G	�qÞ�1iexpði�AÞfexpð�i�AÞ; jFjqg
with a connection component A, we have an inverse of F
on the left-hand side for q < 1 while the right-hand side
can be quantized without requiring an inverse of F if q > 0.
The Poisson bracket can straightforwardly be quantized:

There is an operator F̂ whose positive power jF̂jq can
easily be taken via the spectral decomposition. While
loop quantum gravity does not provide an operator for A,
it does have well-defined quantizations of ‘‘holonomies’’
h ¼ expði�AÞ. Finally, we turn the Poisson bracket into a
commutator divided by iℏ, and achieve to quantize
jFjq�1sgnðFÞ in spite of the nonexistence of an inverse

of F̂.
The resulting operator is well defined and has an inverse

power of F as its classical limit, approached on the part of

the spectrum of F̂ with large eigenvalues. There are quan-
tization ambiguities which prevent one from finding a
unique correction function [45,46]. The typical form,
however, follows from algebraic properties and results indjFjq�1sgnF ¼ ðjF̂þ �Fjq � jF̂� �FjqÞ=2q�F with a
Planckian �F � ‘2P ¼ ℏG. Such corrections with a tiny

Planck area may seem small, but hF̂i as a fundamental flux
or area of a discrete state is typically Planckian as well. For
small flux values, characteristic quantum corrections result
[47], constituting inverse-triad corrections. We collect
inverse-triad effects in a correction function

�
ðFÞ ¼ jFj1�qsgnF � h djFjq�1sgnFiF
¼ jFj1�qsgnF

jFþ �Fjq � jF��Fjq
2q�F

þmoments

(5)

up to F̂ fluctuations and higher moments, using an expec-
tation value in a state peaked at flux F.

1. Cosmology

The most general class of models shown so far
to have a consistently deformed constraint algebra is the
one of perturbative inhomogeneity around spatially flat
Friedmann-Robertson-Walker models [10], including
inverse-triad corrections. In this case, � ¼ �
2 in (4) with
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the background function �
 of inverse-triad corrections
depends on the scale factor a. These corrections, as in
the full theory, arise because loop quantum cosmology
[48–50] quantizes the scale factor, or rather its square
jpj ¼ a2 equipped with a sign for spatial orientation, to
an operator p̂ with discrete, equally spaced spectrum. The
spectrum contains zero as an eigenvalue, and therefore p̂
has no densely defined inverse.

Apart from their formal derivation, inverse-triad correc-
tions in cosmology are characterized by cutoff effects of
classically diverging quantities such as a�1. For degenerate
geometries, or near the big bang singularity of isotropic
models, discreteness effects lead to nondivergent quantities
when shift operators expði�AÞ instead of differential op-
erators �iℏ@=@F are used in the commutators of inverse-
triad operators. For fluxes in isotropic space-times, we
write F ¼ ‘20a

2 with the coordinate size ‘0 of elementary

plaquettes in a regular-lattice discrete state (choosing F to
be positive without loss of generality). The cutoff behavior
is clearly visible from properties of the ratio

�
ð‘20a2Þ
a2ð1�qÞ ¼ j‘20a2 þ�Fjq � j‘20a2 ��Fjq

2q�F
; (6)

which approaches zero (instead of infinity) for a ! 0, and

asymptotes to the classical expression 1=a2ð1�qÞ for

a � a� well above a characteristic scale a� ¼
ffiffiffiffiffiffiffiffi
�F

p
=‘0.

The latter depends on the discreteness behavior of an
underlying state, which is responsible for the quantum
correction and the implicit cut off of divergences associ-

ated with 1=a2ð1�qÞ. Regarding the scaling behavior of a
and a�, the background behavior of inverse-triad correc-
tions, as derived in Refs. [41,47], has been made consistent
in inhomogeneous settings in Refs. [2,43]. (The precise
form of �
 as a function of phase-space variables will not be
important in this article).

For perturbative inhomogeneities in spatially flat iso-
tropic models, a consistent deformation (4) results at least
if �
 is close to 1 [10]. Once it is ensured that the algebra of
constraints closes, several consistency conditions for the
correction functions arise. The background behavior of �

appearing in the gravitational part of the Hamiltonian
constraint remains unrestricted, but analogous correction
functions in possible matter contributions must be related
to it and are no longer completely arbitrary. The case of a
scalar field will be discussed in more detail below,
Sec. VC. Moreover, in the perturbative terms by inhomo-
geneous perturbations of the phase-space fields, there are
additional corrections called ‘‘counterterms’’ which are
completely fixed by the consistency requirements. They
can be understood as determining the dependence of �
 on
inhomogeneities going beyond the background behavior
which is more straightforward to compute directly from
expectation values of inverse-triad operators. Some coun-
terterms also contain additional spatial derivatives com-
pared to the classical terms, which can be interpreted as

contributions from a derivative expansion of nonlocal
inverse-triad effects, making use of surface integrations
of the densitized triad, or flux operators, in inhomogeneous
settings.

2. Spherical Symmetry

A second class of models in which inverse-triad correc-
tions have been included consistently, this time nonpertur-
batively, is spherically symmetric models. Several different
cases have been investigated: Poisson Sigma models [15]
(see Refs. [51–54] for the classical models) and different
versions of Lemaı̂tre-Tolman-Bondi models [17,55]. In
these models, it is noteworthy that nontrivial quantum
corrections are possible even without any deformation of
the constraint algebra, a property which we will discuss in
more detail later.
We quote the corrected constraints in terms of triad

variables rather than the metric gij because one of the triad

components is directly responsible for the corrections. (In
the full theory, by comparison, it is primarily detg which
gives rise to inverse-triad corrections. Because detg equals
the squared determinant of the densitized triad, in the
general case it will make no difference what variables we
use). As spherically symmetric phase space variables, with
radial coordinate x (not necessarily the area radius) and
azimuth angle ’, we then have the radial component Ex

and angular component E’ of the densitized triad together
with the radial component Kx and angular component K’

of extrinsic curvature [56,57]. The metric is related to
Ex and E’ by gxx ¼ ðE’Þ2=jExj and g’’ ¼ jExj sin#.
Consistent deformations of the Hamiltonian constraint
(with unmodified diffeomorphism constraint) have the
form

HQ
grav½N�¼� 1

2G

Z
dxN

h

jExj�1

2K2
’E

’þ2 �
K’KxjExj12

þ
jExj�1
2E’�
�jExj�1

2�2
’E

’þ2 �
��
0
’jExj12

i
(7)

with correction functions 
, �
, 
� and �
�. In the second
line, �’ ¼ �ðExÞ0=2E’ is the angular component of the

spin connection.
The four correction functions are not independent but

must satisfy [17]

ð �

� � 
 �
�ÞðExÞ0 þ 2ð �
0 �
� � �
 �
0
�ÞEx ¼ 0 (8)

for the Poisson bracket of two Hamiltonian constraints to
be anomaly-free. If the two terms in this equation vanish
separately, a case studied in Ref. [17], they imply 
� / 

and �
� / �
 for a closed constraint algebra. For correction
functions defined such that they approach the classical
value 1 for large arguments, 
� ¼ 
 and �
� ¼ �
.
From the Poisson bracket fH½N�; D½Nx�g, the only re-

striction is that both correction functions depend only on
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the radial triad component Ex, not on E’. (This fact is
easily understandable from transformation properties of
the components: Ex is a scalar in the radial manifold while
E’ is a scalar density [56]). Only the functions �
 and
�
� appear in the deformed constraint algebra (4) via
� ¼ �
 �
�, not 
 or 
�. By changing only 
 and 
�, one
can modify the spherically symmetric constraints while
keeping their derivative order and the constraint algebra
unchanged: In spherical symmetry, the classical dynamics
do not follow uniquely from the hypersurface-deformation
algebra.

3. 2 þ 1 gravity

In spherically symmetric models and for perturbative
inhomogeneities around isotropic models, consistent
deformations of the hypersurface-deformation algebra
have been found by computing Poisson brackets of effec-
tive constraints, obtained by amending the classical con-
straints by correction functions. In 2þ 1-dimensional
models, there are detailed calculations [14] of partially
of -shell constraint algebras even at an operator level.
The results confirm the general form of consistent defor-
mations seen with effective constraints.

B. Holonomy corrections

In spherically symmetric models, also a limited version
of holonomy corrections has been implemented consis-
tently, those that involve only the scalar component K’

of extrinsic curvature but not the component Kx of the
density weight one [16]. One can therefore consistently
substitute �i��1 expði�K’Þ for K’, but there is no known

consistent way to use expðiRe KxdxÞ for Kx. Accordingly,
no spatial integration or discretization is required to ensure
the existing forms of consistent correction functions to be
scalar and to keep the fH;Dg part of the constraint algebra
unmodified. This type of correction thus does not lead to
nonlocality, as holonomy corrections usually do owing to
the spatial integrations involved in their definition. In this
case, the form of the deformation is similar to the one
obtained for inverse-triad corrections, with a Poisson
bracket (4) for a correction function now depending on
extrinsic curvature instead of the densitized triad.

If we parametrize the Hamiltonian constraint as

HQ
grav½N� ¼ � 1

2G

Z
dxNð
jExj�1

2E’f1ðK’;KxÞ
þ 2 �
jExj12f2ðK’;KxÞ þ 
jExj�1

2E’

� 
�jExj�1
2�2

’E
’ þ 2 �
��

0
’jExj12Þ

including inverse-triad corrections as well as holonomy
corrections via two new functions, f1 and f2, anomaly
freedom can be realized if f1 ¼ F2

1 and f2 ¼ KxF2 pro-
vided that F2 ¼ F1ð@F1=@K’Þ
=
� [16]. If F1 is inde-

pendent of Ex, or at least depends on this triad variable in a

way different from inverse-triad corrections, we obtain that

� ¼ 
 and also �
� ¼ �
 must be realized, restricting the
set of solutions of (8). Combinations of different correc-
tions therefore can reduce the freedom of choices seen for
just a single type. If we take F1 ¼ ð�	Þ�1 sinð	�K’Þ, as
often done for holonomy corrections, we see that F2 ¼
ð2	�Þ�1 sinð2	�K’Þ. The algebraic deformation is then

given by �ðEx; K’Þ ¼ �
 �
�@F2=@K’. For the example

provided, this means �ðK’Þ ¼ cosð2�K’Þ if we include

only holonomy corrections. Note that� can be negative for
holonomy corrections, unlike for inverse-triad corrections.
In particular, disregarding inverse-triad corrections, we can
write � ¼ @F2=@K’ ¼ 1

2@
2f1=@K

2
’. At curvatures for

which f1 is at a maximum, �< 0.
A more general case of holonomy corrections, including

even discretization and nonlocality, has been implemented
consistently in 2þ 1-dimensional gravity with a nonvan-
ishing cosmological constant [13]. (A vanishing cosmo-
logical constant in 2þ 1 dimensions does not require
deformations of the constraint algebra, which is much
simpler in this case). As with inverse-triad corrections in
2þ 1 dimensions, also these calculations have been per-
formed at an operator level. Similar to the spherically
symmetric case, the correction function is given by the
trace of a holonomy used to write the Hamiltonian con-
straint in loop variables.
For some perturbative models around Friedmann-

Robertson-Walker backgrounds, holonomy corrections
have been included consistently, too. This is the case for
tensor [58], vector [11], and scalar modes [12]. A new
feature in Ref. [11], which did not show up in any other
case of consistent deformations of (1) so far, is that the
Poisson bracket fH;Dg could be consistently modified
(even if D itself remains classical). However, this possi-
bility has been ruled out by more restricted consistent
deformations of scalar modes [12]. Also here, the correc-
tion function is of the form cosð2�cÞ with the isotropic
connection component c. It is similar to the correction
function for holonomy corrections in spherical symmetry,
and also becomes negative for large curvatures, with
�c� �=2. Implications will be discussed later. As in
spherical symmetry, no nonlocality effects have yet been
implemented for holonomy corrections in nearly isotropic
cosmology.

C. Discretization

Effective constraints of loop quantum gravity in
inhomogeneous situations naturally include discretization
(or a derivative expansion of spatially discretized terms)
because the basic variables, holonomies and fluxes, are
defined as spatial integrations of nonscalar quantities.
Also spatial derivatives in Hamiltonians must be replaced
suitably by finite differences. Modeling classical con-
straints with these variables to ensure the correct classical
limit of the resulting theory then requires one to refer to the
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field values at different points even for classically local
expressions. For this type of corrections, independently of
holonomy corrections, no consistently deformed algebra
has been formulated explicitly, but work on consistent
discretizations exists [59–61] and indicates that deforma-
tions should occur also here.

III. HYPERSURFACE DEFORMATIONS

The meaning of the hypersurface-deformation algebra
has been discussed in detail in the classic references [4,5].
Nevertheless, it is useful to go through some of the argu-
ments once again with a fresh perspective suggested by the
deformed algebras found recently and summarized in the
preceding section.

