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Recently, a novel idea about our expanding Universe was proposed by T. Padmanabhan

[arXiv:1206.4916]. He suggested that the expansion of our Universe can be thought of as the emergence

of space as cosmic time progresses. The emergence is governed by the basic relation that the increase rate

of Hubble volume is linearly determined by the difference between the number of degrees of freedom on

the horizon surface and the one in the bulk. In this paper, following this idea, we generalize the basic

relation to derive the Friedmann equations of an (nþ 1)-dimensional Friedmann-Robertson-Walker

universe corresponding to general relativity, Gauss-Bonnet gravity, and Lovelock gravity.
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The tight connections between a gravitational system
and a thermodynamic system, such as the four laws of
black hole thermodynamics [1], motivate research on the
idea that gravity may essentially be an emergent phenome-
non. In Ref. [2], Sakharov proposed the earliest version
of this idea. He suggested that spacetime emerges as a
mean field approximation of some underlying microscopic
degrees of freedom (DOF). In Ref. [3], Jacobson derived
the Einstein equations from the first law of thermodynam-
ics on a local Rindler causal horizon. In Ref. [4], Verlinde
suggested that the gravity may not be a fundamental inter-
action but should be explained as an entropic force caused
by changes of entropy associated with the information on
the holographic screen. Further, with the holographic prin-
ciple and the equipartition law of energy, the Newton’s law
of gravitation was derived. Moreover, a relativistic version
of entropic force is able to give the Einstein equations.
On the other hand, the Newton’s law of gravitation was
also derived by Padmanabhan in Ref. [5], based on the
equipartition law of energy and the relation between the
entropy S and active gravitational mass E, S ¼ E=ð2TÞ,
with T the Rindler temperature. In Ref. [6], by combining
the spirits of holographic and thermodynamic viewpoints,
Li, Miao, and Meng succeeded in deriving all of the
components of Einstein equations on a holographic time-
like screen. See also Refs. [7–10] for examples and
Refs. [11,12] for a review.

However, most of these investigations just treat the
gravitational field as an emergent phenomenon, but leave
the spacetime as a preexisting background geometric mani-
fold. Nevertheless, regarding the spacetime itself as an
emergent structure may be a more complete way to view
the emergence of gravitational phenomenon. However,
there are some conceptual difficulties associated with this
idea. For example, it is very hard to think that the time
used to describe the evolution of dynamical variables is

emergent from some pregeometric variables and the space
around finite gravitational systems is emergent. Very
recently, Padmanabhan proposed that these difficulties
disappear when one considers the emergence of spacetime
in cosmology, since the cosmic time of a geodesic observer
provides a special choice of time variable, to which the
observed cosmic microwave background radiation is
homogeneous and isotropic, and the spatial expansion of
our Universe can be regarded as the consequence of the
emergence of space. So he argued that the cosmic space
can be emergent as cosmic time progresses [13].
First, Padmanabhan noticed that the holographic princi-

ple is obeyed by a pure de Sitter universe with a Hubble
constant H:

Nsur ¼ Nbulk; (1)

whereNsur ¼ 4�H�2=L2
P, with LP the Planck length, is the

number of DOF on the spherical surface of Hubble radius
H�1, and Nbulk ¼ jEj=½ð1=2ÞT� with jEj ¼ j�þ 3pjV, the
Komar energy, is the effective number of DOF contained in
this spherical volume V ¼ 4�H�3=3 at the horizon tem-
perature T ¼ H=2�. Substituting the relation � ¼ �p for
a de Sitter universe into Eq. (1), the standard result
H2 ¼ 8�L2

P�=3 is recovered immediately.
Since condition (1) relates the DOF on the surface to the

effective DOF in the bulk, Padmanabhan called it holo-
graphic equipartition. However, when it deviates from the
de Sitter case, such as our real Universe which is asymp-
totically de Sitter indicated by much astronomical evi-
dence, the emergence of space occurs and the emergence
must relate to the difference �N ¼ Nsur � Nbulk. And fur-
ther, the emergence of space was considered to be equiva-
lent to the expansion of our Universe. So he suggested that
the basic law governing the emergence is simply [13,14]

dV

dt
¼ L2

P�N; (2)

where t is the cosmic time and V ¼ 4�H�3=3 the cosmic
volume. After substituting Nsur ¼ 4�H�2=L2

