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We present a specific prescription for the calculation of cosmological power spectra, exploited here at

two-loop order in perturbation theory, based on the multipoint propagator expansion. In this approach,

density and velocity power spectra are constructed from the regularized expressions of the propagators

that reproduce both the resummed behavior in the high-k limit and the standard perturbation theory results

at low k. With the help of N-body simulations, we particularly focus on the density field, and show that

such a construction gives robust and accurate predictions for both the density power spectrum and the

correlation function at percent level in the weakly nonlinear regime. We then present an algorithm that

allows accelerated evaluations of all the required diagrams by reducing the computational tasks to one-

dimensional integrals. This is achieved by means of precomputed kernel sets defined for appropriately

chosen fiducial models. The computational time for two-loop results is then reduced from a few minutes,

with the direct method, to a few seconds with the fast one. The robustness and applicability of this method

are tested against the power spectrum COSMIC EMULATOR from which a wide variety of cosmological

models can be explored. The FORTRAN PROGRAM with which direct and fast calculations of density power

spectra can be done, REGPT, is publicly released as part of this paper.
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I. INTRODUCTION

Since recombination, the large-scale structure of the
Universe has evolved dominantly under the influence of
both the cosmic expansion and the force of gravity acting
on a pressureless fluid. The statistical nature of its spatial
clustering is therefore expected to bring valuable cosmo-
logical information about the dynamics of the cosmic
expansion and structure formation. Of particular impor-
tance is the measurement of baryon acoustic oscillations
(BAOs) imprinted on the power spectrum or two-point
correlation function (e.g., Refs. [1–5]) from which one
can precisely determine the cosmological distance to the
high-redshift universe, and henceforth clarify the nature of
late-time cosmic acceleration (e.g., Refs. [6–10]). Precious
information regarding the growth of structure are and will
also be obtained from redshift-space distortions (e.g.,
Refs. [11–15]) and weak lensing measurements (see
Refs. [16,17] and review papers [18,19]) at scales ranging
to the linear or quasilinear to the nonlinear regimes.
This could be captured with unprecedented details with
the ongoing and future surveys, thanks to their redshift
depth and large angular area, such as the Sloan Digital Sky
Survey III,1 the WiggleZ survey,2 the Subaru Measurement
of Imaging and Redshifts,3 the Dark Energy Survey,4 the

BigBOSS project,5 the Physics of the Accelerating
Universe collaboration6 and the ESA/Euclid survey.7

With the advent of such wealth of observations, there is
therefore a growing interest in the development of theo-
retical tools to accurately compute the statistical quantities
of the large-scale structure. At decreasing redshift and
scale, the evolution of the large-scale structure however
deviates significantly from the linear theory prediction and
nonlinear gravitational clustering effects have to be taken
into account. While N-body simulations can be relied upon
in specific cases, because of the range of scales to be
covered and the variety of models to explore, they should
be complemented by analytical investigations that aim at
computing the statistical properties of the large-scale struc-
ture from first principles, henceforth extending the validity
range of linear calculations. It is to be noted that even at the
scale of BAOs, linear calculations and one-loop corrections
from the standard perturbation theory (PT) perform poorly
(see e.g., Refs. [20–22]) asking for more advanced PT
calculations. A crucial remark is that while higher-order
PT corrections need to be included to improve the per-
formance of predictions, the applicable range of PT pre-
diction largely depends on the PT scheme itself. Indeed,
the standard PT treatment is known to have bad conver-
gence properties, and it produces ill-behaved higher-order

1www.sdss3.org.
2wigglez.swin.edu.au.
3sumire.ipmu.jp/en/.
4www.darkenergysurvey.org.

5bigboss.lbl.gov/index.html.
6www.pausurvey.org.
7www.euclid-ec.org.
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corrections. The improvement of perturbation theory is
thus a critical issue for the scientific exploitation of the
coming surveys. Various resummation schemes have been
proposed in Refs. [20,22–33] that aim at improving upon
standard schemes. The aim of this paper is not to compare
them but to propose, and test, a specific scheme that can be
used routinely in practice.

In this paper, we are particularly interested in one of the
resummation treatments, advocated in Ref. [34]. In this
approach, the standard PT expansion is reorganized by
introducing the multipoint propagators. These are the en-
semble average of the infinitesimal variation of the cosmic
fields with respect to the initial conditions. A key property
shown in the previous reference is that all the statistical
quantities such as power spectra and bispectra can be
reconstructed by an expansion series written solely in
terms of the multipoint propagators. This is referred to as
the multipoint propagator expansion or � expansion. The
advantage of this approach is that the nonperturbative
properties, which can be obtained in standard PT by
summing up infinite series of PT expansions, are wholly
encapsulated in the multipoint propagators, including the
effect of vertex renormalization. Furthermore, the � ex-
pansion has been found to be valid not only for Gaussian
initial conditions, but also for non-Gaussian ones [35]. The
construction of accurate calculation scheme for power
spectra and bispectra can then be split in pieces that can
be tested separately.

The second key property that leads us to consider such
objects is that their global shape, e.g., their whole
k-dependence, can be computed in a perturbation theory
context and compared to N-body results thanks to the
high-k exponential damping tail they all exhibit [34,36].
All these properties make the multipoint propagators the
most important building blocks in the � expansion and the
focus of our modeling efforts. In the following we will in
particular make full use of the novel regularization scheme
proposed in Ref. [37] that allows to consistently interpolate
between standard PT results at low k and the expected
resummed behavior at high k. This scheme has been ex-
plicitly tested for the two-point propagators up to two-loop
order in Ref. [38] and for (specific shapes of) the three-
point propagators in Ref. [37].

The first objective of this paper is to present an explicit
calculation of the nonlinear power spectrum and correla-
tion function of the cosmic density field based on this
regularized treatment. Of particular interest is the extent
to which the proposed scheme for � expansion works
beyond standard PT when corrections at next-to-next-to-
leading, i.e., two-loop, order are included. Results will be
checked with N-body simulations. We will see that the �
expansion with the regularized treatment of propagators,
which we hereafter call REGPT, has good convergence
properties and agrees remarkably well with simulations
in the weakly nonlinear regime. Though the applicable

range of PT treatment is still restricted to a certain wave-
number on large scales, the present REGPT treatment in-
cluding the two-loop order is found to entirely cover the
scales of BAOs at any redshift.
The second objective of this paper is to design and

exploit a method to accelerate the power spectrum
computations. Power spectra calculations in the context
of REGPT calculations are rather involved requiring
multidimensional integrations that have to be done with
time-consumingMonte Carlo calculations. Typically, com-
puting the power spectrum at percent level from our
scheme takes several minutes. While this is acceptable
when a handful of models have to be computed, this is
an obstacle when a large domain of parameter space has
to be systematically explored. Making use of the �
expansion functional form, we found though that it is
possible to exploit a novel technique for accelerated
calculation, in which only one-dimensional integrals
need to be evaluated while ensuring the same precision
as rigorous REGPT calculations. The bottom line of this
approach is to see the resulting nonlinear power spectrum
as a functional of the linear power spectrum and then
Taylor-expand this form with respect to the linear
spectrum shape. We found that for well-chosen fiducial
models, it is sufficient to Taylor-expand to first order only.
We are then led to prepare in advance a set of kernel
functions encoding the REGPT results for well chosen
fiducial models, whose normalizations are left floating,
from which the REGPT predictions for the target model can
be calculated. We publicly release the Fortran code,
REGPT, as a part of this paper.8

The organization of this paper is as follows. We begin
by recalling the basic equations for cosmic fluid and
perturbation theory in Sec. II. We introduce the multipoint
propagator and give the power spectrum expression based
on the � expansion. With the regularized treatment of
multipoint propagators, in Sec. III, we examine the the
power spectrum calculations including the corrections up
to the two-loop order, and investigate their UV and IR
sensitivity in evaluating the PT kernels. Then, in Sec. IV,
a detailed comparison between PT calculation and N-body
simulation is presented, and the accuracy and range of
validity of PT calculation is checked. Based on this,
Sec. V describes in detail the method to accelerate the
power spectrum calculations. Robustness and applicability
of the accelerated REGPT calculations to a wide range of
cosmological models are tested against power spectrum
COSMIC EMULATOR code in Sec. VI. Finally, in Sec. VII, we

conclude and explore practical extensions of this work.
The description of the publicly released code, REGPT, is
presented in Appendix B.

8The code is available at www-utap.phys.s.u-tokyo.ac.jp/
~ataruya/regpt_code.html.
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II. EQUATIONS OF MOTION
AND THE � EXPANSION

A. Equations of motion

In what follows, we consider the evolution of cold dark
matter (CDM) plus baryon systems neglecting the tiny
fraction of (massive) neutrinos. Owing to the single-stream
approximation of the collisionless Boltzmann equation,
which is thought to be quite accurate an approximation
on large scales, the evolution of the CDM plus baryon
system can be treated as an irrotational and pressureless
fluid system whose governing equations are continuity and
Euler equations in addition to the Poisson equation (see
Ref. [39] for review). In the Fourier representation, these
equations are further reduced to a more compact form. Let
us introduce the two-component multiplet (e.g., Ref. [20])

�aðk; tÞ ¼
�
�ðk; tÞ;��ðk; tÞ

fðtÞ
�
; (1)

where the subscript a ¼ 1, 2 selects the density and the
velocity components of CDM plus baryons, with � and
�ðxÞ � r � vðxÞ=ðaHÞ, where a and H are the scale factor
of the Universe and the Hubble parameter, respectively.
The function fðtÞ is given by fðtÞ � d lnDðtÞ=d lna, and
the quantityDðtÞ is the linear growth factor. Then, in terms
of the new time variable � � lnDðtÞ, the evolution equa-
tion for the vector quantity �aðk; tÞ becomes�

�ab

@

@�
þ�abð�Þ

�
�bðk;�Þ

¼
Z d3k1d

3k2
ð2�Þ3 �Dðk� k1 � k2Þ�abcðk1; k2Þ

��bðk1;�Þ�cðk2;�Þ; (2)

where we used the summation convention, that is the
repetition of the same subscripts indicates the sum over
the whole multiplet components. In the above, the quantity
�D is the Dirac delta function, and the time-dependent
matrix �abð�Þ is given by

�abð�Þ ¼
0 �1

� 3
2f2

�mð�Þ 3
2f2

�mð�Þ � 1

 !
(3)

with the quantity �mð�Þ being the density parameter of
CDM plus baryons at a given time. The vertex function
�abc becomes

�abcðk1; k2Þ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

1
2

�
1þ k2�k1

jk2j2
�
; ða; b; cÞ ¼ ð1; 1; 2Þ

1
2

�
1þ k1�k2

jk1j2
�
; ða; b; cÞ ¼ ð1; 2; 1Þ

ðk1�k2Þjk1þk2j2
2jk1j2jk2j2 ; ða; b; cÞ ¼ ð2; 2; 2Þ

0; otherwise:

(4)

Equation (2) can be recast as the integral equation
(e.g., Refs. [20,39])

�aðk;�Þ ¼ gabð�;�0Þ�bðkÞ

þ
Z �

�0

d�0gabð�;�0Þ
Z d3k1d

3k2
ð2�Þ3

� �Dðk� k1 � k2Þ�bcdðk1; k2Þ�cðk1;�0Þ
��dðk2;�0Þ: (5)

The quantity �aðkÞ � �aðk; �0Þ denotes the initial con-
dition, and the function gab denotes the linear propagator
satisfying the following equation,�

�ab

@

@�
þ�abð�Þ

�
gbcð�;�0Þ ¼ 0; (6)

with the boundary condition gabð�;�Þ ¼ �ab. The statis-
tical properties of the field �a are encoded in the initial
field �a, for which we assume Gaussian statistics. The
power spectrum of �a is defined as

h�aðkÞ�bðk0Þi ¼ ð2�Þ3�Dðkþ k0ÞPab;0ðkÞ: (7)

In what follows, most of the calculations will be made
assuming the contribution of decaying modes of linear
perturbation can be neglected. This implies that the field
�aðkÞ is factorized as �aðkÞ ¼ �0ðkÞua with ua ¼ ð1; 1Þ,
and thus the initial power spectrum is written as
Pab;0ðkÞ ¼ P0ðkÞuaub.
Using the formal expression (5), a perturbative solution

is obtained by expanding the fields in terms of the initial
fields

�aðk;�Þ ¼
X1
n¼1

�ðnÞ
a ðk;�Þ: (8)

The expression of the solution at each order is written as

�ðnÞ
a ðk;�Þ ¼

Z d3k1 � � � d3kn
ð2�Þ3ðn�1Þ �Dðk� k1 � . . .� knÞ

�F ðnÞ
a ðk1; k2; � � � ;kn;�Þ�0ðk1Þ � � ��0ðknÞ:

(9)

The kernelF ðnÞ
a is generally a complicated time-dependent

function, but can be constructed in terms of the quantities
�abc and gab. Examples of the solutions are shown dia-
grammatically in Fig. 1. Because we are interested in the

FIG. 1. Diagrammatic representation of the standard PT
expansion.
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late-time evolution of large-scale structure only, we can
take the limit �0 ! �1. As a consequence, the fastest
growing term is the only surviving one and the kernel is
simplified into

F ðnÞ
a ðk1; � � � ; knÞ ¼ en�FðnÞ

a;symðk1; � � � ;knÞ; (10)

where the function FðnÞ
a;sym is the symmetrized standard PT

kernel, sometimes written as FðnÞ
a;sym ¼ ðFn;GnÞ, whose

explicit expressions are obtained from recursion relations
as recalled in Ref. [39].

B. � expansion and regularized PT treatment

In this paper, we are more specifically interested in the
power spectra Pabðk;�Þ, defined as

h�aðk;�Þ�bðk0;�Þi ¼ ð2�Þ3�Dðkþ k0ÞPabðjkj;�Þ:
(11)

Substituting a set of perturbative solutions (9) into the
above definition, it is straightforward to obtain the succes-
sive perturbative expressions for the power spectra. This
is the standard PT treatment where the initial fields values
are seen as the perturbative variables. The standard PT
calculations have, however, been shown to produce ill-
behaved higher-order corrections that lack good conver-
gence properties.

As an alternative to the standard PT framework, it has
been recently advocated by many authors that the PT
expansion can be reorganized by introducing nonperturba-
tive quantities to improve the resulting convergence of the
expansion. The � expansion is one such nonperturbative
framework, and the so-called multipoint propagators con-
stitute the building blocks of this � expansion. Denoting

the (pþ 1)-point propagator by �ðpÞ, we define

1

p!

�
�p�aðk; �Þ

��c1ðk1Þ � � ���cpðkpÞ
�

¼ �Dðk� k1...pÞ 1

ð2�Þ3ðp�1Þ �
ðpÞ
ac1���cpðk1; � � � ; kp;�Þ:

(12)

With these objects, the power spectra is shown to be
expressed as [34],

Pabðjkj;�Þ ¼
X1
t¼1

t!
Z d3q1 � � �d3qt

ð2�Þ3ðt�1Þ �Dðk� q1...tÞ

� �ðtÞ
a ðq1; � � � ; qt;�Þ�ðtÞ

b ðq1; � � � ; qt;�Þ
� P0ðq1Þ � � �P0ðqtÞ; (13)

where we introduced the shorthand notation,

�ðtÞ
a ðq1; . . . ; qt;�Þ ¼ �ðtÞ

ac1���ctðq1; . . . ; qt;�Þuc1 � � � uct :
(14)

The diagrammatic representation for multipoint
propagator and the power spectrum is respectively shown
in Figs. 2 and 3.
The construction of the � expansion is rather transpar-

ent, and like Eq. (13), one easily finds the expressions for
the higher-order statistical quantities such as bispectrum.
Another important point is that one can exploit the asymp-

totic properties of the propagators �ðpÞ beyond perturbation
theory expansions. To be precise, in the high-k limit,
higher-order contributions can be systematically computed
at all orders, and as a result of summing up all the con-
tributions, the multipoint propagators are shown to be
exponentially suppressed [34,36]

�ðpÞ
a ðk1; . . . ;kp;�Þ !k!1

exp

�
�k2�2

de
2�

2

�
�ðpÞ
a;treeðk1; . . . ;kp;�Þ

(15)

with k ¼ jk1 þ � � � þ kpj. This is the generalization of the
result for the two-point propagator in Ref. [23]. Here, the

quantity �ðpÞ
a;tree is the lowest-order nonvanishing propagator

obtained from the standard PT calculation, and �d is the
one-dimensional root mean square of the displacement
field defined by

�2
d ¼

1

3

Z d3q

ð2�Þ3
P0ðqÞ
q2

: (16)

The form of Eq. (15) does not however provide a good
description of the propagators at all scale. At low k the
propagators are expected to approach their standard PT
expressions that can be written formally,

�ðpÞ
a ðk1; . . . ;kp;�Þ ¼ �ðpÞ

a;treeðk1; . . . ;kp;�Þ

þX1
n¼1

�ðpÞ
a;n� loopðk1; . . . ;kp;�Þ: (17)

For the dominant growing-mode contribution we are inter-
ested in, each correction term is expressed in terms of the
standard PT kernels as,

�ðpÞ
a;treeðk1; . . . ; k2;�Þ ¼ ep�FðpÞ

a;symðk1; . . . ; kpÞ; (18)

for the tree-level contribution, and

FIG. 2. Example of the multipoint propagator, �ð4Þ
a . A large

filled circle symbolically represents all possible contributions
that enter into the fully nonlinear propagator. A part of those
contributions can be seen graphically using PT expansion

(see Figs. 4 and 5 for three-point propagator �ð2Þ
a ).
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�ðpÞ
a;n�loopðk1; . . . ; kp;�Þ ¼ eð2nþpÞ�cðpÞn

Z d3p1 � � � d3pn

ð2�Þ3n Fð2nþpÞ
a;sym ðp1;�p1; � � � ;pn;�pn;k1; . . . ; kpÞP0ðp1Þ � � �P0ðpnÞ

� eð2nþpÞ� ��ðpÞ
a;n� loopðk1; . . . ;kpÞ (19)

for the n-loop order contributions, where the coefficient
cðpÞn is given by cðpÞn ¼ ð2nþpÞCpð2n� 1Þ!! with ð2nþpÞCp

being the binomial coefficient. The graphical representa-
tion of the standard PT expansion is shown in Fig. 4. The
important remark in Eq. (19) is that each perturbative
correction possesses the following asymptotic form:

�ðpÞ
a;n�loop !k!1 1

n!

�
� k2�2

de
2�

2

�
n
�ðpÞ
a;n�tree; (20)

which consistently recovers the expression (15) when we
sum up all the loop contributions. This indicates the
existence of a matching scheme which smoothly interpo-
lates between the low-k and high-k results for any multi-
point propagator. Such a scheme has been proposed in
Ref [37] where a novel regularized scheme, in which
the low- and high-k behaviors are jointly reproduced, is

derived. The construction of the regularized propagator is
totally unambiguous. They can incorporate an arbitrary
number of loop corrections.
Restricting the results to the growing mode contribu-

tions, the regularized propagators are expressed in a trans-
parent way in terms of the standard PT results, and one gets

�ðpÞ
a;regðk1; . . . ; kp;�Þ

¼ ep�
�
FðpÞ
a;symðk1; . . . ; kpÞ

�
1þ k2�2

de
2�

2

�

þ e2� ��ðpÞ
a;1�loopðk1; . . . ;kpÞ

�
exp

�
� k2�2

de
2�

2

�
; (21)

which consistently reproduces one-loop PT results at low
k. An example of the regularized propagator valid at one-
loop order is diagrammatically shown in Fig. 5. This

FIG. 4. Diagrammatic representation of the standard PT expansion for three-point propagator, �ð2Þ
a . For fastest growing-mode

contribution, the standard PT kernels, FðnÞ
a;sym, form the basic pieces of PT expansion, depicted as incoming lines connected to a single

outgoing line at the shaded circle. In the case of �ð2Þ
a , the leading-order contribution is Fð2Þ

a;sym, and successively the kernels Fð4Þ
a;sym and

Fð6Þ
a;sym appear as higher-order contributions, for which pairs of the incoming lines are glued at the crossed circle, which indicates the

initial power spectrum P0, forming closed loops.

FIG. 3. Diagrammatic representation of the power spectrum by means of � expansion. Here, the result up to the two-loop order is
shown. In each contribution of the diagrams, the multipoint propagators are glued together at the crossed circles where the initial power
spectra P0ðkÞ are inserted.

FIG. 5. Diagrammatic representation of the regularized three-point propagator, �ð2Þ
a;reg. In the high-k limit, the higher-loop

contribution for three-point propagator behaves like Eq. (20), indicating that each loop diagram (�ð2Þ
a;n� loop) is effectively split into

tree diagram (Fð2Þ
a;sym) and self-loop diagram (f�ðk�dÞ2=2gn=n!), the latter of which is depicted as open loops. Systematically summing

up all the higher-loop contributions, we recover Eq. (15), which is graphically shown as the infinite sum of open-loop diagrams in the
brace. To reproduce the standard PT result at low k, the one-loop diagram is inserted in the bracket, and the tree diagram is multiplied
by the counter term f1þ ðk�dÞ2=2g.
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construction is easily generalized to include the higher-
order PT corrections at low k. For instance, the regularized
propagator including the corrections up to the two-loop
order becomes

�ðpÞ
a;regðk1; . . . ; kp;�Þ

¼ ep;�
�
FðpÞ
a;treeðk1; . . . ; kpÞ

�
1þ k2�2

de
2�

2
þ 1

2

�
k2�2

de
2�

2

�
2
�

þ e2� ��ðpÞ
1�loopðk1; . . . ; kpÞ

�
1þ k2�2

de
2�

2

�

þ e4� ��ðpÞ
2�loopðk1; . . . ; kpÞ

�
exp

�
� k2�2

de
2�

2

�
: (22)

Note that the functions ��ðpÞ
n-loop are the scale-dependent part

of the propagator defined by Eq. (19).

