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We study charged black hole solutions in Einstein-Gauss-Bonnet theory with the dilaton field which is

the low-energy effective theory of the heterotic string. The spacetime is D-dimensional and assumed to be

static and spherically symmetric with the (D� 2)-dimensional constant curvature space and asymptoti-

cally flat. The system of the basic equations is complex and the solutions are obtained numerically. We

identify the allowed parameter region where the black hole solutions exist, and show configurations of the

field functions in D ¼ 4–6 and 10. We also show the relations of the physical quantities of the black holes

such as the horizon radius, the mass, the temperature, and so on, and find several results. The forms of the

allowed parameter regions are different depending on the dimension. There is no extreme black hole

solution with T ¼ 0 that can be obtained by taking the limit of the nonextreme solutions within the

parameter range we chose. Entropy of the black holes in the dilatonic theory is always larger than that in

the nondilatonic theory. Our analysis includes the higher order term of the dilaton field which is not in our

previous works. Its effect remarkably appears in five dimensions and is given in the Appendix. By our

analysis it is found that the properties of the black hole solutions strongly depend on the dimension,

charge, existence of the dilaton field. Hence both the detailed analyses of the individual systems and the

investigations from the systematic point of view are important.
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I. INTRODUCTION

One of the most important problems in theoretical phys-
ics is to find the quantum theory of gravity and to apply it to
physical systems to understand physics at strong gravity
such as a black hole singularity. The leading candidates for
that including all the fundamental forces of elementary
particles are the ten-dimensional superstring theories or
eleven-dimensional M theory. The area where such quan-
tum gravity plays the significant role includes the cosmol-
ogy and black hole physics. There has been interest in
applications of string/M theories to these subjects. Since
it is still difficult to study geometrical settings in string/M
theories directly, most analyses have been made by using
low-energy effective theories inspired by string/M theo-
ries. The effective theories are the supergravities which
typically involve not only the metric but also the dilaton
field (as well as several gauge fields).

The first attempt at understanding black holes in the
Einstein-Maxwell-dilaton system was made in Refs. [1,2],
in which a static spherically symmetric black hole solution
with a dilaton hair was found. After that, many solutions
were discussed in various models. On the other hand, it is
known that there are correction terms of higher orders in the
curvature to the lowest effective supergravity action coming
from the superstring theories. The simplest correction is the
Gauss-Bonnet (GB) term coupled to the dilaton field in the
low-energy effective heterotic string [3]. It is then natural to

ask how the black hole solutions are affected by the higher
order terms in the effective theories.
When the dilaton field is dropped or is set to a constant

by hand, the total action consists of the cosmological
constant, Einstein-Hilbert and GB term, which are the first
three terms in the Lovelock theory [4,5]. Motivated by this
observation, there have been many works on the black hole
solutions in the Lovelock theory [6–9]. In the four-
dimensional spacetime, the GB term does not give any
contribution because it becomes a surface term and gives
a topological invariant. Boulware and Deser (BD) [10]
discovered a static, spherically symmetric black hole so-
lutions of such models in more than four dimensions. In the
system with a negative cosmological constant, black holes
can have horizons with nonspherical topology such as
torus, hyperboloid, and other compactified submanifolds.
These solutions were originally found in general relativity
and are called topological black holes [11]. Topological
black hole solutions were studied also in the Einstein-GB
(EGB) theory [12]. It is very interesting to see how
these are modified by the presence of a dilaton field. One
of the purposes of this paper is to study charged black
hole solutions with higher order corrections as well as the
dilaton field.
There has been recently a renewed interest in these

solutions as an application to the calculation of shear vis-
cosity in the strongly coupled gauge theories using the black
hole solutions in the five-dimensional EGB theory via AdS/
CFT correspondence [13,14]. Almost all these studies con-
sidered the pure GB term without the dilaton field, or
assumed a constant dilaton, which is not a solution of the
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heterotic string theory. It is, however, expected that AdS/
CFT correspondence is valid within the effective theories of
superstring which necessarily involve the dilaton field. The
inclusion of the dilaton field was also considered by
Boulware and Deser [10], but exact black hole solutions
and their thermodynamic properties were not discussed.
Callan et al. [15] considered black hole solutions in
the theory with a higher-curvature term R����R

���� and

the dilaton field, and Refs. [8,9] took both the GB term and
the dilaton field into account in four-dimensional spacetime.

Hence it is important to study black hole solutions and
their properties in the theory with both the higher order
corrections and the dilaton field in general dimensions. In
our earlier paper [16], we focused on asymptotically flat
solutions and studied a system with the GB correction term
and the dilaton field without the cosmological constant in
various dimensions from 4 to 10. They are spherically
symmetric with the (D� 2)-dimensional hypersurface of
curvature signature k ¼ 1. We have then turned to planer
symmetric (k ¼ 0) topological black holes, but have found
that no solution exists without the cosmological constant. In
the string perspective, it is more interesting to examine
asymptotically anti–de Sitter (AdS) black hole solutions
with possible application to the AdS/CFT correspondence
in mind. So in the sequel paper [17], we have presented the
results on black hole solutions with a negative cosmological
constant with k ¼ 0. In fact, shear viscosity has been com-
puted using the result in that paper [14]. Other cases of
solutions with k ¼ �1 and a negative cosmological term as
well as topological black holes with and without the cos-
mological constant were studied in Refs. [18,19], and their
global structures were studied in Ref. [20]. Cosmological
solutions were also considered in Ref. [21]. Other solutions
are discussed in Refs. [22–29].

In the study of superconductors and superfluidity using
the AdS/CFT correspondence, charged black hole solu-
tions play important roles [30]. Hence it is also significant
to extend our above studies of the neutral black hole

solutions to charged ones. In particular, we should consider
the inclusion of the dilaton field again.
There is another reason for our study of the system. In

our above study of the neutral black holes [16–20], we did
not consider the higher derivative term of the dilaton field,
which also appears naturally as we will see below [3]. We
intend to incorporate this term also and study how this
modifies the solutions. As a result of our analysis, however,
there is not much qualitative difference. Thus the results in
our earlier papers should be useful.
This paper is organized as follows. In Sec. II, we first

present the action and give basic equations to solve for the
system of Einstein-Maxwell-Gauss-Bonnet term coupled to
the dilaton field with a cosmological constant, although we
will focus on the asymptotically flat solutions without cos-
mological constant later on. The case with the cosmological
constant is left for future study. Boundary conditions and
symmetry properties of the theory are also discussed in
order to apply them in our following analysis. In Sec. III,
we briefly summarize the thermodynamic properties of the
solutions in the theory. In Sec. IV, we also briefly review the
results for nondilatonic solutions to see the difference from
the dilatonic ones. We then proceed to the study of the
charged black holes for D ¼ 4, 5, 6, and 10 in Secs. V,
VI, VII, and VIII, respectively. The study of the effects of
the higher derivative of the dilaton field for the neutral black
holes is delegated to the appendix, becausewe find that there
is not much difference in the properties of the black hole
solutions except for five dimensions. Some detailed discus-
sions are given there. Section IX is devoted to conclusions
and discussions.

II. DILATONIC EINSTEIN-MAXWELL-GAUSS-
BONNET THEORY

A. Action and basic equations

We consider the following low-energy effective action
for the heterotic string theory in one scheme [3]:

S ¼ 1
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where �2
10 is a D-dimensional gravitational constant, � a

dilaton field, F a gauge field strength, H a 3-form, �2 ¼
�0=8 is a numerical coefficient given in terms of the
Regge slope parameter �0, and R2

GB ¼ R����R
���� �

4R��R
�� þ R2 is the GB term. H2 ¼ H���H��� and

H2
�� ¼ H�

��H���. In the original derivation of the effec-
tive action, it was first derived in the Einstein frame from
the S-matrix calculation in the string theory, and then

transformed into the string frame [3]. It is common and
convenient to interpret results in the Einstein frame. Hence
we transform Eq. (2.1) into the Einstein frame, reduce toD
dimensions, and use the field redefinition ambiguity [3,31]

	g�� ¼ �0½a1R�� þ a2r��r��

þ g��fa3Rþ a4ðr�Þ2 þ a5r2�g�; (2.2)

NOBUYOSHI OHTA AND TAKASHI TORII PHYSICAL REVIEW D 86, 104016 (2012)

104016-2



	� ¼ �0½b1Rþ b2ð@�Þ2 þ b3r2��; (2.3)

to obtain, up to higher order terms,

S ¼ 1
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D

Z
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ffiffiffiffiffiffiffi�g
p �

R� 1
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e�
�F2

þ �2e
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16
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�
; (2.4)

where 
 ¼ 1=2. We have set H ¼ 0 because we focus on
the effects of the dilaton field and the gauge field. Note that
H ¼ 0 is a solution of the field equations.

When the action (2.4) is derived from (2.1), a numerical
constant a in the action (2.4) should be a ¼ 1. In our
previous papers [16–20], however, we have examined the
system with a ¼ 0, which corresponds to the case without
the higher order term of the dilaton field. To see how the
solutions are different with and without the higher order
term of the dilaton field, we have included the constant a,
and here we study mainly a ¼ 1 case. The difference
between a ¼ 0 and a ¼ 1 is discussed in the Appendix.
We have also included a cosmological constant with the
dilaton coupling � although we study asymptotically flat
solutions in this paper.

