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A Chern-Simons coupling of a new scalar field to electromagnetism may give rise to cosmological

birefringence, a rotation of the linear polarization of electromagnetic waves as they propagate over

cosmological distances. Prior work has sought this rotation, assuming the rotation angle to be uniform

across the sky, by looking for the parity-violating TB and EB correlations that a uniform rotation produces

in the cosmic microwave background temperature/polarization. However, if the scalar field that gives rise

to cosmological birefringence has spatial fluctuations, then the rotation angle may vary across the sky.

Here we search for direction-dependent cosmological birefringence in the WMAP-7 data. We report the

first cosmic microwave background constraint on the rotation-angle power spectrum C��
L for multipoles

between L ¼ 0 and L ¼ 512. We also obtain a 68% confidence-level upper limit of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C��
2 =ð4�Þp

& 1� on

the quadrupole of a scale-invariant rotation-angle power spectrum.
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I. INTRODUCTION

In this work, we use the cosmic microwave background
(CMB) temperature and polarization maps of the
Wilkinson Microwave Anisotropy Probe (WMAP) seven-
year data release [1] to search for direction-dependent
cosmological birefringence (CB). CB is a postulated rota-
tion of the linear polarization of photons that propagate
through cosmological distances [2]. It is present, for ex-
ample, in models where a Nambu-Goldstone boson plays
the role of quintessence [3], but also in models with new
scalar degrees of freedom that have nothing to do with
quintessence [4–7]. The rotation of the polarization is a
consequence of the coupling of a scalar field to the elec-
tromagnetic Chern-Simons term, such that the rotation
angle � is proportional to the total change �� of the field
� along the photon’s path.

Prior to this work, a rotation angle � that is uniform
across the sky had been sought in the CMB [8], where it
would induce parity-violating TB and EB temperature/
polarization correlations [9]. CB has also been sought in
quasar data [2,10]. The tightest constraint currently comes
from a combined analysis of the WMAP, Bicep [11], and
QUaD experiments [12]; it is �1:4� <�< 0:9� at the
95% confidence level [13].

There are, however, a number of reasons to expand the
search and look for a CB angle �ðn̂Þ that varies as a
function of position n̂ on the sky. To begin with, a dynami-
cal field � that drives the rotation can have fluctuations, in
which case the rotation angle varies across the sky [4–6].
Furthermore, if � is some massless scalar, not necessarily
quintessence, its background value does not necessarily
evolve, and the uniform component of the rotation angle
may vanish. The only way to look for CB in this scenario is
through its direction dependence. Additionally, if �ðn̂Þ is

measured with high significance, the exact shape of its
power spectrum provides a window into the detailed phys-
ics of the new cosmic scalar �. Currently, the strongest
limit on a direction-dependent CB angle comes from active
galactic nuclei (AGN) [14], which constrain the root vari-
ance of the rotation angle to be & 3:7�.
In previous studies [15,16], a formalism was developed

to search for anisotropic CB rotation with the CMB. The
sensitivity of WMAP data to this anisotropic rotation is
expected to be competitive with that from AGN [15–17].
However, the CMB also allows individual multipoles C��

L

to be probed—the AGN data only constrain the variance—
and is sensitive to higher L than AGN. The CMB also
probes CB to a larger lookback time than AGN.
Here we apply the formalism developed earlier to the

WMAP seven-year data. Within experimental precision,
we report a nondetection of a direction-dependent cosmo-
logical birefringence. We obtain an upper limit on all the
rotation-angle power-spectrum multipoles C��

L up to
L ¼ 512. This result implies a 68% confidence-level upper
limit on the quadrupole of a scale-invariant power spec-

trum of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C��
2 =ð4�Þp

& 1�.1 As a check, we also find a
constraint on the uniform rotation that agrees with the
results of Ref. [13].
The rest of this paper is organized as follows. In Sec. II,

we review the physical mechanism for CB. In Sec. III, we
revisit the full-sky formalism to search for direction-
dependent rotation, and discuss its implementation.
WMAP data selection, our simulations, and the tests of
the analysis method are described in Sec. IV. Results are

1Here, the power spectrum is defined in the usual way, C��
L �P

M�LM�
�
LM=ð2Lþ 1Þ, where a spherical-harmonic decomposi-

tion of the rotation field provides the rotation-angle multipoles,
�LM � R

Y�
LMðn̂Þ�ðn̂Þdn̂.
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reported in Sec. V, and we conclude in Sec. VI.
Appendix A contains a detailed explanation of the proce-
dure we used to obtain an upper limit of the root-
mean-square rotation angle from the measurement of the
TE correlation in the data; Appendix B contains a discus-
sion of the geometrical properties of the rotation-angle
estimator; Appendix C details the calculation of the L
dependence of the fractional correction for a scale-
invariant power spectrum recovered from cut-sky maps;
and Appendix D displays the analysis masks we used in
this work.

II. PHYSICAL ORIGIN OF COSMOLOGICAL
BIREFRINGENCE

Theories with a weakly broken global Uð1Þ symmetry
provide a natural mechanism for producing a shallow
potential for the pseudo-Nambu-Goldstone-boson (PNGB)
field �. From a cosmological perspective, a PNGB field
with this property is a natural candidate for quintessence,
since it can drive epochs of accelerated expansion [3]. In
addition, many other extensions of the Standard Model of
particle physics and �CDM cosmology abound in scalar
fields descending from theories with shift symmetry and
resembling the PNGB. Such fields generically couple
to photons through the Chern-Simons term F�� ~F�� of

electromagnetism, while the underlying shift symmetry
suppresses all other leading-order couplings to Standard-
Model particles [3]. This way, the existence of a new
degree of freedom � could evade detection in colliders
and other lab experiments, but could still be manifest in
cosmology through CB. We now review in more detail the
physical mechanism that gives rise to CB.