III. POWER SPECTRUM CALCULATION FROM
REGULARIZED � EXPANSION

A. Power spectrum at two-loop order

Since the proposed regularized propagators preserve
the expected low-k and high-k behaviors, the convergence
of the � expansion adopting the regularization scheme
would be much better than the standard PT expansion.
In this paper, applying this regularized PT treatment, we
will explicitly demonstrate the power spectrum calcula-
tions at two-loop order. Comparing those predictions with
N-body simulations, the validity and precision of PT treat-
ment are discussed. From Eq. (13), the explicit expression
for the power spectrum valid up to the two-loop order
becomes

Pabðk;�Þ ¼ �ð1Þ
a;regðk;�Þ�ð1Þ

b;regðk;�ÞP0ðkÞ þ 2
Z d3q

ð2�Þ3 �
ð2Þ
a;regðq; k� q;�Þ�ð2Þ

b;regðq; k� q;�ÞP0ðqÞP0ðjk� qjÞ

þ 6
Z d6pd3q

ð2�Þ6 �ð3Þ
a;regðp; q; k� p� q;�Þ�ð3Þ

b;regðp; q; k� p� q;�ÞP0ðpÞP0ðqÞP0ðjk� p� qjÞ (23)

with the regularized propagators given by

�ð1Þ
a;regðk;�Þ ¼ e�

�
1þ k2�2

de
2�

2
þ 1

2

�
k2�2

de
2�

2

�
2

þ e2� ��ð1Þ
a;1�loopðkÞ

�
1þ k2�2

de
2�

2

�

þ e4� ��ð1Þ
a;2�loopðkÞ

�
exp

�
� k2�2

de
2�

2

�
; (24)

�ð2Þ
a;regðq; k� q;�Þ ¼ e2�

�
Fð2Þ
a;symðq;k� qÞ

�
1þ k2�2

de
2�

2

�

þ e2� ��ð2Þ
a;1�loopðq;k� qÞ

�

� exp

�
� k2�2

de
2�

2

�
; (25)

�ð3Þ
a;regðp; q; k� p� q;�Þ ¼ e3�Fð3Þ

a;symðp; q;k� p� qÞ

� exp

�
� k2�2

de
2�

2

�
: (26)

Note that the higher-order contributions up to the two- and
one-loop order of the propagators are respectively included
in the expression of the regularized propagators �ð1Þ

a;reg and
�ð2Þ
a;reg, consistently with the � expansion at two-loop order.
The power spectrum expression involves many integrals,

but, most of them are reduced to two- or three-dimensional
integrals if one uses the analytic expressions for the kernels

of higher-loop corrections �� in the regularized propagator.

We use the expression in Ref. [38] to evaluate ��ð2Þ
1-loop, and

adopt the fitting functions for the kernel of ��ð1Þ
2-loop (see

Ref. [38]). We then apply the method of Gaussian quad-
rature to the numerical evaluation of the low-dimensional

integrals. A bit cumbersome is the integral containing �ð3Þ.
While it can be reduced to a four-dimensional integral in
principle, the expression of the resulting kernel would be
very cumbersome and might not be suited for practical
calculation. We thus adopt the Monte Carlo technique of
quasirandom sampling using the CUBA library [40], and
evaluate the five-dimensional integral directly.9

Fig. 6 illustrates an example how each correction term in
the regularized � expansion contributes to the total power
spectrum. The plotted result is the density power spectrum,
P11, and the contribution of the term involving each multi-
point propagator is separately shown. The three corrections
contribute to the power spectrum at different scales, and

the higher-order terms involving �ð2Þ
reg and �ð3Þ

reg are well

localized, each producing one bump. This is a clear mani-
festation of the result of the regularized PT treatment, and
it resembles what the renormalized perturbation theory
calculations by Ref. [24] give.
In the next section, the results of the regularized �

expansion will be compared with N-body simulations.
But, before doing that, we will give several remarks and
comments on the computation of the power spectrum in the
subsequent subsection.

9Since the final result of the integration is expressed as a
function of only the wavenumber k, the integrand possesses an
azimuthal symmetry with respect to the vector, k, indicating that
the integral is reduced to a five-dimensional integral.
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B. Effect of running UV cutoff for �d

Since the shape of the power spectrum given by Eq. (23)
significantly depends on the exponential damping in the
regularized propagators, we first comment on the effect of
this function. As it has been shown, the exponential func-
tion arises from the summation of infinite series of pertur-
bations at all order in the high-k limit. Recently, Ref. [36]
advocated that this exponential function can be interpreted
as the result of resummation at hard part (high k), and the
displacement dispersion �d in the exponent must be eval-
uated in a consistent way that the domain of the integral is
restricted to a soft part (low k). This implies that depending
on the scale of our interest, the boundary of the soft and
hard domains can be changed, and the resulting quantity
�d should be regarded as a scale-dependent function.

In Fig. 7, we examine the impact of the scale-dependent
�d on the power spectrum at z ¼ 1. Plotted results are the
contributions of the power spectrum corrections (upper)
and the total power spectrum divided by the smooth refer-
ence linear spectrum (bottom). Here, we evaluate �d by
introducing the running UV cutoff k�ðkÞ

�2
dðkÞ ¼

Z k�ðkÞ

0

dq

6�2
P0ðqÞ: (27)

Various curves in Fig. 7 represent the results with different
prescription for the running UV cutoff. The correction

involving the four-point propagator �ð3Þ
reg is most sensitively

affected by the running cutoff, and the resulting power
spectrum significantly varies at scales k * 0:2h Mpc�1.

This is because the exponential damping manifests itself

at the scale k� 1=ðe��dÞwhere the contribution from �ð3Þ
reg,

which contains no relevant terms counteracted with the
exponential damping, becomes significant among the three
corrections.
In the bottom panel of Fig. 7, we also plot the result of

N-body simulations (see Sec. IVA). The comparison with
simulation suggests that the PT calculation with running
cutoff k� � k=2� k=5 is favored, although there is no
clear physical reason why this is so. Strictly speaking,
the running IR cutoff might also be introduced in evaluat-
ing all the integrals in the power spectrum expression, so as
to consistently discriminate between the contributions
coming from soft and hard parts. Moreover, the running
cutoff k� may also depend on the redshift. These compli-
cations mostly come from the ambiguity of the boundary
between soft and hard domains in our regularization
scheme. For practical purpose to the cosmological appli-
cation, we postpone these issues to future investigation,
and take a rather phenomenological approach. Hereafter,
the running cutoff is only introduced in evaluating �d, and
we evaluate it according to Eq. (27), setting the cutoff scale
to k� ¼ k=2. With this treatment, we will see later that the
PT prediction becomes improved compared to the standard

FIG. 6 (color online). Contribution of multipoint propagators to
the power spectrum, PðkÞ ¼ P11ðkÞ at z ¼ 1. Magenta, green, and
blue curves represent the power spectrum contributions from the
first, second, and third terms at the right-hand side of Eq. (23),
respectively, each of which just corresponds to the diagram in

Fig. 3, involving �ð1Þ
reg, �

ð2Þ
reg, and �ð3Þ

reg. Summing up these contri-

butions, total power spectrum is shown in black solid line. For
reference, linear power spectrum is also plotted as dotted line.

FIG. 7 (color online). Sensitivity of the power spectrum pre-
diction at z ¼ 1 to the UV cutoff in the estimation of �d. Top
panel shows each contribution of the power spectrum corrections
involving �ð1Þ (magenta), �ð2Þ (green), and �ð3Þ (blue), respec-
tively (from top to bottom, see also Fig. 6). Bottom panel shows
the total sum of power spectrum divided by the smooth reference
power spectrum, Pno-wiggleðkÞ, which is calculated from the no-

wiggle formula of the linear transfer function in Ref. [47]. In
each case, top lines represent the results obtained by setting
�d ¼ 0, while undermost lines show the cases adopting the value
of �d without UV cutoff. The middle six lines represent the cases
adopting the running UV cutoff in estimating �d, with cutoff
k�ðkÞ ¼ k, k=2, k=3, k=5, k=10, and k=20 (from bottom to top).
As a reference, linear theory prediction is also plotted in both
panels (dotted).
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PT calculation, and it reproduces the N-body results quite
well at any redshift.

C. Sensitivity to IR and UV cutoff

In computing the power spectrum, except for �d, the
domains of each integral in Eq. (23) are usually taken
broadly enough so as to ensure the convergence of the
results. In comparison with N-body simulations, however,
a care must be taken because the available Fourier modes
in simulations are restricted depending on the simulation
box size and/or mesh size of Fourier transform, which
affect both the efficiency of mode transfer and strength
of mode coupling. The evolved result of the power spec-
trum would thus be changed, and it should be carefully
compared with PT calculation, taking the finite resolution
into consideration. Here, focusing on the BAO scales, we
briefly discuss the sensitivity of the PT calculation to the IR
and UV cutoff in the integrals.

Figure 8 shows the variation of the power spectra with
respect to the UV (left) and IR (right) cutoff. In general, the
kernel of integrals becomes broader for higher-loop cor-

rections, and thus the two-point propagator �ð1Þ
reg containing

the two-loop contribution is sensibly affected by the UV
cutoff. Note that the signs of one- and two-loop corrections

in �ð1Þ
reg are opposite at BAO scales. Hence, as decreasing

the cutoff wavenumber kmax, the cancellation of each con-
tribution is relatively relaxed, and the power spectrum
amplitude gets increased. On the other hand, due to the
lack of the long-wave modes, the IR cutoff not only
decreases each contribution of the loop integrals, but
also reduces �d, leading to a slight suppression of the
exponential damping. The net effect of the IR cutoff,
especially at small scales k * 0:2h Mpc�1, is that the

latter overcomes the former, and the total power spectrum
is slightly enhanced.
These results imply that the effect of UV and IR cutoff

not only affects the power spectrum shape at small scales,
but also causes a slight offset in power spectrum amplitude
at moderately large scales, k� 0:1h Mpc�1. The size of
these effects is basically small, but would not be negligible
in a percent-level comparison. Based on this remark, in
what follows, we adopt the cutoff scales ðkmin; kmaxÞ ¼
ð5� 10�4; 10Þh Mpc�1 as default parameters to compute
the power spectra. With this setup, REGPT calculation gives
a mostly convergent result, which can be compared with
high-resolution N-body simulations with a large box size.