A. Spatial diffeomorphisms

Most (but not all) deformations found so far in loop
quantum gravity leave the spatial part of the hypersurface-
deformation algebra intact, which will also be one of our
assumptions in this article. There are several reasons for this
assumption: First, spatial diffeomorphisms can be imple-
mented directly in loop quantum gravity by moving graphs
in the spatial manifold used to set up the canonical formu-
lation. This action is the same as the one on classical fields,
and so one would not expect corrections to the diffeomor-
phism constraint at an effective level. If one just assumes
that the part of the constraint algebra associated with a
vector field �Ni generates relabelings xi � xi þ �Ni of
points in the spatial manifold, any field on space must
automatically change by the Lie derivative along �Ni.
Since spaces in a very general sense are described mathe-
matically by labeling their elements in some way, while
physics should be insensitive to how the labels are chosen,
it is natural to expect a relabeling symmetry to be present at
an effective level, even if the fundamental spatial structure
may become discrete or noncommutative. From the relation
fF;D½�Ni�g ¼ L�NiF and the usual expressions for Lie
derivatives of the fundamental fields, one can then uniquely
derive the phase-space expression that the diffeomorphism
constraint must take [4]. In particular, it is always linear
in the momenta of the fields, a consequence which we will
make use of later on. For the fields considered here,
this implies Dscalar½Ni�¼R

d3xNip��ji for a scalar field

and Dgrav½Ni�¼�2
R
d3xNi�

ijj
j for gravity in Arnowitt-

Deser-Misner variables.
Once the diffeomorphism constraint is determined, it

must obviously satisfy the spatial part (1) of the classical
constraint algebra as well as (2), as long as the corrected
Hð�Þ½N� remains a scalar. The latter assumption (that

Hð�Þ½N� be a spatial scalar) appears safe, too, because of

the nature of effective constraints as integrated functionals
on a spatial manifold. In what follows, we will make use
not only of the assumption that the spatial part of the
hypersurface-deformation algebra remains unmodified,

but also of several further consequences regarding the
form of the diffeomorphism constraint. Most important,
the diffeomorphism constraint appears on the right-hand
side of (4); thus, the expression it takes will influence the
Hamiltonian constraint determined from the constraint
algebra.

B. Transversal deformations

The modification by � in (4) occurs for the commutator
of two transversal deformations of spatial hypersurfaces
along their normal vectors, by two different and position-
dependent amounts, N1 and N2. This part of the deforma-
tion algebra is distinguished from the spatial part not only
in that it is of dynamical content, owing to the presence of
the Hamiltonian constraint and matter Hamiltonians. Also,
the use of the normal vector to point the deformation
normally implies a dependence on the space-time metric
g��, containing phase-space degrees of freedom. The

algebra, as a consequence, acquires structure functions
rather than just structure constants as suffice for the part
of spatial deformations. Implications of structure functions
for canonical quantization, mainly negative ones owing
to additional difficulties in commutator relationships, are
well known; in the present context they are, perhaps more
positively so thanks to interesting implications, realized
as a general source of possible deformations by quantum
corrections.
Unlike the spatial part of the deformation algebra, which

directly shows its relation to infinitesimal deformations by
the presence of the Lie derivative, relating the fH;Hg part
of the algebra to transversal deformations is not so obvious.
As indicated by the algebra, we consider two transversal
deformations by lapse functions, N1 and N2, done in a row
but in the two different possible orders. Starting with an
initial hypersurface Sin, we obtain two intermediate ones,
S1 by deforming Sin by N1 along the normal and S2 by
deforming Sin by N2 along the normal. From those two
intermediate hypersurfaces, we obtain two final hypersur-

faces, Sð1Þfin by deforming S1 by N2 along the new normal of

S1 and S
ð2Þ
fin by deforming S2 byN1 along the new normal of

S2. Comparing the two final hypersurfaces should then
yield a commutator of deformations according to (3). In
the process of computing the normals of Sin, S1 and S2, the
metric tensor must be used. We will not fix the signature
� ¼ �1 of the metric for our calculations in order to be
able to incorporate possible sign changes due to quantum
corrections, as suggested by holonomy corrections where
� can turn negative. (For Lorentzian signature with
� ¼ �1, we choose the time part of the metric to carry
the minus sign).
For simplicity, and without loss of generality, we choose

space-time coordinates such that Sin is given by a constant-
time slice, Sin: y

i � ðtin; yiÞ with some spatial embedding
coordinates yi. The general expression for the future-
pointing unit normal to a hypersurface yi � x�ðyiÞ,
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n� ¼ �
g��0


�0���@y1x
�@y2x

�@y3x
�

jj � jj (9)

(with jj � jj denoting the norm of the numerator) then

simplifies to n�in ¼ �g�0=
ffiffiffiffiffiffiffiffiffiffijg00jp

.

The intermediate hypersurfaces, with infinitesimal
transversal deformations, are obtained as

S1: y
i � x�ðyiÞ þ N1ðyiÞn�in ¼ ðtin; yiÞ þ �N1ðyiÞg�0ðyiÞffiffiffiffiffiffiffiffiffiffijg00jp ;

S2: y
i � x�ðyiÞ þ N2ðyiÞn�in ¼ ðtin; yiÞ þ �N2ðyiÞg�0ðyiÞffiffiffiffiffiffiffiffiffiffijg00jp :

From these expressions, we obtain the new normals by the
general formula (9), expanded to first order in the lapse
functions for infinitesimal deformations,

n
�
1 ¼�

g�0ffiffiffiffiffiffiffiffiffiffijg00jp þ
�
��g�i þg�0gi0

jg00j
�
@iN1 þN1XþOðN2

1Þ

¼�
g�0ffiffiffiffiffiffiffiffiffiffijg00jp ��g�i@iN1 þN1XþOðN2

1Þ;

n�2 ¼�
g�0ffiffiffiffiffiffiffiffiffiffijg00jp þ

�
��g�i þg�0gi0

jg00j
�
@iN2 þN2XþOðN2

2Þ

¼�
g�0ffiffiffiffiffiffiffiffiffiffijg00jp ��g�i@iN2 þN2XþOðN2

2Þ

with the spatial metric g�� ¼ g�� � �n
�
inn

�
in on the initial

slice. The coefficient X denotes a combination of metric
components and their derivatives; the precise form will not
be important because these terms, depending on N1 and N2

but not on their derivatives, will drop out of the final
commutator results. The two final hypersurfaces are then
parametrized as

Sð1Þfin: y
i � x�ðyiÞ þ N1ðyiÞn�in þ N2ðyiÞn�1

¼ ðtin; yiÞ þ �N1ðyiÞ g�0ffiffiffiffiffiffiffiffiffiffijg00jp þ �N2ðyiÞ

	
�

g�0ffiffiffiffiffiffiffiffiffiffijg00jp � g�i@iN1ðyiÞ
�
þ N1N2X þOðN2

1Þ;

Sð2Þfin: y
i � x�ðyiÞ þ N2ðyiÞn�in þ N1ðyiÞn�2

¼ ðtin; yiÞ þ �N2ðyiÞ g�0ffiffiffiffiffiffiffiffiffiffijg00jp þ �N1ðyiÞ

	
�

g�0ffiffiffiffiffiffiffiffiffiffijg00jp � g�i@iN2ðyiÞ
�
þ N2N1X þOðN2

2Þ:

With these expressions it is easy to notice that, writing

Sð1Þfin: y
i � x

�
fin;1ðyiÞ, we have

Sð2Þfin: y
i � x

�
fin;2ðyiÞ ¼ x

�
fin;1ðyiÞ þ �S�ðyiÞ

with

�S�ðyiÞ ¼ ��g�iðN1@iN2 � N2@iN1Þ: (10)

To leading order in the lapse functions, �S�ðyiÞ (depending
only on spatial metric components g�i) is orthogonal to the
normal vector and thus amounts to an infinitesimal spatial
diffeomorphism along the hypersurface. The spatial defor-
mation �S� in (10) is obtained from the commutator of
two normal deformations, and it reproduces the normal
part of the algebra (3) for � ¼ �1. A change of sign in
the structure function is equivalent to signature change.
(Formally, this implication of signature change can also
be seen by replacing N with iN).
So far we have assumed the classical manifold structure

and geometry in order to compute the normal vectors. The
deformed algebra (4) can be achieved formally by using
�g�� instead of the inverse metric g��. For inverse-triad
corrections, such a modification would be expected be-
cause it affects all inverse components of the metric in
Hamiltonians. Nevertheless, the appearance of the correc-
tion function in the constraint algebra must have a more
general origin than just modifying any appearance of the
inverse metric because a deformation of the same form is
obtained for some versions of holonomy corrections. The
latter do not affect inverse-metric components but rather
appearances of extrinsic curvature or the Ashtekar-Barbero
connection. However, only the spatial metric appears in the
structure functions of the constraint algebra; deformations,
therefore, cannot be reduced to simply applying the usual
corrections of loop quantum gravity to the structure func-
tions. Such a procedure would be questionable, anyway,
because the structure functions are not quantized but rather
arise from the algebra satisfied by effective quantum con-
straints, with corrections following in a more indirect way.

IV. CONSTRAINTS AND
SPACE-TIME STRUCTURE

Quantum-geometry corrections change the hypersurface-
deformation algebra and accordingly the space-time struc-
ture: Normal deformations of spatial slices then behave
differently from the classical case. Corresponding actions
cannot be covariant in the usual sense, but they are still
covariant in a deformed sense, under an algebra of the
type (4). In the absence of a corresponding space-time tensor
calculus, it is difficult to imagine the form of actions cova-
riant with respect to the new space-time structures. But
fortunately, such actions can be systematically derived
from the constraint algebra, or regained in the language of
Refs. [4,5].
In this and the following section, we will go in some

detail through the steps outlined in Ref. [4], focusing our
discussion on those that use assumptions no longer valid if
the classical space-time structure cannot be taken for
granted. According to the form of the deformed constraint
algebra used here, and as a rather general consequence of
canonical quantum gravity, the spatial structure on the one
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hand and the structure of hypersurface deformations within
space-time, on the other, will play rather different roles.
The algebraic effects considered here are thus truly dy-
namical and do not arise at the kinematical level of spatial
manifolds.

A. Locality

Once the spatial structure is fixed, the next object
to consider is the change of the spatial metric under a
normal deformation of a spatial slice. Classically, this
deformation is given by the extrinsic-curvature tensor,
fgijðxÞ; H½�N�g ¼ 2KijðxÞ�N, and it plays an important

role in Ref. [4] in helping to show that the Hamiltonian
constraint must be a local expression in the momentum:
Identifying

�H½�N�
��ijðxÞ ¼ fgijðxÞ; H½�N�g ¼ 2KijðxÞ�NðxÞ (11)

implies that H½�N� must be local in the momentum �ijðxÞ
without any dependence on �ij derivatives. The specific
form of Kij as extrinsic curvature does not matter for this

conclusion, but it is important that it is a local function, and
that no derivatives of �N appear on the right-hand side.

In the presence of deformed space-time structures, we
cannot safely assume that transversal metric deformations
are given in terms of extrinsic curvature. For the explicit
examples of deformed constraint algebras, it is known that
the relationship between momentum variables and extrin-
sic curvature deviates from the classical one; see e.g., the
discussion in Ref. [17]. It should then be possible for the
change of the metric under a transversal deformation,
while still being related to the momentum of the metric,
to have a modified relationship with extrinsic curvature. In
the absence of a geometrical interpretation of the change of
the metric, one can compute it only by using the canonical
formula fgijðxÞ; H½�N�g; but then, one piece of indepen-

dent information is lost and we cannot derive locality
properties of the Hamiltonian constraint. If H½�N� is local
in the momentum, fgij; H½�N�g is local and vice versa, but
there is no independent general statement that could de-
termine whether locality is realized.

Instead, we will make use of the following line of argu-
ments: We know that the classical constraint must be local
without spatial derivatives of �ij, and in most cases the
form of corrections expected from loop quantum gravity
tells us what locality properties new terms have. Most of
them are indeed nonlocal, for instance those arising from
the use of holonomies as exponentiated line integrals of a
connection related to extrinsic curvature, or inverse-triad
corrections depending on fluxes through extended surfaces.
In derivative expansions, whole series of spatial derivatives
of �ij or gij will result. The form of the corrections and

their impact on effective constraints can thus be used to
decide whether local or nonlocal constraints should be
expected. The arguments put forward to regain the form

of the constraint will then have to be adapted, depending on
the locality properties realized. In most cases, effective
equations include a derivative expansion, approximating
nonlocal features locally. We can then assume a local
Hamiltonian constraint, but, in contrast to the classical
case, must take into account additional derivatives, for
instance of Kij.

