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Einstein-Gauss-Bonnet gravity provides a natural higher dimensional and higher order curvature

generalization of Einstein gravity. It contains a new, presumably microscopic, length scale that should

affect short distance properties of the dynamics, such as Choptuik scaling. We present the results of a

numerical analysis in generalized flat slice coordinates of self-gravitating massless scalar spherical

collapse in five and six dimensional Einstein-Gauss-Bonnet gravity near the threshold of black hole

formation. Remarkably, the behavior is universal (i.e., independent of initial data) but qualitatively

different in five and six dimensions. In five dimensions there is a minimum horizon radius, suggestive

of a first order transition between black hole and dispersive initial data. In six dimensions no radius

gap is evident. Instead, below the Gauss-Bonnet scale there is a change in the critical exponent and

echoing period.

DOI: 10.1103/PhysRevD.86.104011 PACS numbers: 04.70.Bw, 04.50.�h

I. INTRODUCTION

Recent interest in string theory has popularized the
study of higher dimensional and higher curvature gravity.
The Einstein action has many desirable properties: it is
second order in derivatives of the metric, ghost free when
linearized about a flat background and obeys a Birkhoff
theorem that yields a one parameter family of spherically
symmetric black hole solutions. In four dimensions the
Ricci scalar is the only curvature invariant with these
properties but in dimensions greater than four it is possible
to add higher order curvature terms in the form of so-called
Lovelock polynomials [1–3]. These terms contribute to the
equations of motion while retaining no more than second
derivatives of the metric. Moreover, they have been proven
to be ghost free [4] and obey a generalized Birkhoff
theorem [5,6].

The Lovelock action, I, written in terms of the Lovelock
polynomials, LðpÞ, is given by

I ¼ 1

2�2
n

Z
dnx

ffiffiffiffiffiffiffi�g
p X½n=2�

p¼0

�ðpÞLðpÞ; (1.1)

LðpÞ ¼ p!

2p
�
�1...�p�1...�p
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R�1�1

�1�1 . . .R�p�p

�p�p ; (1.2)

where �n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�Gn

p
, Gn is Newton’s gravitational

constant, g is the determinant of the metric, n is the
number of spacetime dimensions, ½n=2� refers to the

largest integer less than n=2, �
�1...�p
�1...�p

:¼ �
�1

½p1
. . .�

�p

pp� and
R���� is the Riemann curvature tensor. �ðpÞ are coupling

constants of dimension ðlengthÞ2ðp�1Þ. The first two terms,
Lð0Þ and Lð1Þ, correspond to the cosmological constant

and Einstein-Hilbert term, respectively, while Lð2Þ is the

Gauss-Bonnet (GB) term. It has been argued [7] that the
GB term appears in the low-energy limit for strings prop-
agating in curved spacetime. Here we focus on the sim-
plest nontrivial theory, namely Einstein-Gauss-Bonnet
(EGB) gravity, containing only the Einstein term and
p ¼ 2 GB term.1

It has been known for quite some time that the spheri-
cally symmetric collapse of a massless scalar field mini-
mally coupled to general relativity (GR) exhibits critical
behavior [8]. Specifically, numerical studies of black hole
formation indicate that for any parameter in the initial data,
A say, there exists a corresponding critical value A� such
that for A> A� a black hole forms while for A < A� the
matter disperses to infinity. Black holes with A just slightly
bigger than A� are known as near critical black holes. Near
criticality all geometrical quantities describing the black
hole, such as its mass, obey a scaling relation of the form

lnðMBHÞ ¼ 	 lnðA� A�Þ þ fðA� A�Þ; (1.3)

where f is a periodic function of its argument. The critical
exponent 	 and the period T of f are universal2 in the

1The addition of a cosmological constant should not affect the
short distance behavior that is the subject of our paper.

2	 depends only on the scaling dimension of the quantity
considered. For example in 4D M scales as length so the radius
and mass of the black hole have the same critical exponent.
Curvature, on the other hand, scales as ðlengthÞ2, so its critical
exponent is double that of mass.
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sense that they are independent of the form of the
initial data or the specifics of the parameter A that is varied.
This universality and the vanishing of MBH at criticality
[cf. Eq. (1.3)] suggest a second order phase transition be-
tween the black hole and dispersive end states of the collapse.
This fascinating behavior was ultimately explained using
renormalization group arguments in the context of radiation
fluids [9]. For spherical massless scalar field collapse, the
critical exponent and echoing period were obtained by
Gundlach [10] from the properties of a critical, discretely
self-similar zero mass black hole solution that behaves like
an intermediate attractor in the space of solutions.

