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We consider the quantization of scalar fields in spacetimes such that, by means of a suitable scaling of

the field by a time dependent function, the field equation can be regarded as that of a field with a time

dependent mass propagating in an auxiliary ultrastatic static background. For Klein-Gordon fields, it is

well known that there exist an infinite number of nonequivalent Fock representations of the canonical

commutation relations and, therefore, of inequivalent quantum theories. A context in which this kind of

ambiguities arises and prevents the derivation of robust results is, e.g., in the quantum analysis of

cosmological perturbations. In these situations, typically, a suitable scaling of the field by a time

dependent function leads to a description in an auxiliary static background, though the nonstationarity

still shows up in a time dependent mass. For such a field description, and assuming the compactness of the

spatial sections, we recently proved in three or less spatial dimensions that the criteria of a natural

implementation of the spatial symmetries and of a unitary time evolution are able to select a unique class

of unitarily equivalent vacua, and hence of Fock representations. In this work, we succeed to extend our

uniqueness result to the consideration of all possible field descriptions that can be reached by a time

dependent canonical transformation which, in particular, involves a scaling of the field by a function of

time. These kinds of canonical transformations modify the dynamics of the system and introduce a further

ambiguity in its quantum description, exceeding the choice of a Fock representation. Remarkably, for any

compact spatial manifold in less than four dimensions, we show that our criteria eliminate any possible

nontrivial scaling of the field other than that leading to the description in an auxiliary static background.

Besides, we show that either no time dependent redefinition of the field momentum is allowed or, if this

may happen—something which is typically the case only for one-dimensional spatial manifolds—the

redefinition does not introduce any Fock representation that cannot be obtained by a unitary

transformation.
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I. INTRODUCTION

It is well known that the relation between classical and
quantum systems is not a one to one correspondence. In
fact, the construction of a quantum theory that corresponds
to a given classical system is generally plagued with ambi-
guities. Usually, one first selects a specific set of variables
which provides an (over-)complete set of coordinates on
phase space, assumed to be a symplectic manifold, and
requires this set to be closed under Poisson brackets. In
short, one considers then a suitable Poisson algebra of
phase space functions, able to distinguish points, and looks

for a representation of it as an algebra of linear operators on
a Hilbert space [1]. Even ignoring all the freedom existing
in the choices that lead to a particular algebra of functions,
so that one admits the identification of classical systems
directly with these algebras, their representation as an
algebra of operators introduces ambiguities which affect
the physics derived with the resulting quantum theory.
In the simplest cases studied in quantum mechanics, where
the classical system has a finite number of degrees of
freedom and the phase space possesses a linear structure,
the ambiguities are surpassed in the following way. First,
one passes to the exponentiated version of (i times) the
natural position and momentum variables, so that one
concentrates the analysis just on bounded functions, and
arrives to the so-called Weyl algebra as the characteristic
algebra of the system. Next, one restricts all discussions
exclusively to strongly continuous, unitary, and irreducible
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representations of this algebra. The Stone-von Neumann
theorem [2] guarantees then that the allowed representa-
tions are all unitarily equivalent, so that the quantum
physics is uniquely determined.

It is worth emphasizing that the uniqueness of the repre-
sentation is achieved only when one imposes certain crite-
ria, assumed for the validity of the Stone-von Neumman
theorem. In particular, if one renounces to the requirement
of strong continuity, one can obtain representations which
are not unitarily equivalent to the standard one. For in-
stance, this is the situation that is found in the polymer
representation [3,4] adopted in loop quantum cosmology
[5,6], namely, the quantization of simple cosmological
spacetimes following the methods put forward in loop
quantum gravity [7].

The picture gets more complicated when one analyzes
systems which possess an infinite number of degrees of
freedom. This is so even for the simplest fieldlike systems,
with a phase space described by a field and its momentum,
and a dynamics determined by linear field equations. If
one considers the associated canonical commutation rela-
tions (CCR’s), or more precisely the field analogue of the
Weyl algebra, one finds that there exist infinitely many
possibilities of representing them which are not related by
unitary transformations. This infinite ambiguity still arises
if one restricts all considerations to Fock representations
[8], where one describes the field in terms of creation and
annihilation operators. Different representations can be
interpreted as corresponding to different choices of vac-
uum, which in turn implies a different identification of the
creation and annihilation parts. These alternatives can also
be viewed as distinct choices of a basis of solutions for the
dynamical equations, with a different characterization of
the field in terms of the coefficients of the expansion in that
basis. Hence, the possible choices of (suitable ortho-
normalized) bases are related among them by means of
linear canonical transformations, often called Bogoliubov
transformations, which change the sets of creation and
annihilationlike variables. The essential difference with
respect to quantum mechanics is that such linear canonical
transformations cannot always be implemented as unitary
transformations in the quantum theory. As a consequence,
unless one includes additional criteria [8–11] to select a
vacuum state (or rather a unitarily equivalent class of
them), one has to deal with an infinite number of non-
equivalent Fock quantizations, each leading to different
physical predictions.

Furthermore, in nonstationary scenarios, like those aris-
ing in cosmology, there exists an additional ambiguity
which is previous to the selection of a Fock representation,
and which is related to the choice of a canonical pair to
describe the field when one allows that part of its evolution
be assigned to the time dependent spacetime in which the
propagation takes place. In fact, in nonstationary settings,
it is customary to scale the field configurations by time

varying functions. This is so irrespective of whether the
spacetime in which the propagation occurs is a true
physical background [12], an effective spacetime (e.g., a
quantum corrected background in effective loop quantum
cosmology [6,13,14]), or an auxiliary spacetime (like for
dimensional reductions of systems with two commuting
spacelike Killing vectors, as in Gowdy models [15–17]).
A scaling of this type is found, for instance, in the study
of Klein-Gordon (KG) fields in Friedmann-Robertson-
Walker (FRW) spacetimes, in the treatment of scalar per-
turbations around FRW spacetime—like in the analysis of
Mukhanov-Sasaki variables [18]—or in the consideration
of Bardeen potentials [19]. As we will comment in more
detail below, in such cases the field is typically changed by
a function of the scale factor of the geometry, but the
specific functional dependence depends on the problem
under consideration. This scaling of the field configura-
tions can always be completed into a linear and time
dependent canonical transformation, which leads to a
new canonical pair of field variables. Since the transfor-
mation varies in time, the new pair has a different (but still
linear) dynamics. Hence, the freedom to perform a trans-
formation of this type introduces a fundamental ambiguity
in the description of the linear system and of its properties
under quantum evolution. It is mainly on this kind of
ambiguity that we will concentrate our discussion in this
work, proposing criteria that remove it in situations of
interest in cosmology and, besides, determine a unique
representation of the CCR’s for the corresponding privi-
leged scaling.
Let us recall that, given a linear field phase space, the

relevant information on the choice of creation and annihi-
lationlike variables is encoded in a basic structure called
the complex structure [8,20]. A complex structure J is a
real, linear map on the phase space which preserves the
symplectic form, �, and whose square is minus the iden-
tity. In addition, it is required that the composition of the
complex structure (acting in one of the entries of�) and the
symplectic form provides a positive definite bilinear map
on phase space. Every such complex structure defines a
vacuum state which subsequently determines a Fock rep-
resentation of the CCR’s [8] (or, strictly speaking, of the
corresponding Weyl relations).
A result due to Shale [21,22] tells us that, if we have a

Fock representation of the CCR’s determined by a complex
structure J, a linear canonical transformation T admits a
unitary implementation in that representation if and only if
the antilinear part of T, namely ðT þ JTJÞ=2, is a Hilbert-
Schmidt operator.1 Obviously, in infinite dimensions this
requirement is not satisfied by all conceivable canonical
transformations, so that not all of them lead to unitarily
related quantum theories. It is worth commenting that the

1An operator T on a Hilbert space is called Hilbert-Schmidt if
the trace of T�T is finite, where T� is the adjoint operator.
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Hilbert-Schmidt requirement can be reinterpreted as the
condition that the analyzed transformation maps the
vacuum to a new state with a finite particle content
(to the extent that a particle concept can be employed in
the scenario under discussion).

In practical situations, as we have mentioned, one looks
for reasonable criteria which can remove the ambiguity
in the representation and select a preferred vacuum, or
equivalence class of vacua. For instance, one can require
a natural quantum implementation of the classical symme-
tries of the system [8]. However, in general cases, and in
particular in generic nonstationary settings, one simply has
not sufficient symmetry to pick out a unique Fock repre-
sentation. This is particularly important in cosmology.
When considering fields that propagate in cosmological
backgrounds, which are nonstationary, the lack of unique-
ness criteria renders the predictions of the Fock quantiza-
tion devoid of physical relevance, inasmuch as they depend
on particular choices and, furthermore, there exist an infi-
nite number of them.

At least for cases in which the cosmological background
still possesses some spatial symmetries, it is a standard
procedure to keep the requirement that the quantization
structures be invariant under those symmetry transforma-
tions, even if this does not totally fix the representation.
Provided that these transformations are symplectomor-
phisms, this amounts to the requirement that the complex
structure be invariant. We will call invariant the represen-
tations with this property. In addition, in the lack of a time
symmetry, it sounds reasonable to demand at least that the
dynamical evolution be implemented as a family of unitary
transformations. Precisely this combined criteria of spatial
symmetry invariance and unitary dynamics have been used
to determine a unique Fock quantization for certain scalar
fields describing gravitational waves [16,17,23–26], in the
context of inhomogeneous cosmologies of the Gowdy type.
The criteria have been proven to apply as well to scalar
fields with a generic time dependent mass defined on
d-spheres, with d ¼ 1, 2, 3 [27,28], including the com-
mented (dimensionally reduced) description of the Gowdy
fields as particular cases. More recently, it has been pos-
sible to extend the result of the uniqueness of the Fock
quantization of scalar fields satisfying a KG equation with
time varying mass to fields defined on any compact spatial
manifold in three or less dimensions [29].