Similar considerations can be applied to the question of
whether the matter Hamiltonian must be local in the mo-
mentum. Here, the assumptions made in Ref. [4] appear
safer in the context of deformed algebras than those for the
corresponding gravitational terms. Instead of looking at
transversal deformations of the spatial metric, we look at
transversal deformations of the matter field, assumed to
be a scalar to be specific. The relation f�ðxÞ; H½�N�g ¼
VðxÞ�N then replaces the gravitational relation involving
extrinsic curvature, with VðxÞ interpreted as the velocity of
the scalar field. In contrast to the gravitational part, there
are some quantum corrections in matter Hamiltonians that,
while changing the specific expression for VðxÞ, leave its
local nature intact [62]. Thus, in some cases we can assume
the matter Hamiltonian to be local in the momentum even
in the presence of corrections making the gravitational part
nonlocal without a derivative expansion. This difference
between gravitational and matter Hamiltonians may play
an important role for the interplay of different contribu-
tions to the constraints ensuring that the algebra closes.

B. Gravity and matter

There is a useful argument showing that the gravity
and matter parts of the constraints D½Ni� ¼ Dgrav½Ni� þ
Dmatter½Ni� and H½N� ¼ Hgrav½N� þHmatter½N� must sat-

isfy the hypersurface-deformation algebra separately,
provided that matter Hamiltonians do not depend on the
gravitational momentum �ijðxÞ and the gravitational
constraint does not contain spatial derivatives of �ijðxÞ.
In this case,

fH½N1�; H½N2�g ¼ fHgrav½N1�; Hgrav½N2�g
þ fHmatter½N1�; Hmatter½N2�g: (12)

The assumption is realized classically for a scalar field, for
instance, and so one can consider its simpler algebraic
regaining procedure independently of the gravitational
part. With quantum corrections, however, the assumption
can be violated easily, depending on the type of the
correction. Matter fields are usually introduced in loop
quantum gravity via the values they take at the vertices
of a spin network. Spatial derivatives as they occur in the
Hamiltonians must be discretized and replaced by finite
differences of the values at neighboring vertices before
they can be quantized. Depending on how the differencing
is done, one may have to refer to the gravitational connec-
tion, making the matter constraint dependent on the gravi-
tational momentum. Another source of such a dependence
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may be counterterms as introduced in Ref. [10], required to
close the constraint algebra. An extra momentum depen-
dence can be avoided for a scalar field, but there may be
reasons to prefer more complicated quantizations.

Coming back to the results found in the preceding
subsection on locality, we can see a potential obstruction
to the existence of consistent deformations of the classical
constraint algebra. There are corrections expected from
loop quantum gravity, most notably holonomy corrections,
which are nonlocal in the connection and thus make the
gravitational part of the Hamiltonian constraint nonlocal in
the gravitational momentum. A scalar Hamiltonian in the
presence of the same corrections, on the other hand, re-
mains local in its momentum. If the gravitational part and
the matter part are to satisfy the same deformed algebra for
consistency, the mismatch of locality properties could be
seen as an obstacle to the existence of a consistent defor-
mation: The function � of (4) would be nonlocal in one
contribution and local in another one, preventing one from
adding up the constraint contributions to a consistent
whole. However, the situation is not obviously inconsistent
because the same property giving rise to the mismatch,
nonlocality and the presence of derivatives of �ij, also
violates the assumptions that led one to conclude that
gravity and matter satisfy the hypersurface-deformation
algebra independently. Nonlocality, in a derivative expan-
sion of holonomy corrections in effective constraints,
makes the gravitational constraint depend on spatial de-
rivatives of the momentum �ijðxÞ, such that cross terms
between gravity and matter in (12) no longer cancel. It is
reassuring that properties of nonlocality thus restore the
a priori possibility of consistency, but the necessary
appearance of gravity-matter cross termsmakes the explicit
construction of consistent deformations for nonlocal
momentum-dependent corrections more difficult than for
local ones. As recalled in Sec. II B, results in spherical
symmetry are indeed much easier to find in local versions
of the corrections. Also for perturbative inhomogeneities as
in Ref. [12] one so far assumes a local, pointwise form of
holonomy corrections. Themanipulations required for non-
local modifications to be consistent appear to be rather
complicated, a fact whichmay explain the difficulties found
in constructing consistent deformations corresponding to
the nonlocal holonomy or discreteness corrections. (On the
other hand, tying matter terms more closely to gravitational
ones rather than having them algebraically separated as in
(12) may be of interest in the context of unification).

V. ALGEBRAICALLY REGAINING
HAMILTONIANS

With these preparatory discussions, we can now begin to
enter details of regaining Hamiltonians from deformed
constraint algebras. There are several interesting applica-
tions and generalizations of the methods of Ref. [4], which
we develop in different cases.

A. Spherical symmetry

Before looking at the general theory, it is instructive to
specialize the calculations to spherical symmetry. Some
steps will simplify, and it will be interesting to compare the
differences in uniqueness for different degrees of symme-
try. As already noted in Sec. II A 2, in spherical symmetry
the classical dynamics does not follow uniquely from the
algebra.
For the sake of easier comparison with calculations of

modified constraints motivated by loop quantum gravity,
we will present equations in this subsection for triad var-
iables. A spherically symmetric spatial densitized triad has
two components, Ex and E’, for the radial coordinate x and
one angular coordinate ’, which determine the spatial
metric by gxx ¼ ðE’Þ2=jExj and g’’ ¼ sin2#jExj. We

will assume Ex > 0 to avoid some sign factors.
Instead of working with spatial curvature tensors, in this

context it turns out to be useful to refer to the angular
spin-connection component and its spatial and functional
derivatives,

�’ ¼ �ðExÞ0
2E’ ; (13)

�0
’ ¼ �ðExÞ00

2E’ þ ðExÞ0ðE’Þ0
2ðE’Þ2 ; (14)

��’ðyÞ
�ExðxÞ ¼ � 1

2E’ðyÞ�
0ðy; xÞ; (15)

��’ðyÞ
�E’ðxÞ ¼ ðExÞ0ðyÞ

2ðE’ðyÞÞ2 �ðy; xÞ; (16)

��0
’ðyÞ

�ExðxÞ ¼ � 1

2E’ðyÞ�
00ðy; xÞ þ ðE’Þ0ðyÞ

2ðE’ðyÞÞ2 �
0ðy; xÞ; (17)

��0
’ðyÞ

�E’ðxÞ ¼
ðExÞ00ðyÞ
2ðE’ðyÞÞ2 �ðy; xÞ þ

ðExÞ0ðyÞ
2ðE’ðyÞÞ2 �

0ðy; xÞ (18)

�ðExÞ0ðyÞðE’Þ0ðyÞ
ðE’ðyÞÞ3 �ðy; xÞ: (19)

(The radial component of the spin connection does not
have any gauge-invariant contribution [56]).
Momenta of the densitized triad are classically

given by extrinsic-curvature components, Kx and K’,

with fKxðxÞ; ExðyÞg ¼ 2G�ðx; yÞ and fK’ðxÞ; E’ðyÞg ¼
G�ðx; yÞ. With these properties, the commutator relation-
ship (4) to exploit here reads
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fHðxÞ; HðyÞg ¼ G
Z

d3z

�
2
�HðxÞ
�KxðzÞ

�HðyÞ
�ExðzÞ

� 2
�HðyÞ
�KxðzÞ

�HðxÞ
�ExðzÞ þ

�HðxÞ
�K’ðzÞ

�HðyÞ
�E’ðzÞ

� �HðyÞ
�K’ðzÞ

�HðxÞ
�E’ðzÞ

�

¼ �
ExðxÞ

ðE’ðxÞÞ2 DðxÞ�0ðx; yÞ � ðx $ yÞ (20)

with the local diffeomorphism constraint

DðxÞ ¼ 1

2G
ð2E’K0

’ � KxðExÞ0Þ: (21)

With a modified Hamiltonian,Kx andK’ may no longer be

components of extrinsic curvature. However, they are still
canonically conjugate toEx and E’, and we continue to use
the same letters for momentum variables.

For now, we will be looking only for constraints with a
quadratic ‘‘kinetic’’ term in momenta and no nonlocality or
spatial derivatives of K,

H ¼ 00H þ 11HKxK’ þ 20HKxKx þ 02HK’K’ (22)

(without linear terms, assuming time-reversal symmetry),
and have linear functional derivatives

G
�HðxÞ
�KxðzÞ ¼ ðA1ðxÞKxðxÞ þ B1ðxÞK’ðxÞÞ�ðx; zÞ; (23)

G
�HðxÞ
�K’ðzÞ ¼ ðA2ðxÞKxðxÞ þ B2ðxÞK’ðxÞÞ�ðx; zÞ: (24)

We then identify 11HG ¼ A2 ¼ B1,
02HG ¼ B2=2,

20HG ¼ A1=2, which may all depend on the triad compo-
nents. The Poisson bracket of two Hamiltonian constraints
becomes

fHðxÞ;HðyÞg¼ �HðyÞ
�ExðxÞð2A1KxðxÞþ2B1K’ðxÞÞ

þ �HðyÞ
�E’ðxÞðA2KxðxÞþB2K’ðxÞÞ�ðx$yÞ

¼�
ExðxÞ

GðE’ðxÞÞ2
�
E’ðxÞK0

’ðxÞ�1

2
KxðxÞðExÞ0ðxÞ

�

	�0ðx;yÞ�ðx$yÞ: (25)

We evaluate its implications by comparing coefficients
of Kx and K’. In this section, we will assume that � does

not depend on Kx or K’, thus considering the case of

inverse-triad corrections.
For Kx ¼ 0, K’ ¼ 0, the equation is automatically sat-

isfied. For the first-order coefficients inKx, we operate with
�=�Kx and then set Kx ¼ 0, K’ ¼ 0,

�
2
�00HðyÞ
�ExðxÞ A1ðxÞ þ �00HðyÞ

�E’ðxÞ A2ðxÞ
�
�ðx; zÞ � ðx $ yÞ

¼ ��ExðxÞðExÞ0ðxÞ
2GðE’ðxÞÞ2 �0ðx; yÞ�ðx; zÞ � ðx $ yÞ: (26)

For functional derivatives of 00H by Ex and E’, we must
know the general triad-dependent terms possible. In addi-
tion to a direct dependence on the fields, 00H can depend
on the triad via spatial curvature which, in turn, depends
on the spin connection and its derivatives. We thus have to
expect a dependence on Ex, E’, �’ and �0

’. Higher de-

rivatives are not included because here, as in (22), we
expand only to second order in momenta and derivatives.
We then have the chain rule

�00HðyÞ
�ExðxÞ ¼ @00HðyÞ

@�’ðyÞ
��’ðyÞ
�ExðxÞ þ

@00HðyÞ
@�0

’ðyÞ
��0

’ðyÞ
�ExðxÞ

þ @00HðyÞ
@ExðyÞ

�ExðyÞ
�ExðxÞ (27)

and a similar relation for �00HðyÞ=�E’ðxÞ to rewrite
(26). We substitute our expressions (16)–(19) for
��’ðyÞ=�ExðxÞ and so on, multiply with test functions

aðxÞ, bðyÞ, and cðzÞ, and integrate over x, y, and z. We
state the result obtained after several integrations by parts,

Z
dy

�
�ða0cA1Þ b

E’

@00H

@�’

þ ða0cA1ÞbðE
’Þ0

ðE’Þ2
@00H

@�0
’

þ ða0cA2Þ bðE
xÞ0

2ðE’Þ2
@00H

@�0
’

þ 2ða0cA1Þb
�
1

E’

@00H

@�0
’

�0

þ ða00cA1Þ b

E’

@00H

@�0
’

� �ExðExÞ0
2GðE’Þ2 a

0cb
�
� ða $ bÞ ¼ 0:

(28)

(Several terms that cancel in the antisymmetrization with
respect to a and b have not been written explicitly).
Collecting the coefficients of cða00b� b00aÞ and
cða0b� b0aÞ, respectively, we get

A1

E’

@00H

@�0
’

¼ 0; (29)

� A1

E’

@00H

@�’

þ A1ðE’Þ0
2ðE’Þ2

@00H

@�0
’

þ A2ðExÞ0
2ðE’Þ2

@00H

@�0
’

þ
�
1

E’

@00H

@�0
’

�0
2A1 � �ExðExÞ0

2GðE’Þ2 ¼ 0: (30)

Going back to (25) to look at the first order in K’ (and

zeroth in Kx), and performing similar operations, we get
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Z
dy

�
�ða0cB1Þ b

E’

@00H

@�’

þ ða0cB1ÞbðE
’Þ0

ðE’Þ2
@00H

@�0
’

þ ða0cB2Þ bðE
xÞ0

2ðE’Þ2
@00H

@�0
’

þ 2ða0cB1Þb
�
1

E’

@00H

@�0
’

�0

þ ða00cB1Þ b

E’

@00H

@�0
’

� a00bc
�Ex

GE’ � a0bc
�
�Ex

GE’

�0�

� ða $ bÞ ¼ 0: (31)

Collecting the coefficients of cða00b� b00aÞ and
cða0b� b0aÞ, respectively, results in

B1

E’

@00H

@�0
’

� �Ex

GE’ ¼ 0; (32)

� B1

E’

@00H

@�’

þ B1ðE’Þ0
2ðE’Þ2

@00H

@�0
’

þ B2ðExÞ0
2ðE’Þ2

@00H

@�0
’

þ
�
1

E’

@00H

@�0
’

�0
2B1 �

�
�Ex

GE’

�0 ¼ 0: (33)

Equation (32) implies that �00H=��0
’ cannot be zero.