P and Nbulk ¼
jEj=½ð1=2ÞT�, with jEj the Komar energy jEj ¼ j�þ 3pjV
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and T the horizon temperature T ¼ H=2�, into the relation
(2), one gets the standard dynamical equation for a
Friedmann-Robertson-Walker (FRW) universe in general
relativity,

€a

a
¼ � 4�L2

P

3
ð�þ 3pÞ: (3)

Moreover, making use of the continuity equation _�þ
3Hð�þ pÞ ¼ 0 and integrating Eq. (3), one gets the
Friedmann equation

H2 þ k

a2
¼ 8�L2

P

3
�; (4)

where k is an integral constant and can be related to the
spatial curvature of the FRW universe.

In Ref. [15], Cai generalized the derivation process
to the higher (nþ 1)-dimensional spacetime. By taking
account of the entropy formulas of black holes modified
in Gauss-Bonnet gravity and Lovelock gravity, the number
of DOF on the holographic surface Nsur and the volume
increase were modified, until finally the Friedmann equa-
tions of a higher-dimensional FRW universe in these grav-
ity theories were obtained.

Inspired by the work of Cai [15], we would like to give
another generalization of the work of Padmanabhan [13].
Our generalization is based on the following simple con-
cepts: (a) The number of DOF on the surface of the Hubble
sphere Nsur accounts for the number of bits stored on the
surface, and it is proportional to the area of the surface
regardless of the gravity theories; the bulk DOF in the
Hubble sphere Nbulk obeys the equipartition law of energy.
(b) The emergence of cosmic space generally relates to
both the number of DOF on the holographic surface Nsur

and the difference �N between the surface and bulk (or
equivalently relates to both Nbulk and �N, or both Nsur and
Nbulk). (c) The different ways of the emergence of cosmic
space result in different dynamical equations which can be
related to the different gravity theories and can be verified
by astronomical observations. Thus we prefer to generalize
the basic dynamical equation (2) in an (nþ 1)-dimensional
universe instead of modifying the magnitudes such as Nsur

and so on. Now the general form of a dynamical equation is
proposed as

dV

dt
¼ Ln�1

P fð�N;NsurÞ; (5)

where the function fð�N;NsurÞ determines the evolution of
our Universe. In an (nþ 1)-dimensional universe, the
number of DOF on the holographic surface is given by [15]

Nsur ¼ �A=Ln�1
P ; (6)

where

A ¼ n�n=H
n�1; (7)

with �n the volume of an n sphere of unit radius and
� ¼ ðn� 1Þ=2ðn� 2Þ, and the number of DOF in the
spherical volume

V ¼ �n=H
n (8)

is given by

Nbulk ¼ jEj
T=2

; (9)

where E ¼ ðn�2Þ�þnp
n�2 V is the bulk Komar energy [16] and

T ¼ H=2� the temperature of the Hubble horizon. As in
Refs. [13,15], here we only consider the accelerating phase
with ðn� 2Þ�þ np < 0.
First, we choose the function fð�N;NsurÞ as the most

simplest form [13,15]

fð�NÞ ¼ �N=�: (10)

It means that the emergence of space relates only to the
difference of the number of DOF between the surface and
the bulk. Equation (5) just reduces to the relation (2) for
n ¼ 3. Now, with the above expressions forNsur,Nbulk, and
V, the general relation (5) just gives

€a

a
¼ � 8�Ln�1

p

nðn� 1Þ ½ðn� 2Þ�þ np� (11)

Further, utilizing the (nþ 1)-dimensional continuity
equation _�þ nHð�þ pÞ ¼ 0, one finally arrives at the
standard Friedmann equation of the (nþ 1)-dimensional
FRW universe in general relativity:

H2 þ k

a2
¼ 16�Ln�1

p

nðn� 1Þ �; (12)

where k is an integral constant and relates to the spatial
curvature.
Next, suppose that the emergence of space relies on a

more complicated relation about the number of DOF on the
surfaceNsur and the number of DOF in the bulkNbulk. Here
it is chosen as the form

fð�N;NsurÞ ¼ �N=�þ ~�KðNsur=�Þ1þ 2
1�n

1þ 2~�KðNsur=�Þ 2
1�n

; (13)

where K ¼ ðn�n=L
n�1
P Þ 2

n�1. The coefficient ~� is a parame-
ter with the length dimension 2, and it can be identified
as something we are familiar with from the subsequent
dynamical equation. When ~� ¼ 0, this choice (13) reduces
to the previous one (10). And further, making use of the
expressions of Nsur, Nbulk, and V, after some simple alge-
bra, Eq. (5) gives