Actually, once one allows for a scaling of the field by a
time dependent function (treated classically), as we have
commented that frequently happens in cosmology, the
description of the (scalar) field propagation in certain non-
stationary spacetimes can be reformulated as that of a field
with a time varying mass in a static background. This
typically occurs in FRW spacetimes. The simplest example
is that of a test KG field, which after a rescaling by the
FRW scale factor (and in conformal time) obeys a field
equation of the form

€’��’þ sðtÞ’ ¼ 0; (1)

which precisely corresponds to the propagation of a free
field with a time dependent mass. Besides, in source-free
Einstein-Maxwell theory, using conformal time and adopt-
ing a suitable Lorentz gauge, the vector potential can be
scaled in a similar way to arrive at a massless wave
equation in a static spacetime [30]. A context in which
the discussion encounters a natural application is in the
quantization of cosmological perturbations [12,19,31]. In
particular, for perturbations of the energy-momentum ten-
sor that are isotropic and adiabatic, the gauge invariant
energy density perturbation amplitude can be scaled by a
suitable time function (other than the scale factor) so as to
satisfy (in conformal time) a field equation of the above
type (1), in an effective static background [19]. One also
finds this same kind of equation with varying mass in the
asymptotic analysis of the dynamics of the perturbations of
a massive scalar field in an FRW spacetime, after a suitable
gauge fixing and a scaling of the field [13,32].2 In addition,
the tensor perturbations of a FRW cosmological back-
ground, describing its gravitational wave content, are sub-
ject as well to a field equation of this type after scaling
them (and choosing again conformal time) [19]. Therefore,
the result of uniqueness of the Fock representation for a
KG field with time varying mass and in a static spacetime
under the criteria of symmetry invariance and unitary
dynamics finds immediate applications in cosmology, and
in particular in the study of cosmological perturbations, if
one contemplates the possibility of scaling the fields by
time dependent functions, which partially absorb the evo-
lution of the cosmological background. Recall that these
results are valid in models with compact spatial topology.
This includes the physically important case of flat models
with compact sections of 3-torus topology [33].
Let us emphasize that different scalings lead to different

field descriptions, each of them with a different dynamics.
The Fock quantization of each of these descriptions does
not necessarily provide unitarily equivalent quantum theo-
ries. Let us see this in more detail. We already mentioned
that, on phase space, the scaling of the field by a time
function can be regarded as part of a time dependent linear
canonical transformation. The scaling of the field is then
completed by a transformation of the momentum, in which
the latter suffers just the inverse scaling, so as to maintain
the canonical structure. Besides, in this transformation, the
momentum may acquire a contribution linear in the field.
In order to respect locality and the spatial dependence
of the fields, the most general linear contribution to the
momentum that we will consider consists of the field
multiplied by a (conveniently densitized) function of
time. The resulting family of canonical transformations,
being time dependent, generally modifies the dynamical

2This is an example where Eq. (1) is modified with terms
which do not affect the asymptotics.
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evolution of the system. In this regard, it is important to
contemplate the presence of a field contribution to the new
momentum if one wants to maintain a dynamics dictated
by a quadratic Hamiltonian with certain good properties,
like, e.g., the absence of crossed terms mixing the configu-
ration and momentum fieldlike variables. But the fact that
the dynamics changes implies that the criteria for unique-
ness, which in particular include a unitary implementation
of the time evolution, must be applied independently to
each field description, at least in principle. Besides, since
the descriptions are related by linear canonical transforma-
tions (varying in time, actually), and not all of these
transformations can be implemented in terms of unitary
operators in the quantum theory, it is not granted that the
different formulations attained in this manner result to be
unitarily equivalent. Hence, if we want to reach a privi-
leged Fock quantization for our system, we need to fix this
ambiguity in the field description.

A quite remarkable result, proven first for the case in
which the spatial manifold on which the field is defined is a
circle [34], and demonstrated recently for the 3-sphere and
the sphere in two dimensions [35], is that the proposed
criteria of natural invariance under the spatial symmetries
and of unitary dynamics happen to select also a unique
field description among this class of time dependent
canonical transformations. The description selected is pre-
cisely the one in which the field equations are of the type
(1), with time varying mass, in a static background.3 When
the spatial manifold is a circle, it was shown that field
descriptions differing just in the inclusion of a field con-
tribution to the momentum are possible, but they are all
unitarily equivalent, so that a representation of the new
canonical pair can be directly constructed from the original
one in such a way that the relation is unitary [34]. The aim
of the present work is to extend this result to any compact
spatial manifold in three or less dimensions. Namely, we
want to prove that our criteria of symmetry invariance and
unitary time evolution select in fact a unique field descrip-
tion for our system on any compact spatial manifold in
three or less spatial dimensions. This, together with the
already obtained result about the uniqueness of the Fock
representation for the specific field description in which the
KG equation does not contain any dissipative term [that is,
the description in which the background appears to be
static and the field equation takes the form (1)], provides
a considerable robustness to the quantization, choosing a
unique Fock quantum theory up to unitary equivalence. In
particular, this guarantees the reliability of the quantum
predictions.

The rest of the paper is organized as follows. We start by
introducing the model in Sec. II. The uniqueness result

about the choice of Fock representation for a scalar field
with varying mass propagating in a static spacetime whose
spatial sections are compact is reviewed in Sec. III.
Although this result was proven in Ref. [29], we succinctly
revisit the arguments of the demonstration for complete-
ness in the presentation and because they provide the basis
for the proof of the result of this work, namely, that our
criteria select also a unique field description among all
those related by a time dependent scaling. The proof that
all nontrivial scalings are excluded is presented in Sec. IV.
In addition, in Sec. V we show that either there is no
freedom to include a time dependent linear contribution
of the field in the momentum or, if the freedom exists
(something that may typically happen only for one-
dimensional spatial manifolds), the change does not intro-
duce any Fock representation which is not attainable from
the original one by a unitary transformation. The relation
between the Fock quantization selected by our criteria and
the choice of vacuum in terms of the Hadamard condition
[8] is briefly discussed in Sec. VI. We present our con-
clusions in Sec. VII. Finally, two appendices are added.

II. THE MODEL AND ITS QUANTIZATION

We begin by considering the Fock quantization of a real
scalar field with a time varying mass function. The field ’
is defined on a general Riemannian compact space � of
three or less (spatial) dimensions, and propagates in a
globally hyperbolic background of the form I��, where
I is a (not necessarily unbounded) time interval. We call
hab the metric on the spatial manifold � (a, b denoting
spatial indices), and restrict the discussion here to the case
of orthogonal foliations and a time independent hab. As we
have already commented, under very mild assumptions
(in particular on the mass function) it is then possible to
show that a preferred Fock representation is selected by
imposing the criteria that the dynamics be unitary and that
one achieves a natural unitary implementation of the
spatial symmetries of the field equations [29].
For our analysis, we choose an (arbitrarily) fixed time t0

and, at that instant of time, we consider the field data

ð’;P’Þ ¼ ð’; ffiffiffi
h

p
_’Þjt0 , where the dot denotes the time

derivative and h is the determinant of the spatial metric.
By construction, we identify the canonical phase space of
the system with the set of data pairs fð’;P’Þg, equipped
with the symplectic form � that is determined by the
standard Poisson brackets f’ðt0;xÞ;P’ðt0;yÞg¼�ðx�yÞ.
These brackets are taken independent of the choice of t0,
so that the time independence of � is granted. Note also
that the configuration variable ’ is defined as a scalar, and
hence the momentum P’ is a scalar density.

We call � the standard Laplace-Beltrami (LB) operator
associated with the metric hab. Note that �� is a non-
negative operator, i.e., with the exception of possibly null
eigenvalues (in this respect, see the comments below about
zero modes), all eigenvalues of � are real and negative.

3Remarkably, our results were recently found useful also in
the context of string dynamics in arbitrary plane wave back-
grounds [36].
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Employing this operator, we introduce the complex struc-
ture J0 determined by:

J0ð’Þ ¼ �ð�h�Þ�1=2P’; J0ðP’Þ ¼ ð�h�Þ1=2’:
(2)

The Fock representation defined by J0 is the analogue of
the free massless field representation. In fact, J0 is con-
structed from the LB operator ignoring the existence of a
mass in the system. Nonetheless, rather than the massless
case, we are going to consider the general case of the field
equation

€’� �’þ sðtÞ’ ¼ 0; (3)

which, given the expression of the field momentum, is
equivalent to the canonical equations of motion:

_’ ¼ 1ffiffiffi
h

p P’; _P’ ¼ ffiffiffi
h

p ½�’� sðtÞ’�: (4)

The mass function sðtÞ is allowed to be quite arbitrary,
except for some weak conditions that were specified in
Ref. [28]. Namely, we assume that it has a second deriva-
tive which is integrable in any closed subinterval of I.

In order to discuss whether the dynamics (4) admits a
unitary implementation with respect to the Fock represen-
tation determined by J0, essential ingredients are the gen-
eral properties of the LB operator in any compact space
[37]. In particular, the eigenmodes of the LB operator
allow us to decompose the field in a series expansion.
In the considered general setting, the natural space of
functions on � is that of square integrable functions in
the inner product provided by the metric volume element
(constructed with hab). Let then f�n;lg be a complete set

of real orthonormal eigenmodes of the LB operator
with respect to this inner product, with corresponding
discrete set of eigenvalues given by f�!2

ng, with n 2 N.
Necessarily, these eigenvalues are such that !2

n tends to
infinity when so does n. In general, the spectrum of the LB
operator may be degenerate, so that two or more of the
eigenmodes �n;l have the same eigenvalue. The label l
takes this degeneracy into account. We call gn the dimen-
sion of the eigenspace with eigenvalue �!2

n. This degen-
eracy number is always finite, � being compact. For each
n, the label l runs from 1 to gn. In the following, all sums
performed over the spectrum of the LB operator include
this degeneracy.

Using these eigenmodes, we can express the field ’ as a
series ’ ¼ P

n;lqn;l�n;l. With this expansion at hand, it is

clear that the degrees of freedom of the field reside in the
discrete set of real modes fqn;lg, which vary only in time.