With this condition, we find A1 ¼ 0 from (29),

A2 ¼ �Ex

G

�
@00H

@�0
’

��1 ¼ B1 (34)

from (30) and (32), and

� B1

E’

@00H

@�’

þ @00H

@�0
’

�
B1ðE’Þ0
ðE’Þ2 þ B2ðExÞ0

2ðE’Þ2
�

þ 2B1

�
1

E’

@00H

@�0
’

�0 ¼ 1

G

�
�Ex

E’

�0
: (35)

This tells us that

G
B1

E’

@00H

@�’

¼
�
B2

B1

Ex

2E’ þ 1

�
�ðExÞ0
E’ þ Ex

E’

�
�0 � 2

B0
1

B1

�

�
:

(36)

To solve these equations, we introduce a function b1 such

that B1 ¼ � ffiffiffiffiffiffiffij�jp
b1

ffiffiffiffiffiffi
Ex

p ¼ A2. The factors are chosen so
as to cancel several terms in (36)

�ðExÞ0
E’

þ Ex

E’ ð�0 � 2�B0
1=B1Þ ¼ �2�

Ex

E’

b01
b1

:

For the correct density weights in the first term in (36),
B2 must be proportional to E’. (The other factors
B1 and Ex are scalar and cannot change the density

weight). With another free function b2, we write B2 ¼
�b1b2

ffiffiffiffiffiffiffij�jp
E’=

ffiffiffiffiffiffi
Ex

p
, with factors other than E’ chosen

for later convenience. The coefficients A1, A2, B1 and B2

determine the form of momentum contributions to the
Hamiltonian constraint

11H ¼ B1

G
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffij�jEx
p

b1
G

; (37)

20H ¼ A1

2G
¼ 0; (38)

02H ¼ B2

2G
¼ �b1b2

ffiffiffiffiffiffiffi
j�j

q E’

2G
ffiffiffiffiffiffi
Ex

p : (39)

With these solutions, we obtain @00H=@�0
’ ¼ �sgnð�Þ	ffiffiffiffiffiffiffiffiffiffiffiffij�jEx

p
=Gb1 from (36) and @00H=@�’¼ sgnð�Þ ffiffiffiffiffiffiffij�jp 	

ðb2�4ðdb1=dExÞðEx=b1ÞÞE’�’=ðGb1
ffiffiffiffiffiffi
Ex

p Þ from (34),

or integrated,

00H¼�sgnð�Þ ffiffiffiffiffiffiffij�jp
G

� ffiffiffiffiffiffi
Ex

p
b1

�0
’� 1

b1

�
b2
2
�2Ex

b1

db1
dEx

�
E’ffiffiffiffiffiffi
Ex

p �2
’

�

þfðExÞE’: (40)

Comparing with the general form (7), we read off

�
 ¼
ffiffiffiffiffiffiffi
j�j

q
b1;


 ¼
ffiffiffiffiffiffiffi
j�j

q
b1b2;

�
� ¼ sgnð�Þ
ffiffiffiffiffiffiffij�jp
b1

;


� ¼ sgnð�Þ
ffiffiffiffiffiffiffij�jp
b1

�
b2 � 4

d logb1
d logEx

�
:

With these relationships, the correction functions can easily
be seen to satisfy the condition (8) as well as � ¼ �
 �
�.
Modifications to the spherically symmetric dynamics

are not entirely determined by the constraint algebra, con-
sistent with the results of Refs. [17,55]. The function b1 is
related to the ratio of �
 to �
�, and b2 determines how 

differs from �
. The Ex dependence of 00H in (40) (which
may include a cosmological-constant term) is not fully
determined because Ex is a scalar with no density weight
and can, for the purpose of the constraint algebra, be
inserted rather freely in the constraints. In this feature we
can see why the full dynamics are more unique than the
spherically symmetric one: Without symmetry, there is less
freedom in the choice of spatial tensors with the correct
transformation properties. Indeed, as we will see later,
spatial transformation properties play an important role
for the regaining procedure. Without spherical symmetry

�0
’ and �2

’ would be part of the same contribution ð3ÞR,
which cannot be split apart by different correction func-
tions if the spatial structure of geometry remains unmodi-
fied. The case of 
 ¼ �
 (b2 ¼ 1) and 
� ¼ �
� (b1
constant and therefore b1 ¼ 1 for it to approach one at
large fluxes) is then preferred, with all corrections deter-
mined by the algebraic deformation �.
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B. Legendre transform

Instead of having to assume �H=��ij (or �H=�Kx and
�H=�K’ in spherical symmetry with triad variables) to be

linear in the momenta, it is more general to treat
�H=��ijðxÞ ¼: vijðxÞ as a new independent variable in

place of �ij, and then expand by this newly defined vij.

This change amounts to a Legendre transformation from
ðgij; �ijÞ with Hamiltonian H to ðgij; vijÞ with Lagrangian

L ¼ �ijvij �H, as proposed in Ref. [4]. We then have the

equations

H ¼ �ijvij � L; (41)

�H

�gijðx0Þ
���������ijðxÞ

¼ � �L

�gijðx0Þ
��������vijðxÞ

: (42)

There are now two differences to Ref. [4]. First, our vij

here need not be geometrical extrinsic curvature because of
modifications to space-time geometry. We simply define
a new independent variable vij ¼ ð�NÞ�1fgij; H½�N�g,
which we interpret as the rate of change of the metric,
eventually providing time derivatives in an effective action.
Second, we cannot always assume that the Hamiltonian is
local and free of derivatives of�ij, which would imply that
partial derivatives could be used to compute vij.

Using vij, we write the Poisson bracket of two smeared

Hamiltonian constraints as

fH½N�; H½M�g ¼
Z

d3x
�H½N�
�gijðxÞvijðxÞMðxÞ � ðN $ MÞ

¼ �
Z

d3x
Z

d3y
�LðyÞ
�gijðxÞvijðxÞNðyÞMðxÞ

� ðN $ MÞ
¼

Z
d3x�DiðxÞðNMji �MNjiÞ (43)

with the local diffeomorphism constraint Di. Taking func-
tional derivatives by N and M, we arrive at the functional
equation

�LðxÞ
�gijðx0Þvijðx0Þ þ �DiðxÞ�jiðx; x0Þ � ðx $ x0Þ ¼ 0 (44)

for LðxÞ, which can be solved once an expression for the
diffeomorphism constraint Di is inserted. With Di linear
in the momenta, a fact which remains true in the cases
of deformed constraint algebras considered here, and
momenta related to functional derivatives of L by vij, a

linear equation for L is obtained. The importance of this
consequence of the Legendre transform has been stressed
in Ref. [4].

If gravity and matter split into independent constrained
systems, as realized for matter constraints independent of
the gravitational momentum and in the absence of deriva-
tives of �ijðxÞ in Hgrav, Eq. (44) can be derived in an

analogous form for the matter part, just using canonical
matter variables and the matter diffeomorphism constraint.
Because the following calculations, integrating the func-
tional differential equation, are easier for scalar matter, we
will first consider this case as an illustration of the general
procedure. As we will see, the Lagrangian viewpoint
provides a new interpretation of conditions of anomaly
freedom found earlier for inverse-triad corrections of a
scalar field.

C. Scalar matter

With the classical spatial structure, the Lagrangian
density of a scalar field � must be of the form L ¼ffiffiffiffiffiffiffiffiffi
detg

p
Lð�;V; c Þ where V ¼ ð�NÞ�1f�;H½�N�g is the

normal scalar velocity introduced before and c ¼
gij�ji�jj is the only remaining scalar that can be formed

from � and its derivatives up to a total derivative order of
at most 2. Higher derivatives do not appear classically for
equations of motion of second order, but they can easily be
introduced by quantum effects. Higher spatial derivatives,
in particular, are a natural consequence of discretization in
loop quantum gravity, which in effective form combined
with a derivative expansion will give rise to derivative
terms of arbitrary orders. Higher time derivatives, on the
other hand, follow from quantum backreaction. The
following considerations for matter assume the absence
of higher-order derivatives, as realized for instance for
inverse-triad corrections and some forms of holonomy
corrections.
With the canonical variables of a scalar field and its

diffeomorphism constraint Di ¼ p’�
ji, Eq. (44), adapted

to a scalar field, assumes the form

�LðxÞ
��ðx0ÞVðx

0Þ þ �
@LðxÞ
@VðxÞ�

jiðxÞ�jiðx; x0Þ � ðx $ x0Þ ¼ 0:

(45)

As in Ref. [4], we write

�LðxÞ
��ðx0Þ ¼ @LðxÞ

@�ðxÞ
��ðxÞ
��ðx0Þ þ 2

@LðxÞ
@c ðxÞ�

jiðxÞ�jiðx; x0Þ

and conclude, taking into account the additional factor of
�, that

Ai :¼ �ji
�
�
@L

@V
þ 2V

@L

@c

�

satisfies the equation AiðxÞ�jiðx; x0Þ � ðx $ x0Þ ¼ 0,
shown in Ref. [4] to imply Ai ¼ 0. Thus,

�
@L

@V
þ 2V

@L

@c
¼ 0

and L must be of the form Lð�; c � V2=�Þ.
This is a concrete indication that the deformed

hypersurface-deformation algebra implies a modification
of the usual covariance and of the dispersion relation of
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fields: The kinetic term of scalar Lagrangians does not
depend on c � V2 ¼ g���j��j� in space-time terms,

but has its time derivatives in c � V2=� rescaled by the
correction function �. Nevertheless, the system is
covariant and consistent, albeit with a deformed notion
of covariance as per the constraint algebra (4). The
dependence of the Lagrangian on the potential remains
unrestricted, leaving the form of some counterterms as
introduced in Ref. [10] more open.

It is illustrative to compare this form of the kinetic term
with the one obtained for the matter Hamiltonian in a
consistent deformation [10]. One begins with a matter
Hamiltonian density of the form

H ¼ �
p2
�

2
ffiffiffiffiffiffiffiffiffi
detg

p þ 1

2
�

ffiffiffiffiffiffiffiffiffi
detg

p
c þ ffiffiffiffiffiffiffiffiffi

detg
p

Wð�Þ

with metric factors corrected by inverse-triad corrections �
and �, and some potential Wð�Þ. The corresponding
Lagrangian density, with V ¼ �p�=

ffiffiffiffiffiffiffiffiffi
detg

p
, takes the form

L ¼ ffiffiffiffiffiffiffiffiffi
detg

p �
V2

2�
� �c

2
�Wð�Þ

�

¼ � ffiffiffiffiffiffiffiffiffi
detg

p �

2

�
c � V2

�

�
� ffiffiffiffiffiffiffiffiffi

detg
p

Wð�Þ (46)

with the kinetic dependence as derived above, provided
that � ¼ ��. This condition, as derived in Ref. [10] for
linear inhomogeneities around isotropic models, is exactly
one of the requirements for anomaly freedom to ensure a
closed constraint algebra of the form (4) for inverse-triad
corrections with � ¼ �
2 from the gravitational constraint.
The Lagrangian view clearly shows how this condition of
anomaly cancellation is necessary to ensure a (deformed)
covariant kinetic term in the action. With the same correc-
tions in d’Alembertians, propagation speeds of massless
matter and gravitational waves naturally agree, as explic-
itly shown for electromagentic waves in Ref. [58].

From the new derivation of corrected scalar Lagrangians
in this paper, we must expect corrections in matter terms
also if � results from holonomy corrections, provided they
can be consistently implemented. Explicit examples for
holonomy modifications required in matter terms have
already been found in Refs. [12,65]. However, in a scalar
Hamiltonian quantized by the methods of loop quantum
gravity [32] we do not expect holonomy corrections.
Consistent formulations of holonomy corrections in the
presence of matter therefore seem to encounter stronger
difficulties than inverse-triad corrections. Another peculiar
feature can be seen by recalling that � for holonomy cor-
rections can turn negative. The modified d’Alembertian
c � V2=� then becomes one of Euclidean signature, or a
4-dimensional Laplacian, and fields no longer propagate.
Also this property can explicitly be seen in the wave equa-
tions of Ref. [12] (but not in Ref. [65] where a gauge fixing
has veiled this effect).Wewill discuss further consequences
of this new form of signature change in Sec. VI C.