D. Comparison with MPTbreeze

In Ref. [41], MPTBREEZE, an alternative scheme has
been proposed for the construction of power spectra that
is based on the same multipoint propagator expansion. This
proposition is, however, based on simplified assumptions
regarding the behavior of the multipoint propagators. More
specifically, in MPTBREEZE, the propagators are assumed to
take the form

�ðpÞ
a;regðq1; . . . ;qp�1;k� q1���ðp�1Þ;�Þ
¼ ep�FðpÞ

a;symðq1; . . . ;qp�1;k� q1���ðp�1ÞÞ expffaðkÞe2�g;
(28)

where f1ðkÞ and f2ðkÞ are the one-loop corrections to the
density and velocity propagators, respectively. This form
corresponds to the late-time original expression of the
exponentiation scheme initially put forward in Ref. [23].
It is shown in Refs. [37,38] that at one-loop order, this
prescription gives nearly identical result for the two-point

FIG. 8 (color online). Sensitivity of the power spectrum prediction to the UV (left) and IR (right) cutoff. In each panel, the ratio of
power spectrum, PðkÞ=Pno-wiggleðkÞ, is plotted as function of k at z ¼ 1 (left) and 0.35 (right). In evaluating the integrals of the power

spectrum corrections, the maximum wavenumber for the range of the integral is set to 2� (green), � (cyan), and �=2 (blue) h Mpc�1

in the left panel, while in the right panel, we change the minimum wavenumber kmin to kmin ¼ 2�=Lbox with Lbox ¼ 2048 (green),
1024 (cyan), and 512 h Mpc�1 (blue) (from second lowest to top). The magenta lines (bottom) indicate the results adopting the default
set of parameters ðkmin; kmaxÞ ¼ ð5� 10�4; 10Þ h Mpc�1.
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propagator to the prescription proposed in Ref. [23]. The
MPTBREEZE prescription, however, ignores the impact of

two-loop PT corrections on the two-point propagators.
From the results presented in Ref. [38], it implies that
MPTBREEZE might be outperformed by REGPT at z * 1.
On the other hand, the predictions of that scheme are
made more robust because they are less sensitive to the
UV part of the linear spectrum as discussed in that paper.
Furthermore, the one-loop correction for the three- and
four-point propagators is treated in an effective way.
These simplified assumptions allow a more rapid calcula-
tions of the set of diagrams. It takes just a few seconds to
get the expected shape in this scheme. The computational
time is, however, rather comparable to the fast implemen-
tation of REGPT which we will present in Sec. V.

IV. COMPARISON WITH N-BODY SIMULATIONS

We are now in position to present quantitative
comparisons between REGPT calculations and N-body
simulations. After briefly describing the N-body simula-
tions in Sec. IVA, we show the results of power spectrum
and two-point correlation function in Sec. IVB and IVC,
respectively. Precision and validity of the PT predictions
are discussed in detail.

A. N-body simulations

To compare REGPT calculations with N-body simula-
tions, we ran a new set of N-body simulations, which
will be presented in more detail with an extensive conver-
gence study in Ref. [42]. This set of simulations can be
regarded as an updated version of the one presented in
Ref. [22] with much larger total volume and a more careful
setup to achieve a smaller statistical and systematic error.
The data were created by a public N-body code GADGET2

[43] with cubic boxes of side length 2; 048h�1 Mpc, and
10243 particles. The cosmological parameters adopted in
these N-body simulations are basically the same as in the
previous one, and are determined by the five-year WMAP
observations [44] (see Table I). The initial conditions were
generated by a parallelized version of the 2LPT code [45],
developed in Ref. [46]. After several tests given in
Ref. [46], a lower initial redshift zinit turns out to give a
more reliable estimate for the power spectrum at BAO
scales, and we thus adopt the initial redshift zinit ¼ 15.
With this setup, we have created 60 independent realiza-
tions and the data were stored at redshifts z ¼ 3, 2, 1,
and 0.35. The total volume at each output redshift is
515h�3 Gpc3, which is statistically sufficient for a detailed
comparison with PT calculations.

We measure both the matter power spectrum and the
correlation function. For the power spectrum, we adopt the
cloud-in-cells interpolation, and construct the Fourier
transform of the density field assigned on the 1; 0243

grids. As for the estimation of the two-point correlation
function, we adopt the grid-based calculation using the fast
Fourier transformation [22]. Similarly to the power spec-
trum analysis, we first compute the square of the density
field on each grid point in Fourier space. Then, applying
the inverse Fourier transformation, we take the average
over separation vectors and realizations, and finally obtain
the two-point correlation function. The implementation of
this method, together with a convergence test, is presented
in more detail in Ref. [22].

B. Power spectrum

Let us first present the power spectrum results. Left
panel of Fig. 9 shows the ratio of the power spectra,
PðkÞ=Pno-wiggleðkÞ, while the right panel plots the fractional
difference between N-body simulations and PT calcu-
lations, defined by ½PN-bodyðkÞ � PPTðkÞ�=Pno-wiggleðkÞ
(where Pno-wiggleðkÞ is calculated from the no-wiggle for-

mula of the linear transfer function in Ref. [47]). Overall,
the agreement between REGPT and N-body simulations is
remarkable at low k, and a percent-level agreement is
achieved up to a certain wavenumber. For a decreasing
redshift, the nonlinearities develop and the applicable
range of PT calculations inevitably becomes narrower,
however, compared to the standard PT predictions, the
REGPT result can reproduce the N-body trend over an

even wider range. Indeed, the range of agreement with
N-body simulations is rather comparable to other improved
PTs including higher-order corrections, such as closure
theory [22,29], and better than some of those predictions.
For reference, we compute the power spectra from closure
and Lagrangian resummation theory (LRT) [25,48] at
two-loop order, and estimate the range of a percent-level
agreement with N-body simulations, the results of which
are respectively depicted as green and blue vertical arrows
in right panel of Fig. 9. Note that at z ¼ 3, the range of
agreement for closure theory exceeds the plotted range,
and is not shown here.
Although the REGPT treatment gives a very good per-

formance comparable to or even better than other improved
PTs, a closer look at Fig. 9 reveals several subpercent
discrepancies.
(i) One is the low-k behavior at z ¼ 0:35, which exhib-

its a small discrepancy with N-body simulation. Our
investigations indicate that it is probably due to a

TABLE I. Cosmological parameters for N-body simulations (�CDM).

Name Lbox No. of particles zini No. of runs �m �� �b=�m w h ns �8

WMAP5 2; 048h�1 Mpc 1; 0243 15 60 0.279 0.721 0.165 �1 0.701 0.96 0:8159
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poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of �ð1Þ
reg is the main source of

this discrepancy. Indeed, if �ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k� 0:2–0:3h Mpc�1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-

diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

�ðrÞ ¼
Z dkk2

2�2
PðkÞ sinðkrÞ

kr
: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which �ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno�wiggleðkÞ, where the reference spectrum Pno�wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN�bodyðkÞ �
PRegPTðkÞ�=Pno�wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r� 30h�1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is

naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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spectrum at one-loop order. The complete expressions
needed for the fast PT calculation at two-loop order,
together with the prescription how to implement it, is
presented in Appendix A.

Compared to the expressions given in Eq. (23), the
power spectrum at one-loop order of the � expansion
reduces to

Pabðk;�Þ ¼ �ð1Þ
a;regðk;�Þ�ð1Þ

b;regðk;�ÞP0ðkÞ

þ 2
Z d3q

ð2�Þ3 �
ð2Þ
a;regðq;k� q;�Þ

� �ð2Þ
b;regðq; k� q;�ÞP0ðqÞP0ðjk� qjÞ (30)

with the regularized propagators �ð1Þ
reg and �

ð2Þ
reg valid at one-

loop order being

�ð1Þ
a;regðk;�Þ ¼ e�

�
1þ k2�2

de
2�

2
þ e2� ��ð1Þ

a;1�loopðkÞ
�

� exp

�
� k2�2

de
2�

2

�
; (31)

�ð2Þ
a;regðq; k� q;�Þ

¼ e2�Fð2Þ
a;symðq; k� qÞ exp

�
� k2�2

de
2�

2

�
: (32)

Note that the quantity ��ð1Þ
a;1-loop is defined in Eq. (19), and

explicitly given by

�� ð1Þ
a;1�loopðkÞ ¼ 3

Z d3q

ð2�Þ3 F
ð3Þ
a;symðq;�q;kÞP0ðqÞ: (33)

Thus, in Eq. (30), there apparently appear two contribu-

tions which involve multidimensional integrals; ��ð1Þ
a;1-loop in

the regularized propagator �ð1Þ
a;reg, and the second term at

the right-hand side. Although these contributions are
known to be further reduced to one- and two-dimensional
integrals (e.g., Refs. [23,29,37]), respectively, for the sake
of this presentation we keep the expressions as in their
original form.

As has been mentioned earlier, the key idea of acceler-
ated calculation is to prepare a set of REGPT results for
fiducial cosmological models. Let us denote the initial
power spectrum for fiducial cosmology by P0;fidðkÞ. And
we denote the initial spectrum for the target cosmological
model, for which we want to calculate the nonlinear power
spectrum, by P0;targetðkÞ. For the moment, we assume that

the difference between those spectra is small enough.
Then, we may write

P0;targetðkÞ ¼ P0;fidðkÞ þ �P0ðkÞ: (34)

Hereafter, we focus on the power spectrum of density
field, P11, and drop the subscript. Substituting the above

expression into Eqs. (30)–(32), the nonlinear power spec-
trum for the target model is symbolically written as

Ptargetðk;�Þ ¼ Pun�pert½k; �;�d;target;P0;fidðkÞ�
þ Pcorr½k; �;�d;target;�P0ðkÞ�: (35)

Here, the first term at the right-hand side is the unperturbed
part of the one-loop power spectrum, which is nothing but
the expression (30) adopting the initial power spectrum for
fiducial model, P0;fidðkÞ, but with the cosmological depen-

dence of the time variable, given by � ¼ lnDðzÞ, being
calculated from the target model. Also, the dispersion of
displacement field, �d, should be replaced with the one for

the targetmodel, i.e.,�d;target ¼ ½RdqP0;targetðqÞ=ð6�2Þ�1=2.
In each term of Eq. (30), the scale and time dependence can
be separately treated, and thus the unperturbed power spec-
trum,Pun-perturbed, is evaluated algebraically by summing up

each contribution, for which we use the precomputed data
set in evaluating the scale-dependent function.
In Eq. (35), the contribution Pcorr includes the nonlinear

corrections originating from the differences of initial
power spectra between fiducial and target cosmological
models. To first order in �P0, we have

Pcorr½k; �; �d;target;�P0ðkÞ�
¼ 2�ð1Þ

regðk;�Þ��ð1Þ
regðk;�ÞP0;fidðkÞ

þ ½�ð1Þ
regðk;�Þ�2�P0ðkÞ

þ 4
Z d3q

ð2�Þ3 ½�
ð2Þ
regðq; k� q;�Þ�2P0;fidðjk� qjÞ�P0ðqÞ:

(36)

In the above expression, The quantity �d appearing in the

propagators �ð1Þ
reg and �ð2Þ

reg should be evaluated with the

linear power spectrum for the target cosmological model.