TheChern–Simons-modified electromagneticLagrangian
reads

L ¼ � 1

4
F��F�� � �

2M
�F�� ~F��; (1)

where F�� is the electromagnetic field-strength tensor, ~F��

is its dual, � is a coupling constant, and the mass M is a
vacuum expectation value of the spontaneously broken sym-
metry. The dispersion relation following from this modified
Lagrangian has different solutions for the left- and right-
handed photon polarizations, the net effect being the rotation
of the linearly polarized electromagnetic wave that propa-
gates through the vacuum with the evolving field �. The
direction of polarization is rotated by an amount

� ¼ �

2M
��; (2)

that depends on the total change�� along the photon’s path.
SinceM can be arbitrarily large, perhaps on the order of the
Planckmass, the accumulated change in�must also be large
in order for this angle to be measurable. This motivates the
use of cosmological probes in the search for CB. There are
models in which �� is uniform across the sky (giving rise

only to a uniform rotation angle), as well as models in which
it has anisotropies [4–6]. In this work, we do not focus on any
particular physical model for CB, but rather derive a model-
independent constraint on the rotation-angle power spectrum
C��
L .

III. FULL-SKY FORMALISM AND ITS
IMPLEMENTATION

In this section we review the full-sky-estimator formal-
ism of Ref. [16] for measuring direction-dependent CB. In
order to apply this formalism to the cut sky (after masking
out the Galaxy), all measured power spectra need to be
corrected by a factor of�1=fsky.

2 Unless otherwise noted,

fsky is calculated as the fraction of the pixels that the mask

admits; we include this factor when appropriate in the
following derivation. We rewrite all the relevant formulas
in a position-space form which is numerically efficient for
the analysis of data.
In the presence of birefringence, the polarization field

acquires a phase factor,

pðn̂Þ � ½Qþ iU�ðn̂Þ ¼ ~pðn̂Þe2i�ðn̂Þ; (3)

where Q and U are the Stokes parameters for linear polar-
ization, and tilde denotes the polarization in the absence of
birefringence, which we refer to as the ‘‘primary polariza-

tion.’’ To obtain an estimate of the phase factor e2i�ðn̂Þ from
the polarization field in Eq. (3), we require a tracer of ~pðn̂Þ.
The primary polarization is generated by Thomson scat-
tering of the local temperature quadrupole, so the observed
temperature field Tðn̂Þmay be used for this purpose. Due to
projection effects, the local temperature quadrupoles at last
scattering appear on the sky as a curvature of the tempera-
ture field. The estimator for the rotation angle then involves
projecting the temperature field into a map as a spin-2
quantity (which evaluates the curvature), and looking for
correlation with the polarization field which varies as a
function of the position on the sky. We review a rigorous
derivation of the estimator in the following subsections.

A. Rotation-induced B modes

On the full sky, the polarization field can be decomposed
in terms of spin-2 spherical harmonics 2Ylmðn̂Þ as

pðn̂Þ ¼ �X
lm

ðElm þ iBlmÞ2Ylmðn̂Þ; (4)

where E and B modes represent polarization patterns of
opposite parity [18,19].

2When multipole coefficients are calculated from a map where
a fraction 1� fsky of the pixels is masked (i.e., signal set to
zero), the usual full-sky expression for their variance [i.e., the
power spectrum; see Ref. [18] or Eq. (13) where fsky ¼ 1] is
underestimated by a factor of fsky, because the variance corre-
sponding to the masked pixels is effectively zero.
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The primaryE-mode polarization signal ~Elm (sourced by
the dominant scalar perturbations) is detected with high
significance in WMAP-7 data [13], although primary B
modes (sourced by the subdominant tensor perturbations)
have only been constrained with upper limits. For this
reason, most of the constraining power for CB in WMAP
comes from the search for a CB-induced rotation of the
primary E mode into an observed B mode. The induced B
mode is given as [15,16]

Blm ¼ i

2

Z
dn̂½~pðn̂Þe2i�ðn̂Þ2Y�

lmðn̂Þ
� ~pðn̂Þ�e�2i�ðn̂Þ

�2Y
�
lmðn̂Þ�: (5)

This B mode is correlated with the primary E mode (from
which it originated), and through it also with the tempera-
ture anisotropies. The presence of rotation therefore gives
rise to anomalous EB and TB correlations, and both these
power spectra can be used to search for CB. It is, however,
worth keeping in mind that individual multipoles of the
E-mode polarization signal are still noise dominated,
whereas the temperature is measured at S=N > 1, for a
large number of multipoles, in every frequency band of the
WMAP seven-year data. Therefore, at WMAP noise levels
the temperature field makes a better tracer of the primary
E-mode than the observed E mode itself. For this reason,
on most angular scales, the search for a TB correlation,
which we focus on in this work, provides the best con-
straint on CB [16]. Assuming the primary polarization is a
pure E mode at the surface of last scatter, the CB-induced
TB correlation reads [15,16]

hBlmT
�
l0m0 i ¼

Z
dn̂ ~CTE

l0 �
�
1

2
sinð2�Þ½2Yl0m02Y

�
lm

þ �2Yl0m0�2Y
�
lm� �

i

2
cosð2�Þ½2Yl0m02Y

�
lm

� �2Yl0m0�2Y
�
lm�
�
; (6)

where we suppress the n̂ dependence for clarity. Power

spectrum ~CTE
l0 is the correlation between the temperature

and the primary Emode, which may be calculated with the
publicly available CMB anisotropies code CAMB [20].

So far, we have not assumed anything about the magni-
tude of the rotation per pixel in CMB maps. Observations
of quasars suggest an upper bound on the root-mean-square
(RMS) of �ðn̂Þ of just a few degrees [14], while the
measurement of the TE correlation from WMAP-7 data
implies a somewhat weaker constraint: h�ðn̂Þ2i< 9:5� (see
Appendix A for details). Motivated by these results, in the
rest of this paper we adopt a small-rotation-angle limit. The
numerical results we present in Sec. VA do not depend on
the validity of this assumption, but their interpretation as an
upper limit of the rotation-angle autocorrelation C��

L does;
this subtlety is discussed in more detail in Secs. IV and V,
and Appendix A.

In the limit of small rotation angle, only the sine term
contributes to the observed TB which then reads

hBlmT
�
l0m0 i �

Z
dn̂ ~CTE

l0
X
LM

�LMYLMðn̂Þ � ½2Yl0m0 ðn̂Þ2Y�
lmðn̂Þ

þ �2Yl0m0 ðn̂Þ�2Y
�
lmðn̂Þ�; (7)

where parity condition lþ l0 þ L ¼ even must be satis-
fied3 for any given L. A TB correlation generated by weak
gravitational lensing of the CMB is of opposite parity, with
lþ l0 þ L ¼ odd, and does not represent a source of bias
for measuring a small-rotation signal. In addition, the
effect of lensing is not internally observable at WMAP
noise levels, even with an optimal estimator [21]. We
therefore do not consider lensing further.

