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COCAL is a code for computing equilibriums or quasiequilibrium initial data of single or binary compact

objects based on finite difference methods. We present the results of supplementary convergence tests of

COCAL code using time symmetric binary black hole data (Brill-Lindquist solution). Then, we compare the

initial data of binary black holes on the conformally flat spatial slice obtained from COCAL and KADATH,

where KADATH is a library for solving a wide class of problems in theoretical physics including relativistic

compact objects with spectral methods. Data calculated from the two codes converge nicely towards each

other, for close as well as largely separated circular orbits of binary black holes. Finally, as an example, a

sequence of equal mass binary black hole initial data with corotating spins is calculated and compared

with data in the literature.
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I. INTRODUCTION

Various methods have been developed in the past couple
of decades for computing numerical solutions of compact
objects in equilibrium or quasiequilibrium. Those include
methods for computing relativistic rotating stars in equi-
librium or binary black hole initial data (see e.g. [1,2]). For
example, numerical solutions of binary black holes (BBH)
in quasicircular orbits have been widely used for initial
data of merger simulations [3,4], and sequences of such
data with fixed irreducible mass of each black hole (BH)
have been also applied to approximate the inspiral evolu-
tion of BBH [5].

The authors have been developing, independently, nu-
merical codes for computing such compact objects, COCAL
[6] (Paper I hereafter) and KADATH [7] (Paper II). COCAL is
a code for computing various kinds of astrophysical com-
pact objects—isolated or binary systems of neutron stars
and black holes which may be associated with strong
magnetic fields. KADATH is a library for solving a wide
class of problems in theoretical physics including those of
general relativity, and is capable of computing such com-
pact objects.

In the first part of this paper, we present the results of
supplementary convergence tests of COCAL to those pre-
sented in Paper I. With straightforward changes in the
radial coordinate grid spacings and in the finite difference
formula for the integration over the zenith angle, errors in
the gravitational fields especially near the compact objects
decrease substantially, which is necessary to improve the
accuracy of widely separated BBH solutions. In the second

part of the paper, we carefully compare the spatially con-
formally flat BBH initial data in circular orbit calculated
from COCAL and KADATH code. Comparison of the solu-
tions is the most effective test to confirm the reliability of
the codes in which a system of complicated equations is
solved. Such comparison had been done for the codes for
relativistic rotating stars in [8]. To our knowledge, this is
the first attempt to compare the BBH data calculated from
totally different methods as the spectral method and the
finite difference method. Finally, we present a sequence of
spatially conformally flat BBH initial data in circular
orbits for the case with equal mass and corotating spin,
and compare the result with those presented in [5].
Throughout the paper we use geometric units with
G ¼ c ¼ 1.

II. CONVERGENCE TESTS FOR COCAL CODE

In this section, we present convergence tests of COCAL

code supplementary to those presented in Paper I. The
setup for the test problem is the same as in Paper I: the
Brill-Lindquist solution for the time symmetric BBH data
is generated numerically, and it is compared with the
analytic value. We briefly review the setup of the problem
and discuss the modification of the finite difference scheme
from the previous paper.

A. A test problem for binary black holes

We assume the spacetime M is foliated by a family of
spacelike hypersurfaces ð�tÞt2R, M ¼ R� � parame-
trized by t 2 R. We assume the line element in the neigh-
borhood of �t to be

ds2 ¼ ��2dt2 þ c 4fijdx
idxj; (1)
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where fij is the flat spatial metric, so that the data on �t

becomes time symmetric—the extrinsic curvature Kab on
�t vanishes.

Decomposing Einstein’s equation G�� ¼ 0 with respect

to the foliation using hypersurface normal n� to�t, and the
projection tensor �ab ¼ g�� þ n�n� to it, we write the
Hamiltonian constraint G��n

�n� ¼ 0, and a combination

of the spatial trace of Einstein’s equation and the constraint
G��ð��� þ 1

2n
�n�Þ ¼ 0, as

r2c ¼ 0 and r2ð�c Þ ¼ 0: (2)