The perturbed propagator ��ð1Þ
reg is expressed as

��ð1Þ
regðk;�Þ ¼ e3�� ��ð1ÞðkÞe�k2�2

d;target
e2�=2; (37)

where the kernel of integral in � ��ð1Þ is the same one as in
Eq. (33), but we may rewrite it with

� ��ð1ÞðkÞ ¼
Z dqq2

2�2
Lð1Þ
1 ðq; kÞ�P0ðqÞ (38)

with the kernel Lð1Þ
1 given by

Lð1Þ
1 ðq; kÞ ¼ 3

Z d2q�q

4�
Fð3Þ
1;symðq;�q; kÞ: (39)

Since the kernel Lð1Þ
1 only includes the PT kernel whose

cosmological dependence is extremely weak, we can
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separately prepare the numerical data set for Lð1Þ
1 in ad-

vance.10 Then, we can use it to compute � ��ð1Þ for arbitrary
�P0, where the remaining integral to be evaluated is
reduced to a one-dimensional integral.

Furthermore, the integral in the last term of Eq. (36) is
rewritten with

Z d3q

ð2�Þ3 ½�
ð2Þ
regðq; k� q;�Þ�2P0;fidðjk� qjÞ�P0ðqÞ

¼ e�k2�2
d;target

e2�e4�
Z dqq2

2�2
Xð2Þðq; kÞ�P0ðqÞ (40)

with the function Xð2Þ being

Xð2Þðq; kÞ ¼ 1

2

Z 1

�1
d	½Fð2Þ

symðq; k� qÞ�2

� P0;fid

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2kq	þ q2

q �
; (41)

where the variable 	 is the directional cosine defined
by 	 ¼ ðk � qÞ=ðkqÞ. In deriving the above expression,

we used the symmetric property of �ð2Þ
reg, i.e., �

ð2Þ
regðk1; k2Þ ¼

�ð2Þ
regðk2; k1Þ. Since the quantity Xð2Þðq; kÞ can be computed

in advance, all the integrals involving the power spectrum
�P0 are shown to be effectively reduced to one-
dimensional integrals. In other words the only remaining
task is to evaluate one-dimensional integrals, which can be
done very efficiently.

The practical implementation of this method makes use
of another important property of the kernel functions. They
indeed have a very simple dependence on a global rescal-
ing of the power spectrum, P0;fid ! cP0;fid. It is then

possible, without extra numerical computation, to choose
the fiducial model among a continuous set of models. The
model we choose, that is the normalization factor c we
take, is such that the difference �P0ðkÞ is as small as
possible in the wave-modes of interest. As we will see in
Sec. VI it makes the use of this method very efficient.

Note that although the treatment depicted here does not
give much impact on the computational cost of the one-
loop calculation, we will explicitly show in Appendix A
that at two-loop order the PT corrections involving
multidimensional integrals can be similarly reduced to

one-dimensional integrals. In the following, we denote
REGPT-FAST the implementation of this approach at two-

loop order.

B. Performances

Let us now illustrate the efficiency of the REGPT-FAST

expansion. Based on the expressions given in Appendix A,
we calculate the power spectrum and correlation function
at two-loop order. We adopt the best-fit parameters deter-
mined by the third-year WMAP result [52] as the fiducial
cosmological model from which we try to reproduce the
REGPT results for the five-year WMAP cosmological

model. Cosmological parameters for the fiducial model is
listed in Table II. Compared to the target model in Table I,
the mass density parameter shows a 20% difference, and
with 7% enhancement in the power spectrum normaliza-
tion (�8), this leads to a 20–30% difference in the initial
power spectrum.
Figure 11 plots the results of the REGPT-FAST calcu-

lation (blue) compared to the target REGPT calculation
(magenta). We plot, for a specific redshift z ¼ 1, the ratio
of the power spectrum to the smooth reference spectrum,
PðkÞ=Pno-wiggleðkÞ, and correlation function multiplied by

the cube of separation, r3�ðrÞ, in left and right panels,
respectively. The REGPT-FAST results perfectly coincide
with REGPT direct calculation, even outside the range of
agreement with N-body simulations.
Note that the perfect match between REGPT and

REGPT-FAST results is due to a large extent to the contribu-

tions of the higher-order PT in the correction, Pcorr or �corr.
This appears clearly in the plots of the linear theory
correction, �P0 ¼ P0;target � P0;fid and its Fourier counter-

part ��0 (cyan long-dashed). As shown in cyan solid lines,
the total contribution, i.e., the combination of the unper-
turbed part plus linear theory correction, somehow resem-
bles the result with direct REGPT calculation, but exhibits a
rather prominent oscillatory feature with slightly different
phase in power spectrum, leading to a non-negligible dis-
crepancy. Accordingly, in correlation function, the acoustic
peak becomes enhanced, and the position of peak is shifted
to a small separation. Note finally, that these results could
only be achieved with the help of the rescaling properties
of the kernel functions. In this particular case the fiducial
model has been rescaled as P0;fid ! 1:082P0;fid. Rescaling

is a key feature of the REGPT-FAST method. It will be further
discussed in the next section.

TABLE II. Cosmological parameters for fiducial models used for the REGPT-FAST calculation
(see Sec. VIA).

Name �m �� �b=�m w h ns �8

WMAP3 0.234 0.766 0.175 �1 0.734 0.961 0.760

M001 0:4307 0:5692 0.150 �0:816 0:5977 0:9468 0:8161
M023 0:1602 0:8398 0:1817 �1:261 0:8694 0:9016 0:6664

10Indeed, the kernel Lð1Þ
1 is analytically known, and the explicit

expression is given in, e.g., Refs. [23,29,37].

DIRECT AND FAST CALCULATION OF REGULARIZED . . . PHYSICAL REVIEW D 86, 103528 (2012)

103528-13



VI. TESTING REGPT TREATMENT FOR VARYING
COSMOLOGICAL MODELS

The purpose of this section is twofold. Our first goal is to
explore the validity and applicability of the REGPT-FAST

scheme. Having shown that the REGPT-FAST approach can
be used in one specific example, we now want to discuss
the usefulness of this treatment from a more practical point
of view. To be precise, we want to know how well the
REGPT-FAST treatment can reproduce rigorous REGPT cal-

culation in a variety of cosmological models.
Our second and natural goal is to test the REGPT scheme

itself, whether from direct or fast calculations, against N-
body based predictions such that the COSMIC EMULATOR.11

To do that, we have selected the 38 cosmological models
investigated in Ref. [53] for which we can use the publicly
released code, COSMIC EMULATOR, that provides interpo-
lated power spectra derived from N-body simulations. Let
us remind that the cosmological models considered there
are sampled from a wide parameter space for flat wCDM
cosmology, and lie within the range

FIG. 11 (color online). Example of the performances of the REGPT-FAST approach compared to direct REGPT calculation. Left panel
shows the power spectrum divided by the smooth reference spectrum, PðkÞ=Pno�wiggleðkÞ, while right panel plots the correlation

function multiplied by the cube of separation, i.e., r3�ðrÞ. In both panels, the results at z ¼ 1 are shown, together with N-body
simulations. The REGPT-FAST results, computed with prepared data set for fiducial cosmological model, are plotted as magenta solid
lines, which almost coincide with those obtained from the rigorous REGPT calculation (solid magenta). As shown in Eq. (35),
the REGPT-FAST results are divided into two contributions; unperturbed part (Pun�pert or �un�pert) adopting the WMAP3 model as

fiducial cosmology, and the correction part (Pcorr or �corr) evaluated with the power spectrum difference �P0. These are respectively
plotted as green dashed and cyan dashed lines. For reference, we also show the linearly evolved result of power spectrum difference
�P0 (dashed cyan) and the sum of the contributions Pun�pert þ �P0 (solid cyan) in left panel, and their Fourier counterparts in

right panel.

FIG. 12 (color online). Linear power spectra P0ðkÞ for 38
cosmological models [53]. Blue, green, and magenta lines are
respectively the power spectra of fiducial models WMAP3, M001,
and M023 used for the REGPT-FAST calculation (see Table II for
their cosmological parameters).11http://www.lanl.gov/projects/cosmology/CosmicEmu/.
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0:120<�mh
2 < 0:155; 0:0215<�bh

2 < 0:0235;

0:85< ns < 1:05; �1:30<w<�0:70;

0:616<�8 < 0:9:

The concrete values of the cosmological parameters in
each model are not shown here. Readers can find them in
Table 1 of Ref. [53]. Figure 12 shows the linear power
spectra P0ðkÞ for the 38 cosmological models, which have
been all produced with CMB Boltzmann code, CAMB [54].

A. Convergence of REGPT-FAST

Let us first examine the convergence of the power spec-
trum calculations between REGPT and REGPT-FAST treat-
ments. We ran both the REGPT-FAST and REGPT codes, and
evaluated the fractional difference between these power
spectra, defined by PRegPTfastðkÞ=PRegPTðkÞ � 1. Collecting

the results at z ¼ 1 in each cosmological model, the con-
vergence of the power spectrum calculations for 38 models
is summarized in Fig. 13. In left panel we show the result
when only one fiducial model, WMAP3, is used. In that case
REGPT-FAST results tend to underestimate the results from

rigorous REGPT calculations at increasing k, and most of
them eventually exceed the 1% difference, indicated by the
green dashed line. This is because the shape of the initial
power spectrum in each target model is rather different
from that in the fiducial model, and even adjusting the re-
scaling parameter c cannot compensate a large power
spectrum difference. To be more precise, in most of the
models, the shape parameter, defined by � ¼ �mh, is
typically larger than the one in the fiducial model. As a
consequence, even if we adjust the power spectrum at large
scales to match the one in the target model, the difference
j�P0j can become large as increasing k, leading to a failure
of the perturbative reconstruction by REGPT-FAST.

To remedy this situation, a simple but efficient approach
is to enlarge our set of fiducial models with � parameters
that differ from the one of WMAP3 model, i.e., � ¼ 0:172.
Right panel of Fig. 13 shows the convergence results when
we supply two extra fiducial models whose cosmological
parameters are listed in Table II. As a fiducial model with a
larger shape parameter, we adopt the M001 cosmological
model (� ¼ 0:257). Further, for a secure calculation appli-
cable to general cosmological models, we also supply
another fiducial model, M023, which has a smaller shape
parameter (� ¼ 0:139). The initial power spectra of those
models are plotted in Fig. 12, depicted as green (M001) and
magenta (M023) solid lines. As a result, the convergence of
the power spectrum calculations is dramatically improved,
and the REGPT-FAST now coincides with rigorous REGPT

calculation with & 0:4% precision at k & 0:3h Mpc�1.
Although there still exist exceptional cases, in which the
fractional difference eventually exceeds 1% precision at
k * 0:36h Mpc�1, in practice this is beyond the applicable
range of the REGPT calculation itself.