B. Minimum-variance quadratic estimator: �̂LM

From Eq. (7), it is evident that scale-dependent birefrin-
gence induces correlations between temperature and po-
larization modes at different wave numbers l, l0; i.e., it
produces a statistically anisotropic imprint on the covari-
ance matrix of the observed CMB. Each ll0 pair measured
in the maps may therefore be used as an estimate of the
rotation-angle multipole �LM, provided that it satisfies the
usual triangle inequalities, L 	 lþ l0 and L 
 jl� l0j, as
well as the parity condition lþ l0 þ L ¼ even. The pre-
scription for combining all ll0 estimates in order to produce
a minimum-variance quadratic estimator is explained in
detail in Ref. [16]. Here, we only present the final expres-
sions for the TB estimator,

�̂LM ¼ NL

Z
dn̂YLMðn̂Þ

�
�X

lm

�B�
lm2Ylmðn̂Þ

X
l0m0

~CTE
l0

�Tl0m02Y
�
l0m0 ðn̂Þ

þ ðcomplex conjugateÞ
�
; (8)

where NL is an L-dependent normalization and the barred
quantities represent inverse-variance filtered multipoles.
For full-sky coverage and homogeneous noise in pixel
space, the expressions for these quantities read

�B lm � Blm

CBB
l

; �Tl0m0 � Tl0m0

CTT
l0

: (9)

The unbarred B and T are the observed temperature and
polarization multipoles corrected for the combined instru-
mental beam and pixelization transfer functionWl, and the
TT and BB power spectra are analytic estimates of the
total signalþ noise power spectrum in a given frequency
band,

3The two contributions to the correlation, sin and cos, have
opposite parities, where only terms that satisfy lþ l0 þ L ¼
even, and lþ l0 þ L ¼ odd, respectively, contribute to any given
multipole L.
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CTT
l � ~CTT

l þ CTT;noise
l =W2

l ;

CBB
l � ~CBB

l þ CBB;noise
l =W2

l :
(10)

In the idealized case of full-sky coverage and homogene-
ous instrumental noise, the estimator normalization NL is
calculable analytically and is equal to the inverse of the
estimator variance,

NL ¼
�X

ll0

ð2lþ 1Þð2l0 þ 1Þ
4�

ð ~CTE
l0 Þ2

CBB
l CTT

l0
ðHL

ll0 Þ2
��1

; (11)

where

HL
ll0 ¼

l L l0

�2 0 2

 !
þ l L l0

2 0 �2

 !
: (12)

The objects in parentheses are Wigner-3j symbols.
In the nonidealized case of real data, the simple inverse-

variance filters (IVFs) presented above are suboptimal, in
the sense that the associated estimator variance is not truly
minimized. To obtain a true minimum-variance estimate,
computationally more involved filters are required [21]. In
practice, however, we find that the full-sky expressions for
the estimator in Eq. (8) provide a very good approximation
to its behavior on the cut sky. Namely, the analytic ex-
pression for its variance, given by Eq. (11), is consistent
with the full variance recovered from a suite of Monte
Carlo simulations (described in detail in Sec. IVB)
when the simple IVFs of Eq. (10) are used in the presence
of sky cuts; the appropriate correction for the fraction of
the sky admitted by the analysis masks must be included in
this case. This result motivates us to continue using the
simple IVFs and the corresponding analytic expressions for
the estimator normalization.

The insensitivity to the presence of the galaxy masks
that we observe here can be interpreted as a consequence of
the following properties. First, the estimator of Eq. (8) is a
product of inverse-variance filtered T and B maps in real
space, which are local functions of the data. The IVFs are
local in pixel space (they resemble Gaussians with a width
of a few arc minutes, corresponding to the resolution in a
given frequency band), and so the mask boundaries remain
localized after filtering. Additionally, the estimator is an
even function of the temperature map [see Eq. (8)—it
contains a second derivative of the temperature field per-
formed by 2Yl0m0], and so it is relatively insensitive to the

discontinuities introduced by the analysis mask. These
properties put the rotation estimator �̂LM in sharp contrast
with the estimators for the gravitational-lensing potential,
where the dependence on the gradient of the temperature
field renders the lensing reconstruction very sensitive to
sky cuts [22].

C. Power-spectrum estimator: Ĉ��
L

Once the rotation-angle multipoles are measured, their
autocorrelation can be estimated as

C�̂ �̂
L � 1

fskyð2Lþ 1Þ
X
M

�̂LM�̂
�
LM: (13)

This represents a sum over the hTBTBi trispectrum, where
‘‘T’’ and ‘‘B’’ denote the temperature and B-mode multi-
pole moments. This estimator for C��

L is nonzero even in
the absence of CB-induced rotation, due to the presence of
Wick contractions from the primary CMB and the instru-
mental noise (discussed in Sec. III B). They produce

the ‘‘noise bias’’ C��;noise
L and must be subtracted from the

measurement of C�̂ �̂
L , in order to recover an estimate of the

CB-induced signal C��
L ,

Ĉ ��
L ¼ C�̂ �̂

L � C��;noise
L : (14)

For Gaussian CMBþ noise fluctuations, the noise bias can
be identified with the three disconnectedWick contractions
of the trispectrum which C�̂ �̂

L probes:

where we neglect contraction (a), which only couples to the
L ¼ 0 mode of �̂LM, and also contraction (c), as it is
negligible.4 In the absence of statistical anisotropy (i.e.,
for full-sky coverage and homogeneous instrumental
noise), the contraction (b) between two real fields with
multipoles lm, l0m0 carries a set of delta functions �ll0�mm0 ,
and the realization-dependent noise bias may be written
explicitly in terms of the observed power spectra. If C�̂ �̂

L is
evaluated by cross correlating the f1, f2, f3, and f4
frequency-band maps, the analytic expression for this ‘‘iso-
tropic bias’’ follows from Eq. (8),