In the above process, higher order terms ( � Oð�02Þ) are
dropped. This is allowed because the effective low-energy
action can be determined up to the field redefinition when it
is read off from the scattering amplitudes computed in the
string theories. Also note that the effective action was
originally computed in the Einstein frame. All this means
that there is no absolutely preferred form of the action if
they are related up to terms of order �02. There might be
some quantitative differences if we adopt theory of differ-
ent choice of the coefficients, but we expect that the
qualitative properties will not change significantly. It is
the system (2.4) with a ¼ 1 that we study in this paper.
Let us consider the metric and field strength

ds2D ¼ �BðrÞe�2	ðrÞdt2 þ BðrÞ�1dr2 þ r2hijdx
idxj;

F0r ¼ dfðrÞ
dr

; (2.5)

where hijdx
idxj represents the line element of a (D� 2)-

dimensional constant curvature space with curvature
ðD� 2ÞðD� 3Þk and volume �k for k ¼ �1, 0.
The field equations following from Eq. (2.4) are
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ðf0e	�
�~rD�2Þ0 ¼ 0; (2.9)

where we have defined the dimensionless variables: ~r ¼ r=
ffiffiffiffiffiffi
�2

p
, ~� ¼ �2�, and the primes in the field equations denote the

derivatives with respect to ~r. Namely we measure our length in the unit of
ffiffiffiffiffiffi
�2

p
. In what follows, we omit tilde on the

variables for simplicity. We have also defined

ðD�mÞn ¼ ðD�mÞðD�m� 1ÞðD�m� 2Þ � � � ðD� nÞ;
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�
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�
; (2.11)
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� ¼ �00 þ
�
B0

B
� 	0 þD� 2

r

�
�0: (2.13)

The field equation for the Maxwell field (2.9) is easily
integrated to give

f0 ¼ q

rD�2
e
��	; (2.14)

where q is a constant corresponding to the charge. It should
be noted that the quantity q in this equation is actually the

rescaled one ~q ¼ q=�ðD�3Þ=2 related to the real charge q.
But as we mentioned before, tilde is omitted here and
below.

Our task is reduced to setting boundary conditions for
the metric functions B, 	 and the dilaton field � and

integrate the above set of equations, just like in our pre-
vious papers [16–20].

B. Boundary conditions and asymptotic behaviors

In this paper we consider nonextreme solutions which
has a nondegenerate black hole horizon. Hence at the
horizon rH,

BH ¼ 0; B0
H � 0; (2.15)

where BH ¼ BðrHÞ. Here and in what follows, quantities
evaluated at the horizon are represented by a subscript H.
At the horizon, Eq. (2.6) gives

hHB
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þ k2ðD� 3Þ5 e
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�H

r2H
: (2.17)

Henceforth we restrict our consideration to k ¼ 1 and � ¼ 0 case. Combining Eq. (2.16) with Eq. (2.8) evaluated at the
horizon, we obtain the quadratic equation determining �0

H:

A2�
02
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½3ðD� 4ÞC2 þ 6C� 1�r2Dþ4
H : (2.21)

The ð@�Þ4 term in Eq. (2.4) does not contribute to the boundary condition of the dilaton field at the horizon.
In the asymptotic region of r ! 1, we assume
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B ! 1� 2M

rD�3
þ � � � ; (2.22)

	 ! 0; (2.23)

� ! 0; (2.24)

where M is a constant corresponding to the mass of the
black hole. Although 	 ! 	1 and� ! �1, where 	1 and
�1 are constant, these constants can be rescaled out to
satisfy Eqs. (2.23) and (2.24) by the symmetries shown
below, and the solutions are asymptotically flat.

C. Symmetry and scaling

It is useful to consider several symmetries of our field
equations (or our model).

First, our field equations (2.6), (2.7), and (2.8) have a
shift symmetry:

� ! ����; r ! e
��=2r;

q ! eðD�2Þ
��=2q; ð� ! eð��
Þ���Þ;
(2.25)

where �� is an arbitrary constant.1 This changes the mag-
nitude of the cosmological constant when we consider
black hole solutions in its presence. Hence this may be
used to generate solutions for different values of the
cosmological constant, given a solution with some value
of cosmological constant. Even without the cosmological
constant, this symmetry can be used to change the asymp-
totic value of the dilaton field.

The second one is another shift symmetry under

	 ! 	� 	�; t ! e�	�t; (2.26)

with an arbitrary constant 	�, which may be used to shift
the asymptotic value of 	 to zero.2

III. THERMODYNAMICAL VARIABLES

Here we briefly summarize thermodynamical quantities
of black holes to be used in the following discussions. The
Hawking temperature is given by the periodicity of the
Euclidean time on the horizon as (keeping k arbitrary)

TH ¼ e�	H

4�
B0
H ¼ e�	H

4�hH

�ðD� 3Þk
rH

þ ðD� 3Þ5k2
r3H

e�
�H

� q2

2ðD� 2Þ
e
�H

r2D�5
H

�
: (3.1)

Along the definition of entropy in Ref. [32], which
originates from the Noether charge associated with the
diffeomorphism invariance of the system, we obtain

S ¼ �2�
Z
�

@L
@R����

������; (3.2)

where � is the event horizon (D� 2)-surface, L is the
Lagrangian density, ��� denotes the volume element bi-

normal to �. This entropy has desirable properties such
that it obeys the first law of black hole thermodynamics and
that it is expected to obey even the second law [33]. For our
present model, this gives

S ¼ rD�2
H �k

4

�
1þ 2ðD� 2Þ3 ke

�
�H

r2H

�
� Smin: (3.3)

It is noted again that �k is the volume of the unit constant

curvature space, and �1 ¼ 2�ðD�1Þ=2
�ððD�1Þ=2Þ . Smin is added to

make the entropy non-negative [34].

IV. NONDILATONIC BLACK HOLE SOLUTION

It will be instructive to compare our results with the
nondilatonic case. When the dilaton field is absent (i.e.,
Einstein-Maxwell-GB system), we substitute � � 0 and

 ¼ 0 into Eqs. (2.6) and (2.7). In the D ¼ 4 case, the GB
term is total divergence and does not give any contribution
to the field equations. As a result, the solution reduces to
the Reissner-Nordström (RN) solution.
For D � 5, the field equations can be integrated to

yield [22]

�B ¼ 1� 2 �m

rD�3
; (4.1)

	 ¼ 0; (4.2)

where

�m¼ rD�1

4ðD�3Þ4

�
2
4�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ðD�3Þ4 �M

rD�1
� ðD�4Þq2
8ðD�2Þr2ðD�2Þ

s 3
5; (4.3)

and �M is an integration constant corresponding to the
asymptotic value �mð1Þ for the plus sign in Eq. (4.3). In
the �2 ! 0 limit, the solutions with the plus sign approach
the RN solutions. This means that they can be considered
to be the solution with GB correction to general relativity
(GR). On the other hand, the solutions with the minus sign

1There are typos in our previous papers [18,19] in the ex-
ponent of the transformation rule in the second term; they should
have the þ sign.

2For k ¼ 0, there is another symmetry. The field
equations (2.6), (2.7), and (2.8) are invariant under the scaling
transformation B ! c2B, r ! cr, with an arbitrary constant c. If
a black hole solution with the horizon radius rH is obtained, we
can generate solutions with different horizon radii but the same
� by this scaling transformation.
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do not have such a limit. For these reasons, we call the
solutions with plus (minus) sign the (non-)GR branch.

For �M ¼ 0 and q ¼ 0, the metric function becomes

�B ¼
8<
:
1 ðGR branchÞ
1þ r2

‘2
eff

ðnon-GR branchÞ ; (4.4)

where ‘2eff ¼ ðD� 3Þ4. Hence the spacetime is Minkowski

in the GR branch while the spacetime is anti-de Sitter in the
non-GR branch although the cosmological constant � is
absent.

For the charged solution, besides the central singularity
at r ¼ 0, there can be another known as the branch singu-
larity at finite radius rb > 0, which is obtained by the
condition that the inside of the square root in Eq. (4.3)
vanishes. We find the �M-rb relation

�M ¼ rD�1
b

8ðD� 3Þ4
� ðD� 4Þq2
8ðD� 2Þr2ðD�2Þ

b

� 1

�
: (4.5)

This implies that the branch singularity can appear for
positive mass in charged black hole, but only for negative
mass parameter in the neutral black hole.

It can be shown that there is no black hole solution in the
non-GR branch. On the other hand, in the GR branch,
Eq. (4.3) evaluated at the horizon �B ¼ 0 gives

�M ¼ 1

2
rD�5
H

�
r2H þ ðD� 3Þ4 þ q2

8ðD� 2Þ3r2DH
�
: (4.6)

This is the �M-rH relation for the black hole without the
dilaton field. For q ¼ 0, we see that D ¼ 5 is special
because only in this case the mass goes to a finite value
in the limit of rH ! 0, whereas it vanishes for other
dimensions including four. This limit does not exist for
charged ones (q � 0).