Since the eigenmodes are orthonormal with respect to the
inner product provided by the metric volume element, one
gets that the canonical momentum conjugate to qn;l is

pn;l ¼ _qn;l. Besides, recalling that J0 is obtained from

the LB operator, it is easy to realize that this complex
structure is block diagonal by modes in the introduced

field expansion and, furthermore, independent of the de-
generacy labeled by l.
Let us then define

an;l ¼
ffiffiffiffiffiffiffi
!n

2

r
qn;l þ i

pn;lffiffiffiffiffiffiffiffiffi
2!n

p ; (5)

which, together with their complex conjugates a�n;l form a

set of annihilation and creationlike variables.4 In these
variables, the complex structure J0 is totally diagonal,
taking the standard form J0ðan;lÞ ¼ ian;l and J0ða�n;lÞ ¼
�ia�n;l. In other words, an;l and a�n;l can be regarded as

the variables that are promoted to annihilation and creation
operators in the Fock representation determined by J0.
Returning to the dynamics, one can check that the modes

obey the equations of motion:

€q n;l þ ½!2
n þ sðtÞ�qn;l ¼ 0: (6)

It is worth noticing that all the modes are decoupled, and
that the evolution equations are the same for all modes in
the same eigenspace (indicated by the label n). The evo-
lution of the variables ðan;l; a�n;lÞ from the fixed reference

time t0 to any other time t is a linear transformation which
is then block diagonal, owing to the decoupling of the
modes, and insensitive to the degeneracy label l. Thus,
the transformation adopts the general form

an;lðtÞ ¼ �nðt; t0Þan;lðt0Þ þ �nðt; t0Þa�n;lðt0Þ: (7)

Since the evolution respects the symplectic structure, this
transformation must be canonical. This implies that, for
all values of n and t and independently of the value of t0,
one has

j�nðt; t0Þj2 ¼ 1þ j�nðt; t0Þj2: (8)

Actually, a canonical transformation of the type (7) can
be implemented in terms of a unitary operator in the Fock
representation defined by the complex structure J0 if
and only if the sequence formed by its corresponding
beta functions �nðt; t0Þ is square summable, namely, ifP

ngnj�nðt; t0Þj2 is finite [22] (note that the degeneracy
has been taken into account). To elucidate whether this
sum is finite or not, we need to know the behavior of the
beta functions for large n, i.e., to know the asymptotic
behavior of the dynamics for modes with large value of!2

n.
This asymptotic analysis was carried out in Ref. [28]. It
was proven there that, for any possible mass function sðtÞ
and any values of t and t0, the leading term in the beta
function is proportional to 1=!2

n. It then turns out that
the requirement that the sum of j�nðt; t0Þj2 be finite is

4Obviously, these variables are ill defined for zero modes, i.e.,
when !n ¼ 0. However, our discussion on the unitary imple-
mentation of the dynamics does not depend on a finite number of
modes. So, we will analyze exclusively nonzero modes in the
rest of the text. Unitarity and uniqueness for zero modes can be
attained following methods and criteria of quantum mechanics.
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equivalent to the finiteness of
P

ngn=!
4
n. Indeed, this con-

dition is satisfied for all Riemannian compact manifolds in
three or less dimensions. This fact follows from the asymp-
totic properties of the spectrum of the LB operator. In
particular, the number of eigenstates whose eigenvalue
does not exceed !2 in norm is known to grow in d
dimensions at most like !d [37]. With this bound in the
growth rate, one can prove that gn=!

4
n is summable.

If the manifold ð�; habÞ possesses an isometry group, the
LB operator is automatically invariant under it. Therefore,
these symmetries are directly transmitted to the field
equations (4). In the canonical formulation, the group
translates into canonical transformations which commute
with the dynamics. More generally, we will consider the
subgroup of the unitary transformations [in the Hilbert
space of square integrable (configuration) functions with
respect to the measure defined by the metric volume ele-
ment associated with hab] that commute with the LB
operator, or a convenient subgroup of it determined by
the isometries, provided that this latter subgroup satisfies
certain conditions which we will explain later on. We will
call this symmetry group G, which leaves the dynamics
invariant. As part of our criteria for the uniqueness of the
quantization, we demand that these symmetries find a
natural unitary implementation in the quantum theory. In
fact, this is ensured in the Fock representation determined
by the complex structure J0, since this structure depends
exclusively on the LB operator (and the metric volume
element), and hence inherits its invariance under the sym-
metry group G. Thus, the complex structure J0 is invariant
underG and determines a Fock representation in which the
quantum counterpart of Eq. (6) is a unitary dynamics. In
the next section, we will prove that, if there exists another
Fock representation with the same properties, it has to be
unitarily equivalent to the one defined by J0.

III. UNIQUENESS OF THE REPRESENTATION

In order to obtain a natural unitary implementation of
the symmetry group G in the Fock representation, we just
have to concentrate our attention on complex structures J
that are invariant under its action. Therefore, the first step
in our analysis is to characterize theseG-invariant complex
structures, something that is possible by means of a suit-
able application of Schur’s lemma [24,25,28].

Let us analyze the action of the groupG on the canonical
phase space. We start by studying its action on the con-
figuration space, formed from the values of the field ’ at
time t0. We will call Q this configuration space. Recall
that, by construction, the action ofG is naturally unitary on
Q (with respect to the inner product obtained with the
metric volume element) and commutes with the LB opera-
tor. Therefore, each of the eigenspaces of the LB operator
corresponding to different eigenvalues provides an irreduc-
ible representation of G or, otherwise, can be composed
in a finite number of mutually orthogonal irreducible

subspaces. In this way, we can decompose the configura-
tion space Q in a convenient hierarchy of finite dimen-
sional subspaces: first, as a direct sum of eigenspaces Qn

of the LB operator (the superscript n labeling the associ-
ated eigenvalue), and then each of these eigenspaces as a
direct sum of irreducible representations Qn

m of the sym-
metry group G (the label m counting the different compo-
nents for each n). Note that, if G is taken as the maximal
subgroup of the unitary group that commutes with the LB
operator, all these irreducible representations are distinct.
On the other hand if, starting with the spatial isometries,
we rather identify G with a subgroup of the former maxi-
mal subgroup, we now assume that all such representations
differ (this is the case, e.g., with the isometry group of the
d-sphere or the d-torus). Clearly, if we call gn;m the dimen-

sion of those representations, Qn
m, the sum of gn;m over m

must equal the degeneracy gn for each value of n. In
particular, the integers gn;m can never exceed gn.
We can proceed similarly to get a decomposition in

irreducible representations of the space P formed by the
momentum fields P’ at the fixed time t0. Since the

momenta are scalar densities, the integral for the inner
product is performed in this case with the inverse volume
element. Altogether, we arrive at a decomposition of the
phase space of the system, �, in the form � ¼ �n�

n ¼
�n;m�

n
m, where we have called �n

m ¼ Qn
m � P n

m. Besides,

given that G acts in the same way on fields and on their
momenta, the group action coincides on the subspace Qn

m

and on its counterpart P n
m.

Via Schur’s lemma [38], a direct consequence of this
decomposition in irreducible representations is that the
G-invariant complex structures must be block diagonal,
with a (possibly) different block Jn;m for each �n

m, since

they commute with G and cannot mix different irreducible
representations.5 Therefore, the allowed complex struc-
tures J must all admit the generic expression J ¼ �Jn;m.
In each component �n

m, one can always find a basis of
configuration variables and corresponding momentum var-
iables which arises from a suitable choice of orthonormal
eigenmodes of the LB operator, like those that we intro-
duced in the previous section to expand the field. For each
given n, the complete set fqn;l; pn;lg is obtained as the union
of all such bases when the whole set of subspaces �n

m of �n

are considered.6 Besides, on each �n
m, the corresponding

complex structure Jn;m consists of four maps, Jqqn;m, J
qp
n;m,

5In principle, Schur’s lemma can be applied only to complex
representations, while we are dealing with a basis of real
eigenmodes of the LB operator. Nonetheless, since the relation
between real and complex eigenmodes is linear, and the dynam-
ics is both linear and common to all the eigenmodes in the same
eigenspace, the implications of the lemma can be translated to
our description in terms of real modes without serious obstruc-
tions for the analysis of the evolution (see, e.g., the discussion in
Ref. [33]).

6See, nonetheless, the comments in the previous footnote.
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Jpqn;m, and Jppn;m, according to the four choices of initial and
final space between Qn

m and P n
m. Moreover, each of these

four maps, established between the same irreducible rep-
resentation of G, is itself invariant under the action of the
group, and therefore must be proportional to the identity
map I by Schur’s lemma (the proportionality constants
being restricted by the imposition that the complex
structure be a real map). In total, we conclude that the
G-invariant complex structures adopt also a block diagonal
form in each subspace �n

m, the blocks being given by a
2-dimensional complex structure formed out of the
four proportionality constants mentioned above. This
2-dimensional complex structure only mixes qn;l with

pn;l for each value of l, and coincides for all the labels l
in the same subspace �n

m.
To compare a generic G-invariant complex structure J

with the reference one, J0, it is convenient to change the
basis on phase space to the complex variables an;l and a

�
n;l.

Since all invariant complex structures have the same block
form, and they are symplectomorphisms, one can easily
show that they are always related by a transformation of the
type J ¼ KJ0K

�1, where K is a symplectic map which
admits the same decomposition in 2� 2 blocks that we
have found for J [24]. Likewise, all the 2-dimensional
blocks of K are identical in each space �n

m. Hence, each
invariant complex structure is totally characterized by a
discrete set of 2-dimensional symplectic maps Kn;m. We

can view each of these (real) maps as 2� 2 matrices and
express them in terms of two complex numbers, �n;m

and �n;m, which provide their diagonal and nondiagonal

elements, respectively [28]. The condition that the map
preserves the symplectic form translates into the relation
j�n;mj2 ¼ 1þ j�n;mj2.

Note that, then, the complex structures J and J0 will
be unitarily equivalent if and only if the symplectic trans-
formation between them, K, admits a unitary implementa-
tion with respect to (e.g.) J0. We have already commented
that this amounts to demand the square summability
(including degeneracy) of the beta functions (or rather
beta coefficients, in this case) corresponding to the map
K, which are nothing but the complex numbers �n;m [29].