C�f1f2�f3f4 ;noise;iso
L � h�̂LM�̂

�
LMiGauss;iso

¼ X
ll0

ð2lþ 1Þð2l0 þ 1Þ
4�

ðHL
ll0
~CTE
l0 Þ2

� C
TT;f1f3maps
l0 C

BB;f2f4maps
l

ðCTT;f1f1
l0 CBB;f2f2

l CTT;f3f3
l0 CBB;f4f4

l Þ ;

(16)

where the power spectra in the denominator of Eq. (16) are

the simple analytic IVFs. The CTT;f1f3maps
l0 and CBB;f2f4maps

l

are measured by cross correlating data maps in the fre-
quency bands f1 and f3, or f2 and f4 respectively, and
corrected by the factor of 1=fTsky and 1=f

P
sky, corresponding

to the temperature and polarization analysis mask, respec-
tively. Most of the power in temperature comes from CMB
fluctuations, and the B-mode power is mostly noise if

4In our simulations, we verify that this term indeed has a
negligible numerical contribution.
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f2 ¼ f4, and negligible otherwise. Therefore, since the
instrumental noise is independent for different frequency
bands, the largest contribution to the noise bias can be
eliminated by cross correlating estimates of �̂LM obtained
from two different bands.

In reality, we work with a masked sky which has been
observed with inhomogeneous noise levels, and Eq. (16)
does not provide a perfect description of the noise bias,
although it is an excellent first approximation. This leads
us to adopt a two-stage debiasing procedure in which we
subtract both the isotropic bias of Eq. (16), and an addi-
tional Monte Carlo-based correction, in order to correct for
the effects of sky cuts and inhomogeneity of the instru-

mental noise. The total noise bias C��;noise
L is the sum of the

two contributions,

C��;noise
L � C��;noise;iso

L þ C��;noise;MC
L : (17)

We estimate C��;noise;MC
L from a set of WMAP realizations

generated with no birefringence signal (described in
Sec. IVB), analyzed in the same way as the data. For

each realization, we calculate the appropriate C��;noise;iso
L

and averaging over many realizations obtain C��;noise;MC
L as

C��;noise;MC
L � hC�̂ �̂

L � C��;noise;iso
L isims: (18)

This two-stage procedure reduces the sensitivity of our
estimator to uncertainties in the CMB and instrumental-
noise model, as compared to the case where the entire bias
is recovered from Monte Carlo analysis. With the two-
stage procedure, the largest (isotropic) contribution to
the bias is evaluated directly from the power spectra of
the observed maps, and is specific to the CMB realization
at hand; subtracting it from the bispectrum naturally takes
care of any noise (bias) contribution that might arise
from the uncertainty in the background cosmology or
in the noise description used to generate Monte Carlo
simulations.

As we show in Sec. V, we find consistency of results
obtained with either (i) the calculation of the trispectrum as
a four-point autocorrelation of the maps in the same band,
or (ii) the calculation of the trispectrum from cross-band
correlations, which have an almost negligible noise bias.

IV. DATA AND SIMULATIONS

A. Data

Our main results are based on the full-resolution (corre-
sponding to HEALPix resolution of Nside ¼ 512) co-added
seven-year sky maps that contain foreground-reduced
measurements of the Stokes I, Q, and U parameters in
three frequency bands: Q (41 GHz), V (61 GHz), and W
(94 GHz), available at the LAMBDA website [23]. A
summary of the instrumental parameters most relevant to
this analysis is provided in Table I. We apply the seven-
year temperature KQ85y7 mask with 78.27% of the sky
admitted, and a polarization P06 mask with 73.28% of the
sky admitted. These masks are constructed to remove
diffuse emission based on the data in K and Q bands,
and on a model of thermal dust emission. Point sources
are masked based on a combination of external catalog data
andWMAP-detected sources. (For more information about
the exclusion masks, see Appendix D and Ref. [24]).

B. Simulations

We produce a suite of simulated WMAP observations,
both to test the normalization of our �LM estimates as well

as to estimate their variance for the subtraction of C��;noise
L

in Eq. (14). We produce simple simulations of the WMAP
data with the following procedure:
(1) Generate CMB-sky temperature and polarization

realizations for the best-fit ‘‘LCDMþ SZþ ALL’’
WMAP-7 cosmology of Refs. [13,25].

(2) Convolve the simulated CMB skies with a symmet-
ric experimental beam. For the WMAP band maps
we use an effective beam calculated as the average
beam transfer function for all differencing assem-
blies at the given frequency.

(3) Add simulated noise realizations based on the pub-
lished I, Q, U covariance matrices within each
pixel. We do not make any attempt to generate noise
with pixel-to-pixel noise correlations, although we
do exclude multipoles with l < 100 from our analy-
sis, as that is where most of this correlated noise
resides. In Sec. VAwe demonstrate the consistency

of Ĉ��
L estimates constructed from auto- and cross

correlations of maps with independent noise realiza-
tions, and so are justified in neglecting correlated
noise in our analysis.

We do not include Galactic foreground residuals or unre-
solved point sources in our simulations, but we address
their possible impact on our results in Sec. VC.

C. Test runs

In order to demonstrate the recovery of the CB signal
using the minimum-variance estimator formalism and the
debiasing method discussed in the previous sections, we
generate a suite of simulations that include a CB signal,

TABLE I. Relevant instrumental parameters: beam full width
half maximum (FWHM) and approximate map noise for tem-
perature and polarization for the three frequency bands we use in
the analysis [23].