V. D ¼ 4 BLACK HOLE

For D ¼ 4, Eq. (2.18) to determine �0
H reduces to

Cr6H
f2Cr4H�q2½2Cð2C�1Þ
2þ1�g�02
H

þrHf2Cq4
2þq2r4H½4CðC�1Þ
2þ1��2Cr8Hg�0
H

þ
½12C2r8H�2ð6C�1Þq2r4Hþq4�¼0: (5.1)

The discriminant for 
 ¼ 1
2 is

1

4
r2Hðq2 � 2Cr4HÞ2½C2q4 þ 2Cð6C2 � 3Cþ 4Þq2r4H
þ 4ð1� 6C2Þr8H�: (5.2)

Our procedure for obtaining solutions is as follows.
First, we choose the suitable values of parameter q and
the boundary condition �H (say �H ¼ 0) at the horizon.
Given the horizon radius rH together with �0

H determined
by (5.1), we integrate the field equations (2.6), (2.7), and
(2.8) outward from the horizon numerically. There are two
possible solutions for �0

H in Eq. (5.1), but only the smaller

one gives the black hole solutions. Although the dilaton
field takes nonvanishing value�1 in the asymptotic region
generically, it can be set to zero by using the shift symme-
try (2.25). Note that the variables defined by

x ¼ e
�H=2rH; y ¼ eðD�2Þ
�H=2q; (5.3)

do not change under this shift symmetry. Then we redo
this procedure by changing rH but keeping the values of
charge q and �H unchanged, which means that y is also
unchanged, and obtain another solution with the different
asymptotic value of the dilaton field �1. Using the shift
symmetry to set �1 to zero, we have the solution with the
same y but different x. In this way we obtain various
solutions for one chosen y. Next, we repeat this procedure
for different y (practically, with different q and the same
�H). After this process, we not only obtain solutions but
also identify the parameter ranges where the solutions exist
on the x-y plane.
Since the values of x and y are unchanged by the shift

symmetry (2.25), it is convenient to draw various diagrams in
terms of these variables. x and y will be referred to as the
‘‘scaled horizon radius’’ and the ‘‘scaled charge,’’ respec-
tively.After identifying the parameter regionwhere solutions
exist, we can change these ‘‘scaled variables’’ to physical
ones.
We find that there are black hole solutions in the region

shadowed by horizontal thin (blue) lines in Fig. 1(a). The
horizontal and vertical axes are x and y, respectively. These
horizontal (blue) lines actually consist of the sequences of
solutions obtained by the above procedure. Although the
lines are drawn for separate distance in y with intervals
�y ¼ 0:2, it should be understood that there are solutions
in the whole shadowed region. We call this region (where
the black hole solutions exist) the allowed region. On the
dashed (red) curve F determined by

F: y2 ¼ ½�2x4 þ 3x2 � 12

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx8 � 4x6 þ 27x4 � 24x2 þ 48Þ

q
�x2; (5.4)

the discriminant (5.2) vanishes. Below the curve F, the
discriminant is negative and the values of �0

H becomes
imaginary, and hence there is no black hole solution.
Furthermore, on the curve F, it can be found analytically
that the second derivative of the dilaton field diverges at the
horizon. The Kretschmann invariant

K ¼ R����R���� ¼ ½B00 � 3B0	0 þ 2Bð	02 � 	00Þ�2

þ 2ðD� 2Þ
r2

ðB02 � 2BB0	0 þ 2B2	02Þ

þ 2ðD� 2Þ3
r4

ðk� BÞ2; (5.5)

also diverges there, and the solution is singular. We call the
region on and below the curve F the forbidden region. For

q ¼ 0, the boundary is x ¼ 241=4 	 2:213. For y > 3:0523
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(above the top of the curve F), the discriminant is positive
for all x (and rH).

The extremal condition given by TH ¼ 0 (or B0
H ¼ 0) is

written in general dimensions as

E: y2 ¼ 2½ðD� 2Þ3x2ðD�3Þ þ ðD� 2Þ5x2ðD�4Þ�: (5.6)

In four dimensions, this reduces to

E: y ¼ 2x; (5.7)

and is depicted by the dotted (green) line E. Above the line
E, B0

H is negative and the horizon rH is not a black hole
horizon (i.e., a closed trapped surface). Actually we find
that there is no black hole solution beyond the solid (black)
curve S, on which �0

H diverges. Hence the curve S is
expected to give a boundary of the allowed region (for
y < 4). The equation of S can be read off from Eq. (5.1), as
the condition that the coefficient of �02

H vanishes:

S: y ¼ 2x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x4 � x2 þ 4

s
: (5.8)

For small xð& 1Þ, this singular curve S almost overlaps
with the curve F. And it crosses with the extreme curve E at
ðx; yÞ ¼ ð2; 4Þ.
For y � 4, we find that the black hole solutions exist to

the right of the boundary B1. On B1, we find that the
asymptotic value of the dilaton field �1 diverges in the
numerical integration, which means that �H diverges after
�H is shifted such that �1 ! 0 by the shift symmetry.
Figure 1(b) is a magnified diagram around the top of for-
bidden region. For 3:0523< y < 4, we find that there seems
to be a boundary B2 slightly to the right of the curve S. We
have confirmed that the black hole solutions exist on the
right side of B2. In our numerical analysis, the calculation
becomes unstable and stops for parameters just out of the
event horizon before we let the parameters reach the curve S,
which strongly suggests that there exists the boundary B2.

(a) (b)

(c) (d)

FIG. 1 (color online). The parameter region where the black hole solution exists in D ¼ 4. The black hole solution exists in the
allowed region which is shadowed by (blue) thin lines. (a) The horizontal axis is x ¼ e
�H=2rH and the vertical axis is y ¼ e
�Hq. On
the dashed (red) curve F, the discriminant (5.2) is zero. Below this line, the discriminant is negative and there is no appropriate
boundary condition on the event horizon. On the curve S the first derivative of the dilaton field on the horizon �0

H diverges and the
solution becomes singular. The line E represents the extreme solution. On the curve B1, �1 diverges numerically which means �H

diverges physically by the shift symmetry. (b) The magnified diagram around the top of the forbidden region. Around the curve
B2 numerical calculation becomes unstable and we cannot find the black hole solution above it. On the curve B3, the third derivative of
the dilaton field diverges while the Kretschmann invariant does not. (c) The allowed region in x and the physical temperature T of the
black hole. The temperature becomes zero on the line B1. The reason is that the horizon of the solutions on it have infinite size.
The solutions on the boundaries F, B2, and B3 have nonzero finite temperature. (d) The diagram of the allowed region in terms of the
physical quantity rH and q. For each value of the charge q, there is a lower bound for the horizon radius rH.
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On the other hand, expanding the field equations around rH,
we do not find any singular behavior in the right region of S
including B2 analytically. Unfortunately within our numeri-
cal accuracy, it is difficult to determine precisely where the
true boundary is. However, there is certainly the boundary
B2 different from S around y
 2:8, and it is plausible that it
merges with S at the point ðx; yÞ ¼ ð2; 4Þ.

For y < 3:0523, the allowed region splits into two parts. In
the region to the right of the curve F, the black hole solutions
exist.On the left side of the curveF,we also havewhatwecall
solitary solutions. We find that the right boundary of the
region where the solitary solutions exist is partly F and partly
B3 [see Fig. 1(b)], where the third derivative of the dilaton
fielddiverges at certain radius r > rH while theKretschmann
invariantK does not. The endpoint of B2 and B3 is depicted
by a (black) dot. Below this, there are black hole solutions
only to the right of F.

In Fig. 1(c), we show the temperature vs the scaled
horizon radius relation. There are solutions in the region
where (blue) thin curves are plotted. It should be noted that
the temperature vanishes on the boundaryB1, althoughB1 is
different from the extreme curve E. The reason why the
temperature vanishes is that the asymptotic value of the
dilaton field �1 gets infinite and the horizon radius rH
and the charge q of the black hole on B1 become infinitely
large after using the shift symmetry. The physical value of
�H diverges and the solutions on B1 is singular. On the left

lower boundary B2 around x ¼ 1:6
 2 the temperature is
nonzero. The right-upper boundary is determined by q ¼ 0,
beyond which there is no solution.
The diagrams drawn in terms of x and y are useful to

identify the parameter region numerically where the black
hole solutions exist. To discuss the physical properties,
however, it is more convenient to show the diagrams in
terms of the physical quantities such as rH and q directly.
In Fig. 1(d), we display the allowed region in terms of the
charge q and the horizon radius rH. There is a lower bound
on the horizon radius for any value of charge q. When the
charge is small (q & 5), the curve F gives the boundary. We
can see that the minimum size of the black hole is almost
independent of the charge in this range. When the charge is
in the range 5 & q & 6:3, the curve F is again the boundary,
but it is not the lower bound; there are solitary solutions in
the thin region in the left part of the diagram. This cusp
structure is surrounded byB2 andB3. The structure is so thin
that it is difficult to create the black hole in this region in
physical processes. For q * 6:3, the lower boundary is
given by B2. The curve B1 with y � 2 in Fig. 1(a) is pushed
to the upper right infinitely (rH ! 1, q ! 1).
So far we have presented the discussion of the parameter

region where black hole solutions exist. We now focus on
how the field functions of the black hole solutions behave for
a typical boundary condition. Figure 2 shows the behaviors of
the function�,m, and 	 for the horizon radius rH ¼ 3:2 for

(a)

(c)

(b)

FIG. 2 (color online). Configurations of (a) the dilaton field �, (b) the mass functionm, and (c) the lapse function 	 of the black hole
solutions in D ¼ 4. The horizon radii are rH ¼ 3:2, and the charges are q ¼ 0 [solid (black) line], q ¼ 5 [dashed (red) line], q ¼ 10
[dotted (blue) line].
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neutral and charged caseswithq ¼ 0, 5, and 10. This horizon
radius is chosen such that the solutions exist for these
charges. For q ¼ 10, the parameters are close to the bound-
ary B2 in the diagram Fig. 1(d). We see that these functions
have smooth behaviors. The dilaton field� increases mono-
tonically for each charge [Fig. 2(a)]. The mass functionm of
the neutral solution decreases near the horizon and increases
towards a finite value as r increases [16]. On the other hand
the mass function of the charged solution increases all the
range from the horizon [Fig. 2(b)]. The lapse function 	
decreases for small q. As the charge becomes large and the
parameters approachB2, 	 increases around the horizon and
decreases to zero. Since the dilaton field couples to the gauge
field and the GB term, the effects of the dilaton field and
higher curvature terms become significant as the charge
becomes large.