D. Gravitational part

As in the case of scalar matter, we begin our discussion
of the gravitational part by inserting the explicit expression
of the diffeomorphism constraint in the general equation
(44): In particular,

�DiðxÞ�jiðx; x0Þ ¼ �2��ij
jjðxÞ�jiðx; x0Þ: (47)

We then proceed as in the example of spherical symmetry:
We multiply this expression by two test functions aðxÞ and
bðx0Þ and integrate over x and x0, observing that some terms
symmetric in a and b cancel. After several steps, integrat-
ing by parts, discarding total derivatives and using the
symmetry of �ij, we arrive at

Z
dx½2�ijðxÞ�jjðxÞðaðxÞbjiðxÞ � ajiðxÞbðxÞÞ
þ 2�ijðxÞ�ðaðxÞbjijðxÞ � ajijðxÞbðxÞÞ�

from the right-hand side of (47). Functional derivatives
with respect to aðyÞ and bðzÞ give
Z
dx½2�ijðxÞ�jjðxÞð�ðx;yÞ�jiðx;zÞ��jiðx;yÞ�ðx;zÞÞ
þ2�ijðxÞ�ð�ðx;yÞ�jijðx;zÞ��jijðx;yÞ�ðx;zÞÞ�

¼2�ijðyÞ�jjðyÞ�jiðy;zÞþ2�ijðyÞ�ðyÞ�jijðy;zÞ�ðy$ zÞ

¼2
@LðyÞ
@vijðyÞ�jjðyÞ�jiðy;zÞþ2

@LðyÞ
@vijðyÞ�ðyÞ�jijðy;zÞ�ðy$ zÞ

if no spatial derivatives of vij appear in the corrections

and the Lagrangian, such that �ijðyÞ ¼ �L=�vijðyÞ ¼
@LðyÞ=@vijðyÞ. In combination with (44), we have

�LðxÞ
�gijðx0Þvijðx0Þ þ 2�jjðxÞ @LðxÞ

@vijðxÞ�jiðx; x0Þ

þ 2�
@LðxÞ
@vijðxÞ�jijðx; x0Þ � ðx $ x0Þ ¼ 0: (48)

In cases of derivative expansions of nonlocal terms in vij,

we use

�LðxÞ
�gijðx0Þvijðx0Þ�ðx; x0Þ þ 2�jjðxÞ �LðxÞ

�vijðx0Þ�jiðx; x0Þ

þ 2�
�LðxÞ
�vijðx0Þ�jijðx; x0Þ � ðx $ x0Þ ¼ 0 (49)

and write

�LðxÞ
�vijðx0Þ ¼ @LðxÞ

@vijðx0Þ�ðx; x
0Þ þ @LðxÞ

@vijjkðx0Þ�jkðx; x0Þ þ � � �
(50)

1. Expansion

In spherical symmetry, it turned out to be useful to
consider expansion coefficients by the momenta Kx and
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K’. As the next crucial step in solving the functional

equation, we expand both L and � as series in powers of
the normal change of the metric, vij,

L ¼ X1
n¼0

Li1j1...injn½gkl�vi1j1ðxÞ . . .vinjnðxÞ; (51)

� ¼ X1
n¼0

�i1j1...injn½gkl�vi1j1ðxÞ . . .vinjnðxÞ (52)

assuming for now local functions without spatial deriva-
tives. (See Sec. VD4 for nonlocality). The expansion of
� allows us to deal with inverse-triad corrections and
local holonomy corrections at the same time. Holonomy
corrections will then not appear as periodic functions
such as sinð�K’Þ=� for K’ in spherical symmetry, but

as perturbative terms of a power series in K’. Such an

expansion is more consistent with the perturbative nature
of these higher-order corrections, which are expected in a
similar form from higher-curvature terms or quantum
backreaction. Including all terms in a power series of
sinð�K�=�Þ, even tiny ones at high orders, but ignoring

quantum backreaction would not be consistent. An ex-
pansion also makes it more clear how terms of higher
order in vij can be combined with higher spatial deriva-

tives of the metric.
We insert these expansions into (48) and first set

vijðxÞ ¼ 0 to obtain

2LijðxÞ�;
jjðxÞ�jiðx; x0Þ þ 2LijðxÞ�;ðxÞ�jijðx; x0Þ

� ðx $ x0Þ ¼ 0: (53)

We multiply by test functions aðxÞ and bðx0Þ and integrate
over x and x0, drop total divergences and terms that vanish
due to the symmetry of indices of LijðxÞ, cancel some other
terms and are left with

Z
dxLij

jjðxÞ�;ðajib� abjiÞ ¼ 0: (54)

Since a, b, aji and bji can be chosen independently, we

conclude that Lij
jjðxÞ�; ¼ 0. Note that �; � 0 generically,

so that we have

Lij
jjðxÞ ¼ 0: (55)

We return to Eq. (48), do a functional differentiation
with respect to vklðzÞ and then set vijðxÞ to zero every-

where. With the notation

�kl
abðx; zÞ ¼

1

2
ð�k

a�
l
b þ �l

a�
k
bÞ�ðx; zÞ (56)

we have

�L;ðxÞ
�gklðx0Þ�ðx

0; zÞ þ 4LijabðxÞ�;
jj�jiðx; x0Þ�kl

abðx; zÞ
þ 2LijðxÞ�jiðx; x0Þð�ab

jj �
kl
abðx; zÞ þ �ab�kl

abjjðx; zÞÞ
þ 4Lijab�kl

abðx; zÞ�jijðx; x0Þ þ 2LijðxÞ�ab�kl
ab�jijðx; x0Þ

� ðx $ x0Þ (57)

¼ ��L;ðx0Þ
�gklðxÞ �ðx; zÞ þ ð4LijklðxÞ�;

jj

þ 2LijðxÞ�kl
jj Þ�jiðx; x0Þ�ðx; zÞ

þ 2LijðxÞ�kl�jjðx; zÞ�jiðx; x0Þ þ ð2LijðxÞ�kl

þ 4LijklðxÞ�;Þ�jijðx; x0Þ�ðx; zÞ � ðx $ x0Þ ¼ 0: (58)

We use

2LijðxÞ�kl�jjðx; zÞ�jiðx; x0Þ
¼ ð2LijðxÞ�kl�ðx; zÞ�jiðx; x0ÞÞjj

� 2Lij
jjðxÞ�kl�ðx; zÞ�jiðx; x0Þ

� 2LijðxÞ�kl
jj�ðx; zÞ�jiðx; x0Þ

� 2LijðxÞ�kl�ðx; zÞ�jijðx; x0Þ; (59)

drop the total divergence term in (59), and insert

Lij
jjðxÞ ¼ 0 from (55),�
��L;ðx0Þ

�gklðxÞ þ 4LijklðxÞ�;
jj�jiðx; x0Þ

þ 4Lijkl�;�jijðx; x0Þ
�
�ðx; zÞ � ðx $ x0Þ ¼ 0: (60)

This equation can be solved as in Ref. [4] where �; ¼ 1:
define

Aijðx; x0Þ ¼ �L;ðxÞ
�gijðx0Þ � 4Lijklðx0Þð�;

jl ðx0Þ�jkðx0; xÞ

þ �;ðx0Þ�jklðx0; xÞÞ (61)

and rewrite (60) as

Aijðx; x0Þ�ðx0; zÞ � Aijðx0; xÞ�ðx; zÞ ¼ 0: (62)

Integrating over x0, we find Aijðx; x00Þ ¼ FijðxÞ�ðx; x00Þwith
FijðxÞ ¼ R

d3x0Aijðx0; xÞ, a function of only one variable,

and thus

�L;ðxÞ
�gijðx0Þ ¼ FijðxÞ�ðx; x0Þ þ 4Lijklðx0Þð�;

jl ðx0Þ�jkðx0; xÞ

þ �;ðx0Þ�jklðx0; xÞÞ: (63)

2. Coefficients

As a spatial scalar density, L; can depend on the metric
and its spatial derivatives only via the metric itself and
suitable contractions of products of the spatial Riemann
tensor. To second order in spatial derivatives,
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L;ðxÞ ¼ L;ðgijðxÞ; ð3ÞRijðxÞÞ; (64)

a fact, used in Ref. [4], that remains true in the deformed
case with our assumption that the spatial part of the algebra
stays classical. Define

’ij ¼ @L;ðgkl; ð3ÞRklÞ
@gij

�ij ¼ @L;ðgkl; ð3ÞRklÞ
@ð3ÞRij

(65)

and write

�L; ¼
�
’ij þ 1

2
ð3ÞRi

kl
j�kl þ 1

4
ð3ÞRi

k�
kj þ ð3ÞRj

k�
ki

�
�gij

þ 1

4
ð�ikgjl þ�ilgjk þ�jkgil þ�jlgik

� 2�ijgkl � 2�klgijÞ�gijjkl: (66)

From (63), we also have

�L; ¼ �gijðFij þ 4Lijkl
jlk �

; þ 4Lijkl
jl �;

jkÞ
	 �gijjkð8Lijkl

jl �; þ 4Lijkl�;
jl Þ þ �gijjklð4Lijkl�;Þ:

(67)

Comparing the various coefficients, we get

Lijkl�; ¼ 1

16
ð�ikgjl þ�ilgjk þ�jkgil þ�jlgik

� 2�ijgkl � 2�klgijÞ; (68)

2Lijkl
jl �; þ Lijkl�;

jl ¼ 0; (69)

Fij þ 4Lijkl
jlk �

; þ 4Lijkl
jl �;

jk

¼ ’ij þ 1

2
ð3ÞRi

kl
j�kl þ 1

4
ð3ÞRi

k�
kj þ 1

4
ð3ÞRj

k�
ki: (70)

Thus, 0¼ 2Lijkl
jl �; þLijkl�;

jl ¼��;
jlL

ijkl þ 2ðLijkl�;Þjl.
We compute each term using (68), and write

0 ¼ � �;
jl

16�; ð�ikgjl þ�ilgjk þ�jkgil þ�jlgik

� 2�ijgkl � 2�klgijÞ þ 1

8
ð�ikjj þ gjk�il

jl

þ�jkji þ gik�jl
jl � 2�ijjk � 2�kl

jl g
ijÞ: (71)

We contract this with gij, use �
i
i ¼ 3, and denote �i

i as �

�;
jl

8�; ð�kl þ�gklÞ � 1

4
ð�kl

jl þ�ijjkgijÞ ¼ 0: (72)

Note that �ijjkgij ¼ �jk ¼ ð�gklÞjl. With �kl þ�gkl

denoted as ��kl,

0 ¼ �;
jl

8�; ��kl � 1

4
��kl
jl

¼ 1

4

ffiffiffiffiffiffiffiffiffiffi
j�;j

q ��;
jl sgnð�;Þ
2j�;j32

��kl � j�;j�1
2 ��kl

jl

�

¼ � 1

4

ffiffiffiffiffiffiffiffiffiffi
j�;j

q
ðj�;j�1

2 ��klÞjl: (73)

Again maintaining our assumption of an unmodified
spatial structure, the only covariantly constant 2 tensors
constructed from the metric and its derivatives up to second
order are the metric itself and the spatial Einstein tensor.

Noting the density weight one of ��kl, inherited from L;,
we conclude that

��klffiffiffiffiffiffiffiffiffiffij�;jp ¼ A
ffiffiffiffiffiffiffiffiffi
detg

p �
ð3ÞRkl � 1

2
ð3ÞRgkl

�
þ B

ffiffiffiffiffiffiffiffiffi
detg

p
gkl;

(74)

where A and B are constants. This gives

�kl ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q �
ð3ÞRkl � 3

8
ð3ÞRgkl

�

þ B

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gkl: (75)

Inserting this into (71), we find, after cancelling terms, that

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�;j detgp
8

�
ð3ÞRikgjl þ ð3ÞRilgjk þ ð3ÞRjkgli

þ ð3ÞRjlgik � 2ð3ÞRijgkl � 2ð3ÞRklgij

� 3

8
ð3ÞRð2gikgjl þ 2gjkgil � 4gijgklÞ

�
jl
¼ 0:

For this to be satisfied for general metrics, we must set
A ¼ 0. Writing B ¼ 1

4�G ,

�kl ¼ 1

16�G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gkl: (76)

Then, from (68)

Lijkl ¼ 1

162�G�;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gikgjl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gilgjk

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gjkgil þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gjlgik

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gijgkl � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gklgij

�

¼
ffiffiffiffiffiffiffiffiffi
detg

p
sgn�;

64�G
ffiffiffiffiffiffiffiffiffiffij�;jp ðgiðkglÞj � gijgklÞ: (77)

We also have

@L;ðgkl; ð3ÞRklÞ
@ð3ÞRij

¼ �ij ¼ 1

16�G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�;j detg

q
gij (78)

from the definition (65). We integrate this to get
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L; ¼ 1

16�G

ffiffiffiffiffiffiffiffiffi
detg

p ð
ffiffiffiffiffiffiffiffiffiffi
j�;j

q
ð3ÞRþ fðgÞÞ; (79)

where, for a scalar density, fðgÞ ¼ �2� must be a con-
stant, the cosmological constant. [The previous equations
do not determine fðgÞ because it would follow from ’ij

according to (65), which by (70) is related to the free
function Fij].