Band FWHM �T [�Karcmin] �P [�Karcmin]

Q (41 GHz) 34’ 316 544

V (61 GHz) 24’ 387 589

W (94 GHz) 22’ 467 693
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i.e., where the polarization maps are rotated by realizations
of a scale-invariant power spectrum of �,

C��
L ¼ AC��;fiducial

L � A
131deg2

LðLþ 1Þ ; (19)

where we choose the amplitude of this fiducial model so
that it gives a S=N ratio of order 1 at low L for WMAP V
band, and an RMS rotation angle on the sky of 10�,
satisfying the small-angle approximation.5 We apply
analysis masks to each simulated map, and then analyze
the map cross correlations (as described in previous sec-
tions), recovering �̂LM multipoles; we then compute the
power spectrum using Eq. (13). Due to the interaction of
the power distribution at different scales in the map with
the geometry of the analysis mask, the fsky factor is in

principle a function of the multipole moment L, which
typically starts smaller than the average6 value at low L’s,
and converges towards the average value at high L’s. Since
most of the signal for this model (which we come back to
in Sec. VB) comes from low L’s, we evaluate the exact L
dependence, and substitute the fskyðLÞ function in Eq. (13)
[for more details on fskyðLÞ, see Appendix C]. In Fig. 1, we
show the results of this test, comparing the input C��

L

power spectrum to the mean of the reconstructed power
from a large number of simulations, and demonstrate a
successful recovery of the signal. In the following section,
we apply the same signal-reconstruction method to
WMAP-7 data.

To conclude this section, we note one subtlety necessary
for the correct interpretation of the results of our analysis.
The expression for the estimator of Eq. (8) only recovers
the rotation-angle multipole in the small-angle regime. In
the general case of arbitrarily large rotation, Eq. (8) pro-
vides an exact estimate of the multipoles of another
‘‘observable’’ quantity: 12 sin½2�ðn̂Þ�. Strictly speaking, our
debiasing procedure also relies on the small-angle approxi-

mation, since C��;noise;MC
L is calculated from a suite of null

simulations. It is therefore necessary to inquire which
regime corresponds to a particular model of rotation before
interpreting our results as a constraint on such a model.
However, the fiducial model we use as an example here
(and which we come back to in Sec. VB) satisfies this
assumption (producing an RMS rotation of �10�). In this
particular case, the difference between the two power
spectra of � and of 1

2 sin½2�� is mainly contained in the

15% difference in their amplitudes. It is thus possible to

recover the rotation-angle power spectrum by simply re-
scaling the measured power—the fact we use in Sec. VB to
constrain this model from WMAP data.

V. RESULTS

A. Model-independent constraints

Before continuing, let us first clarify our notation. The
rotation-angle power spectra are marked with four fre-
quency bands as ½f1f2�½f3f4�. This means that the two
estimates of �LM needed to evaluate the power spectrum
are obtained by cross correlating band f1 with f2, and f3
with f4, respectively. Here, the temperature multipoles are
measured from f1 and f3, and the B modes are obtained
from the maps in f2 and f4 bands. We measure five differ-
ent cross-band correlations: [VV][VV], [QV][QV], [QQ]
[VV], [WV][WV], and [WW][VV], but since the results
for all of them are qualitatively the same, here we only
show plots for a characteristic subset.
Figures 2–4 show the measurement of the rotation-angle

autocorrelation, before and after debiasing, and different
components of the noise bias described in Sec. III C. The
blue and gray areas in the middle panels represent 1� and
3� confidence-level intervals, respectively, derived from
the null-hypothesis (no rotation) Monte Carlo analysis
described in Sec. IVB. We see no significant deviations
from zero in any of the five cross-band correlations—our
results are consistent with �LM ¼ 0 to within 3�, at each
multipole in the range from L ¼ 0 to L ¼ 512. We bin the
power and list the measurements for all multipoles in
Table II. As an additional consistency check, the upper

FIG. 1 (color online). The recovery of the CB signal with the
analysis method presented in Sec. III is demonstrated using a
suite of simulations that include realization of a rotated sky.
The dashed blue line is the input signal power spectrum of C��

L ,
the thick red line represents the power spectrum of 1

2 sin½2�ðn̂Þ�,
and the thin black line is the mean recovered power from the
simulations; the gray region is a 1� confidence-level interval
calculated from the same suite of simulations.

5It is important that the model satisfies the small-angle ap-
proximation, as our calculation of the bias from Monte Carlo
analysis is based on the null assumption. In a regime where this
approximation is not satisfied, higher-order corrections will be
necessary to recover the rotation-angle power spectrum from the
measured hTBTBi trispectrum.

6The ‘‘average’’ here is the usual fsky fraction associated with
a mask, equal to the fraction of the pixels that the mask admits.
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limit we obtain on the uniform rotation angle, given as

� � �00=
ffiffiffiffiffiffiffi
4�

p
, is in good agreement with previous

WMAP results [13]; see Table III.
As we pointed out in Sec. IVC, in the general case of

arbitrarily large rotation, our method provides an exact
estimate of the autocorrelation of the following quantity:
1
2 sin½2�ðn̂Þ�, rather than the rotation angle itself; when the
small-angle approximation is satisfied, this quantity and its
power spectrum asymptote to �ðn̂Þ and C��

L , respectively.
In order to establish the regime corresponding to a particu-
lar model, we note that the RMS fluctuation typical of
realization of a power spectrum C��

L is given by

h�ðn̂Þ2i1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
L

2Lþ 1

4�
C��
L

s
: (20)

In the event of a breakdown in the small-angle approxima-
tion, the values in Table II should be interpreted as con-
straints on the autocorrelation of 1

2 sin½2�ðn̂Þ�, rather than
� itself. Evaluating Eq. (20) for the uncertainty levels
quoted in Table II would erroneously lead to a conclusion
that a large RMS rotation is allowed by the WMAP data;
we show that the upper limit on the RMS rotation is
roughly 9.5� (see Appendix A), and we again note that
previous studies of quasar data imply an even stronger
constraint of �4� [14].

B. Constraints on a scale-invariant power spectrum

The null result shown in Sec. VA can be translated into
an upper limit on the amplitude of any model of rotation.

FIG. 2 (color online). Top panel: Measurement of the rotation-
angle power spectrum from V band, shown before debiasing,
along with the components of the noise bias: Monte Carlo
measurement of the null-hypothesis mean hĈ��

L i, isotropic noise
bias, and the mean isotropic bias. Middle panel: The same power
spectrum after debiasing, with 1� and 3� confidence interval.
Bottom panel: Binned version of the middle-panel power spec-
trum. The results are consistent with zero within 3�.