ð1þ 2~�H2Þ _H þ ð1þ ~�H2ÞH2

¼ � 8�Ln�1
P

nðn� 1Þ ½ðn� 2Þ�þ np�: (14)

Then, with the (nþ 1)-dimensional continuity equation
and the above equation, we finally get the following dy-
namical equation:

H2 þ ~�H4 ¼ 16�Ln�1
P

nðn� 1Þ �: (15)
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Here the integral constant is set to zero. This dynamical
equation is nothing but the standard Friedmann equation
of the (nþ 1)-dimensional spatial flat FRW universe in
Gauss-Bonnet gravity, and hence, the parameter ~� can just
be regarded as the Gauss-Bonnet coefficient [17].

Further, we suppose the function fð�N;NsurÞ is a more
general form than the Gauss-Bonnet case; i.e.,

fð�N;NsurÞ ¼ �N=�þP
m
i¼2 ~ciKiðNsur=�Þ1þ2i�2

1�n

1þP
m
i¼2 i~ciKiðNsur=�Þ2i�2

1�n

; (16)

where Ki ¼ ðn�n=L
n�1
P Þ2i�2

n�1 , m ¼ ½n=2�, and ~ci are some
coefficients with the length dimension (2i� 2), and espe-
cially ~c1 ¼ 1. If ~ci ¼ 0 for i > 2, then this assumption
recovers the Gauss-Bonnet one. So with the same deriva-
tion process of the former case, one obtains the dynamical
equation

�Xm

i¼1

i~ciH
2i�2

�
_HþXm

i¼1

~ciH
2i ¼� 8�Ln�1

P

nðn� 1Þ ½ðn� 2Þ�þnp�:

(17)

Making use of the (nþ 1)-dimensional continuity equation
again and after integrating, one finally arrives at the equation

Xm

i¼1

~ciH
2i ¼ 16�Ln�1

p

nðn� 1Þ �: (18)

Here the integration constant is also set to zero.
Equation (18) is just the standard Friedmann equation of
the (nþ 1)-dimensional spatial flat FRW universe in
Lovelock gravity and these parameters ~ci could be regarded
as the coefficients in front of Euler densities Li [17].

Here we note that the Friedmann equations (12), (15),
and (18) were also obtained by Cai in Ref. [15], where he
modified the number of DOF on the surface of the Hubble

sphere and introduced the increase of an effective volume
in Gauss-Bonnet gravity and Lovelock gravity. However,
instead of modifying the number of DOF on the surface of
the Hubble sphere and the volume increase, we derive
these equations from the generalized law governing the
emergence of cosmic space (5). Since the evolution of our
Universe, which is described by Friedmann equations, can
be regarded as the emergence of cosmic space, different
functions fð�N;NsurÞ could be interpreted as Friedmann
equations corresponding to different gravity theories. It is
interesting that the simplest emergent way that only asso-
ciates with the difference �N of the numbers of DOF
between surface and bulk corresponds to general relativity.
Here, our method has the same problem as presented in
Ref. [15]; i.e., we also cannot derive the Friedmann equa-
tions of the spatial nonflat FRW universe corresponding to
the Gauss-Bonnet gravity and the Lovelock gravity.
In de Sitter universe, H is a constant; thus, dV=dt ¼ 0

and fð�N;NsurÞ ¼ 0. Then from the functions fð�N;NsurÞ
given in Eqs. (10), (13), and (16), it is clear that the
difference �N is generally nonvanishing. For example,

�N ¼ ��~�KðNsur=�Þ1þ 2
1�n for Gauss-Bonnet gravity.

Thus the holographic equipartition �N ¼ 0 (which is
equivalent to jEj ¼ 1

2NsurT for general relativity) should

be correspondingly generalized to fð�N;NsurÞ ¼ 0. For
the case of Gauss-Bonnet gravity, the standard equiparti-
tion law jEj ¼ 1

2NsurT should be correspondingly general-

ized to jEj ¼ 1
2NsurT½1þ ~�KðNsur=�Þ 2

1�n�.
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