These equations have solutions, which correspond to the
Schwarzschild metric in isotropic coordinates for a single
BH. For a two BH case, a BBH solution is given by Brill
and Lindquist [9]:

c ¼ 1þ M1

2r1
þM2

2r2
and �c ¼ 1�M1

2r1
� M2

2r2
; (3)

where subscripts 1 and 2 correspond to those of the first and
second BH; r1 and r2 are distances from the first and
second BH, respectively, andM1 andM2 are mass parame-
ters. Instead of solving two Laplace equations [Eq. (2)], we
write an equation for � with a source on the whole domain
of �t:

r2c ¼ 0 and r2� ¼ � 2

c
fij@ic @j�: (4)

In an actual computation, spherical regions near the center
of BH are excised to avoid singularities. Therefore, bound-
ary conditions for these elliptic equations are imposed at
the radius r ¼ ra of the excised sphere Sa, and at the radius
r ¼ rb of the boundary of computational domain Sb. We
also set the mass parametersM1 andM2 as 0:8� ra of each
BH to avoid the lapse to be negative at Sa. In the following
tests, we impose Dirichlet boundary conditions on Sa and
Sb whose values are taken from the analytic solution (3).

B. Coordinates, grid setup, and finite difference
scheme of COCAL code

As explained in Paper I, three spherical coordinate
patches are introduced for solving binary compact objects
with COCAL. Two of them are the compact objects coor-
dinate patches (COCP-I and II) and one is the asymptotic
region coordinate patch (ARCP). In each spherical
patch, coordinates cover the region ðr; �;�Þ 2 ½ra; rb� �
½0; �� � ½0; 2��. The two COCPs are centered at the center
of compact objects and extend up to about rb �Oð102 MÞ,
while ARCP is centered at the center of mass of the binary,
and extends from ra �Oð10 MÞ to rb �Oð106 MÞ, where
M is the total mass of the system. Definitions of the
parameters for the grid setups are listed in Table I.
In solving a system of elliptic equations such as Eq. (4),

we rewrite them in integral form using Green’s function
that satisfies given boundary conditions, and apply a finite
difference scheme to discretize those integral equations on
the spherical coordinates of each domain. We use the
midpoint rule for numerical quadrature formula, and hence
compute the source terms at the midpoints of the grids.
Coordinate grids ðri; �j; �kÞ with i ¼ 0; . . . ; Nr, j ¼
0; . . . ; N�, and k ¼ 0; . . . ; N�, are freely specifiable except

for the end point of each coordinate grid that corresponds
to the boundary of the computational region, ðr0; �0; �0Þ ¼
ðra; 0; 0Þ and ðrNr

; �N�
; �N�

Þ ¼ ðrb; �; 2�Þ. The grid setup

for COCP and ARCP is the same as Paper I except for the
radial grid of COCP which will be explained later. For
angular coordinate grids ð�j; �kÞ, we choose equally

spaced grids.
In Paper I, we have used for the finite difference

formulas, (1) 2nd order midpoint rule for the quadra-
ture formula, (2) 2nd order finite difference formula
for the � and � derivatives evaluated at the mid-
points ðriþ1

2
; �jþ1

2
; �kþ1

2
Þ ¼ ððri þ riþ1Þ=2; ð�i þ �iþ1Þ=2;

ð�i þ �iþ1Þ=2Þ, (3) 3rd order finite difference formula
for the r derivative evaluated at the midpoints, and
(4) 4th order finite difference formula for the derivatives
evaluated at the grid points, ðri; �j; �kÞ. In the present

TABLE I. Summary of grid parameters for COCP.

ra: Radial coordinate where the radial grids start.

rb: Radial coordinate where the radial grids end.

rc: Radial coordinate between ra and rb where the radial grid spacing changes.

re: Radius of the excised sphere.

Nr: Number of intervals �ri in r 2 ½ra; rb�.
Nf

r: Number of intervals �ri in r 2 ½ra; 1�.
Nm

r : Number of intervals �ri in r 2 ½ra; rc�.
N�: Number of intervals ��j in � 2 ½0; ��.
N�: Number of intervals ��k in � 2 ½0; 2��.
d: Coordinate distance between the center of Sa (r ¼ 0) and the center of mass.

ds: Coordinate distance between the center of Sa (r ¼ 0) and the center of Se.
L: Order of included multipoles.
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computations, we use the same finite difference formulas
mentioned above except for the numerical quadrature for-
mula in � integrations.