FIG. 3 (color online). Same as Fig. 2, for ½f1f2��
½f3f4� ¼ ½WW�½VV�.
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As a generic example, we focus on a scale-invariant
rotation-angle power spectrum of Eq. (19). The best-fit
amplitude is evaluated from all multipoles in the range
0 	 L 	 512, using a minimum-variance estimator [26]

Â ¼ �2
A

X
L

C��;fiducial
L Ĉ��

L

varðĈ��
L Þ ; (21)

where

�A ¼
�X

L

ðC��;fiducial
L Þ2
varðĈ��

L Þ
��1=2

(22)

is the analytic expression for the variance of Â, and

varðĈ��
L Þ is the variance of the null-hypothesis rotation-

angle power spectrum, estimated from a suite of null-

hypothesis simulations. We note that the measured Ĉ��
L

have been corrected by fskyðLÞ (see Sec. IVC and

Appendix C; the correction is calculated specifically for
this model) only in this subsection; for the presentation of
the model-independent results, we use the average value,
fsky � 0:68. Most of the constraint here comes from low

L’s; 50% of the sum in Eq. (22) comes from L ¼ 1, and
90% from L < 10.
Even though the analytic expression above provides a

good estimate of the statistical variance, because the con-
straint comes primarily from low-L modes the probability

TABLE III. Uniform-rotation angle � with a 1� confidence
interval, from five cross-band correlations of WMAP-7; the
correction factor of 1=fsky is applied to each measurement

here. The uncertainties are consistent with the�1:4� uncertainty
on the uniform-rotation angle reported by the WMAP team [13]
for a joint analysis of the Q-, V- and W-band data, after
accounting for the fact that we analyze the bands individually
(resulting in slightly larger error bars).

[f1f2] �� 1�½��
[VV] �0:9� 2:3
[QV] �0:5� 2:4
[QQ] 0:9� 2:8
[WV] �2:2� 2:4
[WW] �1:8� 2:7

FIG. 4 (color online). Same as Figure 2, for ½f1f2�½f3f4� ¼
½WV�½WV�.

TABLE II. Results for the measurement of Ĉ��
L [degrees2] are listed, as recovered from five different cross-band correlations. The

1� confidence intervals are calculated with a suite of Gaussian sky simulations, described in Sec. IVB. The results are binned, with the
central L value of each bin listed in the table; the width of each bin is �L� 51.

L bin [VV][VV] [QV][QV] [QQ][VV] [WV][WV] [WW][VV]

26 2:65� 1:87 1:61� 2:44 1:05� 1:62 0:72� 2:03 �0:43� 1:34
77 1:86� 2:58 0:70� 2:84 1:57� 2:36 1:03� 2:70 0:17� 2:04
128 1:07� 1:33 1:00� 1:36 0:27� 1:17 3:04� 1:35 0:96� 1:02
179 1:40� 1:49 �1:29� 1:65 �0:31� 1:15 �0:40� 1:48 0:66� 1:13
230 �1:90� 1:76 �4:47� 1:96 1:87� 1:36 �3:36� 1:97 �0:69� 1:33
282 4:31� 2:23 3:17� 2:42 2:04� 2:21 2:14� 2:42 �0:20� 1:90
333 1:98� 2:39 �0:25� 2:60 4:59� 1:80 2:62� 2:45 �1:11� 1:96
384 0:81� 1:78 �1:71� 1:93 1:97� 1:51 1:22� 1:71 1:93� 1:52
435 �0:40� 1:64 �0:19� 1:80 1:53� 1:26 �1:03� 1:74 �1:65� 1:30
486 3:22� 1:75 0:78� 1:93 1:02� 1:39 2:69� 1:84 �0:28� 1:27
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distribution of Â is significantly non-Gaussian. To capture
this non-Gaussianity in our analysis, we again generate a
suite of null-hypothesis Monte Carlo simulations and re-
cover the 68% and 99% confidence-level intervals from
these simulations. The corresponding probability distribu-

tions for Â are shown in Fig. 5.

The best-fit values for the quadrupole amplitude Ĉ��
2

and associated confidence intervals are listed in Table IV;
consistency with zero is apparent within 3� for all cross-
band correlations we analyzed. The tightest constraint on
the quadrupole amplitude of a scale-invariant rotation-
angle power spectrum comes from [WW][VV]; it isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C��
2 =ð4�Þp

& 1� with 68% confidence.7

C. Potential systematics

In addition to the statistical error reported here, there is
also a systematic error for the measurement of the uniform
rotation angle, owing to uncertainty in the detector polar-
ization angles [13]. This systematic uncertainty should
only apply to the monopole of �. The direction-dependent
part is only sensitive to the extent that it affects the statis-
tical noise bias, and this is mitigated by our data-dependent
debiasing procedure. There are, however, other sources of
systematic error that can potentially bias our estimates and
add uncertainties to the rotation-angle measurements. In
this section we investigate the impact of asymmetry of the
instrumental beams, unresolved polarized point sources,
and foreground residuals from unremoved/unmasked
Galactic emission.

1. Beam asymmetries

The fast spin and precession rates of the WMAP scan
strategy, coupled with the yearly motion of the satellite
around the ecliptic, enforce that any bias to �̂LM originat-
ing from scan-strategy related systematics, like beam

asymmetry, must be confined to M ¼ 0 modes in ecliptic
coordinates [27]. Furthermore, the smoothness of the scan
strategy on large scales (dictated by the 85-degree opening
angle of the detectors, and the large 22.5-degree amplitude
of the hourly satellite precession) ensures that any such
bias falls off quickly as a function of L. The estimates of
C2, as we have discussed in the previous section, are

most sensitive to the low-L modes of Ĉ��
L , so to test for

the presence of beam-asymmetry contamination, we ro-
tate our coordinate system to ecliptic coordinates, and
rederive a constraint on C2 from L < 10, M ¼ 0 modes.
We see no departure from the null hypothesis in this case
where it should be maximal, and so conclude that beam
asymmetries are not a significant source of bias for our
measurements.

2. Unresolved point sources

To test the impact of unresolved point sources on our
results, we repeat the analysis after unmasking the portions
of the maps which are associated with detected point
sources (but not Galactic contamination). Compared to

our fiducial analysis, the measurement points for Ĉ��
L shift

by & 1�, where � represents the statistical error from our
foreground-free Monte Carlo analysis; see Fig. 6. This shift

FIG. 5 (color online). Probability distributions of the best-fit amplitude Â of the scale-invariant rotation power C��
L recovered from a

suite of null-hypothesis realizations are shown for some of the cross-band correlations. The gray areas denote a 68% confidence
interval around a mean value; the red vertical line represents the measurement of the best-fit Â for a given cross-band correlation. We
find consistency with zero within 3� for all five measurements.