Hence, the necessary and sufficient condition for J
and J0 to be unitarily related is that

P
n;mgn;mj�n;mj2 be

finite.
On the other hand, let us assume that the evolution map,

U, admits a unitary implementation with respect to a
G-invariant complex structure, J. This is equivalent to
say (via a change of basis from the creation and annihila-
tionlike variables that diagonalize J to those for J0) that
K�1UK can be implemented as a unitary transformation
with respect to J0 or, alternatively, that the beta functions
of K�1UK are square summable. The effect of the trans-
formation K is to replace the functions �n and �n for J0
with new ones, adapted to the basis which diagonalizes J.
We emphasize that these new functions depend no more

just on n, but also on the indexm. A direct calculation leads
to the following expression for these new beta functions:

�J
n;mðt; t0Þ ¼ ð��

n;mÞ2�nðt; t0Þ � �2
n;m�

�
nðt; t0Þ

þ 2i��
n;m�n;m=½�nðt; t0Þ�: (9)

Here, the symbol = denotes the imaginary part.
Therefore, a G-invariant complex structure allows for a

unitary implementation of the dynamics if and only ifP
n;mgn;mj�J

n;mðt; t0Þj2 is finite at all instants of times t.
We can then easily adapt the discussion of Ref. [28] to
show that the unitary implementation of the dynamics with
respect to J implies indeed that this complex structure is
unitarily equivalent to J0. A sketch of the proof goes as
follows. Employing that

ffiffiffiffiffiffiffiffiffi
gn;m

p
�J

n;mðt; t0Þ and ffiffiffiffiffi
gn

p
�nðt; t0Þ

are square summable (because the dynamics is unitary with
respect to J—by hypothesis— and J0), we conclude that
the sequences formed by

ffiffiffiffiffiffiffiffiffi
gn;m

p =½�nðt; t0Þ��n;m=�
�
n;m must

also be square summable at all times. Then, making use
then of the asymptotic behavior of =½�nðt; t0Þ�, which was
discussed in Ref. [28], we can easily deduce the square
summability, at all instants of time, of� ffiffiffiffiffiffiffiffiffi

gn;m
p �n;m

��
n;m

sin

�
!nðt� t0Þ þ

Z t

t0

d�t
sð�tÞ
2!n

��
: (10)

We can now appeal to Luzin’s theorem and integrate the
finite sums of the squared elements of this sequence (which
are measurable functions) over a suitable set in the time
interval I in order to show that, actually, the sumP

n;mgn;mj�n;mj2 has to be finite [28]. But this finiteness is

precisely the necessary and sufficient condition for the
unitary equivalence between the two complex structures
J and J0. This proves that any complex structure that is
invariant under the group G and allows for a unitary
implementation of the dynamics turns out to be related
with J0 by a unitary transformation, so that there exists one
and only one equivalence class of complex structures
satisfying our criteria.

IV. UNIQUENESS OF THE FIELD DESCRIPTION

In the previous sections, we have demonstrated the
uniqueness of the Fock quantization adopting since the
very beginning a specific field description for our system.
However, in nonstationary backgrounds, as we have dis-
cussed in the Introduction, it seems most natural to allow
for time dependent scalings of the fields, which may absorb
part of the dynamical variation of the background. In this
context, one must consider the possibility of performing
linear canonical transformations that depend on time and
that, as far as the field is concerned, amount to a scaling by
a time function. This introduces a new ambiguity in our
quantization, different in extent to the one considered so
far, because this type of canonical transformations change
the field dynamics. Hence, one may wonder whether it is
still possible to use our criteria and select not just one
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privileged Fock representation for the KG field description
with time dependent mass in an auxiliary static back-
ground, but also a unique field description for our system
when scalings are contemplated. This is the subject that we
will address in the following. The main aim of this work is
to prove that our criteria eliminate in fact this apparent
freedom in the choice of field description.

A. Unitary implementability condition

The most general linear canonical transformation
depending (only) on time and which changes the field
just by a scaling has the form

� ¼ fðtÞ’; P� ¼ P’

fðtÞ þ gðtÞ ffiffiffi
h

p
’: (11)

Note that we have allowed for a contribution of the field ’
in the new momentum, and that this contribution has been

multiplied by
ffiffiffi
h

p
so as to obtain a scalar density. The

function fðtÞ, which provides the scaling of the field, is
assumed to be nonvanishing, to avoid the artificial intro-
duction of singularities. In addition, the two functions fðtÞ
and gðtÞ are real, and we suppose that they are at least twice
differentiable, so that the transformation does not spoil the
differential structure formulation of the field theory.
Furthermore, there is no loss of generality in assuming
that fðt0Þ ¼ 1 and gðt0Þ ¼ 0 at the reference time t0. In
fact, the values of these two functions at t0 can be set equal
to those data by means of a constant linear canonical
transformation. But, given a Fock representation for the
original fields with symmetry invariance and a unitary
dynamics, we immediately obtain a Fock representation
for any constant linear combination of the canonical fields
which possesses the same properties [34]. Therefore, in the
following we restrict our discussion to functions fðtÞ and
gðtÞ with the above initial data.

The dynamics of the new canonical pair ð�;P�Þ admits

a description in terms of a Bogoliubov transformation
similar to that in Eq. (7), but with different functions

~�nðt; t0Þ and ~�nðt; t0Þ. Adopting again creation and anni-
hilationlike variables like those for the massless case, but
now constructed from the new canonical pair, one can
calculate the relation between the new alpha and beta
functions and the original ones. Ignoring the explicit
reference to the dependence on t0 in all functions, and
defining 2f�ðtÞ ¼ fðtÞ � 1=fðtÞ, one obtains:

~� nðtÞ¼fþðtÞ�nðtÞþf�ðtÞ��
nðtÞþ i

2

gðtÞ
!n

½�nðtÞþ��
nðtÞ�;
(12)

~� nðtÞ¼fþðtÞ�nðtÞþf�ðtÞ��
nðtÞþ i

2

gðtÞ
!n

½��
nðtÞþ�nðtÞ�:

(13)

In the following, we will demonstrate that, if one per-
forms any canonical transformation of the above type with
fðtÞ other than the unit function, the dynamics becomes
such that one cannot implement it as a unitary transforma-
tion with respect to any invariant Fock representation. The
arguments of the proof are a suitable generalization of
those presented in Refs. [34,35].
Let us first make fully explicit the condition for a unitary

implementation. Suppose that we are given an invariant
Fock representation of the CCR’s, determined by a se-
quence of pairs ð�n;m; �n;mÞ as explained in the previous

section. The dynamics associated with the new canonical
pair ð�;P�Þ can be implemented as a unitary transforma-

tion in the considered invariant Fock quantum theory if and

only if the sequences with elements
ffiffiffiffiffiffiffiffiffi
gn;m

p ~�J
n;mðt; t0Þ are

square summable for all possible values of t [28,34], where

~� J
n;mðt; t0Þ ¼ ð��

n;mÞ2 ~�nðt; t0Þ � �2
n;m

~��
nðt; t0Þ

þ 2i��
n;m�n;m=½~�nðt; t0Þ�; (14)

in complete parallelism with Eq. (9). For simplicity, we
obviate the reference to t0 from now on.
Thus, assuming a unitary evolution with respect to J in

the new field description is equivalent to saying that

X1
n

X
m

gn;mj ~�J
n;mðtÞj2 <1 (15)

at all instants of time t. Since every term in the sum is
positive, it follows that if we select a particular valueM of

m for each n, the sequence fgn;Mj ~�J
n;MðtÞj2g is also sum-

mable. We emphasize that this is so for any possible choice
of M. In turn, this summability immediately implies that

f ~�J
n;MðtÞ=ð��

n;MÞ2g is square summable because both gn;M
and j�n;Mj are always greater than (or equal to) 1. In

particular, it is then guaranteed that, for every t, the terms
of these sequences tend to zero in the limit of infinite n.
The next step in our line of reasoning is to introduce the
asymptotic behavior of �nðtÞ and�nðtÞ in the expression of
~�J
n;MðtÞ, using relations (12) and (13). According to the

analysis performed in Ref. [28], one can take �nðtÞ ¼ 0
and �nðtÞ ¼ e�i!n� up to order 1=!n (at least), where
� ¼ t� t0. As a consequence, we arrive at the result that
the condition of a unitary implementation of the dynamics
implies that the sequences with elements

½ei!n� � z2n;Me
�i!n��f�ðtÞ � 2izn;M sinð!n�ÞfþðtÞ (16)

must tend to zero at all times in the limit of large n. We
have called zn;M ¼ �n;M=�

�
n;M.

Splitting zn;M in its real and imaginary parts, zn;M ¼
xn;M þ iyn;M, we introduce the definitions:
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An;M ¼ 2yn;Mðfþ � xn;Mf�Þ;
Bn;M ¼ ð1þ y2n;M � x2n;MÞf�;
Cn;M ¼ ð1þ x2n;M � y2n;MÞf� � 2xn;Mfþ;

Dn;M ¼ �2xn;Myn;Mf�;

(17)

where, to simplify the notation, we have ignored the
explicit time dependence of the functions f�ðtÞ. Note
that, since j�n;Mj � j�n;Mj, we have

jzn;Mj2 ¼ jxn;Mj2 þ jyn;Mj2 � 1: (18)

Taking the real and imaginary parts of the expression
(16), we see that the sequences given by

An;M sinð!n�Þ þ Bn;M cosð!n�Þ (19)

and

Cn;M sinð!n�Þ þDn;M cosð!n�Þ (20)

have to vanish in the limit n ! 1 at all instants of time
t 2 I. These conditions can be employed to prove that,
indeed, unitarity of the dynamics can be attained only if the
function fðtÞ in Eq. (11) is the unit function.