Up to this point, our discussions are rather qualitativewith
only figures of regions and behaviors of functions. To evalu-
ate actually some quantities, it is necessary to have quantita-
tive results. In order to get some idea on what are the typical
physical quantities, here we tabulate them for the black hole
solutions with the charge q ¼ 0, 5, and 10 in Table I.

Collecting all these information, we give summary of our
results in the form of the relations between physical quanti-
ties of the black holes. Figure 3 shows various relations for
neutral case [solid (black) line], charged case with q ¼ 5
[dashed (red) line], and with q ¼ 10 [dotted (blue) line]. For
comparison, we also give our results by the thick (thin) lines
for dilatonic (nondilatonic) solutions [see Eqs. (4.1), (4.2),
and (4.3) for the nondilatonic case]. For the nondilatonic
solutions, the GB term becomes total divergence in D ¼ 4,
and the solutions are Schwarzschild and RN black hole
solutions ( �B ¼ 1� 2 �M=rþ q2=4r2).3 For the RN black

hole, there is the minimum mass for each charge, which
corresponds to the extreme black hole solution. There
are two values of rH for the fixed charge qð� 0Þ and mass
[see Fig. 3(a)]. The larger is the radius of the black hole
horizon, the smaller is that of the inner horizon of the same
solution. In contrast, in the dilatonic case, there are lower
bounds on the horizon radii aswell as themasses of the black
hole solutions for given fixed charges q. They are given as
ðq; x; yÞ ¼ ð0; 2:2134; 0Þ, (5, 2.0117, 2.7593), (10, 1.9686,
3.9144). These solutions are not extremal. The lower bounds
on the solutions with q ¼ 0 and 5 are determined by the
forbidden region in Fig. 1; the parameters of the correspond-
ing solutions are just on the boundary F. The horizon radii of
the smallest black holes are almost the same for this range of
charge as we have pointed out already, while their masses
depend on the charge. For q ¼ 10, the lower bound corre-
sponds to the singular solution not on F but onB2. From these
figures, we see that the bigger the charge is, the further the
curves move away from the neutral one, and the effect of
the dilaton field is bigger. This is expected because the bigger
the charge is, the bigger the dilaton coupling is.
Figures 3(b) and 3(c) give relations between the mass and

temperature and their entropy, respectively. For the neutral
case, the GB term has the tendency to raise the temperature
compared to the nondilatonic solution. For the charged case,
however, the temperature is lower than the nondilatonic
solutions. The nondilatonic solutions have extremal limit
with T ¼ 0 while all the dilatonic solutions have nonzero
finite temperature. This fact gives the following scenario. A
dilatonic black hole loses its mass by emitting radiation and
continues evaporating until the solution reaches the mini-
mum mass solution and the spacetime becomes singular.
The entropy of the Schwarzschild and RN black holes in
the EGB theory is different from those in GR because of
the second term in the square bracket of Eq. (3.3). This term
is proportional to �0 and is absent in GR. In D ¼ 4, the

TABLE I. Typical values of the physical quantities of the black hole solutions in D ¼ 4.

q rH M 	H �H �0
H T S=�1

0 2.8 1.50205 0.291474 �0:650704 0.504050 0.0282842 3.34452

3.2 1.65494 0.104926 �0:439547 0.253039 0.0248377 3.80579

4.0 2.02371 0.0319963 �0:256190 0.110000 0.0198896 5.13666

6.0 3.00621 0.00521331 �0:106409 0.0294481 0.0132626 10.0546

8.0 4.00251 0.00156277 �0:0586656 0.0120864 0.00994713 17.0298

5 2.8 2.48068 0.502017 �1:10819 0.564272 0.0143593 3.70037

3.2 2.55368 0.234784 �0:871222 0.347580 0.0143019 4.10591

4.0 2.77132 0.0893922 �0:582756 0.183430 0.0137251 5.33827

6.0 3.51862 0.0168288 �0:269283 0.0562110 0.0111825 10.1441

8.0 4.38982 0.00522316 �0:153149 0.0238626 0.00902933 17.0796

10 2.8 � � � � � � � � � � � � � � � � � �
3.2 4.57779 0.635740 �1:90468 0.285430 0.00099367 5.15176

4.0 4.61313 0.529248 �1:51849 0.413647 0.00404222 6.13667

6.0 4.92428 0.112153 �0:774269 0.154977 0.00651324 10.4728

8.0 5.49493 0.0339071 �0:445769 0.0650895 0.00667781 17.2497

3The normalization of our charge is a factor 2 different from
the conventional one.
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contribution from this term to S=�1 is 1 (constant). Hence,
for instance, entropy of the Schwarzschild black hole in the
zero mass limit is S=�1 ¼ 1 in the EGB theory.

VI. D ¼ 5 BLACK HOLE

For D ¼ 5, Eq. (2.18) to determine �0
H reduces to

Cr8H
fq2½3Cð4C�1Þ
2þCþ1��3Cr6Hð3C2
2þCþ1Þg
��02

HþrHfðCþ1Þ2r6Hð3Cr6H�q2Þ
�2C
2½9C2ðCþ1Þr12H þ3ðC�1Þð2Cþ1Þq2r6H
þ2q4�g�0

Hþ
½9C2ð3C2þ2C�3Þr12H
þ3ð3C2þ6C�1Þq2r6H�2q4�¼0: (6.1)

The discriminant is

1

2
r2Hðq2�3Cr6HÞ2½18C6r12H þ30C5r12H

þC4r6Hð12q2þ5r6HÞþ2C3r6Hð11q2�8r6HÞ
þC2ð2q4þ3q2r6H�12r12H Þþ8Cr6Hðq2þr6HÞþ2r12H �:

(6.2)

We show the allowed region where the black hole solu-
tions exist in Fig. 4(a). Since the discriminant (6.2) is

always positive for C> 0, there is no forbidden region.
This is also the case for higher dimensions. There are,
however, other bounds given by the curve S on which the
first derivative of the dilaton field diverges at the horizon.
There is also the curve E, on which the solution becomes
extreme. The equations of these curves are

S: y ¼ 2x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx4 þ 4x2 þ 12Þ
x4 þ x2 þ 48

s
; (6.3)

E: y ¼ 2
ffiffiffi
3

p
x2; (6.4)

respectively. The actual boundary of the allowed region is
given by the curve B. The interval of each thin line in the
allowed region is �y ¼ 0:4. The thin lines in other figures
in this section have the same interval.
For y & 12, �H is large near the boundary B so that the

physical horizon radius rH and the charge q are very small
as we will see soon [recall that our physical �H is deter-
mined by the shift symmetry (2.25)]. This implies that the
solution has the similar properties to the neutral solution.
[The neural solution with higher order term of the dilaton
field (a ¼ 1) is summarized in the Appendix]. The neutral
solution also has the lower bound on rH, where the second
derivative of the dilaton field diverges at outer region

(a) (b)

(c)

FIG. 3 (color online). Various relations for D ¼ 4 black hole solutions in (dilatonic) EGB systems. (a) M-rH diagram, (b) M-T
diagram, (c)M-S=�1 diagram. Solid (black) lines for q ¼ 0, dashed (red) lines for q ¼ 5, and dotted (blue) lines for q ¼ 10. Dilatonic
solutions are given by thick lines and nondilatonic ones by thin lines. In D ¼ 4, the nondilatonic solutions are Schwarzschild (q ¼ 0)
and RN black hole (q � 0) solutions.
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r > rH. We find that the same divergence occur also in the
charged case. Kretschmann invariant diverges there. Hence
the outer domain of the black hole with parameters on B
(y & 12) is singular. For larger yð* 12:4Þ, �00 diverges at
radius close to the horizon r 	 rH for solutions with pa-
rameters on B. For larger y, the extreme curve E and S

intersect at ðx; yÞ ¼ ð2 ffiffiffi
3

p
; 24

ffiffiffi
3

p Þ ¼ ð3:464; 41:57Þ but the
boundary B is still below the extreme curve E.