Differences from the previous Paper I are the spacings of
radial grids �ri :¼ ri � ri�1 in COCP, and the quadrature
formula used for the integration in zenith angle �.

1. Radial grid spacings for COCP

When we compute a sequence of BBH data from larger
to smaller separations in the COCAL code, we change the
BH excision radius ra from smaller to larger values and fix
the separation ds (instead of fixing ra and varying ds). In
this way, the number of grid points are kept to be the same,
and the structures of coordinate grids are almost the same
for all solutions of the sequence. As a result the discretiza-
tion error behaves systematically from one solution to the
other, and hence the quantities such as mass or angular
momentum vary smoothly along a sequence of solutions.

It is important to notice that, by changing the BH radius,
we change the mass of the solution and hence change the
length scale of the system. Therefore, to maintain the
accuracy of the gravitational fields near the BH, the inter-
vals near the hole should be proportional to the mass of the
BH, or in our case, the BH excision radius ra. Therefore,
we modify the construction of the grid spacing in the radial
direction r of COCP for computing a sequence from
smaller to larger BH as follows. Without loss of generality,
we set the radius of BH excision sphere Sa as ra < 1. We
divide the radial coordinate to four regions, I: r 2 ½ra; 1�,
II: r 2 ½1; rc�, III: r 2 ½rc; 3rc�, and IV: r 2 ½3rc; rb�. We
set the first interval by

�r1 ¼ ra
�Nf

r

; (5)

where Nf
r is the number of intervals in the region I: ½ra; 1�,

and � is a constant factor which is chosen to be � ¼ 0:75.
For each region, �ri :¼ ri � ri�1, are defined by

�riþ1 ¼ h1�ri; for i ¼ 1; . . . ; Nf
r � 1; (6)

�ri ¼ �r; for i ¼ Nf
r; . . . ; N

m
r ; (7)

�riþ1 ¼ h3�ri; for i ¼ Nm
r ; . . . ; N

m
r þ Nf

r � 1; (8)

�riþ1 ¼ h4�ri; for i ¼ Nm
r þ Nf

r; . . . ; Nr � 1; (9)

which correspond to regions I, II, III, and IV, respectively,
The ratios hið>1Þ (i ¼ 1; 3; 4) are respectively determined
from relations

1� ra ¼ �r1
hN

f
r

1 � 1

h1 � 1
; (10)

2rc ¼ �r
h3ðhN

f
r

3 � 1Þ
h3 � 1

; (11)

rb � 3rc ¼ �r
h4ðhNr�Nm

r �Nf
r

4 � 1Þ
h4 � 1

: (12)

Values of the parameters for the coordinate grids of
COCAL used in computing the results presented in this

paper are listed in Table II. In Fig. 1, an example of the
radial grid points is plotted for the case with H3 grid setup
in Table II. Because of the construction, the grid structure
in the region larger than r � 1 is the same for all solutions
with different BH radius ra once a grid setup (resolution)
as in Table II is selected.

2. 4th order midpoint rule for the quadrature
formula of � integration

As discussed in Paper I, our Poisson solver is a system of
integral equations, and it is numerically integrated with a
quadrature formula of midpoint rule. Therefore, the
sources of the integrals are always evaluated at the mid-
points of ðri; �j; �kÞ grids. As summarized above, the 2nd

order midpoint rule was used for a quadrature formula in

TABLE II. Grid parameters of COCAL used for computation of BBH data. The separation of two BHs is fixed as ds ¼ 2:5. For the
excision radius ra for COCP-1 and 2, ‘‘var.’’ stands for a variable parameter assigned to each solution. In the test problems in Sec. II C,
they are chosen to be ra ¼ 0:2 and 0.4 for close BBH, and ra ¼ 0:05 and 0.1 for separated BBH for COCP-1 and 2, respectively.