B. Proof of the nonunitarity of
time dependent scalings

We notice first that all sequences An;M, Bn;M, Cn;M, and

Dn;M are bounded, owing to inequality (18). Using this

fact, one can form suitable linear combinations of the
expressions (19) and (20) and conclude that the following
sequences must have a vanishing limit as well:

ðAn;MDn;M � Bn;MCn;MÞ sinð!n�Þ; (21)

ðAn;MDn;M � Bn;MCn;MÞ cosð!n�Þ: (22)

Obviously, this is only possible if An;MDn;M � Bn;MCn;M

tends to zero. A simple calculation shows that

An;MDn;M�Bn;MCn;M

¼f�ðx2n;Mþy2n;M�1Þ½ð1þx2n;Mþy2n;MÞf��2xn;Mfþ�:
(23)

We now prove that a further necessary condition for
the unitary implementability of the dynamics is that the
sequence of elements (x2n;M þ y2n;M � 1) [one of the factors

in Eq. (23)] does not tend to zero. Let us suppose that it
does and show that this leads to a contradiction. In this
case, while expression (23) automatically has a vanishing
limit, this is not sufficient to guarantee unitarity. In par-
ticular, we still have to check that both expressions (19)
and (20) tend to zero for all values of t. By taking the sum
of the squares of those expressions, and using our hypothe-
sis that x2n;M þ y2n;M ! 1, we obtain that

ðfþ � xn;Mf�Þ sinð!n�Þ þ yn;Mf� cosð!n�Þ (24)

must tend to zero at all times, t. At this stage, two possi-
bilities are available. We consider first the case in which
yn;M ! 0. Since we have already assumed that x2n;M þ
y2n;M ! 1, it follows that x2n;M tends to 1. From expression

(24), we then conclude that there must exist a subsequence
of values of n such that one gets a zero limit either for
f sinð!n�Þ or sinð!n�Þ=f (or both, if both types of sub-
sequences exist). In either case, recalling the positivity of
the function f, we have that sinð!n�Þmust tend to zero, on
some subsequence, for all times t. However, this is actually
impossible, as we show in Appendix A (see also Ref. [35]).
We consider now the alternate case in which yn;M does not

tend to zero. As explained in detail in Appendix B, this
leads to the conclusion that

sin½!n�þ�n;MðtÞ� (25)

must have a vanishing limit on some subsequence of values
of n, at all instants of time t, where

cot½�n;M� ¼ 1

yn;M

fþ
f�

� xn;M
yn;M

: (26)

Again, using the result proven in Appendix A, one con-
cludes that the sequence given by expression (25) cannot
tend to zero for all values of t in any given interval I.
Therefore, the only possibility which is compatible with
our hypothesis of a unitary implementation of the dynam-
ics is that the sequence fx2n;M þ y2n;M � 1g does not tend to

zero in the limit of large n.
The next step in our demonstration is to show that, in

addition to the condition proven above, the unitary imple-
mentation is not achievable unless the function fðtÞ is the
unit function. Let us suppose that, on the contrary, this
is not the case. Then, there exist values of t such that
fðtÞ � 1. We will consider those values of t, and only
those, and will show that the existence of those times leads
in fact to a contradiction. Recall that the function f is
strictly positive and continuous (actually, we have assumed
that it is twice differentiable). In particular, this implies
that fðtÞ � 1 if and only if f�ðtÞ � 0. Therefore, we are
considering points where f�ðtÞ � 0, and we have assumed
that such points exist. Going back to expression (23), a
necessary condition for the unitary implementation of the
dynamics is that the sequences with elements

ðx2n;M þ y2n;M � 1Þ½ð1þ x2n;M þ y2n;MÞf� � 2xn;Mfþ�
(27)

tend to zero, at all the considered values of t. Moreover, we
know that the sequence formed by (x2n;M þ y2n;M � 1) can-

not tend to zero at infinitely large n. Hence, there exists
	 > 0 and a subsequence S of positive integers n such that
jx2n;M þ y2n;M � 1j> 	 in S. This in turn implies that the

second factor in Eq. (27) must tend to zero on that sub-
sequence, a result from which one easily concludes that

f2ðtÞ½ð1�xn;MÞ2þy2n;M��½ð1þxn;MÞ2þy2n;M� (28)
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must have a vanishing limit on the subsequence S. It then
immediately follows that the function fðtÞmust coincide at
all the considered values of t, simply because the time
independent sequences ð1�xn;MÞ2þy2n;M and ð1þxn;MÞ2þ
y2n;M cannot both tend to zero. Thus, we reach the conclu-

sion that the function f can attain at most two distinct
values, one of them equal to 1 (e.g., at the reference time
t0) and the other assumed to be different from it. But this is
forbidden by continuity. The contradiction shows that the
only consistent possibility is that fðtÞ is indeed the unit
function, as we wanted to prove.

V. UNIQUENESS OF THE FIELD DESCRIPTION:
MOMENTUM REDEFINITION

In the previous section, we have proven that a unitary
implementation of the dynamics with respect to an invari-
ant Fock representation requires the function f in Eq. (11)
to be the unit function. There remains, however, the pos-
sibility of a nontrivial time dependent canonical transfor-
mation, coming from the redefinition of the momentum

P� ¼ P’ þ gðtÞ ffiffiffi
h

p
’. We will now show that (in less than

four spatial dimensions) two distinct scenarios may occur.
If the sequence of elements gn=!

2
n is not summable, then

unitarity can only be achieved with gðtÞ ¼ 0. Alternatively,
if gn=!

2
n gives in fact a summable sequence, then one can

attain a unitary dynamics for any function gðtÞ, but this is
possible only in the representation defined by J0, or in
representations that are unitarily equivalent to it, and there-
fore the physical predictions remain uniquely determined.

Let us return to the summability condition that guaran-
tees the unitary implementation of the dynamics with
respect to the representation selected by the complex
structure J, condition which in particular implies that the

sequence f ffiffiffiffiffiffiffiffiffi
gn;m

p ~�J
n;mðtÞ=ð��

n;mÞ2g is also square summable

(over n and m). We particularize the discussion to the only
allowed case, fðtÞ ¼ 1, as we have seen. Then, a direct
calculation shows that

~�J
n;mðtÞ

ð��
n;mÞ2

¼ �n

�
1þ igðtÞ

2!n

�
� z2n;m�

�
n

�
1� igðtÞ

2!n

�

þ izn;m
gðtÞ
!n

½<ð�nÞ þ <ð�nÞ� þ i
gðtÞ
2!n

��
n

þ i
gðtÞ
2!n

z2n;m�n þ 2izn;m=ð�nÞ: (29)

The symbol < stands for real part. Note that the square
summability of

ffiffiffiffiffiffiffiffiffi
gn;m

p
�n and the boundedness of jzn;mj

imply that all the terms in �n lead to square summable
contributions. Since the set of square summable objects is a
linear space, we conclude that a necessary condition for the
unitary implementation of the dynamics is that the sumP

n

P
m gn;mjBn;mj2 be finite, where

Bn;mðtÞ¼2zn;m=ð�nÞþ gðtÞ
2!n

½��
nþz2n;m�nþ2zn;m<ð�nÞ�

(30)

is the remaining part of ~�J
n;mðtÞ=ð��

n;mÞ2 (divided by i).
We nowmake use of the analysis performed in Ref. [28],

where it was demonstrated that, up to order 1=!n, one gets
the asymptotic behavior �nðtÞ � e�i!n� for large n. As a
consequence, it is easy to see that a necessary condition
for a unitary quantum dynamics is the finiteness ofP

n

P
m gn;mjAn;mj2, where we have called

An;mðtÞ¼2jzn;mj=ð�nÞþ gðtÞ
2!n

½eið!n���Þ þjzn;mj2e�ið!n���Þ

þ2jzn;mjcosð!n�Þ�: (31)

Here, we have introduced the notation zn;m ¼ jzn;mjei�.
Since !n ! 1, it is clear that the sequence of elementsffiffiffiffiffiffiffiffiffi
gn;m

p
An;m=!n must also be square summable (over n

and m). In addition, we know that the contribution to this
sequence coming from the second term in Eq. (31) is
square summable, because so is

ffiffiffiffiffiffiffiffiffi
gn;m

p
=!2

n (as discussed

in Sec. II) and the multiplying factor is bounded in norm
for each t, as one can easily check (recall that jzn;mj � 1).
Hence, the contribution of the first term, namely the se-
quence formed by

ffiffiffiffiffiffiffiffiffi
gn;m

p jzn;mj=½�nðtÞ�=!n, must be square

summable as well for all times t. But then, the kind of
arguments presented at the end of Sec. III (and discussed in
more detail in Ref. [28]) lead us to conclude that
f ffiffiffiffiffiffiffiffiffi

gn;m
p jzn;mj=!ng must be square summable.

Let us consider again the sequence given by
ffiffiffiffiffiffiffiffiffi
gn;m

p
An;m.

The terms coming from the two last summands in Eq. (31)

are clearly square summable, since jzn;mje�ið!n���Þ þ
2 cosð!n�Þ is bounded in norm by 3 and we have already
seen that

ffiffiffiffiffiffiffiffiffi
gn;m

p jzn;mj=!n has this summability property.

Therefore, the rest of summands provide also a square
summable sequence. In particular, the imaginary part is
necessarily square summable by its own. In this way, we
deduce that

gðtÞ
!n

ffiffiffiffiffiffiffiffiffi
gn;m

p
sinð!n�� �Þ (32)

has to be square summable at all instants of time, t.
Obviously, this condition is satisfied if the function gðtÞ

vanishes identically. On the contrary, let us suppose that
this is not the case. Since the function gðtÞ is continuous, if
it is not the null function there must exist an interval of
values of t for which it differs from zero. In consequence,ffiffiffiffiffiffiffiffiffi
gn;m

p
sinð!n�� �Þ=!n must provide a square summable

sequence at all values of t in that interval. Then, applying
once more the type of arguments employed at the end of
Sec. III and detailed in Ref. [28] (actually, in this case one
can appeal to simpler arguments like those published in
Refs. [24,26,27]), we conclude that the sequence formed
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by
ffiffiffiffiffiffiffiffiffi
gn;m

p
=!n must be square summable. We thus see that,

in those cases where the sum of gn;m=!
2
n (over n and m)

diverges, we arrive at a contradiction, proving that unitarity
can be reached exclusively if gðtÞ vanishes. This happens,
for instance, when the spatial manifold is the 2-sphere [26]
or the 3-sphere [28].

On the other hand, in the case that fgn;m=!2
ng has a finite

sum (like, e.g., when the manifold is S1 [34]), we consider
again the sequence of elements

ffiffiffiffiffiffiffiffiffi
gn;m

p
An;m and analyze in

further detail the condition that it be square summable.
From our discussion in the paragraph above Eq. (32) and
the assumed summability of gn;m=!