With this setting, making use of these three fiducial
models, REGPT-FAST reproduces REGPT direct calculations
in a wide range of cosmological models and, also it does
not appear here, for a redshift range of general interest.

B. Comparison with cosmic emulator

It is now time to discuss the accuracy of the overall REGPT
scheme with general COSMIC EMULATOR predictions.
Figures 14 and 15 summarize the results of the comparison
for all 38 models, where we plot the ratios of power spectra,
PðkÞ=Pno-wiggleðkÞ, at specific redshift z ¼ 1. In each panel,

magenta solid and black dashed lines represent the results of
REGPT-FASTand the power spectrum emulator code, respec-

tively. Also, the fiducial model used for the REGPT-FAST

calculation is indicated, together with the label of the cos-
mologicalmodel. The two resultsmostly coincidewith each
other, and are hardly distinguishable at k & 0:2h Mpc�1,
where the linear theory prediction typically produces a 10%
error. At k * 0:2h Mpc�1, the REGPT-FAST results tend to
deviate from the predictions of the emulator code which
probably indicates the the limitation of PT treatment.
However, some models still show a remarkable agreement
at k & 0:3h Mpc�1 (e.g., M009 and M013).
As the range of applicability of the REGPT scheme

depend on both k and the power spectrum amplitude,
following Refs. [22,55], we propose here a phenomeno-
logical rule for the domain of applicability of the REGPT

calculations. The proposed upper value for k is kcrit that can
be obtained from the implicit equation

k2crit
6�2

Z kcrit

0
dqPlinðq; zÞ ¼ C; (42)

where C is a fixed constant, C ¼ 0:7. The resulting values
are depicted as vertical arrows in Figs. 14 and 15. Below
the critical wavenumber, the REGPT scheme indeed agrees
with results of the emulator code, mostly within a percent-
level precision.12 We have also checked that this is also the
case for z ¼ 0:5 with this definition of kcrit.

12We however noticed that some models exhibit non-negligible
discrepancy between the results of REGPT-FAST and the emulator
codes, even well below kcrit. One such is M015, showing a broad-
band discrepancy over the plotted range. This is somewhat
surprising in the sense that the REGPT-FAST result almost con-
verges the linear theory prediction at k & 0:12h Mpc�1, while
the result of the emulator code is still away from it. To better
understand the source of the discrepancy, we have ran N-body
simulations for the M015 model—cosmological parameters of
M015 model were set as �m ¼ 0:2364, �b ¼ 0:0384, w ¼
�1:281, h ¼ 0:7737, ns ¼ 1:0177, and �8 ¼ 0:7692.—with
the same setup as listed in Table I. The resulting power spectrum,
estimated from the ensemble of the 8 independent realizations, is
superposed in the panel of M015 (green symbols with errorbars)
and is shown to faithfully trace the REGPT-FAST result up to the
critical wavenumber. It points to a possible flaw in the power
spectrum emulator, in estimating the smooth power spectrum
from the ensemble of simulation results, or constructing the
interpolated result of the simulated power spectra.
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The REGPT scheme is therefore shown to give a fairly
accurate prediction for the power spectrum in the weakly
nonlinear regime in the sense given above. REGPT direct
calculations, or (almost) equivalently, REGPT-FAST calcula-
tions with the three fiducial models we prepared, can be
applied to a wide range of cosmological models. Though
we did not discuss it here, we expect the same to be also
true for the correlation function. Finally we note that as the
relevant scale of weakly nonlinear regime grows wider for
higher redshifts, the applicability and reliability of the
REGPT scheme is naturally enhanced. On the other hand,

the emulation schemes to build up interpolated results from
large sets of N-body simulations are generally efficient in
predicting the power spectrum at nonlinear scales but are
more likely to fail at high-z, since the requirement for the
force resolution in N-body simulation becomes more and
more severe. In this respect, perturbative reconstruction

FIG. 13 (color online). Convergence between the REGPT-

FAST treatment and the direct REGPT calculations for 38 cosmo-

logical models. The fractional difference of the power spectra
between REGPT-FAST and REGPT direct calculations, PRegPTfastðkÞ=
PRegPTðkÞ�1, is plotted at z ¼ 1. Left and right panels respectively
show the results adopting the one and three fiducial models.
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FIG. 14 (color online). Ratio of power spectra, PðkÞ=Pno�wiggleðkÞ, at z ¼ 1 for the cosmological models M000–M017. Solid and
dotted lines are obtained from the REGPT-FAST and COSMIC EMULATOR codes, respectively. The fiducial model used for the REGPT-FAST

calculation is indicated in each panel. The vertical arrows mean the critical wavenumber kcrit defined by Eq. (42), which roughly gives
an applicable range of REGPT prediction (see text).
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schemes such as REGPT-FAST—but this would also be the
case of MPTBREEZE—are complementary to N-body based
predictions.

VII. CONCLUSION

It is needless to say that future cosmological observa-
tions make the development of cosmological tool aiming at
accurately predicting the large-scale statistical properties
of the universe highly desirable. In the first part of the
present paper, based on a renormalized perturbation theory,
we introduced an explicit computation scheme applied to
the matter power spectrum and correlation function in
weakly nonlinear regime that consistently includes the
PT corrections up to the two-loop order. The construction
of the full expression for the power spectrum is based on
the � expansion, i.e., makes use of the multipoint propa-
gators which are properly regularized so as to recover their
expected resummed behavior at high k and to match the
standard PT result at low k. We call this regularized
PT treatment REGPT. We have shown that the REGPT

scheme provides an accurate prediction for both the power

spectrum and the correlation function, leading to a percent-
level agreement with N-body simulations in the weakly
nonlinear regime.
In the second half of the paper, we presented a method to

accelerate the power spectrum calculations. The method
utilizes prepared data sets for some specific fiducial models
from which regularized PT calculations can be performed
for arbitrary cosmological models. The main interest of
this method is that the evaluation of the residual PT cor-
rections between fiducial and target cosmological models
can be reduced to mere one-dimensional integrals. This
enables us to dramatically reduce the computational cost,
and even with single-node calculation by a laptop com-
puter, the power spectrum calculation can be done in a few
seconds. We call this method REGPT-FAST, and we have
demonstrated that the REGPT-FAST treatment can perfectly
reproduce the direct REGPT calculations that involve sev-
eral multidimensional integrals.
We then investigated the range of applicability of the

REGPT schemes in a broad class of cosmological models.

For this purpose, we select 38 cosmological models, and
compared the REGPT predictions—eventually incorporating

0.9

1

1.1

1.2
M019 M020 M021 M022

0.9

1

1.1

M023 M024 M025 M026

0.9

1

1.1

M027 M028 M029 M030

0.9

1

1.1

M031 M032 M033

0.1 0.2 0.3

M034

0.9

1

1.1

M035 M036

0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

M037

FIG. 15 (color online). Same as Fig. 14, but for the models M019–M037.
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the accelerated computations—with results of a power
spectrum emulator code, COSMIC EMULATOR. We show
that with the help of three fiducial models the REGPT-FAST

calculations give reliable predictions for the power spectra
over this range of cosmological models.13 We furthermore
put forward an empirical criterion (42) that gives a good
indication of the applicable range of the REGPT scheme in k.
This can be applied to any cosmological model, and we
found that the applicable range of REGPT scheme remains
fairly wide in awide range of cosmologicalmodels, entirely
covering the relevant scales of BAOs. The REGPT-FAST

treatment, together with the direct REGPT calculation, has
been implemented in a Fortran code that we publicly release
as part of this paper.

Although this paper has focused on precision calcula-
tions of the matter power spectrum, the REGPT framework
as well as the methodology for accelerated calculation can
naturally be applied to the power spectrum of the velocity
divergence and the cross-power spectrum of velocity and
density fields in a similar way. The analysis of the velocity
power spectrum, together with a detailed comparison with
N-body simulations, will be presented elsewhere. Of
particular interest is the application of the REGPT schemes
to the redshift-space power spectrum or correlation
function. In this case, not only the velocity and density
power spectra, but also the multipoint spectra like bispec-
trum, arising from the nonlinear mode coupling, seem to
play important roles, and should be properly modeled.
Significance of the effect of multipoint spectra has been
recently advocated by Refs. [51,56–58], and there appear
physical models that account for this. Combination of these
models with the REGPT schemes would be very important,
and we will discuss it in a near future.
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APPENDIX A: PERTURBATIVE
RECONSTRUCTION OF REGPT POWER
SPECTRUM AT TWO-LOOP ORDER

In this appendix, we present the set of perturbative
expressions that are used for the accelerated power spec-
trum calculation at two-loop order which is implemented
in the REGPT-FAST code.
In a similar manner to the one-loop case described in

Sec. VA, we can expand the power spectrum expression up
to two-loop order around the fiducial cosmological model,
and obtain the perturbative expression for power spectrum
in the target cosmological model. Plugging Eq. (34) into
the two-loop expression (23) and assuming �P0 � P0;fid,

the power spectrum is written like (35), and the correction
Pcorr becomes

Pcorr½k; �; �d;target;�P0ðkÞ� ¼ 2�ð1Þ
regðk;�Þ��ð1Þ

regðk;�ÞP0ðkÞ þ ½�ð1Þ
regðk;�Þ�2�P0ðkÞ þ 4

Z d3q

ð2�Þ3 f½�
ð2Þ
regðq; k� q;�Þ�2

� P0ðjk� qjÞ�P0ðqÞ þ �ð2Þ
regðq;k� q;�Þ��ð2Þ

regðq;k� q;�ÞP0ðjk� qjÞP0ðqÞg

þ 18
Z d3pd3q

ð2�Þ6 ½�ð3Þ
regðp; q; k� p� q;�Þ�2P0ðjk� p� qjÞP0ðpÞ�P0ðqÞ: (A1)

In the above, the perturbations of regularized propagators,
��ð1Þ

reg and ��ð2Þ
reg, are described as

��ð1Þ
regðk;�Þ ¼ e3�½ð1þ 
kÞ� ��ð1Þ

1�loopðkÞ
þ e2�� ��ð1Þ

2�loopðkÞ�e�
k ; (A2)