Type Patch ra rb rc re Nf
r Nm

r Nr N� N� L

H1 COCP-1 var. 102 1.25 1.125 32 40 96 24 24 12

COCP-2 var. 102 1.25 1.125 32 40 96 24 24 12

ARCP 5.0 106 6.25 � � � 8 10 96 24 24 12

H2 COCP-1 var. 102 1.25 1.125 64 80 192 48 48 12

COCP-2 var. 102 1.25 1.125 64 80 192 48 48 12

ARCP 5.0 106 6.25 � � � 16 20 192 48 48 12

H3 COCP-1 var. 102 1.25 1.125 128 160 384 96 96 12

COCP-2 var. 102 1.25 1.125 128 160 384 96 96 12

ARCP 5.0 106 6.25 � � � 32 40 384 96 96 12

H4 COCP-1 var. 102 1.25 1.125 256 320 768 192 192 12

COCP-2 var. 102 1.25 1.125 256 320 768 192 192 12

ARCP 5.0 106 6.25 � � � 64 80 768 192 192 12
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Paper I. With the above-mentioned choice for finite differ-
ence formulas, the 2nd order convergence of the error has
been achieved. As shown in the top panel of Fig. 2 (as well
as Figs. 3, 4, and 6 in Paper I), however, the fractional error
of the potentials normally increases near the excision
surfaces of the BH, Sa (r ¼ ra), although it converges in
2nd order.

One might expect that the increase of the error near Sa is
due only to a lack of resolution in radial grid points. It turns
out, however, that the finite difference errors in the poten-
tials near the boundaries of computational domains are
dominated by the discretization error in the � coordinate.
In particular, the � integration of the source involving the
Legendre function turns out to be the source of error.
Therefore, we replace the quadrature formula of � integra-
tion to 4th order accurate midpoint rule whose weights are

Z �jþ4

�j

fð�Þd�’��

�
13

12
fjþ1

2
þ11

12
fjþ3

2
þ11

12
fjþ5

2
þ13

12
fjþ7

2

�
;

(13)

where the grid number j is a multiple of 4, and
�� ¼ �=N�.

C. Convergence tests

We perform convergence tests to examine that the above
two modifications improve the accuracy of the COCAL

code. In Table II, grid setups for the computations are
listed. The grids H1–H4 correspond to different levels of
resolutions. At each level, the resolution is double the
previous one.1

In Figs. 2–4, the fractional errors in the lapse that are
averaged over the angular coordinate grids ð�i;�jÞ at fixed

radial coordinate r are plotted against r of each coordinate
patch,

���������
��

�

��������
�
:¼ 1

#ðGiÞ
X
p2Gi

��������
�� �exact

�exact

��������; (14)

where writing a grid point ðri; �j; �kÞ by p, we define a set
Gi by Gi :¼ fpjp 2 V n Sine and ri ¼ constg, where Sine is
an interior domain of Se, and #ðGiÞ is the number of points
included in Gi.
In the top panel of Fig. 2, the same finite difference

scheme as presented in Paper I is used for computing closer
BBH solution with the BH excision radii ra ¼ 0:2 and 0.4,
and with the separation ds ¼ 2:5. The midpoint rule in
the � integration is 2nd order accurate in this panel. In
the bottom panel, the 4th order midpoint rule [Eq. (13)]
for the � integration is used for the same model and
the same grid spacings. Clearly, the fractional error
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FIG. 1 (color online). The radial grid points ri of COCP are
plotted against the grid number i ¼ 0; . . . ; Nr for the case with
H3 grid in Table II.
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FIG. 2 (color online). Angular averaged fractional errors in the
lapse hj��=�ji are plotted along the radial coordinate r for the
nonequal mass BBH data computed on three multiple patches.
Top panel: data computed with the same coordinate grid spac-
ings and finite difference schemes as in Paper I. Bottom panel:
data computed with the 4th order � integration discussed in
Sec. II B 2. The grid parameters and number of grid points are
varied as H1–H4 in Table II. The BH excision radii are chosen to
be ra ¼ 0:2 and 0.4 for COCP-1 and 2, respectively, and the
separation is to be ds ¼ 2:5.