2
n, we get that the

contribution coming from the first term in Eq. (31), namelyffiffiffiffiffiffiffiffiffi
gn;m

p jzn;mj=½�nðtÞ� (up to an irrelevant multiplicative fac-

tor), is actually square summable for all the values of t in
the studied interval. Then, a straightforward generalization
of the discussion presented in Ref. [28] (see Sec. IV.C)
allows us to conclude that

ffiffiffiffiffiffiffiffiffi
gn;m

p jzn;mj forms a square

summable sequence and, moreover, that the same applies
to

ffiffiffiffiffiffiffiffiffi
gn;m

p j�n;mj. This last step follows from the fact that the

convergence of the partial sums of gn;mjzn;mj2 implies that

j�n;mj tends to zero when n ! 1. Since j�n;mj2 ¼
1þ j�n;mj2, we then have that j�n;mj ! 1 in that limit,

and thus the value of 1=j�n;mj is bounded at large n.
Summarizing, gðtÞ is necessarily the zero function unless
fgn;m=!2

ng is summable, and in that case one must have

that
P

n;mgn;mj�n;mj2 is finite. Remarkably, this is precisely

the condition that guarantees that the representation
defined by the complex structure J (with Bogoliubov
coefficients of the ‘‘beta’’ type given by �n;m) is unitarily

equivalent to the representation determined by the complex
structure J0.

Therefore, gðtÞ must vanish identically unless gn;m=!
2
n

is summable. If this last property is satisfied, one may
change the momentum by adding a time dependent, linear
contribution of the field, while respecting the existence of
invariant representations which implement the dynamics
as a unitary transformation. However, all such represen-
tations belong to the same unitary class of equivalence,
which is just the class containing the representation de-
termined by the complex structure associated with the
massless situation, J0. In this sense, we can ensure the
uniqueness of the field description and its corresponding
Fock representation under our criteria of symmetry in-
variance and unitary evolution. This is the main result of
the present paper.

For the sake of completeness, the next section will be
devoted to discussing how the selected unitary Fock quan-
tization is related with the Fock quantization obtained by
imposing the so-called Hadamard condition [8]. To make
the discussion more accessible, we will start by briefly
recalling the context in which the Hadamard approach
arises, emphasizing the physical relevance of this formu-
lation, and the uniqueness result that it provides in uni-
verses with compact spatial sections.

VI. CONNECTION WITH THE
HADAMARD QUANTIZATION

As it is well known, in the theory of scalar fields there
exist classical observables which have no counterpart
within the Weyl algebra of quantum observables. This
happens with the stress-energy tensor, which is excluded
from the Weyl algebra owing to its quadratic dependence
on the field, involving the (mathematically ill-defined)
product of distributions. In order to incorporate this tensor
in the quantum theory, a procedure was introduced in
the seventies called point-splitting (see for instance
Ref. [39]). This method provides a consistent regulariza-
tion scheme by extracting the spurious infinities associated
with quadratic field terms. Roughly speaking, the point-
splitting renormalization method assumes that the expec-
tation value of the anticommutator function Gðx; yÞ ¼
h�ðxÞ�ðyÞ þ�ðyÞ�ðxÞi, for the state of interest, possesses
a Hadamard singularity structure [40] in small normal
neighborhoods. Since the expectation value of the stress-
energy tensor can be obtained from Gðx; yÞ by differentia-
tion, the regularization of Gðx; yÞ provides a renormalized
value of it. The prescription consists then in subtracting a
suitable Hadamard solution to Gðx; yÞ and declaring the
coincidence limit of this difference as the regularized value
of the two-point function. The limit x ! y in the formal
point separated expression of the expectation value of the
stress-energy tensor will exist and define a finite value.
The point-splitting prescription relies on the use of

Hadamard states (i.e., states satisfying the Hadamard
ansatz), which can be proven to exist in any globally
hyperbolic spacetime. Therefore, given a free scalar field
in an arbitrary (globally hyperbolic) spacetime, one can
specify a Hadamard representation of the CCR’s by look-
ing for a Fock vacuum state satisfying the Hadamard
condition [i.e., a state whose two-point function Gðx; yÞ
has a short-distance behavior of the Hadamard type]. This
approach rules out infinitely many Fock representations.
Since this Hadamard condition is sufficient to ensure that a
well-defined quantum stress-energy tensor is obtained, it is
reasonable from a physical point of view to impose it
(i.e., implement the Hadamard approach) as a criterion to
select the representation of the CCR’s, at least if the
classical background in which the field propagates is
given a physical significance. Unfortunately, the Hadamard
criterion does not suffice to pick out a unique preferred
quantization in general; indeed, generically there exist
infinitely many nonunitarily equivalent Hadamard vacuum
states. Remarkably, for free scalar fields in spacetimes with
compact Cauchy surfaces, it has been shown [8] that all
Hadamard vacua belong to the same class of unitarily
equivalent states. This result, together with the uniqueness
discussed in the previous sections, implies that we have at
our disposal two different criteria in order to select a
unique preferred quantization of the linear KG field.
Thus, for such systems, one may wonder whether the
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unitary and the Hadamard quantizations are in conflict or
not. This is the question that we want to address in this
section.

For the sake of conciseness, let us consider the case of a
KG field � with mass m on a closed FRW spacetime with
the spatial topology of a 3-sphere (k ¼ þ1). It is a simple
exercise to see, in conformal time, that under the time
dependent scaling ’ ¼ a�, where a is the scale factor,
the dynamics of the scaled field ’ coincides with that of a
scalar field with time varying mass sðtÞ ¼ m2a2 � ð €a=aÞ
propagating in a static background whose Cauchy surfaces
are 3-spheres. Now, the first thing we must notice is that the
Hadamard and the unitary quantizations are constructed
from different phase space descriptions: on the one hand,
the unitary quantization is based on a preferred represen-
tation for the scaled field ’, selected as the fundamental
field by the criteria of unitarity and spatial symmetry
invariance (see Sec. IV), which is determined by the com-
plex structure J0; on the other hand, the Hadamard quan-
tization rests on a preferred representation of the field �
obtained by imposing the Hadamard condition. In short,
the Hadamard and the unitarity (combined with spatial
symmetry invariance) criteria select representations of
the CCR’s for distinct fields, related by a time dependent
canonical transformation. In order to properly compare
these quantizations we have to: (i) choose (once and
for all) a basic field variable, say ’ (ii) determine how
the Hadamard quantization can be translated to the
’-description, and (iii) compare the result with the repre-
sentation selected by unitary evolution and spatial symme-
try invariance.

As we will show below, the Hadamard quantization
defines a representation of the CCR’s, when reformulated
in the ’-description, which is related by means of a unitary
transformation with the quantization picked out by our
criteria. This result will be achieved by employing that,
on closed FRW spacetimes and in the �-description,
Hadamard states are indeed unitarily equivalent to adia-
batic vacuum states [41].7 Translating the form of adiabatic
states to the ’-description, we will establish the equiva-
lence of the quantization with the one selected by J0 by
proving that the transformation that relates the correspond-
ing vacuum states is unitary. Hence, in the framework of
the ’-description, the Hadamard quantization defines a
theory which allows for the same physical predictions
than the quantum theory specified by the requirement of
a unitary evolution, together with the invariance under
the spatial symmetries. In this sense, we can assure that
there is no tension between the unitary and the Hadamard
quantizations.

To demonstrate that the vacuum state defined by J0 is
unitarily equivalent to an adiabatic vacuum state in the

’-description, we will consider four steps. In the first one,
we will extract the Cauchy data for an adiabatic state
(in particular of zeroth order) for the field �. Next, we
will find (via the time dependent canonical transformation)
the corresponding Cauchy data in the ’-description. Then
we will consider the Cauchy data that parametrize our J0
state. And, finally, we will compare the two sets of Cauchy
data parametrizing the different states, concluding that
they are unitarily related.
Let us start by recalling the definition of adiabatic

states. In a closed FRW spacetime, with metric gab ¼
�d�ad�b þ a2ð�Þhab, where � denotes the cosmological
time and hab stands for the round metric of the 3-sphere,
the dynamics of the field � is dictated by the differential
equation

�00 þ 3
a0

a
�0 � 1

a2
��þm2� ¼ 0: (33)

Here, the prime denotes the derivative with respect to �.
One can perform a mode decomposition of the field:

�ð�;xÞ ¼ X
n

½an�nð�;xÞ þ a�n��
nð�;xÞ�;

�nð�;xÞ ¼ QnðxÞunð�Þ;
(34)

where fQnðxÞg is a complete set of eigenfunctions of the
LB operator, �Qn ¼ �nðnþ 2ÞQn, and n denotes the
tuple formed by the eigenvalue integer label n and
the degeneration labels l andm, standard for the harmonics
on the 3-sphere (see, e.g., Ref. [28]). The time dependent
part of the mode solutions, un, satisfies

u00n þ 3
a0

a
u0n þ w2

nun ¼ 0; w2
n ¼ nðnþ 2Þ

a2
þm2:

(35)

In addition, the modes un are subject to the normalization
condition unðu�nÞ0 � u�nu0n ¼ ia�3, coming from the re-
quirement that the corresponding field solutions be
normalized with respect to the KG inner product and the
fact that the eigenfunctions fQng are orthonormal on the
3-sphere.
At cosmological time �0, the Cauchy data of the field

modes un are

qn ¼ unj�0 ; pn ¼ a3u0nj�0 : (36)

In terms of the Cauchy data qn and pn, the normalization
condition reads qnp

�
n � q�npn ¼ i.

Let us focus our attention on solutions of the form

unð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3�n

p exp

�
�i

Z �

��
�nð~�Þd~�

�
: (37)

Substituting this formula in Eq. (35), we get that the
positive functions �n must satisfy

7A precise characterization of adiabatic states can be found,
for instance, in Ref. [42].
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�2
n ¼ w2

n � 3

4

�
a0

a

�
2 � 3

2

a00

a
þ 3

4

�
�0

n

�n

�
2 � 1

2

�00
n

�n

: (38)

We can try to solve this equation by an iterative process, in

which one obtains the rth (positive) function�ðrÞ
n from the

preceding one �ðr�1Þ
n ; namely,

ð�ðrþ1Þ
n Þ2 ¼ w2

n � 3

4

�
a0

a

�
2 � 3

2

a00

a
þ 3

4

�
�ðrÞ0

n

�ðrÞ
n

�
2 � 1

2

�ðrÞ00
n

�ðrÞ
n

;

r 2 N; ð�ð0Þ
n Þ2 ¼ w2

n: (39)

In general, because of the arbitrariness of the scale factor a,
one cannot ensure the positivity of the right-hand side in
the first formula of Eq. (39), so that the iteration procedure
may break down. However, it can be shown that, for a

sufficiently large n, ð�ðrþ1Þ
n Þ2 is always strictly positive in a

finite time interval [42]. Hence, the iteration procedure can
be safely performed whenever a finite time interval and an
ultraviolet regime are considered.