��ð2Þ
regðq;k� q;�Þ ¼ e4�� ��ð2Þ

1�loopðq;k� qÞe�
k; (A3)

where we define 
k � k2�2
d;targete

2�=2. The quantities
� ��ðpÞ

n-loop are defined by

� ��ð1Þ
1�loopðkÞ ¼ 3

Z d3q

ð2�Þ3 F
ð3Þ
symðq;�q;kÞ�P0ðqÞ; (A4)

13Our analysis is however restricted to flat wCDM models.
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� ��ð1Þ
2�loopðkÞ ¼ 30

Z d3q1d
3q2

ð2�Þ6 Fð5Þ
symðq1;�q1; q2;�q2;kÞ

� P0;fidðq1Þ�P0ðq2Þ; (A5)

� ��ð2Þ
1�loopðk1; k2Þ ¼ 6

Z d3q

ð2�Þ3 F
ð4Þ
symðq;�q; k1; k2Þ�P0ðqÞ:

(A6)

The kernels FðpÞ
sym are the symmetrized standard PT kernel

for density field. In the above, the angular integrals are
known to be analytically performed (Refs. [23,37], and
Bernardeau et al. in preparation), one may write

� ��ð1Þ
1�loopðkÞ ¼

Z dqq2

2�2
fðq; kÞ�P0ðqÞ; (A7)

� ��ð1Þ
2�loopðkÞ¼2

Z dq1dq2q
2
1q

2
2

ð2�2Þ2 Jðq1;q2;kÞP0;fidðq1Þ�P0ðq2Þ;
(A8)

� ��ð2Þ
1�loopðk1; k2Þ ¼

Z dqq2

2�2
Kðq; k1; k2; k3Þ�P0ðqÞ (A9)

with the angle-averaged kernels f, J and K defined by

fðq; kÞ ¼ 3
Z d2�q

4�
Fð3Þ
symðq;�q; kÞ; (A10)

Jðq1;q2;kÞ ¼ 15
Z d2�q1d

2�q2

ð4�Þ2 Fð5Þ
symðq1;�q1;q2;�q2;kÞ;

(A11)

Kðq;k1;k2;k3Þ¼ 6
Z d2�q

4�
Fð4Þ
symðq;�q;k1;k2Þ: (A12)

Note that k1 þ k2 ¼ k3.
The expression for the correction Pcorr given above

contains many integrals involving the perturbed linear
power spectrum, �P0, and some of these require multi-
dimensional integrals. However, those multidimensional
integration are separately treated, and can be effectively
reduced to the one-dimensional integrals as follows,

� ��ð1Þ
1�loopðkÞ ¼

Z dqq2

2�2
Lð1Þðq; kÞ�P0ðqÞ; (A13)

� ��ð1Þ
2�loopðkÞ ¼ 2

Z dqq2

2�2
Mð1Þðq; kÞ�P0ðqÞ; (A14)

Z d3q

ð2�Þ3 ½�
ð2Þ
regðq; k� q;�Þ�2P0;fidðjk� qjÞ�P0ðqÞ

¼ e4�
�
ð1þ 
kÞ2

Z dqq2

2�2
Xð2Þðq; kÞ�P0ðqÞ

þ 2e2�ð1þ 
kÞ
Z dqq2

2�2
Yð2Þðq; kÞ�P0ðqÞ

þ e4�
Z dqq2

2�2
Zð2Þðq; kÞ�P0ðqÞ

�
expf�2
kg; (A15)

Z d3q

ð2�Þ3 �
ð2Þ
regðq; k� q;�Þ��ð2Þ

regðq; k� q;�Þ
� P0;fidðjk� qjÞP0;fidðqÞ

¼ e6�
�
ð1þ 
kÞ

Z dpp2

2�2
Qð2Þðp; kÞ�P0ðpÞ

þ e2�
Z dpp2

2�2
Rð2Þðp; kÞ�P0ðpÞ

�
e�2
k ; (A16)

Z d3pd3q

ð2�Þ6 ½�ð3Þ
regðp; q; k� p� q;�Þ�2

� P0;fidðjk� p� qjÞP0;fidðpÞ�P0ðqÞ

¼ e6�e�2
k

Z dqq2

2�2
Sð3Þðq; kÞ�P0ðqÞ: (A17)

In the above, the kernels of the integrals, L,M, X, Y, Z, Q,
R, and S, additionally need to be computed, but we only
have to evaluate them once for each fiducial cosmological
model,

Lð1Þðq; kÞ ¼ fðq; kÞ; (A18)

Mð1Þðq; kÞ ¼
Z dpp2

2�2
Jðp; q; kÞP0;fidðpÞ; (A19)

Xð2Þðq; kÞ ¼ 1

2

Z 1

�1
d	q½Fð2Þ

symðq; k� qÞ�2

� P0;fid

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2kq	q þ q2

q �
; (A20)

Yð2Þðq;kÞ ¼ 1

2

Z 1

�1
d	qF

ð2Þ
symðq;k�qÞ ��ð2Þ

1�loopðq;k�qÞ

�P0;fid

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� 2kq	qþq2

q �
; (A21)

Zð2Þðq; kÞ ¼ 1

2

Z 1

�1
d	q½ ��ð2Þ

1�loopðq; k� qÞ�2

� P0;fid

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2kq	q þ q2

q �
; (A22)

Qð2Þðp; kÞ ¼
Z d3q

ð2�Þ3 F
ð2Þ
symðq; k� qÞKðp: q; jk� qj; kÞ

� P0;fidðjk� qjÞP0;fidðqÞ; (A23)
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Rð2Þðp; kÞ ¼
Z d3q

ð2�Þ3
��ð2Þ
1�loopðq; k� qÞKðp; q; jk� qj; kÞ

� P0;fidðjk� qjÞP0;fidðqÞ; (A24)

Sð3Þðq; kÞ ¼ 1

2

Z 1

�1
d	q

Z d3p

ð2�Þ3 ½F
ð3Þ
symðp; q;k� p� qÞ�2

� P0;fidðjk� p� qjÞP0;fidðpÞ; (A25)

with the variable 	q defined by 	q ¼ ðk � qÞ=ðkqÞ.
Note that similar to the one-loop case, the correction at

two-loop order also possesses a one-parameter degree of
freedom corresponding to a global rescaling of the power
spectrum of fiducial model, P0;fid ! cP0;fid. The power

spectrum difference �P0 can then be made small securing
the efficient convergence of this expansion.

Finally, the data set of kernel functions given above are
supplemented in the REGPT code, with 301� 301 logarith-
mic arrays in ðk; qÞ space. For specific three fiducial mod-
els (i.e., WMAP3, M001, and M023), the data have been
obtained using the method of Gaussian quadrature up to
three-dimensional integrals and Monte Carlo technique for
four-dimensional integral. Together with unperturbed part
of the PT corrections, these can be used as fast calculations
of power spectrum at two-loop order.

APPENDIX B: CODE DESCRIPTION

In this appendix, we present a detailed description of the
Fortran code, REGPT, which computes the power spectrum
and correlation function of density fields valid at weakly
nonlinear regime of gravitational clustering.

1. Overview

The code, REGPT, is compiled with the Fortran com-
pilers, IFORTor GFORTRAN. It computes the power spectrum
in flat wCDM class models based on the REGPT treatment
when provided with either of transfer function or matter
power spectrum. It then gives the multiple-redshift outputs
for power spectrum, and optionally provides correlation
function data. We have implemented two major options for
power spectrum calculations:

� �fast: Applying the reconstruction method de-
scribed in Sec. VA, this option quickly computes
the power spectrum at two-loop level (typically a
few seconds), using the pre-computed data set of PT
kernels for fiducial cosmological models. We provide
the data set for three fiducial models (WMAP3, M001,
and M023, see Table II), and the code automatically
finds an appropriate fiducial model to closely match

the result of rigorous PT calculation with direct-
mode.

� �direct: With this option, the code first applies
the fast method, and then follows the regularized
expression for power spectrum (see Eq. (23) with
regularized propagators (24)–(26)) to directly evalu-
ate the multidimensional integrals (it typically takes a
few minutes). The output results are the power spec-
trum of direct calculation and difference of the results
between fast and direct method. Further, the code
gives the data set of PT diagrams necessary for power
spectrum calculations, from which we can construct
the power spectrum. We provide a supplemental
code, read stfile:f, with which the power spec-
trum and correlation function can be evaluated from
the diagram data set in several PT methods, including
the standard PT and LRT [25,48] as well as RegPT
treatment (see Appendix B 4 c).

In addition, the code supports the option,
�direct1loop, to compute the power spectrum at
one-loop order. Although this is based on the direct calcu-
lation with multidimensional integration (see Eq. (30) with
regularized propagators (31) and (32)), the one-loop expre-
ssion involves two-dimensional integrals at most, and thus
the computational cost is less expensive. It is potentially
useful for the computation of high-z correlation function
and power spectrum.

2. Setup

The REGPT code is available at Ref. [59]. A part of REGPT
code uses the library for Monte Carlo integration, CUBA
[40]. Before compiling the codes, users should download
the library package cuba�1:5, and correctly build the file,
libcuba:a, compatible with the architecture of user’s
platform. This can be done in the directory =Cuba-1:5,
and just type ‘‘:=configure’’ and ‘‘makelib:’’ After
placing the library file libcuba:a at the directory
=RegPT=src, users can use the Makefile to create the
main executable file, RegPT:exe. Note that currently
available compilers are Intel Fortran compiler, ifort,
and GNU Fortran compiler, gfortran.

3. Running the code

Provided with linear power spectrum or transfer function
data, the code runs with a set of options, and computes
power spectrum. Users can specify the options in the
command line, or using the parameter file (suffix of file
name should be :ini). Sample of parameter file is supplied
in the code (see directory =RegPT=example).

For running the code with the command-line options, a simple example is (assuming the code is placed at the
directory, =RegPT)

: =RegPT:exet�spectrumt�infiletmatterpower wmap5:datt�nzt2t0:5t1:0
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In the above example, the code first reads the input data
file, matterpower wmap5:dat, which is assumed to
contain linear power spectrum data consisting of two col-
umns, i.e., k and P0ðkÞ. By default setting, fast mode is
chosen, and the output result of power spectrum is saved to
pk RegPT:dat. With the option�nz 2 0:5 1:0, the out-
put file contains the power spectrum results at two redshifts,
z ¼ 0:5 and 1.0 (see Appendix B 4 a for output format).
Note that by default, the code adopts specific values of
cosmological parameters. Making use of options, users
can change the value of cosmological parameters appropri-
ately, consistently with input power spectrum (or transfer
function) data.

Herewe summarize the available options to run the code:
� Verbose level for output message

�verbose n: This sets the verbose level for output
information on the progress of numerical computation.
The available level n is 1 or 2 (default:�verbose1).
�noverbose: This option suppresses the message
while running the code.