The critical exponent 	 and period T do depend on the
number of dimensions and the type of matter. In addition,
the form of f can depend on the spacetime slicing and the
particular quantity that is being measured. For example, in
Schwarzschild and null coordinates the radius of the hori-
zon on formation yields an f that is well fit to a small
amplitude sine wave. By comparison, in flat slice or
Painlevé-Gullstrand (PG) coordinates the periodic function
that describes the scaling of the apparent horizon on for-
mation exhibits large amplitude cusps [11,12]. The differ-
ence can be understood by noting that in the former case
one is measuring a quantity very close to the radius of the
final event horizon, whereas in PG coordinates the apparent
horizon is detected much earlier. The large amplitude cusps
are likely due to that fact that near criticality in PG coor-
dinates the apparent horizon forms at small radius and
hence in the strong field region where such large fluctua-
tions are expected.3 On the other hand the scaling relation
for the maximum value of the Ricci scalar at the origin for
subcritical evolution is invariant and exhibits slicing inde-
pendent small oscillations.

The presence of a dimensionful constant in the action in
general changes the above scenario, as verified for Yang-
Mills collapse [13], massive scalar field collapse [14] and
massive gauge field collapse [15]. In massive scalar field
collapse, for initial data whose width is smaller than the
Compton wavelength of the scalar field, the usual second
order phase transition is found, whereas in the other limit
the phase transition exhibits a mass gap and is first order. It
is clearly of interest to study the effects on Choptuik
scaling of the Gauss-Bonnet parameter and higher order
Lovelock coupling constants. Golod and Piran [16] re-
cently presented such an analysis for the spherical collapse
of massless scalar matter coupled to EGB gravity in five
dimensions using double null coordinates. They found,
as expected, that the Gauss-Bonnet term dominates the
dynamics at short distances and destroys the discrete
self-similarity characteristic of Choptuik scaling. Their
work concentrated on the regime where the GB terms
strongly dominated the dynamics.

The purpose of the present work is to investigate further
the critical collapse of a spherically symmetric, massless
scalar field minimally coupled to five and six dimensional
EGB gravity. We work in flat slice or generalized PG coor-
dinates since they have several advantages over double null
coordinates in the present context: They are regular at ap-
parent horizons so that the simulations can run up to (and
even past) horizon formation. Hence one can calculate the
time and position of horizon formation without having to
stop the code at some arbitrary distance before horizon
formation as would be necessary in Schwarzschild and null
coordinates. More importantly, the cusplike nature of the
horizon scaling function in PG coordinates has the advantage
of making the potential appearance of the periodicity in an
equation such as (1.3) more obvious. It should be pointed out
that one disadvantage of using PG coordinates is the lack of
automatic spatial mesh refinement which occurs near hori-
zon formation in null coordinates. As we will explain in the
next section, the nature of the dynamical equations suggest
that qualitative differences can occur in different numbers of
spacetime dimensions. It is for this reason that we investigate
both five and six spacetime dimensions.
We confirm some of the results in five dimensions [16],

extend the analysis to six dimensions and obtain some
surprising new results in both five and six dimensions.
For all initial data and choice of parameter A that we
examined there exists a critical value A� that separates
black hole formation from dispersion. As expected, when
the horizon forms far from the singularity the GR term
dominates and the standard Choptuik critical scaling rela-
tion is found. Things change as one gets close enough to
criticality to enter the region in which the GB terms
dominate the dynamics. Near criticality the scalar field at
the origin oscillates with a constant period T that converges
as ðA� A�Þ ! 0 to a value that depends on the GB pa-
rameter as previously shown [16]. We find a different
relationship between T and the GB parameter than in
Ref. [16], albeit for smaller values of the GB parameter.
In addition, we explore in detail the scaling in the GB