Combining (77) and (79), the regained Lagrangian up to
second order is

L ¼
ffiffiffiffiffiffiffiffiffi
detg

p
16�G

�
sgn�;ffiffiffiffiffiffiffiffiffiffij�;jp vijv

ij � vi
iv

j
j

4
þ

ffiffiffiffiffiffiffiffiffiffi
j�;j

q
ð3ÞR� 2�

�
:

(80)

For �; ¼ 1, the classical Lagrangian is recovered with
vij ¼ 2Kij related to extrinsic curvature. But already to

second order in derivatives, loop quantum gravity implies
corrections to the Lagrangian from inverse-triad corrections
with �; � 1, a property that cannot be mimicked by any
form of higher-curvature effective actions. Also holonomy
corrections cannot provide a similar modification because
they always come with higher powers of vij. Inverse-triad

corrections can thus easily be distinguished from other quan-
tum effects. (Holonomy corrections can provide similar mod-
ifications if the vij expansion is resummed; see Sec. VIC1).

The correction function �;½gij� relevant for these cor-

rections must be scalar, which is not possible classically if
only the metric can be used. For this reason, the full
dynamics are more unique than the spherically symmetric
one, where Ex is a scalar metric component without a
density weight in the reduced model. In an effective for-
mulation of quantum gravity, additional quantities become
available that explicitly refer to properties of an underlying

state, such as the discreteness scale in loop quantum grav-
ity. It is then possible to construct nontrivial scalars of
density weight zero by referring to the metric and state
parameters, such as elementary fluxes [10].
Compared with the results in spherical symmetry, the

full effective action is more unique, as already discussed.
Other properties of the corrections are, however, very
similar: The correction function � features in the same
way in the curvature potential. Also the kinetic term is
corrected in the same way, if we only note that a factor offfiffiffiffiffiffiffiffiffiffij�;jp

was obtained in spherical symmetry, where we used
momenta Kx and K’ instead of the normal change vij of

the metric. If we substitute the normal changes �H=�Kx

and �H=�K’ for Kx and K’ in spherical symmetry, we

also obtain a kinetic term divided by
ffiffiffiffiffiffiffiffiffiffij�;jp

. The sign of�;
appears in different places in our expressions for spherical
symmetry and the full theory, but the relative sign between
the curvature and the kinetic terms is the same. The abso-
lute placement of the sign is ambiguous because in the
derivations it first appears in derivatives, for instance when
we introduce B1 after (35), or in (73).

3. Higher orders

To second order,�kl determines both Lijkl from (68) and

@L;=@ð3ÞRij from (65), ensuring that time derivatives of gij
and spatial Ricci contributions are combined to space-time
covariant curvature terms. The same interplay is repeated
for higher orders in the v expansion, although with an
increasing number of terms.
For the next order, as an example, we start again from

(48) and gather all terms which are quadratic in vijðxÞ and
its derivatives.

�LabðxÞ
�gijðx0Þ vabðxÞvijðx0Þ þ 6LabcdijvabðxÞvcdðxÞ�;

jj�jiðx; x0Þ þ 4LabijðxÞvabðxÞð�efvefðxÞÞjj�jiðx; x0Þ

þ 2LijðxÞð�cdefvcdðxÞvefðxÞÞjj�jiðx; x0Þ þ 6LabcdijvabðxÞvcdðxÞ�;�jijðx; x0Þ
þ 4LabijvabðxÞ�cdvcdðxÞ�jijðx; x0Þ þ 2LijðxÞ�cdefvcdðxÞvefðxÞ�jijðx; x0Þ � ðx $ x0Þ: (81)

We multiply this by two test functions, aðxÞ and bðx0Þ, and
integrate over x and x0. After integrating by parts, discard-
ing total divergences, removing terms that disappear due to
the symmetry and antisymmetry of various indices, and
using (55), we arrive at

Z
dxdx0

�
�LabðxÞ
�gijðx0Þ�

�Lijðx0Þ
�gabðxÞ

�
vabðxÞvijðx0ÞaðxÞbðx0Þ

�
Z
dxð6LabcdijvabðxÞvcdðxÞÞjj�;ðaðxÞbjiðxÞ

�ajiðxÞbðxÞÞ�
Z
dxð4LabijvabðxÞÞjj�cdvcdðxÞðaðxÞbjiðxÞ

�ajiðxÞbðxÞÞ¼0: (82)

Since vabðxÞ, vabjjðxÞ, aðxÞ, bðxÞ, ajiðxÞ and bjiðxÞ can all be
varied independently, we arrive at the following three con-
ditions: First, setting ðaðxÞbjiðxÞ � ajiðxÞbðxÞÞ ¼ 0, we get�

�LabðxÞ
�gijðx0Þ �

�Lijðx0Þ
�gabðxÞ

�
vabðxÞvijðx0ÞaðxÞbðx0Þ ¼ 0: (83)

Following the arguments in Ref. [4], we see that this even-
tually implies

�LabðxÞ
�gijðx0Þ � �Lijðx0Þ

�gabðxÞ ¼ 0: (84)

This equation restricts the form of terms linear in vij in the
action, which are absent anyway if the theory is time-
reversal invariant. Then setting vabjjðxÞ ¼ 0,
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6Labcdij
jj �; þ 4Lijab

jj �cd ¼ 0: (85)

And finally,

12Labcdij�; þ 4Labij�cd ¼ 0: (86)

We relabel indices, multiply (86) with�;
jj and use (69) to

rewrite it,

12Lijklmn�;�;
jj þ 4Lijkl�mn�;

jj

¼ 12Lijklmn�;�;
jj � 8Lijkl

jj �mn�;

¼ 12Lijklmn�;�;
jj � 8Lmnij

jj �kl�; ¼ 0: (87)

[We use Lijklmn ¼ Lijmnkl, referring to the definition

in (51)]. Using (85), we can write 24Lijklmn
jl ð�;Þ2 þ

24Lijklmn�;�;
jl ¼ 0. Generically, �; � 0, and so we

have ðLijklmn�;Þjl ¼ 0 solved by the classical covariantly

constant quantities with the corresponding index structure,
divided by �;.

The third order in vij will therefore have terms with a

factor of 1=�; times corresponding orders possible for
higher-curvature actions, while the quadratic order had a

factor of 1=
ffiffiffiffiffiffiffiffiffiffij�;jp

, and the zeroth order a factor of
ffiffiffiffiffiffiffiffiffiffij�;jp

.
The same pattern is repeated at higher orders in the v
expansion: To order n in vij, we have terms as in higher-

curvature actions but multiplied with j�;jð1�nÞ=2. To see

this, we notice that Eq. (48), when expanded by powers of
vij, has a first term which contains expansion coefficients

of Lij��� two orders lower than the rest, which are all
multiplied with �;. If we use the equation to derive the
L coefficients by recurrence, we solve for a coefficient two
orders higher by dividing by �;. Starting with zeroth order
in vij of magnitude

ffiffiffiffiffiffiffiffiffiffij�;jp
in the prefactor, the quoted

orders follow. (If the corrected theory is not time-reversal
invariant and odd orders appear in the v expansion, the
same powers of j�;j per order are obtained).

4. Nonlocality

So far, we have assumed only a local dependence on vij,

with no spatial derivatives of vij that would otherwise be

implied by a derivative expansion. In the classical case,
locality follows from the relation of vij to extrinsic curva-

ture, but it can easily be violated by some of the correction
functions in quantum gravity.
In an effective action, nonlocality usually makes itself

noticeable in a derivative expansion of the fields. The basic
equation (44) is valid also for nonlocal theories, without
explicit terms with spatial derivatives of vij. However, (48)

must be replaced by (49), and the general expansions (51)
and (52) must also include terms with spatial derivatives of
vij. We now define

LðxÞ ¼ X1
n¼0

X1
N1;...;Nn¼0

Lði1;j1;kð1Þ1
;...;k

ðN1Þ
1

Þ;...;ðin;jn;kð1Þn ;...;kðNnÞn Þ½gij�vi1j1jkð1Þ1
���kðN1Þ

1

� � �v
injnjkð1Þn ���kðNnÞn

; (88)

� ¼ X1
n¼0

X1
N1;...;Nn¼0

�ði1;j1;kð1Þ1
;...;k

ðN1Þ
1

Þ;...;ðin;jn;kð1Þn ;...;kðNnÞn Þ½gij�vi1j1jkð1Þ1
���kðN1Þ

1

� � �v
injnjkð1Þn ���kðNnÞn

: (89)

Derivative terms in the expansion of � then requires new
terms in the Lagrangian that contain spatial derivatives.
Going through the recurrence, an order n in the v expan-
sion again receives a coefficient of j�;jð1�nÞ=2.

In this context, we can distinguish between two expan-
sions of the action, one by powers of vij and its spatial

derivatives as in (88), and one by the total order of deriva-
tives. The total order of derivatives is the crucial one for a
comparison with higher-curvature terms in an effective
action, which come arranged by the order of time and
space derivatives. With vij related to the normal change

of the metric, it counts as a derivative (by time) of order 1.
A term of v

i1j1jkð1Þ1
���kðN1Þ

1

counts as a derivative of order

1þ N1, and therefore a general expansion term in (88)

with coefficient Lði1;j1;kð1Þ1
;...;k

ðN1Þ
1

Þ;...;ðin;jn;kð1Þn ;...;kðNnÞn Þ counts as a
derivative of order

P
n
i¼1ð1þ NiÞ ¼ nþP

n
i¼1 Ni. Terms of

the same v order n, that is with the same number of factors
of vij or its spatial derivatives, have different derivative

orders of at least n. If we reorganize the expansion by

derivative orders N, keeping track of �; factors that de-
pend only on the v order, we obtain effective-action terms
of the schematic form

j�;jð1�NÞ=2vN þ j�;jð2�NÞ=2ðvN�1g0 þ vN�2v0Þ
þ j�;jð3�NÞ=2ðvN�2ðg00 þ ðg0Þ2Þ
þ vN�3ðv00 þ v0g0Þ þ vN�4ðv0Þ2Þ þ � � � :

The highest power of 1=
ffiffiffiffiffiffiffiffiffiffij�;jp

for a given derivative order
is always obtained for the term vN free of spatial deriva-
tives. For small �;, time derivatives in a derivative or
curvature expansion are dominant.

VI. APPLICATIONS AND CONCLUSIONS

One of the main results of this paper, of general impor-
tance for loop quantum gravity, follows from the effective
action (80), valid to second order in extrinsic curvature.
Although we did allow for holonomy and higher-curvature
corrections as well, only inverse-triad corrections are
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active at this order. This result is an independent confirma-
tion, in addition to Refs. [1,2,19], that inverse-triad correc-
tions can be much more significant than higher-curvature
and holonomy corrections, both of which occur only at
higher orders in vij and are of the tiny size ‘

2
P=‘

2
H

through-

out most of nearly isotropic cosmology with the Hubble
distance ‘H . Our calculations show, for the first time, how
different quantum effects in loop quantum gravity without
any symmetry assumptions can be included all at once,
but still show their own characteristic consequences. The
complete correction function � in the constraint algebra
may contain contributions from both inverse-triad and
holonomy corrections, including nonlocal effects, but it
is only the v-independent part �; which appears at sec-
ond order of the effective action. This coefficient is af-
fected by inverse-triad corrections, which therefore
present the most important modification of the classical
dynamics unless curvature is extremely large. Holonomy
corrections, on the other hand, modify terms of higher
order in vij; they mix with higher-curvature terms and can

rarely be used in isolation. Moreover, U(1) calculations of
inverse-triad correction functions are reliable because
non-Abelian features would change merely the higher-v
behavior.

The clear separation of some of the corrections allows
us to discuss their cosmological consequences in very
general terms.