In Fig. 4(b), we show the allowed region in terms of the
scaled horizon radius x and the temperature T. Each thin
curve has the same y. The allowed region is three-
dimensional with another axis of y, and the boundary looks
to turn around into inside the region. On the boundary
represented by B, the temperature of the minimum size
solution is finite, hence a small black hole may evolve to
this solution through the evaporating process. For y & 12,
there may appear the singularity at nonzero radius away
from the horizon. On the other hand, for y * 12:4, the

singularity appears at the radius very close to the horizon
just before the radiation stops. The qualitative difference of
the boundary B with y & 12 or y * 12:4 mentioned above
appears around x ¼ 2:1 in the diagram. The boundary
curve B decreases rapidly there, and no ‘‘fold’’ is observed
for x * 2:1.
We also give the allowed region in terms of rH, q, and T

in Fig. 5. The curve B corresponds to the boundary in
Fig. 4. In Fig. 5(a) we see that the solutions with the
same y (depicted by thin lines) converge to the lower left
corner corresponding to neutral solution. For example, the
physical parameter of the solution with ðx; yÞ ¼ ð2:02; 11Þ
is ðrH; qÞ ¼ ð0:177; 0:0848Þ. The boundary B changes
its qualitative property at ðrH; qÞ 
 ð0:2; 0:1Þ (y 	 12).
Figure 5(b) shows that the temperature gets lower in the
presence of the charge but it does not vanish for all solu-
tions. The left vertical boundary of B corresponds to
y & 12.

(a) (b)

FIG. 4 (color online). The parameter region where the black hole solution exists in D ¼ 5. The black hole solution exists in the
allowed region which is shadowed by (blue) thin lines. (a) The horizontal axis is x ¼ e
�H=2rH and the vertical axis is y ¼ e3
�H=2q.
On the curve S the first derivative of the dilaton field on the horizon �0

H diverges and the solution becomes singular. The curve E
represents the extreme solution. The curve B gives the boundary where the solutions exist. On the curve B the second derivative of
the dilaton field diverges at r > rH for y & 12. (b) The allowed region in terms of x and the physical temperature T of the black hole.
The solutions on the boundary B have nonzero finite temperature.

(a) (b)

FIG. 5 (color online). The parameter region where the black hole solutions exist in D ¼ 5. (a) The diagram of the horizon radius rH
and the charge q. For each value of the charge q, there is a lower bound for the horizon radius rH. (b) The diagram of the horizon radius
rH and the temperature T.
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Figure 6 shows the configurations of the field func-
tions �, m and 	 for the horizon radius rH ¼ 2:1 for
neutral and charged cases with q ¼ 0, 5, and 10. This
horizon radius is chosen such that the solutions exist
for these charges. There are some different features in
D ¼ 5 dimension compared to the D ¼ 4 case; the
dilaton field decreases and the lapse function increases
rapidly around the event horizon. Although the

configurations in the neutral case are qualitatively
different depending on the horizon radius (details
can be found in Ref. [16]), we find that the variations
of the field functions become large as the charge
becomes large in general due to the dilaton coupling
as in the D ¼ 4 case.
Here we tabulate physical quantities for the black hole

solutions with the charge q ¼ 0, 5, and 10 in Table II.

(a)

(c)

(b)

FIG. 6 (color online). Configurations of (a) the dilaton field �, (b) the mass functionm, and (c) the lapse function 	 of the black hole
solutions in D ¼ 5. The horizon radii are rH ¼ 2:1, and the charges are q ¼ 0 [solid (black) line], q ¼ 5 [dashed (red) line], q ¼ 10
[dotted (blue) line].

TABLE II. Typical values of the physical quantities of the black hole solutions in D ¼ 5.

q rH M 	H �H �0
H T S=�1

0 0.2 0.25377 0.512040 7.37067 �19:7397 0.0563593 0.0170506

1.7 2.21038 �0:341768 0.268320 �1:08980 0.0395517 5.68795

2.2 3.56697 �0:173250 �0:168216 �0:346471 0.0383783 9.84113

4.0 9.43189 0.065321 �0:305025 0.172855 0.0313079 29.9771

6.0 19.2458 0.0181629 �0:164383 0.0680353 0.0237666 73.5419

5 0.2 � � � � � � � � � � � � � � � � � �
1.7 2.41969 �0:484009 0.678086 �2:25502 0.0254686 4.86175

2.2 3.69719 �0:208188 �0:0987342 �0:464995 0.0352647 9.59600

4.0 9.49343 0.064932 �0:306446 0.171797 0.0310818 29.9870

6.0 19.2748 0.0182388 �0:165188 0.0682174 0.0237302 73.5498

10 0.2 � � � � � � � � � � � � � � � � � �
1.7 � � � � � � � � � � � � � � � � � �
2.2 4.14235 �0:343864 0.157902 �1:05281 0.0236971 8.76096

4.0 9.68000 0.0637826 �0:310739 0.168659 0.0304058 30.0171

6.0 19.3627 0.0184687 �0:167607 0.068766 0.0236212 73.5735
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In Fig. 7, we give the relations of physical quantities
for neutral and charged solutions with different charges
as well as those in nondilatonic theory. For the neutral
case, the nondilatonic black hole has the zero horizon
radius limit where �M ¼ 1 [Fig. 7(a)]. It is a singular
solution. There is also a lower bound on the horizon
radius for the dilatonic solution. For the minimum solu-
tion, the second derivative of the dilaton field diverges
outside the horizon. For the charged case, the nondila-
tonic solution is described by Eqs. (4.1) and (4.3). There
is the extreme solution for each charge, which has the
minimum mass. As in the RN black holes in D ¼ 4, the

lower curve for each charge is the radius of the inner
horizon. The graphs of the charged dilatonic solution
show similar behavior of the neutral one except for the
radius of the lowest mass solution. For the minimum
solution, the second derivative of the dilaton field
diverges just outside the horizon.
We can see from Fig. 7(b) that the nondilatonic solutions

has zero temperature in the low mass limit regardless of
the charge. For the charge case, the dilatonic solution
behaves like nondilatonic one. However, the temperature
of the neutral solution raises as the mass becomes small.
Figure 7(c) shows the mass-entropy relations.

VII. D ¼ 6 BLACK HOLE

For D ¼ 6, Eq. (2.18) to determine �0
H reduces to

Cr10H 
f4Cr8H½4C2ð6Cþ 7Þ
2 þ Cð2Cþ 7Þ þ 3� � 3q2½4Cð6C� 1Þ
2 þ 2Cþ 1�g�02
H � rHf2C
2½80C2ðC2 � C� 1Þr16H

� 12ðC� 1Þð4Cþ 1Þq2r8H � 9q4� þ ð2Cþ 1Þ2r8H½4CðCþ 3Þr8H � 3q2���0
H � 
½80C2ð7C2 þ 2C� 2Þr16H

þ 12ð6C2 þ 6C� 1Þq2r8H � 9q4� ¼ 0: (7.1)

The discriminant is

1

4
r2H½3q2 � 4CðCþ 3Þr8H�2½400C6r16H þ 480C5r16H þ 24C4r8Hð5q2 þ 6r8HÞ þ 8C3r8Hð15q2 � 4r8HÞ
þ C2ð9q4 þ 36q2r8H þ 16r16H Þ þ 8Cr8Hð3q2 þ 4r8HÞ þ 4r16H �; (7.2)

(a) (b)

(c)

FIG. 7 (color online). Various relations for D ¼ 5 black hole solutions in (dilatonic) EGB systems. (a) M-rH diagram, (b) M-T
diagram, (c)M-S=�1 diagram. Solid (black) lines for q ¼ 0, dashed (red) lines for q ¼ 5, and dotted (blue) lines for q ¼ 10. Dilatonic
solutions are given by thick lines and nondilatonic ones by thin lines.
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which is always positive for C> 0. Hence again there is no
forbidden region from the existence of the proper boundary
condition in the x-y diagram in Fig. 8. There is, however,
the region where solutions cease to exist if we keep y
constant and make x smaller. The curve S where �0

H

diverges and the curve E where solution becomes extreme
are expressed as

S: y ¼ 2x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðx6 þ 14x4 þ 108x2 þ 432Þ

x4 þ 6x2 þ 216

s
; (7.3)

E: y ¼ 2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðx2 þ 2Þ

q
; (7.4)

respectively. The curves S and E intersect at ðx; yÞ ¼
ð2 ffiffiffi

5
p

; 80
ffiffiffiffiffiffi
33

p Þ.
For the neutral case, there is a solution in the zero

horizon limit, while there is the lower bound for x for the
charged solution as shown in Fig. 8(a). We find that
the boundary is given by B where �00 diverges just outside

the horizon (r 	 rH). Kretschmann invariant also diverges
there. In D ¼ 5, the second derivative of the dilaton field
diverges at r > rH on the boundary, but there is not such
behavior in D � 6. The interval of the thin lines in the
allowed region is �y ¼ 0:5. Figure 8(b) is the magnified
diagram to distinguish B from S. The difference between
them is small. Hence the boundary B is well approximated

by Eq. (7.3) for x & 2
ffiffiffi
5

p
. From Fig. 8(c), the temperature

does not vanish on the boundary B but it is lower than that
of closer solutions on the same curve. On the boundary B,
the temperature decreases as y ! 0, which corresponds to
zero charge limit, because the boundary B approaches to
the extreme curve E in this limit. However, for the neutral
solution with y ¼ 0 exactly, the temperature diverges in
x ! 0 limit. This disconnected behavior is the same as that
between the Schwarzschild and the RN black hole solu-
tions in GR. There are solutions above the curve B on the
right side (although we do not fill in curves). The boundary
B seems to go down to the origin. In Fig. 8(d), we display
the allowed region in terms of physical quantities rH and q.