dominated region. We find qualitatively different behavior
in five and six dimensions. In five dimensions there is
evidence for a radius gap: in the supercritical region the
radius of the apparent horizon on formation asymptotes to
a constant value as criticality is approached from above.
The maximum value of the Ricci scalar at the origin also
appears to approach a constant value as criticality is ap-
proached from below.
In six dimensions, the behavior is qualitatively dif-

ferent. In the GB region the radius of the apparent horizon
formation obeys a relationship similar to (1.3) but with
different exponent and period. The maximum Ricci scalar
also exhibits this same scaling relation with another scaling
exponent, and small, but irregular oscillations.
The rest of this work is organized as follows. In Sec. II,

we describe the equations of motion which we derived

3We are grateful to Patrick Brady for suggesting this
explanation.
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using Hamiltonian formalism [17]. In Sec. III, we discuss
the numerical implementation of the solution and describe
the general methods used to obtain results. In Sec. IV, we
give our results and we conclude in Sec. V.

II. EQUATIONS OF MOTION

As stated above, we start with the action for a massless
scalar field c minimally coupled to the EGB action:

I¼ 1

2�2
n

Z
dnx

ffiffiffiffiffiffiffi�g
p ðRþ�ð2Þ½R2�4R��R��

þR����R�����þ�2
nðrc Þ2Þ: (2.1)

We use the Arnowitt-Deser-Misner metric parametrization:

ds2 ¼ �N2ðx; tÞdt2 þ�2ðx; tÞðdxþ Nrðx; tÞdtÞ2
þ R2ðx; tÞd�2; (2.2)

where R is the areal radius. It is also useful to define the
Misner-Sharp mass function [18], suitably generalized to
EGB [19]:

M :¼ 1

2kG
½Rn�3ð1� ðDRÞ2Þ þ ~�ð2ÞRn�5ð1� ðDRÞ2Þ2�;

(2.3)

where the n dimensional gravitational constant,G, is defined
as 2kG ¼ 2�2

n=ðn� 2ÞAn�2 [11], An�2 is the surface area
of an n�2 dimensional sphere, k ¼ 8ðn� 3Þ=ðn� 2Þ2, D
is the two dimensional covariant derivative and ~�ð2Þ :¼
ððn� 3Þ!=ðn� 5Þ!Þ�ð2Þ. In the following we work in units

in which 2G ¼ 1. We work in flat slice coordinates x ¼ R
and � ¼ 1 in which the equations of motion for the scalar
field and its conjugate momentum are [17]

_c ¼ N

�
�c

Rn�2
þ

�
Nr

N

�
c 0

�
(2.4)

and

_�c ¼
�
NðRn�2c 0 þ

�
Nr

N

�
�c

��0
; (2.5)

where dots and primes represent differentiation with respect
to t and R respectively. Preservation of the gauge condition
R ¼ x in time determines the shift algebraically in terms of
the lapse, the areal radius and the mass function:

M :¼ 1

2kG

�
Rn�3

�
Nr

N

�
2 þ ~�ð2ÞRn�5

�
Nr

N

�
4
�
: (2.6)

This can be solved algebraically and yields, for EGB gravity,

Nr

N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

~�

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2~�

R2

2kGM
Rn�3

s
� 1

1
A

vuuut ; (2.7)

where we have defined ~� :¼ 2ðn� 4Þðn� 3Þ�ð2Þ for pur-
poses which will become obvious later. The sign of the inner

square root in the above has been chosen to give the correct
GR limit as ~� ! 0.

The consistency condition _� ¼ 0 determines the
lapse via

N0 ¼ � kGN�c c
0

Rn�3

���
Nr

N

��
1þ ~�

R2

�
Nr

N

�
2
��
; (2.8)

while the Hamiltonian constraint then takes the form

M 0 ¼ 1

2

��2
c

Rn�2
þ Rn�2c 02

�
þ

�
Nr

N

�
�c c

0: (2.9)

Using (2.7) to replace Nr=N by M in (2.9) provides a
differential equation that can be solved for M and hence
Nr=N in terms of the scalar field and its conjugate mo-
menta on each spatial slice.
Given the solution for M, one can look for apparent

horizons by solving (2.3) for ðDRÞ2 ¼ 0. In our coordi-
nates, this becomes simply