A. Enhanced BKL scenario and the absence of
singularities in consistent loop quantum gravity

All vij terms in the effective action (80), to all orders,

have at least one additional factor of 1=�; compared with
the spatial curvature term at zeroth order (or a factor of

1=
ffiffiffiffiffiffiffiffiffiffij�;jp

if there are linear terms in vij, breaking time-

reversal invariance). At higher orders, as shown in
Secs. VD3 and VD4, vij terms free of spatial derivatives

have at least an additional factor of 1=
ffiffiffiffiffiffiffiffiffiffij�;jp

compared to
spatial-derivative terms of the same derivative order.
When�; is very small, all spatial derivatives and curvature
potentials are suppressed compared with the normal
change of the metric in vij ¼ N�1fgij; H½N�g. Inverse-
triad corrections, computed in Abelian models [42], imply
that �; approaches zero for vanishing components of the
densitized triad, right at classical singularities. As we
approach such a singularity, quantum corrections become
stronger, which could altogether stop the evolution down to
smaller volumes. If this is the case, the singularity is
resolved. However, such ‘‘bounces’’ have been difficult
to generalize beyond the simple models in which they
can be realized explicitly (see also Sec. VI C below), and
therefore it is not guaranteed that vanishing components of
the densitized triad can always be avoided. However, if
such small values are approached, inverse-triad corrections
become significant and suppress spatial derivatives. The

evolution then follows a nearly homogeneous behavior
of Bianchi-I type, for which singularity resolution in
loop quantum cosmology can be shown in general terms
by quantum hyperbolicity [66–69], based on properties
of difference equations for wave functions. Even without
symmetry assumptions and without restricting the class of
quantum corrections included, the dynamics of loop quan-
tum gravity is singularity-free. The same mechanism is
hereby shown to apply in symmetric models [66,68,70,71]
and the full theory.
The concrete mechanism is reminiscent of the BKL

scenario [72] in that spatial derivatives are suppressed
and the dynamics become almost homogeneous near sin-
gularities. The present scenario, however, is much more
general. We need not rely on details of the evolution
because it is terms in the effective action itself that show
the suppression. Moreover, the arguments are easily seen
to be independent on what gauge, or spatial slicing in the
classical setting, is chosen, because they make use of a
consistent and anomaly-free theory exhibiting general
covariance (in a deformed sense). Spatial terms are sup-
pressed even in the fH;Hg algebra itself. This feature is
also responsible for the covariance of the mechanism: if
� is very small, normal deformations of hypersurfaces,
governed by fH;Hg as in (4), do not generate spatial
displacements from D. With the suppression by small
�, normal deformations form a subalgebra of the full
hypersurface-deformation algebra and can be considered
in separation, eliminating the need of homogeneity
assumptions.

B. Dispersion relations and causality

Our results show how consistent deformations of the
type (4), for which several examples have been found in
models of loop quantum gravity as recalled in Sec. II,
affect the form of action principles reconstructed from
them. From this perspective, the universal modification—
irrespective of the precise form of the correction function
�—is that a new coefficient � rescales time derivatives
relative to spatial derivatives in matter terms as well as
gravitational ones. The usual d’Alembertian h ¼ �@2t þ
gij@i@j is replaced byh� :¼���1@2t þgij@i@j. Dispersion

relations and propagation speeds are then modified in a
compatible way for matter and gravity, as shown ex-
plicitly in the special cases considered in Ref. [58].
(Counterterms in perturbative realizations of consistency
lead to interesting new effects for nonpropagating modes
[18,19]). In particular, while � � 1 implies that speeds of
massless modes differ from the classical speed of light,
they all propagate at the same speed as light in space-time
according to deformed relativity. All massless excitations
propagate with the velocity

ffiffiffiffi
�

p
times the classical

speed of light for �> 0. If �< 0, which is possible
for holonomy corrections, the d’Alembertian changes to a
Euclidean-signature Laplacian, and all propagation ceases.
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C. Signature change

Holonomy corrections cannot easily be analyzed in
general terms because their mixing with higher-curvature
corrections requires the latter to be derived in detail, too. In
loop quantum gravity, however, the derivation of higher-
curvature terms or their analog in quantum backreaction
remains incomplete. But there is one general property of
holonomy corrections realized when they are large and
near their maximum value. When this is the case, we
must be careful with the v expansions used. One conse-
quence, fortunately, can be seen very generally.

1. The high-density regime in models of
loop quantum gravity

In existing consistent examples, holonomy corrections
always have the following form: A connection or extrinsic-
curvature component in the classical Hamiltonian con-
straint is replaced by a bounded and periodic function of
the same component (possibly depending also on the triad).
For instance, in spherical symmetry we can consistently
replace K’ by ��1 sinð�K’Þ with some parameter � [16],

and in isotropic models we can replace the isotropic con-
nection component c by ��1 sinð�cÞ [12]. The parameter �
may depend on triad components Ex or a if lattice refine-
ment is realized [73,74]. When these bounded functions
take their maximum value, at �K’ ¼ �=2 or �c ¼ �=2,

holonomy corrections are large and the Hamiltonian con-
straint ensures that we are at high energy densities if matter
is present. As recalled in Sec. II, in the constraint algebra
we obtain a deformation with correction function�ðK’Þ ¼
cosð2�K’Þ and �ðcÞ ¼ cosð2�cÞ, respectively.

These functions are negative when sinð�cÞ=� is near its
maximum as a function of c, continuing with the example
of nearly isotropic cosmology. More precisely, a modified
Hamiltonian constraint of the form

� 3

8�G	2�2
sin2ð�cÞ

ffiffiffiffiffiffiffi
jpj

q
þHmatter ¼ H; (90)

as commonly used in isotropic loop quantum cosmology,
implies, using fc; pg ¼ 8�	G=3, Hamiltonian equations

_p ¼ fp;Hg ¼ ð	�Þ�1 sinð2�cÞ ffiffiffiffiffiffiffijpjp
and

_c ¼ � sin2ð�cÞ
2	�2

ffiffiffiffiffiffiffijpjp � c sinð2�cÞ
	�

ffiffiffiffiffiffiffijpjp d log�

d logp
þ 2sin2�c

	�2
ffiffiffiffiffiffiffijpjp d log�

d logp

þ 8

3
�	G

@Hmatter

@p
:

(With @Hmatter=@p ¼ 3
2a@Hmatter=@a

3 ¼ � 3
2aP, the usual

pressure contribution�4�GP to acceleration follows). We
can combine these two equations to compute the accelera-
tion of the scale factor,

€a ¼ � cosð2�cÞ sin2�c

2	2�2
ffiffiffiffiffiffiffijpjp � 2sin4�c

	2�2
ffiffiffiffiffiffiffijpjp d log�

d logp

� 4�G cosð2�cÞaP: (91)

To distinguish different types of inflation, it is also useful to
rewrite the acceleration equation as an equation for the
derivative of the Hubble parameter H ,

_H ¼ €a

a
�

�
_a

a

�
2

¼ � cosð2�cÞ 3sin2�c

2	2�2jpj �
sin4�c

	2�2jpj
�
1þ 2

d log�

d logp

�

� 4�G cosð2�cÞP: (92)

If we assume a power-law form �ðpÞ ¼ jpjx with
�1=2< x < 0 generically [73,74], the gravitational con-
tributions to €a are positive, implying inflation from quan-
tum geometry, if sin2�c > ð2ð1� 2xÞÞ�1 (sin2�c > 1=4 or
�c > �=6 for the limiting case x ¼ �1=2 considered in

Ref. [75]). We have superinflation with _H > 0 if sin2�c >
3=ð4ð1� xÞÞ (sin2�c > 1=2 or �c > �=4 for x ¼ �1=2).
In terms of densities, according to the modified constraint
equation (90) showing that the energy density � is propor-
tional to sin2ð�cÞ, we have the maximum density �max

when sin2�c ¼ 1, inflation for � > �max=ð2ð1� 2xÞÞ and
superinflation for � > 3�max=ð4ð1� xÞÞ. (For x � �1=2,
�max depends on the dynamical discreteness scale a�).
During superinflation, we always have cosð2�cÞ< 0, and
for x ¼ �1=2, the superinflationary regime sin2ð�cÞ>
1=2 is exactly the one with cosð2�cÞ¼1�2sin2ð�cÞ<0.
Our remarks about spherical symmetry in Sec. II B show
that we generically have �< 0 at high curvature: We
saw that �< 0 at the maximum of the first holonomy
correction function f1, which in the cosmological context
would correspond to the maximum of sin2ð�cÞ in the
Friedmann equation. No matter what form f1 has, depend-
ing on quantization ambiguities, at its maximumwe always
have negative �.
Classically, there can be acceleration only with negative

pressure of a suitable size. But with holonomy corrections,

the trigonometrical factors can turn the sign of _H , provid-
ing matter-independent acceleration from quantum geome-
try. The correction function � contains the same factor of
cosð2�cÞ that appears in the acceleration equation. We
have a negative correction function throughout the regime

where holonomy effects make _H positive, which is in the

purported superinflationary regime. When _H is turned
positive by holonomy effects, we therefore do not have
space-time but rather (deformed) Euclidean space, with the
derivatives of a taken by spacelike rather than timelike
coordinates. There is no evolution in Euclidean space, and
no superinflation even if derivatives of H are positive.
(For x < 0, there is still a weak form of power-law inflation
at the beginning of the Lorentzian expansion phase.
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However, the phase is too brief, with only a small number
of e-foldings, for the usual consequences of inflation to be
realized).

It is of interest to see what an effective action for this
Euclidean chunk of space may look like. In our derivation
of effective actions, applied to such a regime of large
curvature, we can no longer expand the correction function
� in K’ or c when �K’ or �c is near �=2, but we can

expand them in 2� �K’ :¼ 2�K’ � � or 2� �c :¼ 2�c� �,

writing cosð2�K’Þ ¼ cosð2� �K’ þ �Þ ¼ � cosð2� �K’Þ or
cosð2�cÞ ¼ cosð2� �cþ �Þ ¼ � cosð2� �cÞ. The new coeffi-
cients � �K’ or � �c are small near maximum density, and

we can expand the correction function as well as the
Lagrangian by their powers. (For cosmological perturba-
tions around spatially flat isotropic models, we would
expand in �vij :¼ vij � 1

2�
�1��ij). Resumming higher-

curvature terms by making use of the small barred quan-
tities, we obtain effective actions as before. The main
consequence of holonomy corrections then appears even
at leading order in the expansion, for �; in the new
expansion takes the value �; ¼ �1. At the point of maxi-
mum density, where � �K’ ¼ 0 or � �c ¼ 0 and therefore

� ¼ �; ¼ �1, the gravitational action becomes classical,
albeit of Euclidean signature. (From Sec. II B, argued in
spherically symmetric models, we recall that � turning
negative is a general feature near the maximum density
of holonomy-modified systems, independently of quanti-
zation holonomies).

2. Euclidean space instead of
holonomy-induced superinflation

Negative �;, in all models studied consistently so far,
are a necessary consequence of holonomy modifications in
the high-density phases in which they may resolve singu-
larities. With negative �;, however, the dispersion relation
is positive definite and the hypersurface-deformation alge-
bra is of Euclidean signature, as seen in Sec. III B. These
consequences are consistent with a formal transformation
from positive to negative � in (4) by the replacements of
N or t by iN or it, respectively. With a Euclidean action,
the initial/boundary-value problem changes its form sig-
nificantly and propagation in time no longer exists. Loop
quantum gravity, in this way, provides a concrete mecha-
nism for signature change.

In loop quantum cosmology, going through the
Planck regime near the big bang does therefore not at all
correspond to a bounce, as minisuperspace models are
sometimes interpreted as suggesting [76]. The big bang
is rather a transition from Euclidean 4-dimensional space
to Lorentzian space-time which only appears dynamical in
the homogeneous background. This observation shows
some of the pitfalls and unexpected subtleties of minisu-
perspace models. We are also reminded that we have to be
careful with gauge fixings or deparametrization, which do
not determine the constraint algebra and cannot show the

consequences seen here (see e.g., Ref. [65]). One example
for difficulties with deparametrization of cosmological
evolution is realized in models with a positive cosmologi-
cal constant [77]. The range of internal time provided by a
free, massless scalar � does not match with the range of
proper time � of observers, with � diverging at large
volume while � changes in a finite range. Extending the
internal-time evolution to all values of� is then unphysical
because no observer could see the extended space-time
solution. The Euclidean phase found here provides another
example, requiring us to bound the range of internal time
� also at small volume in loop quantum cosmology.
Classically, we know the space-time structure and all we
need to ensure for a good internal time is that its rate of
change d�=d� does not become zero. With a deformed
notion of space-time structure, the derivatives in back-
ground equations of motion may not refer to time at all,
and therefore� cannot be called an internal ‘‘time’’ even if
it keeps changing with the background coordinates. We
can start our internal time � only when space-time turns
Lorentzian [78].
In addition to these cautionary remarks for some scenar-

ios in loop quantum cosmology, the new picture of signa-
ture change also provides larger unity among the different
scenarios for singularity resolution. The main mechanism
[66] is based on properties of the underlying difference
equations that appear with a loop quantization [82], with
difference operators on minisuperspace. The resulting re-
currence scheme of the wave function depending on an
integer geometrical quantity, taking both signs thanks to
orientation, allows one to evolve uniquely from one side of
the classical singularity in minisuperspace to the other.
With unique evolution, the singularity is resolved in this
picture of quantum hyperbolicity making use of geometri-
cal internal time. A scenario of less generality is realized
for deparametrizable models sourced by a scalar field when
its energy is almost all kinetic. Here, using the scalar as
internal time, the minisuperspace evolution is nonsingular
with a minimum volume achieved at high density.
These pictures look inconsistent at first sight, with the

oriented volume used as unbounded recurrence variable in
the first one, but bouncing back from a small value in the
second one. With the results of this paper we see that what
is inconsistent is not the role of volume in the recurrence,
but rather the interpretation of evolution as a smooth
bounce. In both cases, a collapsing branch of shrinking
volume is connected to an expanding branch of growing
volume by a nonclassical space-time region. In the first
picture, based on a recurrence analysis of discrete wave
equations, the nonclassical part is modeled as a tunneling
process of the wave function through small volume, while
it becomes a Euclidean chunk of 4-dimensional space in
the second picture. This scenario not only unifies different
mechanisms of singularity resolution in loop quantum
cosmology, it also shows an interesting and unexpected
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overlap with the tunneling aspects of Ref. [83] and the
postulated signature change of Ref. [84].