(a) (b)

(c) (d)

FIG. 8 (color online). The parameter region where the black hole solution exists in D ¼ 6. The black hole solution exists in the
allowed region which is shadowed by (blue) thin lines. (a) The horizontal axis is x ¼ e
�H=2rH and the vertical axis is y ¼ e3
�H=2q.
On the curve S the first derivative of the dilaton field on the horizon �0

H diverges and the solution becomes singular. The line E
represents the extreme solution. The curve B gives the boundary where the solutions exist. On the boundary B the second derivative of
the dilaton field diverges just outside the horizon. (b) The magnified diagram of (a). The boundary B is separated from the singular
curve S. (c) The allowed region in x and the physical temperature T of the black hole. There are solutions above the curve B on the
right side. The solutions on the boundaries B have nonzero finite temperature. The boundary B seems to go down to the origin. (d) The
diagram of the allowed region in terms of the physical quantity rH and q. For each value of the charge q, there is a lower bound for
the horizon radius rH.
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The left boundary in Fig. 8(d) is B, to the left of which
there is no solution.

Figure 9 shows the configurations of the field functions
�,m, and 	 for the horizon radius rH ¼ 1:6 for neutral and
charged cases with q ¼ 0, 5, and 10.

We tabulate quantitative results on the physical quanti-
ties for the black hole solutions with the charge q ¼ 0,5,
and 10 in Table III.

Figure 10 shows the relation between physical quanti-
ties for some fixed charges. Figure 10(a) shows the mass
and horizon radius relation. The neutral black holes have
the zero mass and zero horizon radius limit for both the
dilatonic and nondilatonic cases. As in the lower dimen-
sional cases the radius of the inner horizon of the non-
dilatonic solution is depicted. In D ¼ 6, the horizon
radius of the dilatonic solution is larger than that of the

(a)

(c)

(b)

FIG. 9 (color online). Configurations of the functions; (a) the dilaton field �, (b) the mass function m, and (c) the lapse function 	 of
the black hole solutions in D ¼ 6. The horizon radii are rH ¼ 1:6, and the charges are q ¼ 0 [solid (black) line], q ¼ 5 [dashed (red)
line], q ¼ 10 [dotted (blue) line].

TABLE III. Typical values of the physical quantities of the black hole solutions in D ¼ 6.

q rH M 	H �H �0
H T S=�1

0 0.2 0.468100 �0:0468327 0.687743 �0:325345 0.209961 0.170565

1.7 5.76616 �0:205696 0.725035 �1:05676 0.0492691 14.1553

2.2 10.3889 �0:182805 0.385590 �0:713747 0.0454031 29.8043

4.0 45.6455 �0:00965932 �0:157190 0.00409228 0.0378379 167.850

6.0 129.375 0.0230420 �0:177248 0.0797759 0.0312294 560.017

5 0.2 � � � � � � � � � � � � � � � � � �
1.7 5.84751 �0:215021 0.760954 �1:12794 0.0472207 13.9405

2.2 10.4274 �0:184416 0.391221 �0:723068 0.0450363 29.7369

4.0 45.6528 �0:00969279 �0:157154 0.00400513 0.0378301 167.848

6.0 129.377 0.0230421 �0:177253 0.0797760 0.0312288 560.017

10 0.2 � � � � � � � � � � � � � � � � � �
1.7 6.09473 �0:253558 0.892202 �1:43403 0.0402291 13.1877

2.2 10.5425 �0:189437 0.408529 �0:752338 0.0439171 29.5312

4.0 45.6745 �0:00979316 �0:157046 0.00374374 0.0378066 167.842

6.0 129.393 0.0230423 �0:177268 0.0797761 0.0312269 560.019
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nondilatonic solution for the same mass, and the dif-
ference between them is remarkable. On the other
hand, the dependence of the charge in the dilatonic
case is rather mild. We can see that the rH-M graph of
each charge traces almost the same curve. The left end
points of the curves correspond to singular solutions with
the parameters on B. Figure 10(b) shows the relation
between the massM and the temperature T. There appear
some qualitative differences depending on whether the
solution is charged or not especially around the endpoint
in the small mass limit. Figure 10(c) shows the relation
between entropy and the mass. Compared with the rH-M
diagram, the graphs of dilatonic solutions are separated
from each other. Here it should be noted that the entropy

is not proportional to the horizon area in the higher
curvature theory. The expression of entropy is given by
Eq. (3.3), and the second term in the square bracket gives
this separation.

VIII. D ¼ 10 BLACK HOLE

The qualitative properties in the D ¼ 6 to 10 cases are
almost the same. However, since D ¼ 10 is the critical
dimension in superstring theories and important for appli-
cations, here we show the summary and some diagrams of
the black hole solutions in D ¼ 10.
For D ¼ 10, Eq. (2.18) to determine �0

H reduces to

Cr18H 
f8Cr16H ½24C2ð70Cþ 19Þ
2 þ 90C2 þ 57Cþ 7� � 7q2½8Cð14C� 1Þ
2 þ 6Cþ 1�g�02
H

� rHf8Cr32H ½432C2ð15C2 � C� 1Þ
2 þ 540C3 þ 108C2 þ 99Cþ 7�
� 7q2r16H ½16CðC� 1Þð12Cþ 1Þ
2 þ ð6Cþ 1Þ2� � 98Cq4
2g�0

H

� 
½576C2ð99C2 þ 6C� 4Þr32H þ 56ð18C2 þ 6C� 1Þq2r16H � 49q4� ¼ 0: (8.1)

The discriminant is

(a)

(c)

(b)

FIG. 10 (color online). The relations of physical quantities for black hole solutions in D ¼ 6 EGB systems. (a) M-rH diagram,
(b) M-T diagram, (c) M-S=�1 diagram. Solid (black) line for q ¼ 0, dashed (red) line for q ¼ 5, and dotted (blue) line for q ¼ 10.
The dilatonic solutions are given by thick lines, and the nondilatonic ones by thin lines.
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(a) (b)

(c) (d)

FIG. 11 (color online). The parameter region where the black hole solution exists in D ¼ 10. The black hole solution exists in the
allowed region which is shadowed by (blue) thin lines. (a) The horizontal axis is x ¼ e
�H=2rH and the vertical axis is y ¼ e4
�Hq. The
curve B gives the boundary where the solutions exist. On the boundary B the second derivative of the dilaton field diverges just outside
the horizon. (b) The magnified diagram of (a). There are small differences between the boundary B, the singular curve S, and the
extreme curve E. (c) Allowed region in x and the physical temperature T of the black hole. There are solutions also in the lower-right
region. The solutions on the boundaries B have nonzero finite temperature. The boundary B seems to go down to the origin. (d) The
diagram of the allowed region in terms of the physical quantity rH and q. For each value of the charge q, there is a lower bound for the
horizon radius rH.

TABLE IV. Typical values of the physical quantities of the black hole solutions in D ¼ 10.

q rH M 	H �H �0
H T S=�1

0 0.2 0.0066645 �0:00168778 0.0355222 �0:0319461 0.996737 0.00176109

1.7 6.48277 �0:0125900 0.163543 �0:133113 0.253318 6.80565

2.2 276.002 �0:0368148 0.318372 �0:276744 0.125172 593.831

4.0 1027.74 �0:0497577 0.361146 �0:333154 0.100354 2787.35

6.0 26445.5 �0:0693803 0.285279 �0:335072 0.0646700 115826

5 0.2 � � � � � � � � � � � � � � � � � �
1.7 7.06843 �0:0138779 0.170767 �0:147951 0.221395 6.80611

2.2 276.008 �0:0368154 0.318375 �0:276748 0.125170 593.831

4.0 1027.74 �0:0497577 0.361147 �0:333155 0.100354 2787.35

6.0 26445.5 �0:0693803 0.285279 �0:335072 0.0646700 115826

10 0.2 � � � � � � � � � � � � � � � � � �
1.7 8.76069 �0:0207554 0.193860 �0:236732 0.123396 6.70390

2.2 276.018 �0:0368170 0.318383 �0:276759 0.125164 593.828

4.0 1027.74 �0:0497578 0.361147 �0:333155 0.100354 2787.35

6.0 26445.5 �0:0693803 0.285279 �0:335072 0.0646700 115826
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1

4
r2H½7q2 � 8Cð15Cþ 7Þr16H �2½46656C6r32H þ 34560C5r32H þ 432C4ð7q2r16H þ 20r32H Þ þ 192C3ð7q2r16H þ 9r32H Þ
þ C2ð7q2 þ 24r16H Þ2 þ 8Cð7q2r16H þ 12r32H Þ þ 4r32H �; (8.2)

which is always positive. Hence again there is no forbidden
region in the parameter space from this restriction.