AH :¼ 1�
�
Nr

N

�
2 ¼ 0; (2.10)

where for ease of reference we refer to AH as the
horizon function. For EGB, one can also use (2.6) and
the above to obtain

M ðRAHÞ ¼ 1

4kG
ð~�Rn�5

AH þ 2Rn�3
AH Þ: (2.11)

Note that in 5D the first term is constant so that there is an
algebraic lower bound on the black hole mass as the radius
of the horizon goes to zero.
Our goal is to solve the time evolution equations (2.4)

and (2.5) for the scalar field and its conjugate momentum,
withN and Nr=N on each time slice determined using (2.7),
(2.8), and (2.9) and then use (2.11) to look for the formation
of an apparent horizon.
The actual time evolution equation as implemented in

the code was obtained by expanding the derivative in (2.5)
and replacing the derivatives ofM0 andN0 using Eqs. (2.7)
and (2.9). This gives

_�c ¼ N

��
Gk

� �3
c

2R2n�5
� c 02�cR

2

���
Nr

N

�

þ�ðn� 3Þ�c

2R

�
Nr

N

�

� ~�ðn� 5Þ�c

4R3

�
Nr

N

�
3
���

1þ ~�

R2

�
Nr

N

�
2
�

þ ðn� 2ÞRn�3c 0 þ Rn�2c 00 þ�0
c

�
Nr

N

��
: (2.12)

Note that in five spacetime dimensions the last term
proportional to 1=R3 in the square brackets above
vanishes. One might therefore expect behavior for n > 5
that is qualitatively different from n ¼ 5. It is for this
reason that it is important to study higher dimensions.
In the present paper we restrict consideration to five and
six dimensions.
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III. NUMERICS AND METHODS

The system is evolved using Cþþ code as follows:
(1) Initialize the spatial lattice. We set the lattice

spacing to 10�5 (unless otherwise stated) for the first
100 points near the origin and then slowly increase it
to 10�2 at the 1200th and final lattice point.

(2) Set up initial conditions. We initialized �c to zero

and c to be either a Gaussian c G or hyperbolic
tangent c H as follows:

c G ¼ AR2 exp

�
�
�
R� R0

B

�
2
�
;

c H ¼ A tanh

�
R� R0

B

�
;

(3.1)

where A, B and R0 are parameters.
(3) At R ¼ 0 set N ¼ 1, M ¼ 0 and use a subroutine

to calculate Nr=N using Eq. (2.7). Integrate N and
M forward in R using Eqs. (2.7), (2.8), and (2.9).
This is done using a fourth order Runge-Kutta
method. Spatial derivatives are calculated using a
central difference routine except at the boundaries
where forward and backward differences are used.

(4) Integrate c and �c forward in time using

Eqs. (2.4), (2.5), and (2.7) employing a fourth order
Runge-Kutta method. Stability is maintained by
insisting that the size of the time step, �tðtÞ, is
determined by

�tðtÞ<min
R

��
dR

dt

��1
�RðRÞ

�
; (3.2)

where �RðRÞ is the lattice spacing and dR
dt is the

maximum value of either the ingoing or outgoing
local speed of light.

(5) Monitor the apparent horizon function, AH :¼
ðDRÞ2¼1�ðNr

N Þ2. At any point where AH ¼ 0, there

is an apparent horizon. When AH forms a minimum

it signals that an apparent horizon is soon to form, so
the time steps are diminished by a factor of 10.

(6) Calculate the Ricci scalar and the mass density.
(7) Repeat steps 3–6 until the formation of an apparent

horizon or until the field has dispersed.
For comparison purposes it was important that the

code could simulate collapse without the GB term, i.e., in
the GR case. It is not possible to take this limit when
numerically calculating Nr=N using Eq. (2.7) so an if state-
ment was added to the routine which calculates Nr=N in

order to return Nr=N¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kGM=Rn�3

p
when ~�¼0.