3. The question of cosmological initial values

We arrive at several new possibilities for cosmological
model building: Initial values can be posed only in the
Lorentzian regime. Holonomy-induced superinflation, as it
appears in the background evolution in loop quantum
cosmology at high density, is not realized; the correspond-
ing background piece is not part of space-time but rather
corresponds to a Euclidean chunk of 4-dimensional space.
(Superinflation from inverse-triad corrections [85,86] has a
positive � and could happen in the space-time part). While
the background equations, taken on their own, might be
interpreted as implying superinflationary evolution, they
fail to provide any insight into the correct initial/boundary-
value problem. Only an extension at least to perturbative
inhomogeneity, without gauge fixing or deparametrization
so as to have access to the of shell constraint algebra, can
provide this important input, and it shows the Euclidean
nature. With the corresponding boundary value instead of
initial-value problem, even the background equations can
no longer be interpreted as evolution equations in time.

The Euclidean nature of high-density regimes with hol-
onomy corrections have several unanticipated consequen-
ces for initial values in cosmology. One cannot use this
phase to evolve or generate structure, or to pose initial
conditions within it, such as at the bounce of maximum
density. Models making use of the superinflationary phase
to supply initial values, even if only for the background
equations as suggested for instance in Ref. [87], are not
consistent with quantum geometry. It becomes, however,
very natural to pose initial values right at the boundary of
Euclidean space, cutting off superinflation. This procedure
would be similar to the usual choice of initial values or an
initial vacuum state before slow-roll inflation, but provid-
ing stronger justification of the choice.

There are several advantages. First, we can pose well-
defined initial values in a nonsingular regime. Classically,
if we go back as far as possible to pose initial conditions
close to what can be considered the beginning, we end up at
the big bang singularity. If there is a bounce [88], we end
up far back at large volume in the preceding collapse
branch. In the deformed solutions with holonomy correc-
tions of loop quantum gravity, we end up at the nonsingular
beginning of the Lorentzian branch, a clearly distinguished
and nonsingular moment in time. Second, methods of
Euclidean quantum gravity may be used to shed light on
what initial conditions one should expect. These initial
conditions would not be transferred from the collapse
phase bordering the Euclidean chunk at its other end: In
Euclidean 4 space we must choose boundary conditions for
a well-posed formulation of partial differential equations
for inhomogeneity. This boundary includes the initial-
value slice of the expanding branch of the Universe model

and the final-value surface of the collapsing branch. Field
values on these surfaces can be specified independently
and freely for a complete set of Euclidean boundary
conditions. We could, for instance, evolve the collapsing
branch from its initial data to obtain field values at one
piece of the Euclidean boundary. Boundary conditions will
then be completed by choosing values on the rest, includ-
ing the initial-data surface of the expanding branch.
Therefore, the final values of the collapse do not determine
initial values for expansion. There is no deterministic
evolution across the Euclidean high-density phase [89].
Rather, the scenario describes a beginningless beginning,
with a concrete physical realization of a distinguished
initial-value surface. Although our scenario has cyclic
features in that it combines collapsing and expanding
branches, connected by Euclidean space not causally but
at least as manifolds, we do not encounter the entropy
problem. Entropy, like anything else, will simply not be
transmitted through the Euclidean piece.

D. Additional modifications

Nonlocal corrections are possible in our formalism,
extended from Ref. [4], but have not yet been realized
explicitly in effective actions. We have identified addi-
tional difficulties which may prevent simple realizations
of consistent deformations: gravity and matter terms in
the constraints can no longer satisfy the hypersurface-
deformation algebra independently. Instead, there must
be delicate cancellations between matter and gravity
Poisson brackets so as to ensure that the total constraints
satisfy a consistently deformed algebra.
In addition to nonlocality, modifications to the spatial

part of the constraint algebra would prevent the steps
followed here from going through. From the perspective
of effective constraints, modifications to the spatial part
may not seem likely because these constraints are formu-
lated for fields on some manifold, which may not obey the
classical geometry but nevertheless is a collection of points
labeled, for the formulation of physical theories, by coor-
dinates. The choice of coordinates cannot matter for the
physics, and so there must be relabeling invariance. Such
an invariance, in turn, leads very generally to the spatial
part of the constraint algebra just based on properties of the
Lie derivative [4].
Also from the point of view of full loop quantum gravity,

modifications to the part of the constraint algebra involving
the diffeomorphism constraint may not be called for.
This constraint, unlike the Hamiltonian constraint, is
implemented directly by its action on subsets in space
(points or graphs) without any regularization or modifi-
cation required to quantize it consistently. The final ver-
dict on this question has not arrived, however, as shown
by recent attempts to construct diffeomorphism constraint
operators amenable to a closed operator algebras for the
constraints [92].
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The constraint algebra opens the way to specific results
for space-timegeometry in loop quantumgravity, extending
some minisuperspace results to more general situations. A
crucial open issue remains: deriving consistent deforma-
tions in more general terms than available now. Our results
here do not provide new cases of consistent deformations,
becausewemust assume consistency in order to employ our
algebra. But the new methods do show how different terms
in a consistently modified Hamiltonian constraint must be
related to one another, as seen in conditions for dispersion
relations and in the relations of vn terms to spatial metric
derivatives. Thus, our methods help in finding new consis-
tentmodels. But even for existing ones, the effective actions

obtained provide new insights and several unexpected cos-
mological consequences.
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[81] P. A. Höhn, E. Kubalova, and A. Tsobanjan, Phys. Rev. D
86, 065014 (2012).

[82] M. Bojowald, Classical Quantum Gravity 18, 1071 (2001).
[83] A. Vilenkin, Phys. Rev. D 30, 509 (1984).
[84] J. B. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960

(1983).
[85] M. Bojowald, Phys. Rev. Lett. 89, 261301 (2002).
[86] S. Tsujikawa, P. Singh, and R. Maartens, Classical

Quantum Gravity 21, 5767 (2004).
[87] A. Ashtekar and D. Sloan, Phys. Lett. B 694, 108 (2010).
[88] M. Novello and S. E. P. Bergliaffa, Phys. Rep. 463, 127

(2008).

DEFORMED GENERAL RELATIVITY AND EFFECTIVE . . . PHYSICAL REVIEW D 86, 104018 (2012)

104018-23

http://dx.doi.org/10.1088/1475-7516/2009/01/030
http://dx.doi.org/10.1088/1475-7516/2009/01/030
http://dx.doi.org/10.1088/0264-9381/26/10/105002
http://dx.doi.org/10.1088/0264-9381/26/10/105002
http://dx.doi.org/10.1142/S0129055X09003591
http://dx.doi.org/10.1103/PhysRevD.80.125008
http://dx.doi.org/10.1103/PhysRevD.80.125008
http://dx.doi.org/10.1088/0264-9381/14/10/002
http://dx.doi.org/10.1103/PhysRevD.51.5507
http://dx.doi.org/10.1103/PhysRevD.75.064022
http://dx.doi.org/10.1088/0264-9381/23/3/023
http://dx.doi.org/10.1088/0264-9381/26/7/075020
http://dx.doi.org/10.1088/0264-9381/26/7/075020
http://dx.doi.org/10.1088/0264-9381/19/20/306
http://dx.doi.org/10.1007/BF02705198
http://dx.doi.org/10.1103/PhysRevD.64.084018
http://www.livingreviews.org/lrr-2008-4
http://www.livingreviews.org/lrr-2008-4
http://dx.doi.org/10.3842/SIGMA.2012.016
http://dx.doi.org/10.3842/SIGMA.2012.016
http://dx.doi.org/10.1006/aphy.1994.1104
http://dx.doi.org/10.1143/PTP.90.237
http://dx.doi.org/10.1143/PTP.90.237
http://dx.doi.org/10.1142/S0217732394002951
http://dx.doi.org/10.1142/S0217732394002951
http://arXiv.org/abs/hep-th/0011240
http://dx.doi.org/10.1103/PhysRevD.78.064057
http://dx.doi.org/10.1103/PhysRevD.78.064057
http://dx.doi.org/10.1088/0264-9381/21/15/008
http://dx.doi.org/10.1088/0264-9381/23/6/015
http://dx.doi.org/10.1088/0264-9381/23/6/015
http://dx.doi.org/10.1103/PhysRevD.77.023508
http://dx.doi.org/10.1103/PhysRevD.77.023508
http://dx.doi.org/10.1103/PhysRevD.74.124012
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://arXiv.org/abs/0909.5688
http://dx.doi.org/10.1088/0264-9381/15/6/006
http://dx.doi.org/10.1103/PhysRevD.80.044018
http://dx.doi.org/10.1103/PhysRevD.80.044018
http://dx.doi.org/10.1088/0264-9381/29/8/085005
http://dx.doi.org/10.1088/0264-9381/29/8/085005
http://dx.doi.org/10.1103/PhysRevLett.86.5227
http://dx.doi.org/10.1088/0264-9381/19/10/313
http://dx.doi.org/10.1088/0264-9381/20/13/310
http://dx.doi.org/10.1063/1.2752483
http://dx.doi.org/10.1088/0264-9381/21/4/034
http://dx.doi.org/10.1088/0264-9381/21/4/034
http://dx.doi.org/10.1103/PhysRevLett.95.061301
http://dx.doi.org/10.1080/00018738200101428
http://dx.doi.org/10.1007/s10714-006-0348-4
http://dx.doi.org/10.1007/s10714-007-0558-4
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1103/PhysRevLett.96.141301
http://dx.doi.org/10.1103/PhysRevLett.96.141301
http://dx.doi.org/10.1103/PhysRevD.84.043514
http://dx.doi.org/10.1088/0264-9381/28/3/035006
http://dx.doi.org/10.1088/0264-9381/28/3/035006
http://dx.doi.org/10.1103/PhysRevD.83.125023
http://dx.doi.org/10.1103/PhysRevD.83.125023
http://dx.doi.org/10.1103/PhysRevD.86.065014
http://dx.doi.org/10.1103/PhysRevD.86.065014
http://dx.doi.org/10.1088/0264-9381/18/6/308
http://dx.doi.org/10.1103/PhysRevD.30.509
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1103/PhysRevLett.89.261301
http://dx.doi.org/10.1088/0264-9381/21/24/006
http://dx.doi.org/10.1088/0264-9381/21/24/006
http://dx.doi.org/10.1016/j.physletb.2010.09.058
http://dx.doi.org/10.1016/j.physrep.2008.04.006
http://dx.doi.org/10.1016/j.physrep.2008.04.006


[89] Some indications of nondeterministic evolution through
bounces of loop quantum cosmology can be found already
at the level of background evolution, where cosmic for-
getfulness implies that not all moments of a pre-big bang
state can be recovered after the big bang [90,91].

[90] M. Bojowald, Nat. Phys. 3, 523 (2007).
[91] M. Bojowald, Proc. R. Soc. A 464, 2135

(2008).
[92] A. Laddha and M. Varadarajan, Classical Quantum

Gravity 28, 195010 (2011).

MARTIN BOJOWALD AND GEORGE M. PAILY PHYSICAL REVIEW D 86, 104018 (2012)

104018-24

http://dx.doi.org/10.1038/nphys654
http://dx.doi.org/10.1098/rspa.2008.0050
http://dx.doi.org/10.1098/rspa.2008.0050
http://dx.doi.org/10.1088/0264-9381/28/19/195010
http://dx.doi.org/10.1088/0264-9381/28/19/195010