1We have also tested different combinations of grid numbers
ðNr;N�; N�Þ for the first level of resolution and performed
convergence tests. We found the combination of type H was
better than others. For example, the accuracy was not improved
by increasing the grid points in the � direction.
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substantially decreases by this change for the H2 to H4
levels. We notice that the error near the BH converges in
4th order, that is, the error decreases about 1=16 at each
level of resolution. The errors near the BH as well as in the
asymptotic region are dominated by those from the �
integrations of the surface integral terms.
In Fig. 3, we calculate more separated BBH solutions,

decreasing the radius of BH excision surface to 1=4
(therefore effectively separating BBH 4 times apart) as
ra ¼ 0:05 and 0.1 with the same separation ds ¼ 2:5, and
using the 4th order integration in � as in the bottom panel
of Fig. 2. Although the errors near the BH excision surfaces
are of the same order of magnitude as those of the corre-
sponding resolutions plotted in Fig. 2, bottom panel, the
errors once increase as the radial coordinate r increases. It
turns out that the BBH initial data discussed later cannot be
calculated accurately with this grid setup for largely sepa-
rated orbits.
In Fig. 4, convergence tests for the close (ra ¼ 0:2 and

0.4) and the separated (ra ¼ 0:05 and 0.1) BBH are calcu-
lated with scaled radial spacing near the BH introduced in
Sec. II B 1, as well as the 4th order midpoint rule in �
integration. The size of the errors around the BH excision
radius for the largely separated BBH data (bottom panel) is
now comparable to those for the close BBH data (top
panel) for each level of resolution. This improvement turns
out to be important for accurately computing the separated
BBH data in COCAL code.

III. COMPARISON OF BBH INITIAL DATA

A. The KADATH library

In this section, we compare the circular solutions of
BBH initial data on a conformally flat spacelike hypersur-
face calculated from COCAL and the KADATH library.
KADATH [7] is a library designed to solve a wide class of

problems in theoretical physics including those of general
relativity such as the above compact objects. It is based on
spectral methods (see for instance [10] and references
therein) where the various fields are approximated by finite
sums of known functions typically trigonometrical func-
tions and orthogonal polynomials. One of the main advan-
tages of spectral methods is their fast convergence to the
true solution (typically exponentially), when one increases
the order of the expansion. For instance, in this paper, a
relative accuracy of about 10�4 is achieved with 15 coef-
ficients in each dimension.
Spectral methods enable one to translate a set of partial

differential equations into an algebraic system on the co-
efficients of the expansions. This system is then solved by a
standard Newton-Raphson iteration. The computation of
the Jacobian as well as its inversion are parallelized.
The code used in this paper is essentially the same as the

one used in Sec. 7.3 of [7]. In order to check the overall
accuracy of the computations, one monitors the conver-
gence of some global quantities (like the orbital frequency),

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100 101 102 103 104 105 106

<
|δ

α
/α

|>
[%

]

r

COCP-1
COCP-2

ARCP
θ int. 4th

H1
H2
H3
H4

FIG. 3 (color online). Same as Fig. 2, but for the BH radius
ra ¼ 0:05 and 0.1 for COCP-1 and 2, respectively. The results
are calculated using the 4th order midpoint rule for � integration
as in the bottom panel of Fig. 2, otherwise the same finite
differencing scheme (in particular, the same radial grid spacing
�ri) as in Paper I.
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FIG. 4 (color online). Same as Fig. 2. The results are calcu-
lated using 4th order integration in � coordinate Eq. (13), and the
scaled radial spacing discussed in Sec. II B 1. Top panel: data
with the BH radius ra ¼ 0:2 and 0.4 for COCP-1 and 2, respec-
tively. Bottom panel: data with the BH radius ra ¼ 0:05 and 0.1
for COCP-1 and 2, respectively.
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as a function of N, the number of points in each dimen-
sion. Let us mention that, in the case of a large separation,
the code was slightly modified to maintain accuracy,
probably due to a stretch of the bispherical coordinates
when the distance between the holes gets much bigger
than the size of the holes themselves. In particular,
a spherical shell was added between the bispherical
coordinates and the outer compactified domain and the
determination of the orbital velocity had to be changed
(see Sec. III C).