TABLE IV. Measurement of the quadrupole amplitude of a
scale-invariant rotation-angle power spectrum for different
cross-band correlations, with 68 and 99% confidence-level in-
tervals, recovered from a suite of null-hypothesis simulations.
Consistency with zero within 3� is apparent for all cross-band
correlations, and the tightest constraint comes from [WW][VV].

½f1f2�½f3f4� Ĉ��
2 � 1�ð�3�Þ½deg2�

[VV][VV] 11:4þ15:8
�16:9ðþ79:0

�27:7Þ
[QV][QV] 29:6þ18:8

�18:3ðþ70:3
�33:4Þ

[QQ][VV] 19:8þ14:3
�13:9ðþ51:6

�46:6Þ
[WV][WV] 16:8þ15:9

�16:9ðþ79:0
�27:7Þ

[WW][VV] 3:0þ14:0
�13:9ðþ43:3

�42:9Þ
7Note that the conversion between the amplitude A and the

quadrupole is C2 ¼ A� 131deg2=6.
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provides a conservative upper limit on the systematic
uncertainty that point-source residuals can produce, as-
suming that the bright detected population has comparable
polarization properties to those of the fainter sources. The
unresolved point-source power at WMAP frequencies is
dominated by unclustered radio sources, with fluxes close
to the detection threshold, and so this is a reasonable
assumption. We note that there is no overall bias, as the
direction of scatter does not appear to be correlated for
different multipoles. Of course, the contribution of radio
point sources to the map is a steep function of the flux cut,
and by unmasking all detected point sources our estimate
of potential bias and uncertainty is overly conservative.
Given a model for radio-source number counts dN=dS, we
can scale these results to the levels of contamination ex-
pected at the actual WMAP source detection threshold of

(conservatively) �1 Jy. Any bias �Ĉ��
L (which we do not

see evidence for, even in the unmasked map) will scale
with the point-source trispectrum as

�Ĉ��
L /

Z Scut

S¼0
S4

dN

dS
dS; (23)

while the uncertainty on Ĉ��
L will scale with the point-

source power as

�ðĈ��
L Þ /

�Z Scut

S¼0
S2

dN

dS
dS

�
2
: (24)

Evaluating these terms for the dN=dS model of Ref. [28],
we find that � and � should be suppressed by factors of

0.005 and 0.06 respectively when moving from a flux cut of
10 Jy (no masking) to 1 Jy. We find even smaller (though
comparable in magnitude) results using the simpler
dN=dS / S�2:15 model of Ref. [29]. This implies that any
bias from unresolved sources should be completely negli-
gible, and any increase in uncertainty due to their contri-
bution to the observed power should be & 0:1�, where �
represents the statistical error from our point source–free
Monte Carlo analysis. In conclusion, we expect the unre-
solved point sources to produce a negligible systematic

uncertainty in the measurement of Ĉ��
L .

3. Foreground residuals

An additional conceivable source of systematic uncer-
tainty might result from Galactic foregrounds. To explore
the extent to which such uncertainty might affect our
results, we perform two tests. In the first, we repeat ourFIG. 6 (color online). Measurement of Ĉ��

L from [WW][VV].
Results shown in black are obtained by using the analysis mask
that covers all the point sources brighter than �1 Jy, while the
results in red (empty circles) are obtained after unmasking all the
point sources. There is no apparent bias and the difference in
every bin is less than the statistical uncertainty, despite the
extreme variation in the source contamination. Scaling argu-
ments in Sec. VC 2 imply that the unresolved point sources have
a negligible contribution to the estimated measurement uncer-
tainty for the most constraining cross-band correlation.

FIG. 7 (color online). Measurement of Ĉ��
L from [WW][VV]

cross-band correlation, with the corresponding statistical uncer-
tainty obtained from a suite of null-hypothesis foreground-free
simulations. Black filled circles are measurements obtained from
the foreground-reduced maps after applying the fiducial analysis
mask, and they represent our fiducial results of Fig. 3. The
colored data points (and the associated error bars) correspond
to the two test analyses: the green x’s are obtained from the maps
prior to foreground subtraction, but using the fiducial mask,
while the red empty circles are measurements obtained from
foreground-reduced maps after applying an extended mask (with
an additional �35% of the sky covered around the Galactic
plane). The results from the two tests show no apparent bias.
For the case of non-foreground-reduced analysis, the difference
from the fiducial measurements is negligible compared to the
statistical uncertainty; for the extended-mask case, the scatter
between the two results is consistent with the difference in sky
coverage. This implies that foregrounds and foreground residuals
should not have a drastic impact on the estimated measurement
uncertainty.

GLUSCEVIC et al. PHYSICAL REVIEW D 86, 103529 (2012)

103529-10



analysis on non-foreground-reduced maps, to test the effect
of the presence of unsubtracted foregrounds. In the second,
we repeat the foreground-reduced analysis using a mask
which excludes a larger fraction of the low-Galactic-
latitude sky. We construct this conservative mask by
combining the fiducial KQ85y7 analysis mask with the
extended mask of Ref. [23], and additionally by masking
out pixels with Galactic latitudes in the range of�40�; the
mask admits only about 33% of the sky, approximately half
the sky admitted in our fiducial analysis (where �68% of
the sky is admitted; see Appendix D). The function of this
test is to explore the effect of residuals left by the fore-
ground subtraction procedure, which should be stronger

close to the Galactic plane. The measurement of Ĉ��
L is

scaled appropriately to account for the fractional sky cov-
erage and the results from the two modified analyses are
compared with the results of the fiducial analysis in Fig. 7.
In the first case, the change in the measurements is negli-
gible compared to the statistical uncertainty. In the second
case, the scatter between the two results is consistent with
the difference in sky coverage (producing up to 40% larger
scatter for the extended-mask data points). The measure-
ments show no apparent bias in either case. These results
imply that foregrounds and foreground residuals are not
likely to make a large systematic contribution to our esti-
mated statistical uncertainty, at least for the case of the
most constraining cross-band correlation [WW][VV].