When ~� is not zero a problem arises in the calculation
of Nr=N when 4~�kGM=Rn�1 is sufficiently less than
one. When this term is added to unity in the inner square
root in (2.7), digits are lost and thus double precision
cannot be claimed. For this reason a 16th order Taylor
expansion of the inner square root in Eq. (2.7) was
used in the case that 2~�2kGM=Rn�1<0:1. Quadruple
precision allowed for the investigation of overflow and
underflow, as well as subtraction and addition round-
off errors.
The code was capable of parallel processing, and many

simulations were run on eight or more processors using
the WestGrid and SHARCNET computing clusters. When
generating data for mass and Ricci scaling plots the
speed-up was linear with the number of processors used,
whereas for the binary search used to find critical values
the speed-up was logarithmic.
The critical value of a parameter in the initial condi-

tions is defined as the value of that parameter for which
a black hole just barely forms. We first performed a
binary search to find the critical value of A in Eq. (3.1).
c ðt; R ¼ 0Þ and M were then checked at late times to
confirm that they blew up for A slightly bigger than A�
and remained finite for A slightly smaller than A�. We
were able to get consistent results to 12 significant fig-
ures. The A� values for different values of ~� can be seen
in Fig. 1. Interestingly the points are very well fit to

FIG. 1 (color online). A� as a function of ~�. (a) 5D. (b) 6D.
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straight lines. The above procedure, of course, also gives
B� and R�

0, which could also be varied. Using our values

for A� we calculated the wave function at the origin as a
function of PG time and used these plots to find the
period of oscillation near criticality, as a function of
the ~�.

We simulated matter bounce and dispersal for 280 simu-
lations (the number 280 was chosen to optimize graph
resolution and computing time) with A< A� and recorded
the maximum value of the Ricci scalarR at R ¼ 0 for each
simulation. Plotting Rmax as a function of A� � A with a
log-log scale gives the Ricci scaling plot. Similarly we
simulated collapse for 280 simulations with A > A� and
recorded the radius of the initial apparent horizon, RAH.
This procedure was repeated in five and six dimensions
checking for scaling with both the A and B parameters in
both the Gaussian and tanh initial data of Eq. (3.1) to check
for universality. Using Gaussian initial data radius and
Ricci scaling, plots were created for ~� ¼ 10�8, 10�7,
5� 10�7, 10�6 as well as the GR case ~� ¼ 0 to investigate

the effects of the GB terms on the critical exponent, period
and the existence of mass gap.

IV. RESULTS

A. Scalar field oscillations

In general relativity the discrete self-similarity of the
critical solution results in oscillations of the scalar field at
the origin with ever decreasing period. The presence of
the dimensionful Gauss-Bonnet parameter breaks the
scale invariance and the discrete self-similarity [16]. As
shown in Figs. 2(b) and 3(b), the scalar field oscillations
at the origin near criticality approach a constant period
that depends on the value of the GB parameter. Since it
was difficult to get close enough to criticality to guarantee
that the period had converged, we plotted the values as a
function of logðdAÞ, where dA � jA� A�j. As seen in
Figs. 2(c) and 3(c) the convergence was exponential and
we used a best fit to determine the value of the period
T and its corresponding error for each value of ~�. The

FIG. 2 (color online). Scalar field oscillations. (a) 5D, c ð0; tÞ near criticality, GR. (b) 5D, c ð0; tÞ near criticality, ~� ¼ 10�6. (c) 5D,
Period of c ð0; tÞ near criticality, ~� ¼ 10�7, showing convergence. (d) Period of c ð0; tÞ in 5Dnear criticality as a function ofGBparameter.
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results are shown for five and six dimensions in Figs. 2(d)
and 3(d). Our results are qualitatively similar to those in
Ref. [16], namely

TðnÞ / ~�

ðnÞ: (4.1)

Our exponents in five and six dimensions are


ð5Þ ¼ 0:34� 0:05; (4.2)


ð6Þ ¼ 0:24� 0:08: (4.3)

These both differ from the value of approximately 1=2
obtained in 5D by Golod and Piran [16], who argued that

 is one divided by the scaling dimension of the GB
coupling coefficient. Intriguingly our results suggest a
relationship of


ðnÞ ¼ 1=ðn� 2Þ: (4.4)

Note that the 6D plots show oscillations at late times
which are likely due to the buildup of numerical error.

We note also that the range of ~� that we considered
was between 5�10�8 and 10�6, which is outside the range
4�10�6 to 4�10�4 considered by Ref. [16], which may
explain the discrepancy. We were restricted to smaller
values of the GB parameter because our PG coordinate
code did not allow us to get close enough to criticality for
large values of ~� in order to reliably measure the period of
the scalar field.