B. Conformally flat BBH initial data

The circular solution of BBH initial data is calculated by
solving the Hamiltonian and momentum constraints, and
the spatial trace of the Einstein’s equation on a conformally
flat spacelike hypersurface �t. The spacetime metric on �t

is written in 3þ 1 form as

ds2 ¼ g	
dx
	dx


¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (15)

where the spatial three metric �ij on the slice�t is assumed

to be �ij ¼ c 4fij. Here, field variables c , �, and �i are

the conformal factor, lapse, and shift vector, respectively,
and fij is a flat three-dimensional metric. We also assume

maximal slicing to �t, so that the trace of the extrinsic
curvature Kij :¼ � 1

2� ðLt�ij �L��ijÞ vanishes. Writing

its tracefree part Aij, the conformally rescaled quantity ~Aij

becomes

~A ij ¼ 1

2�

�
@i ~�j þ @j ~�i � 2

3
fij@k ~�

k

�
; (16)

where the derivative @i is associated with the flat metric fij,

and conformally rescaled quantities with tilde are defined

by ~Ai
j ¼ Ai

j and ~�i ¼ �i, whose indexes are lowered
(raised) by fij (f

ij). The system to be solved, which are

Hamiltonian and momentum constraints and the spatial
trace of the Einstein’s equation, becomes

�c ¼ � c 5

8
~Aij

~Aij; (17)

��i ¼ �2� ~Ai
j@j ln

c 6

�
� 1

3
@i@j ~�

j; (18)

�ð�c Þ ¼ 7

8
�c 5 ~Aij

~Aij; (19)

where � :¼ @i@
i is a flat Laplacian [2,11,12].

For the boundary conditions at the BH excision bound-
ary Sa, we choose approximate irrotational apparent hori-
zon boundary conditions,

@c

@r
þ c

2r

��������r¼ra

¼ � c 3

4
Kijs

isj; (20)

�ijr¼ra ¼
n0
c 2

si þ�yicm; (21)

�jr¼ra ¼ n0; (22)

where n0 is an arbitrary positive constant for which we
choose n0 ¼ 0:1, si is the unit normal to the sphere Sa, and
� represents a parameter for orbital angular velocity. The
vector yicm :¼ ð0; d; 0Þ is the translational vector with re-
spect to the center of mass. With these conditions, the
sphere Sa becomes an apparent horizon (AH) in quasie-
quilibrium [5,7,13].
At the asymptotics, the boundary conditions are

c jr!1 ¼ 1:0; (23)

�ijr!1 ¼ 0:0; (24)

�jr!1 ¼ 1:0: (25)

When using KADATH, the whole spacelike slice �t is com-
pactified, and hence the above conditions are imposed at
the spatial infinity, while in COCAL, the computational
domain is truncated at the radius rb �Oð106 MÞ and it is
at rb that the above conditions are imposed.

C. Comparison of the circular solutions of BBH initial
data for KADATH and COCAL

Following [14], we obtain the angular velocity � of a
circular orbit of BBH initial data from an assumption that
an equality of Arnowitt-Deser-Misner (ADM) mass and
Komar mass, MADM ¼ MK, is satisfied for the circular
orbit, where MADM and MK are defined by

MADM ¼ 1

16�

Z
S1
ðfacfbd � fabfcdÞ@b�cddSa

¼ � 1

2�

Z
S1

Dac dSa; (26)

MK ¼ � 1

4�

Z
S1

r�t�dS�� ¼ 1

4�

Z
S1

Da�dSa: (27)

In COCAL, the surface integrals are calculated at a certain
finite radius, typically around r� ð104 MÞ.
In KADATH, these integrals are usually evaluated at spa-

tial infinity as its definition,
R
S1

:¼ limr!1
R
Sr
with Sr the

sphere of radius r. However, in the case of a large separa-
tion, it turned out that this was not giving good results. The
precision of the results, measured by convergence of the
value of �, is much better when one demands that, at
spatial infinity,

1� ��2 ! Oðr�2Þ: (28)

The difference between the Komar and ADM mass is then
of the order of 10�4 for the higher resolution, thus giving a
measure of the overall error of the code.
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For a converged circular solution, we also calculate
ADM angular momentum:

J ¼ � 1

8�

Z
S1

Ka
b�

bdSa: (29)

The above quantities are normalized by the irreducible
mass of AH, Mirr, which is defined from the surface area
of AH, namely, the area integral over the BH excision
surface Sa,

AAH ¼
Z
Sa

c 4r2ad�: (30)

We write Mirr1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH1=16�

p
and Mirr2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH2=16�

p
for each BH, and write Mirr ¼ Mirr1 þMirr2 for a total
mass.