An adiabatic vacuum state of rth order is a Fock state
constructed from a solution un to Eq. (35) with initial
conditions at time �0:

unð�0Þ ¼ WðrÞ
n ð�0Þ; u0nð�0Þ ¼ WðrÞ0

n ð�0Þ; (40)

where WðrÞ
n ð�0Þ is given by

WðrÞ
n ð�0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a3�ðrÞ
n

q exp

�
�i

Z �0

��
�ðrÞ

n ð~�Þd~�
�
: (41)

In particular, using �ð0Þ
n ¼ wn ¼ ½nðnþ 2Þ þm2a2�1=2=a

one obtains the adiabatic solution of zeroth order, Wð0Þ
n .

Then, from Eq. (36), we get that the Cauchy data for the
zeroth order adiabatic state at time �0 are

qn ¼ Wð0Þ
n ; pn ¼ �a2Wð0Þ

n

�
a0
�
1þ m2

2w2
n

�
þ iawn

�
:

(42)

By using the map ’ ¼ a�, as well as the relationship
between conformal and cosmological times,8 the corre-
sponding Cauchy data in the ’ description at t0 are
given by,

Qn¼aWð0Þ
n ; Pn¼�aWð0Þ

n

�
_am2

2aw2
n

þ iawn

�
: (43)

It is straightforward to check that QnP
�
n �Q�

nPn ¼ i.
Next, let us consider the mode solutions of the field ’

associated with the complex structure J0. We will call vnðtÞ
the time dependent part of these solutions. At the reference
conformal time t0, the Cauchy data of vn defining (and
defined by) the field decomposition dictated by J0 are

�Qn ¼ vnjt0 ¼
1

½4nðnþ 2Þ�1=4 ;

�Pn ¼ _vnjt0 ¼ �i

�
nðnþ 2Þ

4

�
1=4

:

(44)

Clearly, this pair of data satisfies the normalization condi-
tion �Qn

�P�
n � �Q�

n
�Pn ¼ i.

The zeroth order adiabatic state, parametrized by the
Cauchy data (43) obtained by ‘‘dragging’’ the state to the’
description, is related to the vacuum state characterized by
the data (44) via a Bogoliubov transformation of the form:

Qn¼�n
�Qnþ�n

�Q�
n; Pn¼�n

�Pnþ�n
�P�
n; (45)

where

�n ¼ iðPn
�Q�
n �Qn

�P�
nÞ; �n ¼ iðQn

�Pn � �QnPnÞ:
(46)

The equivalence of the considered states depends on
whether the antilinear part of the Bogoliubov transforma-
tion defines a square summable sequence; namely,P

nj�nj2 <1, where we have already taken into account
that�n depends on n only. Since each eigenspace of the LB
operator on S3 has dimension gn ¼ ðnþ 1Þ2, the square
summability condition reads

P
ngnj�nj2 <1. That is, the

states will be unitarily related if and only if this sum is
finite. To elucidate whether this is the case or not, we will
analyze the asymptotic behavior of �n and prove that the
answer is in the positive. Therefore, the unique (up to
unitary equivalence) Hadamard vacuum state gives, in
the ’ description, a state which is in fact unitarily equiva-
lent to the vacuum determined by J0.
From Eqs. (43) and (44), it is straightforward to see that

Qn
�Pn� �QnPn¼ aWð0Þ

n

½4nðnþ2Þ�1=4

�
�
iðawn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ2Þp Þþ _am2

2aw2
n

�
: (47)

Substituting in this equation the expression of Wð0Þ
n , and

writing nðnþ 2Þ ¼ a2w2
nð1� x2nÞ, where xn ¼ m=wn,

we get

Qn
�Pn � �QnPn

¼ 1

2ð1� x2nÞ1=4
�
ið1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
Þ þ _ax3n

2ma2

�
e�i

R
wn:

(48)

Thus, in the asymptotic limit n 	 1 (i.e., when xn 
 1)
the ultraviolet behavior of �n is

�n ¼ i

�
im2a2

4n2
þO

�
1

n3

��
e�i

R
wn: (49)

Therefore
ffiffiffiffiffi
gn

p
�n �Oð1=nÞ, a fact that implies that

f ffiffiffiffiffi
gn

p
�ng is square summable. So, the analyzed states are

8The two times are related by �ðtÞ ¼ R
adt. Besides, we

choose t0 such that �0 ¼ �ðt0Þ.
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equivalent. In conclusion, the Fock quantization selected
by the criterion of a unitary evolution (together with the
invariance under the spatial symmetries) defines a repre-
sentation of the CCR’s which is unitarily equivalent to the
one determined by the Hadamard criterion when the latter
is translated to the ’ description.

On the one hand, the fact that the two approaches,
namely the Hadamard criterion and the unitary one,
select the same unitary equivalence class of representa-
tions—in the spatially compact case and using the
’-description—is probably not completely unexpected,
since both approaches rely on related dynamical aspects.
However, the two perspectives are, at least a priori,
intrinsically different. In the unitary approach, what is
imposed is only the existence of unitary transformations
implementing the evolution between any two (regular)
instants separated by a finite (not infinitesimal) interval of
time, with no further requirement regarding continuity
with respect to time, or any preestablished local form
of the vacuum state. On the other hand, in the Hadamard
approach a seemingly stronger condition, fixing the local
singularity structure of the vacuum state, is imposed,
which is strong enough to ensure the regularization of
the stress-energy tensor. It seems far from obvious
whether these two approaches should lead to equivalent
quantizations. If one adopts the point of view, as we do,
that preserving unitarity of the dynamics is a desirable
aspect in quantum physics, the fact that the two perspec-
tives actually lead to equivalent quantum theories appears
by itself as an interesting and reassuring result. It is also
worthwhile mentioning that the Hadamard condition es-
sentially translates the information about the causal struc-
ture of the classical background into the local structure of
the quantum states. This is of course what one wants
when the classical background has a true physical mean-
ing, but things are less clear when the background is only
an effective or an auxiliary one. In particular, when part
or all of the degrees of freedom are gravitational, the true
causal structure is a dynamical entity with possibly little
or no relation with the causal structure of the auxiliary
background where the degrees of freedom are represented
as scalar fields. This happens, e.g., in the case of Gowdy
models and in the treatment of cosmological perturba-
tions [13,17]. Similarly, when quantum corrections are
partially incorporated in the spacetime where the scalar
field propagates, its causal structure is only an effective
concept. In such cases, we find it important that one can
take advantage of criteria which do not make explicit use
of the causal structure of the background as a fundamen-
tal entity. Finally, let us emphasize that the established
relation between the Hadamard criterion and the unitarity
criterion applies just to the ’ description, while it is
exclusively the latter of these criteria (together with the
invariance under the spatial symmetries) which picks out
that description as a privileged one.

VII. CONCLUSIONS

As we have discussed, a major problem in the quantiza-
tion of (scalar) fields in nonstationary scenarios is the
ambiguity that generically appears in the selection of a
Fock quantum description. On the one hand, the possibility
of absorbing part of the field evolution in the time depen-
dence of the spacetime where the propagation takes place
affects the choice of a canonical pair for the field, as well as
the dynamics of the system that we want to quantize. On
the other hand, even if a specific pair is picked out, among
all those related by time dependent linear canonical trans-
formations, it is well known that there exists an infinite
number of unitarily inequivalent representations for the
corresponding CCR’s and, therefore, of physically differ-
ent quantum theories, each of them leading to different
results. In this situation, it is clear that the quantum pre-
dictions have doubtful significance, because if they are
falsified one can always adhere to another inequivalent
Fock quantization in the infinite collection at hand. This
problem is especially relevant in cosmology, a context
where the setting is naturally nonstationary, and is so
both because the window for quantum effects seems to
be narrow and because one cannot falsify the quantum
physics by an unlimited number of repeated measure-
ments, but rather by observing the Universe in which we
live. In these circumstances, determining an unambiguous
quantization whose predictions can be trusted is essential
if one wants to develop a realistic program of quantum
cosmology.
We recently proved that, when the field dynamics can be

put in the form of that of a KG field in a static spacetime
but with a time varying mass, there exist some reasonable
criteria which allow one to select a unique unitary class
of equivalence of Fock representations, and hence one
reaches uniqueness in the Fock quantization. These criteria
are the invariance of the vacuum under the spatial symme-
tries of the field equations and the unitary implementation
of the field dynamics. This uniqueness result is valid for
fields defined on any compact spatial manifold in three or
less dimensions [35]. In other words, in less than five
spacetime dimensions, the spatial topology is not relevant
as far as compactness is guaranteed. In noncompact cases,
the infrared divergences play an important role and
generically prevent the extension of the result. Even so,
in cosmology for instance, one can appeal to the physical
irrelevance of large scales beyond a causal radius to justify
that the results obtained with the assumption of compact-
ness should still be applicable.
In many practical situations, and in particular for fields

in cosmological spacetimes, the above field description, for
which our uniqueness theorem had been proven, is reached
indeed after a suitable scaling of the field by a function
of time. This scaling can be considered, as we have
commented, part of a linear canonical transformation,
obviously time dependent, in which the momentum suffers
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the inverse scaling. Besides, in this canonical transforma-
tion, it is extremely convenient to allow for a possible time
dependent linear contribution of the field to the redefined
momentum.

In this work, we have analyzed the effect of this class of
canonical transformations on the quantization. Since the
transformations are time dependent, they actually modify
the dynamics of the field, and hence affect the restrictions
imposed by our uniqueness criteria, which include the
unitarity of the evolution. In consequence, these canonical
transformations introduce a new infinite ambiguity in the
quantization of the system, previous to the choice of
Fock representation once a particular field description is
accepted. The main result of this work is to demonstrate
that, again for any compact spatial manifold in three or less
dimensions, there exists no ambiguity in the choice of field
description if one insists in our criteria of vacuum invari-
ance under the spatial symmetries and a unitary implemen-
tation of the dynamics.