VI. SUMMARYAND CONCLUSIONS

In this work, we implement the minimum-variance
quadratic-estimator formalism of Ref. [16] to search for
direction-dependent cosmological birefringence with
WMAP seven-year data. We derive the first CMB mea-
surement of the rotation-angle power spectrum in the range
L ¼ 0–512, finding consistency with zero at each multi-
pole, within 3�. We estimate an upper limit on each power-
spectrum multipole by simulating a suite of Gaussian sky
realizations with no rotation, including symmetric beams
and noise realizations appropriate for each WMAP fre-
quency band, and also Q-U correlations and sky cuts.
We investigate the impact of foregrounds and polarized
diffuse point sources on the reported constraints and come
to the conclusion that they are not significant sources of
systematic error for the rotation-angle estimates. Finally,
we use the null result to get a 68% confidence-level upper

limit of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C��
2 =ð4�Þp

& 1� on the quadrupole of a scale-
independent rotation-angle power spectrum. Even though
the CMB constraint turns out to be comparable to that
derived from quasar measurements, the CMB analysis
has a significant advantage: it provides a measurement of
the rotation-angle power at each individual multipole L
and has better sensitivity to models with significant power
at high multipoles.

The same formalism we use in this work can be
applied to forecast the sensitivity of upcoming and

future-generation CMB satellites to detecting direction-
dependent cosmological birefringence. With seven years’
worth of integration time with WMAP, we are able to
constrain the uniform component of the rotation to less
than about a degree; it will be interesting to see the results
of this analysis method applied to the upcoming data from
the Planck satellite [30], where the sensitivity to rotation
angles on the order of a few arc minutes [16] is expected.
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APPENDIX A: CONSTRAINTS ON RMS
ROTATION FROM WMAP

If the primordial B mode is small compared to the
primordial E mode, and the rotation field is independent
of the CMB, the measured TE correlation reads (see also
Fig. 8)

CTE
l ¼ hcos½2�ðn̂Þ�i ~CTE

l ; (A1)

where the mean is taken over all realizations of the rotation
field, and it does not depend on the direction n̂. In the case

FIG. 8 (color online). TE correlation measured fromWMAP-7
data (black) is compared to the primordial power spectrum,
generated using CAMB for the best-fit cosmology with no
rotation (red, solid); both power spectra are obtained from
Ref. [23]. The uncertainty on this measurement (gray) leaves
room for a maximal rotation-angle RMS of roughly 9.5�.
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that the probability distribution for � is a Gaussian

centered at zero and with a width h�ðn̂Þ2i1=2, the expecta-
tion value in Eq. (A1) is simply related to the pixel variance
of �,

hcos½2�ðn̂Þ�i ¼ e�2h�ðn̂Þ2i: (A2)

Therefore, an estimate of this expectation value and its
uncertainty, obtained from the TE measurement as com-

pared to the primordial power spectrum ĈTE
l provides an

upper limit of the rotation-angle pixel variance. Adopting
the expressions for a minimum-variance estimator and its
variance [analogous to those of Eqs. (21) and (22)], we
obtain hcos½2�ðn̂Þ�i ¼ 0:997� 0:050 (note that this con-
straint follows from the 21� confidence-level detection of

the TE correlation reported by Ref. [13]), implying an

upper limit on the rotation rms h�ðn̂Þ2i1=2 & 9:5�.

APPENDIX B: VISUALIZING THE CB KERNELS

To illustrate the shape in harmonic space of the statistical
anisotropy introduced by CB, we plot here the power-
spectrum kernel as well as the geometric Wigner-3j contri-
butions to the CB kernels in the ll0 space from Eq. (8);
see Figs. 9 and 10. The structure of the power-spectrum
kernel originates from the polarization and temperature
power spectra; the terms that correspond to the acoustic
peaks in the primordial TT and TE power spectra have
the largest contribution to the sum over ll0. The geometric
weight dictates the shape of the l, l0, L triangles which are
generated by CB at a scale L. The terms where either l or l0

FIG. 10 (color online). The power-spectrum kernel of the
summands in Eqs. (8) and (16). The types of triangles that
contribute the most to the isotropic bias of C�̂ �̂

L are set by the
geometric properties of spin-2 Wigner-3j symbols illustrated by
the kernel shown in Fig. 9, which is modulated by this kernel to
produce summands in the expression for the bias.

FIG. 9 (color online). The Wigner-3j geometric factors in the summands of Eqs. (8) and (16) for three different values of L. The
geometric factor is nonzero only in the region of the ll0 space where the triangle inequalities are satisfied. The dominant contribution
comes from the triangles in which L� l, or L� l0, i.e., where either the temperature or the polarization mode has a length scale
comparable to the length scale of the rotation-angle mode.

FIG. 11 (color online). The L dependence of the fsky factor
used for the reconstruction of the scale-invariant rotation-angle
power spectrum in Secs. IVC and VB. The horizontal (green)
line at fsky ¼ 0:68 represents the fraction of pixels admitted by

the mask.
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is close in value to L have the largest contribution. The
combination of the geometric weight and the power-spectra
weight dictates the size of the noise bias at any particular L.
The interplay of the two, for example, produces a peak at
L� 270, apparent in all the plots of the noise bias presented

in this work. The local maximum in the variance of Ĉ��
L also

appears at this scale.

APPENDIX C: fskyðLÞ
In order to evaluate the exact L dependence of fsky used

to reconstruct the scale-invariant rotation-angle power from

the CMB maps (see Sec. IVC), we generate a large number
of �ðn̂Þ realizations of the power-spectrum model of Eq.
(19), mask the sky with the fiducial analysis mask, and then
recover the input power spectrum in the usual way, i.e., take
the pseudo-CL of the masked map. The fskyðLÞ shown in

Fig. 11 is the average ratio of the output to the input power,
as a function of the multipole moment L.

APPENDIX D: ANALYSIS MASKS

Here we visualize all the analysis masks we used in this
paper: the fiducial temperature and polarization masks, as
well as the two test masks used in Sec. VC (see Fig. 12).
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