B. Critical exponents

In GR there exist universal scaling relations whose
properties are determined in part by the critical solution.
We now present two different sets of scaling plots in
the GB case. The first is the value of the logarithm of the
apparent horizon radius RAH on formation as a function of
logðdAÞ as the critical parameter is approached from above
(i.e., supercritical). The second is the log of the maximum
value of the Ricci scalar at the origin as a function of
logðdAÞ. We find as expected that if we are far enough

FIG. 3 (color online). Scalar field oscillations. (a) 6D, c ð0; tÞ near criticality, GR. (b) 6D, c ð0; tÞ near criticality, ~� ¼ 10�6.
(c) 6D, Period of c ð0; tÞ near criticality, ~� ¼ 10�7, showing convergence. (d) Period of c ð0; tÞ in 6D near criticality as a function of
GB parameter.
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FIG. 4 (color online). Universality in 5D and 6D. (a) 5D, ~� ¼ 5� 10�7, amplitude and width separately. (b) 5D, ~� ¼ 5� 10�7,
amplitude and width shifted to lie on top of each other. (c) 5D, ~� ¼ 5� 10�7, Radius plots superimposed. (d) 5D, ~� ¼ 5� 10�7,
Ricci plots superimposed. (e) 6D, ~� ¼ 10�5, Radius plots superimposed. (f) 6D, ~� ¼ 10�5, Ricci plots superimposed.
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FIG. 5 (color online). Radius scaling plots (5D). The lines represent the best-fit tangents to the curves in their respective regimes.
(a) GR, slope ¼ 0:413. (b) ~� ¼ 10�8. (c) ~� ¼ 10�7. (d) ~� ¼ 5� 10�7. (e) ~� ¼ 10�6.
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FIG. 6 (color online). Ricci scaling plots (5D). The lines represent the best-fit mean slopes of the curves in their respective regimes.
(a) GR, slope ¼ 0:826. (b) ~� ¼ 10�8. (c) ~� ¼ 10�7. (d) ~� ¼ 5� 10�7. (e) ~� ¼ 10�6.
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FIG. 7 (color online). Radius scaling plots (6D). The lines represent the best-fit tangents to the curves in their respective regimes.
(a) GR, slope ¼ 0:43. (b) ~� ¼ 10�7. (c) ~� ¼ 5� 10�7. (d) ~� ¼ 10�6. (e) ~� ¼ 10�5. (f) ~� ¼ 10�4.
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FIG. 8 (color online). Ricci scaling plots (6D). The lines represent the best-fit mean slopes of the curves in their respective regimes.
(a) GR, slope ¼ 0:43. (b) ~� ¼ 10�7. (c) ~� ¼ 5� 10�7. (d) ~� ¼ 10�6. (e) ~� ¼ 10�5. (f) ~� ¼ 10�4.
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from criticality that the curvatures stay small and the
apparent horizon radius is large compared to the GB scale,
we reproduce approximately the GR results: the curves are
universal, with slope approximately equal to the GR criti-
cal exponent. The Ricci plots in this region are approxi-
mately straight lines with a small oscillation superimposed,
whereas the radius plots show the large amplitude cusps
observed in Refs. [12,20].

As the critical parameter is approached and we enter
into the GB region things change, as can be seen in our
scaling results illustrated in Figs. 4–8. In the case of the
Ricci plots (Figs. 6 and 8), the GB region occurs when
R~�> 1, whereas for the radius plots (Figs. 5 and 7) it

can be defined by the simpler relation RAH <
ffiffiffiffi
~�

p
. The

boundary between the two regions is indicated in all the
scaling plots by a horizontal dashed line.

The radius plots Figs. 5 and 7 continue to exhibit cusps,
but with a decreased period and slope. The Ricci plots are
also similar in the GB region to the GR region in that they
are approximately straight lines with oscillations super-
imposed. However, the slope changes quite suddenly
when the transition from GR to GB is made. The first
important point is that the scaling plots are universal
even in the GB region. This is illustrated for both 5D and
6D in Fig. 4. There are qualitative differences in the scaling
plots between 5D and 6D so we will now discuss the two
cases separately.