In Fig. 11, we give the allowed region for the dilatonic
black holes. The interval of the thin lines in the allowed
region is �y ¼ 1. In Fig. 11(a), the extremal curve E and
the singular curve S where �0

H diverges overlap with the
boundary B, which are expressed as

S: y ¼ 4x6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ðx6 þ 114x4 þ 5712x2 þ 164640Þ

x4 þ 56x2 þ 5488

s
; (8.3)

E: y ¼ 4x6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ðx2 þ 30Þ

q
; (8.4)

respectively. The curves S and E intersect at ðx; yÞ ¼
ð2 ffiffiffiffiffiffi

13
p

; 162432
ffiffiffiffiffiffiffiffi
574

p Þ. Figure 11(b) is the magnified dia-
gram of (a). We can see that there are actually small
differences between these curves. On the boundary B, the
second derivative of the dilaton field diverges just outside
the horizon. Figure 11(c) shows the T-x diagram. There are
solutions between the q ¼ 0 curve and the boundary B. On

the boundary B the temperature is not zero. In Fig. 11(d),
we display the allowed region in terms of x and y. Because
the value of �Hð<0:3Þ is small for all ranges, there is not
much difference from Fig. 11(a).
The configurations of the field functions�,m, and 	 are

qualitatively similar toD ¼ 6 case, and we omit the figures
here. Instead, we give quantitative results on the typical
physical quantities for the black hole solutions with the
charge q ¼ 0, 5, and 10 in Table IV.
In Fig. 12, we give the relations of physical quantities.

There is not much difference between the dilatonic and the
nondilatonic solutions for these values of charge. This
seems to be the tendency for higher-dimensional solutions.

IX. CONCLUSIONS

In this paper we have studied asymptotically flat charged
black hole solutions in the dilatonic EGB theory in various
dimensions. The theory is the low-energy effective theory
of the heterotic string. The spacetime is assumed to be
static and spherically symmetric. The system of the field

(a) (b)

(c)

FIG. 12 (color online). The relations of various physical quantities for black hole solutions in D ¼ 10 dilatonic EGB systems.
(a) M-rH diagram, (b) M-T diagram, (c) M-S=�1 diagram. Solid (black) line for q ¼ 0, dashed (red) line for q ¼ 5, and dotted (blue)
line for q ¼ 10. The dilatonic solutions are given by thick lines, and the nondilatonic ones by thin lines.
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equations is so complex that it is difficult to obtain an
analytical solution. Hence we investigate the numerical
solutions. The system of the field equations has some
symmetries which are helpful in the analysis. The results
are given for D ¼ 4, 5, 6, and 10, and we did not discuss
other dimensions 7 to 9 simply because we expect that
behaviors are qualitatively the same as those presented
here from our earlier study of the system.

We have found that there is the forbidden region on the
parameter plane spanned by x and y which are the ‘‘scaled
horizon radius’’ and the ‘‘scaled charge,’’ respectively,
in D ¼ 4. Besides it, there are some boundaries (and
important curves) of the allowed region such as the singu-
lar curve S where �0

H diverges, the extreme curve E where

the solution becomes extreme, and Bi (i ¼ 1, 2, 3) where
the field functions and/or its derivatives diverge. The forms
of the allowed parameter regions are different depending
on the dimension, 4, 5, and 6–10.

We have also studied the thermodynamical quantities.
There is no extreme black hole solution with T ¼ 0 that
can be obtained by taking the limit of the nonextreme
solutions within the parameter range we chose. In the
higher curvature theory, physical entropy is defined by
Iyer and Wald [32]. Although there is a parameter region
where the radius (or the area) of the black hole horizon in
the dilatonic theory is smaller than that in the nondilatonic
theory, entropy in the dilatonic theory is always larger
than that in the nondilatonic theory. Since the dilatonic
and nondilatonic solutions are the solutions in different
theories, it is difficult to compare their thermodynamical
stability and quantum transition between them in the ther-
modynamical sense as long as 
 � 0. There would be,
however, some physical meaning in this magnitude rela-
tionship of entropy.

It is noted again that our analysis includes the higher
order term of the dilaton field which is not in our previous
works [16–20]. To make its effects clear, we have studied
the solutions for both cases a ¼ 0 and a ¼ 1 in Eq. (2.4) in
the Appendix by focusing on the neutral solutions. The
qualitative properties and the relations such asM-rH,M-T,
and M-S=�1 are quite similar in each case except for
D ¼ 5. In the D ¼ 5 theory without the higher order
term, the black hole solution with infinitesimal size exists
towards rH ¼ 0while there is a lower bound on the horizon
radius rH in the theory with the higher order term. For the
lower bound solution, the second derivative of the dilaton
field diverges at some radius outside the horizon, and the
spacetime becomes singular. The existence of the lower
bound of this type is confirmed also in the charged solution
with y & 12 (q & 0:1).

By our analysis it is found that the properties of the black
hole solutions strongly depend on the dimension, charge,
existence of the dilaton field. Hence both the detailed
analyses of the individual systems and the investigations
from the systematic point of view are important.

There still remain some questions in our work. The first
one is to determine precisely where the real boundary of
the allowed region B (or B2) is. It is difficult to determine it
due to the fine structure of the system near the boundary
and the numerical accuracy. The second is concerned with
the fact that the temperature of the black hole solutions on
some boundary remains nonzero and finite. This means
that the evaporation does not stop there and the black
hole still evolves to a naked singularity or something
unknown. This gives a very interesting puzzle that the
singularity may be really formed after evaporation process
and deserves further study.
Another interesting future work is to study charged AdS

black holes for application to AdS/CFT correspondence.
We expect that this class of solutions exists for k ¼ 0 [17].
We leave these problems for future works.

ACKNOWLEDGMENTS

This work was supported in part by the Grant-in-Aid
for Scientific Research Fund of the JSPS (C) Grant
No. 24540290, (C) Grant No. 22540293, and (A) Grant
No. 22244030.

APPENDIX: THE EFFECTS OF THE HIGHER
ORDERTERMOF THE DILATON FIELD FORTHE

NEUTRAL SOLUTIONS

In our previous work on the black holes in the dilatonic
EGB theory [16–20], we examined the neutral solutions
without the higher order derivative term of the dilaton field
[a ¼ 0 in Eq. (2.4)]. There is, however, such a term in
general. Hence it is significant to investigate if there are
any differences between the cases of a ¼ 0 and a ¼ 1. The
neutral solutions for a ¼ 1 can be obtained by putting
q ¼ 0 in our model. One can find the result by looking at
the curves with q ¼ 0 in Figs. 1–3 for D ¼ 4. Comparing
them with the a ¼ 0 case in our previous papers, we find
that the qualitative properties and the relations such as
M-rH, M-T, and M-S=�1 are quite similar. This is true
also in other dimensions except for five. Hence let us
discuss D ¼ 5 case in more detail here.
Figure 13 displays the relations between physical quan-

tities for neutral solutions. The black hole solutions in the
theory with the GB term have the non-zero lower bound on
their mass. Compared with the nondilatonic BD solution,
the mass of the lower bound in the dilatonic solutions is
smaller, and the one for a ¼ 1 is slightly smaller than that
for a ¼ 0 [Fig. 13(a)]. We also find that for the a ¼ 0 case
the black hole solution with infinitesimal size exists
towards rH ¼ 0while there is a lower bound on the horizon
radius rH for a ¼ 1. This bound corresponds to the bound-
ary B in Figs. 4(a) and 5(a). With the parameters around the
lower bound B the second derivative of the dilaton field
grows suddenly at some radius r > rH. This behavior is
shown in Fig. 14 for the parameters just before touching
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the boundary. It is expected that �00 should diverge on the
boundary. Since the Kretschmann invariant also diverges at
that radius, the solution of the lower bound is singular. If
we compare black holes with the same mass, the horizon

radius for a ¼ 1 is a little larger than that for a ¼ 0. As a
general tendency, the values of the dilaton field� itself and
its variation �0 are larger in magnitude for a ¼ 1 than
those for a ¼ 0. For the large black holes (rH * 1), the
differences are indistinguishable.
Figure 13(b) shows the radius of the curvature singular-

ity (thick curves) inside the black hole horizon (of which
radius is depicted by thin curves). ForM & 7:5, the curva-
ture singularity is located at the center of the black hole.
For the large mass M * 7:5, however, the singularity is
expanded to a finite radius rs > 0. We called it a fat
singularity [20]. Even if the higher order term of the dilaton
field is included, this tendency is unchanged.
The temperature T is slightly higher in a ¼ 1 than in

a ¼ 0 case for M * 0:6, while the order changes near the
minimum mass [Fig. 13(c)]. Although it might appear that
the difference is very small in D ¼ 5, the difference is
further smaller in other dimensions. In addition, the tem-
perature of the minimum size solution is finite, hence a
small black hole for a ¼ 1 may evolve to this solution
through the evaporating process, and the naked singularity
might appear at nonzero radius. Such behavior cannot be
seen for higher dimensions even if the higher order term is
included. Figure 13(d) is the entropy vs mass diagram.

FIG. 14 (color online). Configuration of �00 for parameters
q ¼ 0, rH ¼ 0:103555 just before touching the lower bound in
D ¼ 5. The peak is at r ¼ 1:702. This behavior is basically the
same for the charged solutions with y < 12 (q < 0:1).

(a) (b)

(c) (d)

FIG. 13 (color online). Difference between a ¼ 1 and a ¼ 0 for neutral black hole solutions in the D ¼ 5 dilatonic EGB system
with 
 ¼ 1=2. (a) M-rH diagram, (b) M-rs diagram (the thin lines show the horizon radius), (c) M-T diagram, (d) M-S=�1 diagram.
The solid (red) line is for a ¼ 1, the dashed (blue) line for a ¼ 0, the dotted (green) line for Tangherini solution (higher-dimensional
generalization of the Schwarzschild solution without the GB term), and the dotted-dashed (black) line for the BD solution (in
nondilatonic EGB theory).