In Table III, global quantities normalized by Mirr are
presented for the irrotational BBH data computed from
KADATH and COCAL at the separations ds=ra ¼ 12 and

ds=ra ¼ 30. Three different resolutions for KADATH are
given, mainly 11, 13, and 15 points in each dimension,
and two (lower and higher) resolutions, H2 and H3, are
used for the computations of COCAL. The relative differ-
ences between the highest resolution results from both
codes are also indicated. The convergence of these quan-
tities is plotted in Fig. 5 for both separations, ds=ra ¼ 12
(left panels) and ds=ra ¼ 30 (right panels). All plots in-
dicate a nice convergence of the global quantities, when the
resolutions are increased.

In Fig. 6, plotted are fractional errors of metric potentials
of the same BBH data between those calculated from
KADATH and COCAL. The errors are defined by

100� jqðcocalÞ � qðKADATHÞj=jqðKADATHÞj½%�, and those
of the conformal factor c , lapse �, and y component of
the shift �y are plotted along the x axis which intersects
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FIG. 5. The panels show the scaled values of MADM=Mirr as a
function of Mirr=ra and JADM=M

2
irr as a function of �Mirr. The

circles denote the results from KADATH and the triangles the ones
from COCAL. The runs using KADATH are labeled by the number
of points in each dimension. The left top and bottom panels
correspond to a separation of ds=ra ¼ 12 and the right ones to
ds=ra ¼ 30 (in this case the lower resolution results from
KADATH are outside the range of the plot).

TABLE III. Comparison of BBH initial data from COCAL and KADATH for the cases ds=ra ¼ 12 and ds=ra ¼ 30. Fractional
differences in % between the highest resolution cases of KADATH and COCAL are shown in the lines indicated by ‘‘Error’’. A column
‘‘Res.’’ stands for the resolution.

Code Res. �Mirr MADM=Mirr J=M2
irr Mirr=ra

ds=ra ¼ 12

KADATH 11 0.127171 0.982866 0.757608 3.93366

KADATH 13 0.127299 0.983041 0.758390 3.93405

KADATH 15 0.127346 0.983072 0.758698 3.93417

COCAL H2 0.127243 0.982848 0.754592 3.93191

COCAL H3 0.127383 0.983125 0.758389 3.93392

Error [%] � � � 0.03 0.005 0.04 0.006

ds=ra ¼ 30

KADATH 11 0.0433696 0.933609 1.129241 3.56317

KADATH 13 0.0350000 0.988279 0.906819 3.55178

KADATH 15 0.0349704 0.988129 0.907249 3.55166

COCAL H2 0.0344185 0.987369 0.889918 3.54574

COCAL H3 0.0348624 0.987982 0.903226 3.55021

Error [%] � � � 0.3 0.01 0.4 0.04
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with the centers of two BHs for the case with the separation
ds=ra ¼ 12. Resolutions are H3 for COCAL and 15 points
for KADATH. As seen from the figure, the metric potentials
from the two codes agree well. Note that the relatively
large error in �y near x=ra � 6 is due to �y crossing zero,

and hence its fractional error diverges there.

D. Solution sequence for corotating BBH data

Finally, we present a sequence of solutions for the con-
formally flat BBH initial data computed from COCAL.
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FIG. 6 (color online). Fractional errors in metric potentials
between those calculated by KADATH and COCAL. Errors in the
conformal factor c , lapse �, and y component of the shift �y are

plotted along the x axis that intersects with the centers of two
BHs. The model is the same as that in Table III with the
separation ds=ra ¼ 12.
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FIG. 7 (color online). Sequence of solutions for conformally
flat BBH initial data with corotating spins are plotted. The
sequence computed from COCAL code is compared with those
presented in Caudill et al. [5] (CCGP) and with the third post-
Newtonian (3PN) results [15].