More specifically, we have proven that no scaling of the
field is permitted with respect to the description in which
the propagation occurs apparently in a static background, if
one wants to reach a Fock representation in which the
vacuum has the spatial symmetries of the field equations
and the corresponding dynamics is implemented as a uni-
tary transformation. This only leaves the freedom of
changing the momentum by adding a time dependent con-
tribution that is linear in the field. We have shown that there
exist two possibilities. If the LB operator, excluding the
subspace of zero modes, has an inverse that is not trace
class (so that the sum of gn;m=!

2
n diverges), then the form

of the momentum is totally fixed by our two requirements
of vacuum invariance and unitary evolution. No freedom
exists to add a linear contribution of the field. In this way,
the field description of the system is completely deter-
mined by our criteria, and the studied time dependent
canonical transformations are all precluded, except the
trivial one. This is in fact the situation encountered, e.g.,
in the case of T3 topology [33] or S3 topology [35]. The
other possibility is that, on the opposite, the inverse of the
LB operator, once its kernel is removed, is indeed trace
class. Typically, this happens if the spatial manifold on
which the field theory is defined is one dimensional. The
number of eigenstates of the LB operator with eigenvalue
smaller or equal than!n (i.e.,

P
~n�n

P
m g~n;m) grows then at

most like !n, and the eigenvalue itself should grow like n.
It is then not difficult to check that the sum of gn;m=!

2
n is

finite. In this case, changes in the momentum that add a
term which is linear in the field, multiplied by any function
of time and properly densitized, are allowed while respect-
ing the existence of a Fock representation which satisfies
our criteria in the field description with the new momen-
tum. However, all these field descriptions can be obtained
then directly from the original one, by a straightforward
implementation of the canonical transformation. None of

these descriptions admit a Fock representation that, while
fulfilling the criteria of vacuum invariance and unitary
evolution, turns out to be inequivalent to the representation
adopted in the original field description. In this sense, the
quantization is again unique. These results confirm and
extend those obtained for the first time in the context of
Gowdy cosmologies with T3 topology [34], where the
effective theory consists of a scalar field propagating on
the circle but with a specific time dependent mass. In total,
we have proven that, in three or less spatial dimensions,
there exists a unique Fock quantization for this kind of
systems, up to unitary transformations, if one demands a
natural unitary implementation of the spatial symmetries of
the field equations and a unitary implementation of the
dynamics. This uniqueness result provides the desired ro-
bustness to the quantization process, and leads to a quan-
tum theory whose physical predictions are, to the extent
discussed in this work, uniquely determined. Finally, let us
remark that the Fock quantization selected by our criteria
defines a representation which is unitarily equivalent to that
corresponding to the Hadamard quantization of a KG field
in a closed FRW spacetime provided, of course, that the
latter is reformulated in terms of the scaled field ’.
Although we have proven this result only for the case in
which the spatial sections are isomorphic to 3-spheres,
there seems to be no serious obstruction to extend it to
universes with any other compact spatial topology.
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APPENDIX A: NONZERO LIMIT OF
OSCILLATORY FUNCTIONS

In Sec. IV we made use of the fact that sinð!n�Þ, and
more generally sinð!n�þ�n;MÞ (withM fixed for each n),
cannot tend to zero in the limit n ! 1 on any subsequence
of the positive integers for all t (or equivalently for all
� ¼ t� t0) in a given interval. We will prove this state-
ment in this appendix.
Let ½a; b� be an interval of the real line with Lebesgue

measure L ¼ b� a and

W ¼ fwn;n 2 Nþg (A1)

be a monotonous and diverging sequence of positive real
numbers; namely wnþ1 >wn for all n 2 Nþ, with wn

being unbounded for large n. In particular, W may be a
subsequence of the sequence of eigenvalues f!n; n 2 Nþg.
Besides, let
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f
nðtÞ; n 2 Nþg (A2)

be a sequence of twice differentiable phases, i.e., functions
with values on R modulo 2�. We also require that there
exist positive numbers X and Y such that

j _
nj< X; j €
nj< Y; (A3)

for all n (greater than a certain nonnegative integer, n0) and
all times t 2 ½aþ t0; bþ t0�.

Under these conditions, we will now show that

unð�Þ ¼ sin2½wn�þ 
nðtÞ� (A4)

cannot tend to zero8 � 2 ½a; b�, which obviously implies
that sinðwn�þ 
nÞ cannot tend to the zero function.

The functions unð�Þ are clearly integrable, and a
straightforward computation shows that

Z b

a
unð�Þd� ¼ L

2
� 1

2

Z b

a
cos½2wn�� 2
nð�þ t0Þ�d�:

(A5)

In addition,

Z b

a
cos½2wn�� 2
nð�þ t0Þ�d�

¼ sin½2wnb� 2
nðbþ t0Þ�
2wn � 2 _
nðbþ t0Þ

� sin½2wna� 2
nðaþ t0Þ�
2wn � 2 _
nðaþ t0Þ

(A6)

þ2
Z b

a

€
n
ð2wnþ2 _
nÞ2

sin½2wn��2
nð�þ t0Þ�d�; (A7)

and��������
Z b

a

€
n
ð2wn þ 2 _
nÞ2

sin½2wn�� 2
nð�þ t0Þ�d�
��������

� Lmax
I

��������
€
n

ð2wn þ 2 _
nÞ2
��������: (A8)

Since wn is a monotonous diverging sequence, it is now
straightforward to check that conditions (A3) are sufficient
to ensure that the integral over ½a; b� of cos½2wn��
2
nð�þ t0Þ� tends to zero when n goes to infinity.
Therefore, the sequence of integrals

R
b
a unð�Þd� converges

to L=2.
Finally, let us suppose that the sequence of functions

unð�Þ converges to the zero function on ½a; b�. Since the
functions junð�Þj are bounded from above by the constant
unit function, we can apply the Lebesgue dominated
convergence theorem [2]. This theorem ensures that the
sequence of integrals

R
b
a unð�Þd�would converge indeed to

the integral of the zero function, i.e., to zero. But this is
incompatible with the fact, demonstrated above, thatR
b
a unð�Þd� converges to L=2. This contradiction shows

that the values of unð�Þ cannot converge to zero for all
values of � 2 ½a; b�, as we wanted to prove.

APPENDIX B: THE PHASES �n;M

In this appendix, we show that expression (24) can be
replaced by expression (25) under the assumption that yn;M
does not tend to zero. For convenience, we repeat here the
starting expression,

ðfþ � xn;Mf�Þ sinð!n�Þ þ yn;Mf� cosð!n�Þ; (B1)

obtained with the hypothesis that x2n;M þ y2n;M ! 1 for

large n. Recall also that M is fixed for each value of the
positive integer n, and that the functions fðtÞ and fþðtÞ are
strictly positive.
Let us introduce the definitions

�n;M cos½�n;M� ¼ fþ � xn;Mf�;

�n;M sin½�n;M� ¼ yn;Mf�;
(B2)

such that

cot½�n;M� ¼ 1

yn;M

fþ
f�

� xn;M
yn;M

(B3)

and

�2
n;M ¼ ðfþ � xn;Mf�Þ2 þ y2n;Mf

2�: (B4)

In particular, �2
n;M is bounded from below by ðfþ � jf�jÞ2.

Besides, since yn;M does not tend to zero, there exists a

subsequence S of values of n and a number 	 > 0 such that
jyn;Mj> 	 on S. For n taking values in the subsequence S,
we then conclude that

�2
n;MðtÞ � ðfþ � jf�jÞ2 þ 	2f2� ¼ %2ðtÞ: (B5)

We note that the lower bound defined above is strictly
positive for all values of t: if f�ðtÞ � 0 then %2 �
	2f2�ðtÞ> 0; whereas, if f�ðtÞ ¼ 0, we have that
fðtÞ ¼ 1, and hence fþðtÞ ¼ 1, which implies in turn that
%2 ¼ 1.
Employing definitions (B2), expression (B1) reads:

�n;M sin½!n�þ�n;M�: (B6)

A necessary condition for the unitary implementation of
the dynamics is that Eq. (B1), and therefore expression
(B6), tend to zero for all the possible values of t. In
particular, the above expression must tend to zero on the
subsequence S. But, on that subsequence, which is inde-
pendent of t, the lower bound (B5) is valid, leading to
the conclusion that a unitary dynamics requires that the
sequence formed by sin½!n�þ�n;M� tend to zero on S at

all times t, as claimed in Sec. IV.
Let us finally show that the first and second derivatives

of the functions �n;MðtÞ constitute uniformly bounded

(sub)sequences on S (with respect to the variation of n;
recall in this sense that the labelM is not free, but fixed for
each value of n). This result shows that the conditions
assumed in Appendix A are actually satisfied.
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It is straightforward to calculate the first and second time
derivatives of �n;M:

_�n;M ¼ yn;M
�2
n;M

_f

f
;

€�n;M ¼ yn;M
�2
n;Mf

�
€f�

_f2

f
� 2 _f _f�

�2
n;M

� ½ðx2n;M þ y2n;MÞf� � xn;Mfþ�
�
: (B7)

Taking into account that x2n;M þ y2n;M � 1 and that �2
n;MðtÞ

is bounded from below by %2ðtÞ on S [see the bound (B5)],
we get that, for each value of t,

j _�n;mj � 1

%2

j _fj
f

; (B8)

j €�n;mj � 1

%2f

�
j €fj þ

_f2

f
þ 2j _f _f�j

%2
½jf�j þ jfþj�

�
: (B9)

Since both fðtÞ and %2ðtÞ are strictly positive continuous
functions, the right-hand side of the two inequalities (B8)
and (B9) are indeed bounded functions of t on any closed
interval. Hence, for any time interval ½a; b�, there exist
positive numbers X and Y such that

j _�n;Mj< X; j €�n;Mj< Y; (B10)

for all integers n belonging to the subsequence S and all
times. This concludes our proof.
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