In the case of 5D there is evidence that the slope of
the radius plot decreases continuously until a minimum
radius is reached, i.e., that there is a radius gap. This is
most evident in Fig. 6(d) but also appears to be the case in
6(e). In the remaining 5D figures the numerics did not
allow us to probe deeply enough into the GB region to
fully observe this.

A radius gap is not unexpected given the presence of the
dimensionful GB parameter. Note that we focus on a radius
gap instead of a mass gap because in 5D the former is
trivial in light of (2.11).

The Ricci plots, initially approximately straight,
change slope quite suddenly as one moves from the GR to
the GB region, and then remain constant over a small range
of logðdAÞ. The slopes are given in Table I. As criticality is
approached the slope of the Ricci plot gradually decreases,
suggesting that there is a maximum value to the Ricci scalar
at the origin. This differs from GR, in which the critical
solution is singular and the Ricci scalar at the origin in-
creases indefinitely as criticality is approached. We empha-
size again that these features are universal.

As shown in Figs. 7 and 8, things are different in 6D.
There is no evidence of a radius gap in the radius scaling
plots, and the slope of the Ricci plots remains constant until
we reach the limits of numerical accuracy. Thus it appears
that there is a transition to a new set of scaling exponents,
which are plotted in Table II. Note that numerical uncer-
tainties make the first and last entries in each column

unreliable. The exponents are different for Ricci and radius
scaling, but the absolute values of both appear to increase
with decreasing ~�. Moreover a log-log plot of the three
reliable radius vs Ricci exponents (Fig. 9) reveals that they
are related by

	ðRicciÞ � �ð2:24� 0:04Þ � 	0:28�0:02
ðRadiusÞ : (4.5)

This is to be compared to the GR case in which the
relation is determined purely by the dimension of the two
quantities:

	ðRicciÞ ¼ �2	ðRadiusÞ: (4.6)

Finally, we note that in both 5 and 6D the critical value
A� seems to vary linearly with the GB parameter. This is
illustrated in Fig. 1.

TABLE I. 5D Ricci scaling exponents in GB region.

~� 5D Ricci scaling

10�6 �1:426� 0:074
5� 10�7 �1:573� 0:076
10�7 �1:577� 0:028
10�8 �3:397� 0:049

TABLE II. 6D Ricci and AH radius scaling exponents in GB
region.

~� 6D Ricci scaling 6D radius scaling

10�4 �1:488� 0:128 0:257� 0:002
10�5 �1:433� 0:016 0:207� 0:002
10�6 �1:619� 0:021 0:313� 0:002
5� 10�7 �1:814� 0:016 0:476� 0:002
10�7 �2:029� 0:027 0:417� 0:002

FIG. 9 (color online). Plot of radius exponents vs Ricci (6D).

DEPPE et al. PHYSICAL REVIEW D 86, 104011 (2012)

104011-12



V. CONCLUSION

We studied the effects of the GB term on the dynamics of
the collapse of a massless scalar field minimally coupled to
gravity in five and six spacetime dimensions. The GB term
destroys the self-similar behavior, as demonstrated by the
fact that near criticality the scalar field at the origin oscil-
lates with a constant period. The period in five dimensions
is proportional to roughly the cube root of the GB parame-
ter and as the fourth root in six dimensions. While the 5D
results differ from those in Ref. [16] it must be emphasized
that we have explored a different range of the GB parame-
ter, and this may account for the difference. We are cur-
rently investigating modifications to our code in order to
extend the range of the GB parameter to overlap that of
Ref. [16] so that a direct comparison can be made.

We also showed the existence of modified, but still
universal, horizon and Ricci scaling plots near criticality.
We found evidence for the existence of a radius gap in five
dimensions but not in six dimensions. This qualitative
difference is not completely unexpected. As mentioned
below Eq. (2.12), the time evolution equation in five di-
mensions is special, containing one less term than in the

higher dimensional cases. It may also be useful to note that
qualitative differences exist between five and six dimen-
sions with regard to the stability of black holes under
gravitational perturbations [21,22]. Small five dimensional
GB black holes are unstable with respect to scalar gravita-
tional perturbations, whereas in six dimensions it is the
tensor mode that yields an instability.
It is clearly of interest to confirm our results with further

simulations and to try to understand analytically the source
of the new scaling behavior.
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