TABLE IV. Solution sequence of equal mass BBH with corotating spins. In the computation, parameters H3 listed in Table II are
used with a fixed separation ds ¼ 2:5, and with varying the excision radius ra of BH.

ra ds=ra ds=Mirr �Mirr MADM=Mirr Eb=Mirr J=M2
irr Mirr

0.03 83.333 24.327 0.0077690 0.99501 �0:0049873 1.3211 0.10277

0.04 62.500 18.126 0.011925 0.99360 �0:0064032 1.1824 0.13793

0.05 50.000 14.403 0.016575 0.99226 �0:0077416 1.0910 0.17357

0.06 41.667 11.921 0.021647 0.99100 �0:0089952 1.0268 0.20972

0.07 35.714 10.147 0.027086 0.98984 �0:010159 0.97988 0.24638

0.08 31.250 8.8151 0.032848 0.98877 �0:011228 0.94470 0.28360

0.09 27.778 7.7785 0.038898 0.98780 �0:012201 0.91792 0.32140

0.10 25.000 6.9483 0.045207 0.98693 �0:013074 0.89736 0.35980

0.11 22.727 6.2682 0.051746 0.98615 �0:013847 0.88156 0.39884

0.12 20.833 5.7007 0.058495 0.98548 �0:014518 0.86946 0.43854

0.13 19.231 5.2197 0.065430 0.98491 �0:015087 0.86032 0.47896

0.14 17.857 4.8067 0.072533 0.98445 �0:015555 0.85355 0.52011

0.15 16.667 4.4481 0.079787 0.98408 �0:015922 0.84873 0.56204

0.16 15.625 4.1337 0.087174 0.98381 �0:016191 0.84550 0.60479

0.17 14.706 3.8557 0.094679 0.98364 �0:016362 0.84360 0.64839

0.18 13.889 3.6081 0.10229 0.98356 �0:016439 0.84279 0.69289

0.19 13.158 3.3860 0.10998 0.98358 �0:016424 0.84290 0.73834

0.20 12.500 3.1856 0.11775 0.98368 �0:016320 0.84377 0.78477
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In this computation, the boundary condition of shift�i (21)
is replaced by that for the BBH with corotating spins,

�ijr¼ra ¼
n0
c 2

si ���i
cm; (31)

where the vector �i
cm is a generator of rotation around the

center of mass whose components in Cartesian coordinates
is written�i

cm ¼ ð�ycm; xcm; 0Þ. The orbital angular veloc-
ity parameter � is evaluated with the same method as
mentioned in the previous section.

In Fig. 7, a sequence of the corotating BBH data
computed from COCAL with resolution H3 is compared
with those of the paper by Caudill et al. [5], and of the
third post-Newtonian (3PN) circular orbits [15]. In the
top panel, the binding energy normalized by the irreduc-
ible mass Eb=Mirr :¼ ðMADM �MirrÞ=Mirr is plotted
against the normalized angular velocity �Mirr, and simi-
larly in the bottom panel, the angular momentum J=M2

irr.

The curves calculated from COCAL agree well with the
other two curves. In the smaller �Mirr (large separation),
the curves from the COCAL are slightly smaller than those
of the other works. The size of this error is comparable to
that listed in Table III. The error in Eb=Mirr for the
model with ds=ra ¼ 30 is around �1:2% whose separa-
tion corresponds to the one in Fig. 7 with �Mirr � 0:026
(ds=ra ¼ 31:25). The data used in Fig. 7 are tabulated in
Table IV.

For computing a solution with the COCAL code, each
iteration takes about 3 minutes for H3 resolution with a
single CPU (1 core) of xeon X5690 3.46 GHz, and each run
uses about 6GB of random-access memory. A convergence
to a circular solution is achieved after 500–700 iterations,

during which an iterative search for the circular� is made
5–7 times.

IV. DISCUSSION

We have presented additional convergence tests of
COCAL code focusing on the BBH data. Especially the

conformally flat initial data of BBH in circular orbit calcu-
lated from COCAL code are compared with those from
KADATH code. We demonstrated that the results from

both codes converge toward each other for large and small
separations (see also [16]).
As fully discussed in [5], a corotating sequence pre-

sented in Sec. III D is not considered as a model for
inspiraling BBH, because BBH tides do not effectively
work to spin up the BH to synchronize the BH spin with
orbital motion within the time of inspirals. In [5], the
authors describe a more realistic sequence of BBH inspiral
where the spin angular momentum of the AH is conserved.
We will present elsewhere the performance of the COCAL

code for computing those sequences to model BBH inspi-
rals, which is a necessary step to compute more complex
binary systems including black hole-neutron star binaries.
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