� Input data file
�infile [file]: Input file name of power spectrum or
transfer function data is specified (default:�infile
matterpower:dat).
�path [path to input file]: This specifies the path
to the input file (default: �path:=).
�spectrum: With this option, the code assumes that
the input file is power spectrum data. The data consists
of two columns, i.e., wavenumber (in units
of h Mpc�1) and matter power spectrum (in units of
h�3 Mpc3) (default: �spectrum). The normaliza-
tion of power spectrum amplitude can bemadewith the
option�sigma8.
�transfer: With this option, the code assumes that
the input file is the transfer function data created by
CAMB. The data should contain seven columns, among

which the code uses the first and seven columns (wave-
number in units of h Mpc�1 and matter transfer func-
tion). The normalization of power spectrum amplitude
can be made with either of the option -sigma8 or
�samp and�spivot.

� Specification of cosmological parameters
�sigma8 �8: This option sets the power spectrum
normalization by �8 (default: �sigma8 0:817).
For �8 < 0, the code will skip the �8 normalization.
�samp As: This option sets the amplitude of
power spectrum at pivot scale kpivot (default:

�samp 2:1e�9). This option is used for normaliza-
tion of transfer function data, and is valid when the
option �transfer is specified.
�spivot kpivot: This option sets the pivot scale of

CMB normalization in units of Mpc�1 (default:
�spivot 0:05). This option is used for normaliza-
tion of transfer function data, and is valid when the
option �transfer is specified.

�omegam �m: This option sets the mass density
parameter (default: �omegam 0:279). This is used
to estimate the linear growth factor and to compute
the smooth reference spectrum, Pno-wiggleðkÞ.
�omegab �b: This option sets the baryon density
parameter (default: �omegab 0:165 	 omegam).
This is used to compute the smooth reference spectrum,
Pno-wiggleðkÞ.
�ns ns: This option sets the scalar spectral index. This
is used to compute the linear power spectrum from the
transfer function data (option �transfer should be
specified), and to compute the smooth reference spec-
trum, Pno-wiggleðkÞ.
�w w: This option sets the equation of state for dark
energy (default:�w�1:0). This is used to estimate the
linear growth factor.
�h h: This option sets the Hubble parameter
(default:�h 0:701). This is used to compute the power
spectrum from the transfer function data, and to com-
pute the smooth reference spectrum, Pno-wiggleðkÞ.
�camb [output parameter file of camb]: With this
option, the code reads the CAMB output parameter file,
and specifies the cosmological parameters (�m,�b,w,
h, ns, As, kpivot).

� Calculation mode of REGPT
�fast: This option adopts the fast method of power
spectrum calculation to give REGPT results. This is
default setting.
�direct: This option first applies the fast method,
and then follow the direct method for REGPT

calculation.
�direct1loop: With this option, the code adopts
direct method to compute the power spectrum at one-
loop order.

� Setup of fiducial models for fast- and direct-mode
calculations
�datapath [path to data directory]: This option
specifies the path to the data files used for power
spectrum calculation with fast and direct methods
(default: �datapath data=). In the directory
specified with this option, the data set of kernel
functions given in Appendix A and unperturbed part
of power spectrum corrections, as well as the matter
power spectrum should be stored for three fiducial
cosmological models (WMAP3, M001, and M023).
�fiducial [model]: This option sets the specific
fiducial model among the three, WMAP3, M001, and
M023 (in default setting, the code automatically se-

lects an appropriate fiducial model).
� Output data file

�xicompute: With this option, the code computes
the correlation function after power spectrum calcu-
lations, and creates the output file.
�nz n z1 � � � zn: This option specifies the output red-
shifts for power spectrum calculations. The integer n
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specifies the number of redshifts, and subsequent
arguments specify the value of each redshift (default:
�nz 1 1:0).
�pkfile [file]: This option sets the output
file name of power spectrum data (default:
pk RegPT:dat).
�xifile [file]: This option sets the output file name
of correlation function data (default:xi RegPT:dat).
�stfile [file]: This option sets the output file name
of PT diagram data (default: st PT:dat).

4. Output file format

In what follows, wavenumber k and separation r are in
units of h Mpc�1 and h�1 Mpc, respectively. All the power
spectrum data are assumed to be in units of h�3 Mpc3.

a. Power spectrum data

By default, REGPT code creates the output file for the
power spectrum data (default file name is pk RegPT:dat).
The columns of this file include

k; ½data for z1�; ½data for z2�; . . . ; ½data for zn�:
The first column is the wavenumber, while the bracket
½data for zi� represents a set of power spectra at given
redshift zi and wavenumber k. Number of the data set is
specified with the option�nz, and each data contains

Pno-wiggleðk;ziÞ; Plinðk;ziÞ; PRegPTðk;ziÞ; ErrðkÞ:
Here, the spectrum Pno-wiggle is the smooth reference spec-

trum calculated from the no-wiggle formula of linear
transfer function in Ref. [47], Plin is the linearly extra-
polated spectrum, and PRegPTðk; ziÞ represents the power

spectrum based on the REGPT calculations with fast and/or
direct method (depending on the choice of options,

�fast, �direct or �direct1loop). The last col-
umn, Err, usually sets to zero, but with the option
�direct, it gives the difference of the power spectra
between fast and direct methods.

b. Correlation function data

With the option �xicompute, the code also provides
the output file for correlation function data (default file
name is xi RegPT:dat). Similar to the power spectrum
data, the structure of the data is

r; ½data for z1�; ½data for z2�; . . . ; ½data for zn�
The first column is the separation, while the bracket
½data for zi� represents a set of correlation functions given
at redshift zi and separation r, containing two columns

�linðr; ziÞ; �RegPTðr; ziÞ:
These are simply obtained from the output results of power
spectrum based on the expression (29). Note that the range
of wavenumber for output power spectrum is restricted to
the wavenumber coverage of input linear spectrum (or
transfer function). To get a convergent result of correlation
functions, users may have to supply the input data file with
a sufficiently wide range of wavenumber (e.g., 10�3 

k 
 10h Mpc�1).

c. Diagram data

When users specify the �direct option, the code
additionally provides a set of PT diagram data necessary
for power spectrum computation, from which we can con-
struct the power spectrum at one- and two-loop order.
The output file (default file name is st PT:dat) includes
the following columns:

k; Pno-wiggleðkÞ; PlinðkÞ; ��ð1Þ
1- loopðkÞ; ��ð1Þ

2- loopðkÞ; Pð2Þtree-tree
corr ðkÞ; Pð2Þtree-1loop

corr ðkÞ; Pð2Þ1loop-1loop
corr ðkÞ; Pð3Þtree-tree

corr ðkÞ:

Here, the power spectra Pno-wiggle and Plin are basically the
same data as contained in the power spectrum file, but
these are the extrapolated data at z ¼ 0 (that is, Plin

corresponds to P0). The function ��ð1Þ
n- loop is the two-point

propagator of the standard PT expansion (see definition
[(19)]). The functions in the remaining four columns,
Pð2Þtree-tree
corr , P

ð2Þtree-1loop
corr , P

ð2Þ1loop-1loop
corr , and Pð3Þtree-tree

corr , are
defined by

Pð2Þtree�tree
corr ðkÞ ¼ 2

Z d3q

ð2�Þ3 F
ð2Þ
symðq; k� qÞFð2Þ

symðq; k� qÞ
� P0ðqÞP0ðjk� qjÞ; (B1)

Pð2Þtree�1loop
corr ðkÞ ¼ 4

Z d3q

ð2�Þ3F
ð2Þ
symðq;k�qÞ ��ð2Þ

1�loopðq;k�qÞ
�P0ðqÞP0ðjk�qjÞ; (B2)

Pð2Þ1loop�1loop
corr ðkÞ ¼ 2

Z d3q

ð2�Þ3
��ð2Þ
1�loopðq; k� qÞ

� ��ð2Þ
1�loopðq; k� qÞP0ðqÞP0ðjk� qjÞ;

(B3)

Pð3Þtree�tree
corr ðkÞ ¼ 6

Z d3pd3q

ð2�Þ6 Fð3Þ
symðp; q; k� p� qÞ

� Fð3Þ
symðp; q; k� p� qÞP0ðpÞP0ðqÞ

� P0ðjk� p� qjÞ: (B4)

Provided the data set above, the power spectrum can be
constructed with
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PRegPT
1�loopðk;�Þ ¼ e2�e�2
k½f1þ 
k þ e2� ��ð1Þ

1�loopðkÞg2P0ðkÞ þ e2�Pð2Þtree�tree
corr ðkÞ�; (B5)

PRegPT
2�loopðk;�Þ ¼ e2�e�2
k

��
1þ 
k þ 
2

k

2
þ e2� ��ð1Þ

1�loopðkÞð1þ 
kÞ þ e4� ��ð1Þ
2�loopðkÞ

�
2
P0ðkÞ þ e2�fð1þ 
kÞ2Pð2Þtree�tree

corr ðkÞ

þ e2�ð1þ 
kÞPð2Þtree�1loop
corr ðkÞ þ e4�Pð2Þ1loop�1loop

corr ðkÞg þ e4�Pð3Þ1loop�1loop
corr ðkÞ

�
(B6)

for the REGPT calculation at one- and two-loop order,
respectively. Here, 
k is given by 
k ¼ k2�2

de
2�=2 with

�d being the dispersion of displacement field (see Eq. (16)).
Note that the diagram data set can be also used to compute
the power spectrum in the standard PT calculations

PSPT
1�loopðk;�Þ ¼ e2�P0ðkÞ þ e4�½2P0ðkÞ ��ð1Þ

1�loopðkÞ
þ Pð2Þtree�tree

corr ðkÞ�; (B7)

PSPT
2�loopðk;�Þ ¼ PSPT

1�loopðk;�Þ þ e6�½P0ðkÞf ��ð1Þ
1�loopðkÞg2

þ Pð3Þtree�tree
corr ðkÞ þ Pð2Þtree�1loop

corr ðkÞ
þ 2P0ðkÞ ��ð1Þ

2�loopðkÞ�: (B8)

With the supplemental code, read stfile:f, users
can easily compute the power spectrum in both REGPT and
standard PT treatments. The code also provides the power

spectrum result for LRT [25,48]. A brief instruction on how
to run the code and the output format of data is described in
the header of the code.

5. Limitation

Since the REGPT code is the PT-based calculation code
valid at weakly nonlinear scales, the applicability of the
output results is restricted to a certain range of wavenum-
ber in power spectrum. We provide an empirical estimate
of critical wavenumber kcrit, below which the REGPT results
are reliable and their accuracy can reach a percent level.
This is based on Eq. (42) with constant value C ¼ 0:7ð0:3Þ
for two-loop (one-loop) (see Sec. VI B). With the option
�verbose 2, the code displays the critical wavenumbers
at output redshifts. Note that the value kcrit given here is
just a crude estimate, and the actual domain of applicability
may be somewhat wider or narrower. Users should use the
output results with a great care.
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