NOBUYOSHI OHTA AND TAKASHI TORII PHYSICAL REVIEW D 86, 104016 (2012)

104016-20



[1] G.W. Gibbons and K.-i. Maeda, Nucl. Phys. B298, 741
(1988).

[2] D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys.
Rev. D 43, 3140 (1991); 45, 3888(E) (1992).

[3] R. R. Metsaev and A.A. Tseytlin, Nucl. Phys. B293, 385
(1987).

[4] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971); 13, 874
(1972).

[5] B. Zumino, Phys. Rep. 137, 109 (1986).
[6] J. T. Wheeler, Nucl. Phys. B268, 737 (1986); D. L.

Wiltshire, Phys. Lett. 169B, 36 (1986); R. C. Myers and
J. Z. Simon, Phys. Rev. D 38, 2434 (1988); G. Giribet, J.
Oliva, and R. Troncoso, J. High Energy Phys. 05 (2006)
007; R. G. Cai and N. Ohta, Phys. Rev. D 74, 064001
(2006); for reviews and references, see C. Garraffo and G.
Giribet, arXiv:0805.3575; C. Charmousis, Lect. Notes
Phys. 769, 299 (2009).

[7] M. Cvetic, S. Nojiri, and S.D. Odintsov, Nucl. Phys.
B628, 295 (2002).

[8] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Phys. Rev. D 54, 5049 (1996).

[9] T. Torii, H. Yajima, and K.-i. Maeda, Phys. Rev. D 55, 739
(1997).

[10] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656
(1985); Phys. Lett. B 175, 409 (1986).

[11] J. D. Brown, J. Creighton, and R. B. Mann, Phys. Rev. D
50, 6394 (1994).

[12] R. G. Cai, Phys. Rev. D 65, 084014 (2002).
[13] A. Buchel and J. T. Liu, Phys. Rev. Lett. 93, 090602

(2004); P. Kovtun, D. T. Son, and A.O. Starinets, Phys.
Rev. Lett. 94, 111601 (2005); A. Buchel, J. T. Liu, and
A.O. Starinets, Nucl. Phys. B707, 56 (2005); M. Brigante,
H. Liu, R. C. Myers, S. Shenker, and S. Yaida, Phys. Rev.
Lett. 100, 191601 (2008).

[14] R.-G. Cai, Z.-Y. Nie, N. Ohta, and Y.-W. Sun, Phys. Rev. D
79, 066004 (2009).

[15] C. G. Callan, Jr., R. C. Myers, and M. J. Perry, Nucl. Phys.
B311, 673 (1989).

[16] Z. K. Guo, N. Ohta, and T. Torii, Prog. Theor. Phys. 120,
581 (2008).

[17] Z. K. Guo, N. Ohta, and T. Torii, Prog. Theor. Phys. 121,
253 (2009).

[18] N. Ohta and T. Torii, Prog. Theor. Phys. 121, 959
(2009).

[19] N. Ohta and T. Torii, Prog. Theor. Phys. 122, 1477
(2009).

[20] N. Ohta and T. Torii, Prog. Theor. Phys. 124, 207
(2010).

[21] K. Bamba, Z. K. Guo, and N. Ohta, Prog. Theor. Phys.
118, 879 (2007).

[22] T. Torii and H. Maeda, Phys. Rev. D 71, 124002 (2005);
72, 064007 (2005).

[23] C.M. Chen, D. V. Gal’tsov, and D.G. Orlov, Phys. Rev. D
75, 084030 (2007).

[24] C.M. Chen, D. V. Gal’tsov, and D.G. Orlov, Phys. Rev. D
78, 104013 (2008).

[25] R. G. Cai, C.M. Chen, K.-i. Maeda, N. Ohta, and D.W.
Pang, Phys. Rev. D 77, 064030 (2008).

[26] K.-i. Maeda, N. Ohta, and Y. Sasagawa, Phys. Rev. D 80,
104032 (2009).

[27] C.M. Chen, D.V. Gal’tsov, N. Ohta, and D.G. Orlov,
Phys. Rev. D 81, 024002 (2010).

[28] K.-i. Maeda, N. Ohta, and Y. Sasagawa, Phys. Rev. D 83,
044051 (2011).

[29] C. Charmousis, B. Gouteraux, E. Kiritsis, J. High Energy
Phys. 09 (2012) 011.

[30] S. S. Gubser, Phys. Rev. D 78, 065034 (2008).
[31] K.-i. Maeda, N. Ohta, and R. Wakebe, Eur. Phys. J. C 72,

1949 (2012).
[32] R.M. Wald, Phys. Rev. D 48, R3427 (1993); V. Iyer and

R.M. Wald, Phys. Rev. D 50, 846 (1994).
[33] T. Jacobson, G. Kang, and R. C. Myers, Phys. Rev. D 49,

6587 (1994); 52, 3518 (1995).
[34] T. Clunan, S. F. Ross, and D. J. Smith, Classical Quantum

Gravity 21, 3447 (2004); see also M. Cvetic, S. Nojiri, and
S. D. Odintsov, Nucl. Phys. B628, 295 (2002).

CHARGED BLACK HOLES IN STRING THEORY WITH . . . PHYSICAL REVIEW D 86, 104016 (2012)

104016-21

http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1103/PhysRevD.43.3140
http://dx.doi.org/10.1103/PhysRevD.43.3140
http://dx.doi.org/10.1103/PhysRevD.45.3888
http://dx.doi.org/10.1016/0550-3213(87)90077-0
http://dx.doi.org/10.1016/0550-3213(87)90077-0
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1063/1.1666069
http://dx.doi.org/10.1063/1.1666069
http://dx.doi.org/10.1016/0370-1573(86)90076-1
http://dx.doi.org/10.1016/0550-3213(86)90268-3
http://dx.doi.org/10.1016/0370-2693(86)90681-7
http://dx.doi.org/10.1103/PhysRevD.38.2434
http://dx.doi.org/10.1088/1126-6708/2006/05/007
http://dx.doi.org/10.1088/1126-6708/2006/05/007
http://dx.doi.org/10.1103/PhysRevD.74.064001
http://dx.doi.org/10.1103/PhysRevD.74.064001
http://arXiv.org/abs/0805.3575
http://dx.doi.org/10.1007/978-3-540-88460-6
http://dx.doi.org/10.1007/978-3-540-88460-6
http://dx.doi.org/10.1016/S0550-3213(02)00075-5
http://dx.doi.org/10.1016/S0550-3213(02)00075-5
http://dx.doi.org/10.1103/PhysRevD.54.5049
http://dx.doi.org/10.1103/PhysRevD.55.739
http://dx.doi.org/10.1103/PhysRevD.55.739
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1016/0370-2693(86)90614-3
http://dx.doi.org/10.1103/PhysRevD.50.6394
http://dx.doi.org/10.1103/PhysRevD.50.6394
http://dx.doi.org/10.1103/PhysRevD.65.084014
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.055
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://dx.doi.org/10.1103/PhysRevD.79.066004
http://dx.doi.org/10.1103/PhysRevD.79.066004
http://dx.doi.org/10.1016/0550-3213(89)90172-7
http://dx.doi.org/10.1016/0550-3213(89)90172-7
http://dx.doi.org/10.1143/PTP.120.581
http://dx.doi.org/10.1143/PTP.120.581
http://dx.doi.org/10.1143/PTP.121.253
http://dx.doi.org/10.1143/PTP.121.253
http://dx.doi.org/10.1143/PTP.121.959
http://dx.doi.org/10.1143/PTP.121.959
http://dx.doi.org/10.1143/PTP.122.1477
http://dx.doi.org/10.1143/PTP.122.1477
http://dx.doi.org/10.1143/PTP.124.207
http://dx.doi.org/10.1143/PTP.124.207
http://dx.doi.org/10.1143/PTP.118.879
http://dx.doi.org/10.1143/PTP.118.879
http://dx.doi.org/10.1103/PhysRevD.71.124002
http://dx.doi.org/10.1103/PhysRevD.72.064007
http://dx.doi.org/10.1103/PhysRevD.75.084030
http://dx.doi.org/10.1103/PhysRevD.75.084030
http://dx.doi.org/10.1103/PhysRevD.78.104013
http://dx.doi.org/10.1103/PhysRevD.78.104013
http://dx.doi.org/10.1103/PhysRevD.77.064030
http://dx.doi.org/10.1103/PhysRevD.80.104032
http://dx.doi.org/10.1103/PhysRevD.80.104032
http://dx.doi.org/10.1103/PhysRevD.81.024002
http://dx.doi.org/10.1103/PhysRevD.83.044051
http://dx.doi.org/10.1103/PhysRevD.83.044051
http://dx.doi.org/10.1007/JHEP09(2012)011
http://dx.doi.org/10.1007/JHEP09(2012)011
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1140/epjc/s10052-012-1949-6
http://dx.doi.org/10.1140/epjc/s10052-012-1949-6
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1103/PhysRevD.52.3518
http://dx.doi.org/10.1088/0264-9381/21/14/009
http://dx.doi.org/10.1088/0264-9381/21/14/009
http://dx.doi.org/10.1016/S0550-3213(02)00075-5

